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Abstract:  

The next generation of scientific experiments and studies, popularly called e-Science, is carried out by large 

collaborations of researchers distributed around the world engaged in analysis of huge collections of data generated 

by scientific instruments. Grid computing has emerged as an enabler for e-Science as it permits the creation of virtual 

organizations that bring together communities with common objectives. Within a community, data collections are 

stored or replicated on distributed resources to enhance storage capability or efficiency of access. In such an 

environment, scientists need to have the ability to carry out their studies by transparently accessing distributed data 

and computational resources. In this paper, we propose and develop a Grid broker that mediates access to distributed 

resources by (a) discovering suitable data sources for a given analysis scenario, (b) suitable computational resources, 

(c) optimally mapping analysis jobs to resources, (d) deploying and monitoring job execution on selected resources, (e) 

accessing data from local or remote data source during job execution and (f) collating and presenting results. The 

broker supports a declarative and dynamic parametric programming model for creating grid applications. We have 

used this model in grid-enabling a high energy physics analysis application (Belle Analysis Software Framework). The 

broker has been used in deploying Belle experiment data analysis jobs on a grid testbed, called Belle Analysis Data 

Grid, having resources distributed across Australia interconnected through GrangeNet.  

1 Introduction 

The next generation of scientific experiments and studies, popularly called as e-Science [1] is carried out by 

communities of researchers from different organizations that span national and international boundaries. 

These experiments involve geographically distributed and heterogeneous resources such as computational 

resources, scientific instruments, databases and applications. The data in these experiments is usually 

massive and distributed across numerous institutions for various reasons including, the inherent distribution 

of data sources; large-scale storage and computational requirements; to ensure high-availability and fault-

tolerance of data; and caching to provide faster access. Some well-known scientific experiments of this 

nature include the CERN-led ATLAS [2] and CMS [3] experiments and KEK’s Belle [4] experiment. The 

users in such complex environments should able to carry out analysis of the data generated by the 

experiments by transparently accessing distributed datasets and computational resources. They should also 

be able to share the results of their analysis with the rest of the community.  

Grid computing [5] enables the creation of virtual organizations [6] by bringing together communities 

with common objectives. Grid platforms support sharing, exchange, discovery, selection, and aggregation 

of geographically/Internet-wide distributed heterogeneous resources — such as computers, databases, 

visualization devices, and scientific instruments. Recently, Data Grids [7] have evolved to tackle the twin 

challenges of large datasets and multiple data repositories at distributed locations in data-intensive 

computing environments [8]. However, the harnessing of the complete power of grids remains to be a 

challenging problem for users due to the complexity involved in the creation and composition of 

applications and their deployment on distributed resources.  

Resource brokers hide the complexity of grids by transforming user requirements into a set of jobs that 

are scheduled on the appropriate resources, managing them and collecting results when they are finished. A 

resource broker in a data grid must have the capability to locate and retrieve the required data from multiple 

data sources and to redirect the output to storage where it can be retrieved by processes downstream. It 

must also have the ability to select the best data repositories from multiple sites based on availability of 

files and quality of data transfer. In this paper, one such broker called the Gridbus Broker providing 
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services relevant to data-intensive environments is presented. Its application to the high-energy physics 

domain is discussed by illustrating its use within the Belle Analysis Data Grid and the results of 

experiments that have been conducted on it are presented. 

2 Related Work 

In the context of Data Grid, the Storage Resource Broker (SRB) [9] from San Diego Supercomputing 

Centre (SDSC) provides middleware for storing datasets over a network and accessing them. However, it 

does not deal with application execution directly. Hence, it is similar to other data replication mechanisms 

such as Grid Data Mirroring Package (GDMP) [10] and Giggle [11]. The European DataGrid [12] has its 

own resource broker which is installed in a central machine that receives requests and then decides to 

dispatch jobs according to system parameters. Cactus [13] is a numerical problem solving environment for 

scientists which supports Data Grid features through the use of MPICH-G and Globus. However, 

applications in Cactus environment have to be written in MPI which implies that a legacy application 

cannot be adapted as such to be run on a grid. NILE [14] is a grid-computing environment for high-energy 

physics constructed using CORBA but is limited to that domain.  

The Gridbus broker extends the Nimrod-G [15] computational Grid resource broker model to 

distributed data-oriented grids. Nimrod-G specializes in parameter-sweep computation. However, the 

scheduling approach within Nimrod-G aims at optimizing user-supplied parameters such as deadline and 

budget [16] for computational jobs only. It has no functions for accessing remote data repositories and for 

optimizing on data transfer. The Gridbus broker also extends Nimrod-G’s parametric modeling language by 

supporting dynamic parameters, i.e. parameters whose values are determined at runtime.  

Like Nimrod-G, the AppLeS PST [17] supports deployment of parameter-sweep applications on 

computational grids, but its adaptive scheduling algorithm emphasizes on data-reuse. The users can identify 

common data files required by all jobs and the scheduling algorithm replicates these data files from the user 

node to computational nodes. It tries to re-use the replicated data to minimize the data transmission when 

multiple jobs are assigned to the same resource. However, multiple repositories of data are not considered 

within this system and therefore, this scheduling algorithm is not applicable to Data Grids. 

Ranganathan and Foster [18] have conducted simulation studies for various scheduling scenarios 

within a data grid. Their work recommends decoupling of data replication from computation while 

scheduling jobs on the Grid. It concludes that it is best to schedule jobs to computational resources that are 

closest to the data required for that job, but the scheduling and simulation studies are restricted to 

homogeneous computational nodes with a simplified First-In-First-Out (FIFO) strategy within local 

schedulers.  

Similar to [18], our work focuses on a resource scheduling strategy within a Data Grid but we 

concentrate on adaptive scheduling algorithms and brokering for heterogeneous resources that are shared 

by multiple user jobs. In addition, the scheduling strategy has been implemented within the Gridbus broker 

and its feasibility to support the deployment of distributed data-intensive applications (e.g. KEK Belle 

high-energy physics experiment data analysis) within a real Grid testbed (e.g., Australian Belle Analysis 

Data Grid) has been evaluated.  

3 Architecture 

3.1 Data Grid Overview and Brokering 

A data-intensive computing environment can be perceived as a real-world economic system wherein 

there are producers and consumers of data. Producers are entities which generate the data and control its 

distribution via mirroring at various replica locations around the globe. They lay down policies for 

replication that are guided by various criteria such as minimum bandwidth, storage and computational 

requirements, data security and access restrictions and data locality issues. However, information about the 

data replicas is assumed to be available through a data catalogue mechanism such as the Globus Replica 

Catalog [19]. An example of such a system would be the tier-level model proposed by the MONARC [20] 

group within CERN for replicating the data produced by the Large Hadron Collider (LHC) [21] for use 

within the ATLAS and CMS collaborations. The consumers in this system would be the users or, by proxy, 

their applications which need to analyse this data to produce meaningful results. The users may want to 

investigate specific datasets out of a set of hundreds and thousands and may have specific application 
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requirements that need not be fulfilled at every computational site. A sample scenario for such a data-

intensive computing environment and the role of the broker in it is illustrated in [22]. 

3.2 Gridbus Data Grid Service Broker 

The architecture of the Gridbus broker is shown in Figure 1. The inputs to the broker are the tasks and the 

associated parameters with their values. These can be specified within a “plan” file that specifies the tasks 

and the types of the parameters and their values for these tasks. 
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Figure 1:  Gridbus broker architecture and its interaction with other Grid entities. 

A task is a sequence of commands that describe the user’s requirements. For example, the user may 

specify an application to be executed at the remote site. But, the requirements may also require an input file 

to be copied over before execution and the results to be returned back. Hence, a task encapsulates this 

information within its description. A task is accompanied by parameters which can either be static or 

dynamic. A static parameter is a variable whose domain is well-defined either as a range of values, as a 

single static value or as one among a set of values. A dynamic parameter has either an undefined or an 

unbounded domain whose definition or boundary conditions respectively, have to be established at runtime. 

As an example, in the current implementation, a parameter type has been defined which describes a set of 

files over which the application has to be executed. This set can be described as a wildcard search within a 

physical or a logical directory, to be resolved at runtime, thus creating a dynamic parameter. 

The task requirements drive the discovery of resources such as computational nodes and data 

resources. The resource discovery module gathers information from remote information services such as 

the Grid Market Directory (GMD) [23] or Grid Index Information Service (GIIS) [24] for availability of 
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compute resources. Optionally, the list of available compute resources can be provided by the user to the 

broker. The broker also interacts with the information service on each computational node to obtain its 

properties. Data files can be organised as Logical File Names (LFNs) within a virtual directory structure 

using a Replica/Data Service Catalog. Each LFN maps to one or many Physical File Names (PFNs) located 

somewhere on Grid, usually specified via URLs. The virtual directory structure is organised into catalogues 

and further into collections. As mentioned before, the LFNs to be processed may be typically specified by a 

dynamic parameter and the broker will resolve this to the appropriate physical file location(s).   

The task description, i.e. the task along with its associated parameters, is resolved or “decomposed” 

into jobs. A job is an instantiation of the task with a unique combination of parameter values. It is also the 

unit of work that is sent to a Grid node. The set of jobs along with the set of service nodes are an input to 

the scheduler. The scheduler matches the job requirements with the services and dispatches jobs to the 

remote node. For jobs requiring remote data, it interacts with a network monitoring service to obtain the 

information about current available bandwidth between the data sources and the compute resources. It then 

uses this information to schedule jobs by optimizing on the amount of data transfer involved. In the current 

implementation, the Network Weather Service (NWS) [25] has been used to obtain this information. The 

scheduling algorithm is described in more detail in the next section. 

The jobs are dispatched to the remote node through the Actuator component. The Actuator submits the 

job to the remote node using the functionality provided by the middleware running on it. The Actuator has 

been designed to operate with different Grid middleware frameworks and toolkits such as Globus 2.4 [26] 

that primarily runs on Unix-class machines and Alchemi [27], which is a .NET based grid computing 

platform for Microsoft Windows-enabled computers. Hence, it is possible to create a cross-platform grid 

implementation using the Gridbus broker. The task commands are encapsulated within an Agent which is 

dispatched to and executed on the remote machine. If a data file has been associated with the job and a 

suitable data host identified for that file, then the Agent obtains the file through a remote data transfer from 

the data host. Additionally, it may require some configuration or input parameter files that it obtains from 

the broker through a mechanism such as a GASS [28] (Globus Access to Secondary Storage) Server. These 

files are assumed to be small and in tens or hundreds of kilobytes which impact the overall execution time 

of a job negligibly whereas the data files are in the range of megabytes or larger. On completion of 

execution, the Agent returns any results to the broker and provides debugging information. The Monitoring 

component keeps track of job status – whether the jobs are queued, executing, finished successfully or 

failed. It updates the status of the jobs which is fed back to the scheduler to update its estimates of the rate 

of execution and of the performance of the compute resources. The Bookkeeper keeps a persistent record of 

job and resource states throughout the entire execution. 

3.3 Design and Implementation 

The Gridbus broker has been implemented in Java so that it can be deployed in Web-enabled environments 

such as Tomcat-driven portals and also be used from the command line. It interfaces to nodes running 

Globus using the Java Commodity Grid (CoG) Kit [29] and to Alchemi nodes using the Alchemi Cross-

Platform Manager Interface. A UML (Unified Modelling Language) class diagram that displays the core 

entities within the broker and their associations is shown in Figure 2.  

The main design entities within the broker are: 

1. Compute Server: The ComputeServer object describes a node on the grid. It holds the properties for 

that node e.g. what middleware it is running, its architecture and its operating system. It also monitors 

the rate of progress by keeping track of the number of jobs that are done, failed or executing on the 

corresponding remote server.  

The ComputeServer has been subclassed for different middlewares like Globus and Alchemi. 

However, the scheduler has a platform-independent view of the nodes and is concerned only with their 

performance. Therefore, it is possible for the broker to operate across different middlewares. 

2. Jobs: - A job is an abstraction for a unit of work assigned to a node. A Job has the following structure: 

a. Variables: - A variable holds the designated parameter value for a job. A variable can hold a range 

of values or a set of values or a single value in which case it is called a single variable 

b. Task: - As described above, a task is the description of what has to be done by the job. A task is 

composed of a set of commands. There are three types of commands 

i. Copy Command: Instructs the broker to copy a file from the source to the destination. It can 
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be used for either copying the files from the broker host to the remote node or vice versa. 

At present, there is no provision to copy from one node to another node without the broker 

intervening in between. A special case of copy command is the Multiple Copy (MCopy) 

command which instructs the broker to copy multiple files as described with a wildcard (*, 

?, etc.) 

ii. Execute Command: Instructs the broker to execute the application given as a parameter to 

this command on the remote node.  

iii. Substitute Command: Instructs the broker to substitute the values whenever it encounters a 

variable name within a text file. This is particularly useful when a configuration file has to 

be modified for each job. 

When a job is submitted to a server, the control is passed to the JobWrapper associated with the job. 

This object takes charge of translating the job instructions to be understood by the middleware that is 

running on the designated ComputeServer. After a successful submission, the JobWrapper starts up the 

JobMonitor which tracks the job and updates its status. Otherwise, it throws an exception and quits. 

   

 Job()

 Job()

 addVariable()

 clearVariables()

 getDonetime()

 getJobCompletedTimestamp()

 getJobHandle()

 getJobID()

 getJobStatus()

 getJobSubmittedTimestamp()

 getJobWrapper()

 getOutputBuffer()

 getServer()

 getStatusString()

 getTask()

 getVariableValue()

 getVariables()

 removeVariable()

 setJobCompletedTimestamp()

 setJobCompletedTimestamp()

 setJobHandle()

 setJobID()

 setJobStatus()

 setJobSubmittedTimestamp()

 setJobSubmittedTimestamp()

 setJobWrapper()

 setOutputBuffer()

 setServer()

 setTask()

 setVariables()

 submit()

 terminate()

Job

 ComputeServer()

 calcJobLimit()

 decExecutingJobs()

 getAllocatedJobs()

 getAvgRateofCompletion()

 getBusytime()

 getCostperCpuSec()

 getCostperJob()

 getExecutingJobs()

 getFinishedJobs()

 getHostname()

 getJobLimit()

 getOS()

 getPrevtime()

 getServerID()

 getStatus()

 getTimeperjob()

 getTotalFinishedJobs()

 incAllocatedJobs()

 incExecutingJobs()

 incFinishedJobs()

 incTotalFinishedJobs()

 isAlive()

 setAliveFlag()

 setAllocatedJobs()

 setBusytime()

 setCostperCpuSec()

 setCostperJob()

 setFinishedJobs()

 setHostname()

 setJobLimit()

 setOS()

 setPrevtime()

 setServerID()

 setStatus()

 setTimeperjob()

 setTotalFinishedJobs()

 submitJob()

 updateAvgRateofCompletion()

 updateStatus()

ComputeServer

org::gridbus::broker::runfile::Task

 execute()

 terminate()

JobWrapper

org::gridbus::broker::farming::globus::GlobusJobWrapper

org::gridbus::broker::runfile::TaskCommand

org::gridbus::broker::runfile::CopyCommandorg::gridbus::broker::runfile::ExecuteCommand

org::gridbus::broker::runfile::SubstituteCommand

 SingleVariable()

 SingleVariable()

 getValue()

 setValue()

org::gridbus::broker::runfile::SingleVariable

org::gridbus::broker::runfile::Variable

org::gridbus::broker::farming::alchemi::AlchemiComputeServer org::gridbus::broker::farming::globus::GlobusComputeServer
 

Figure 2: UML Diagram of core broker components.  

3. Data Hosts: - Data Hosts are nodes on which data files have been stored. These objects store the details 

of the data files that are stored on them such as their path on the disk and the protocol used to access 

them. The Data Host objects also maintain a list of the compute resources sorted in the descending 

order of available bandwidth from the host. 
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4. Data Files: - The Data File object stores attributes of input files that are required for an application 

such as size and location. A Data File object links to the different Data Hosts that store that file.  

Other than these, the broker also has a Farming Engine component which is the central component of the 

broker and its point of contact with other applications. The farming engine initializes the objects within the 

broker and invokes the scheduler to distribute the jobs. User Interfaces such as command line or web 

interfaces interact with the farming engine to supply inputs such as parameterized plan files and list of 

compute resources and to obtain data about the progress of execution. 

3.4 Scheduling Algorithm 

The scheduler within the broker looks at a data grid from the point of view of the data. It perceives a 

data-intensive computing environment as a collection on data hosts, or resources hosting the data, 

surrounded by computational resources. The “network proximity” of a compute resource to a data host is a 

measure of the available bandwidth between the resources. Some of the data resources may have 

computation facilities too, in which case the data transmission cost is assumed to be zero as the data host 

and the compute resource at the same site. The algorithm for the scheduler is listed in Figure 3. 

The scheduler minimizes the amount of data transfer involved for executing a job by dispatching jobs 

to compute servers which are close to the source of data. A naïve way of achieving this would be to run the 

jobs only on those machines that contain their data. But, the data hosts may not have the best computational 

resources.  

  It is difficult, if not impossible to define a uniform set of metrics for heterogeneous resources with 

potentially variable architectures. However, from the users’ point of view, the most important measure is 

how fast their jobs are getting done. Therefore, the scheduler uses the job completion ratio - the ratio of the 

number of jobs completed to the number of jobs allocated - to evaluate the performance of the 

computational resources. At every regular polling interval, the scheduler evaluates the progress of job 

completion for each compute resource in the following manner:  

Q

C
S J

J
r =  

where Sr  is the job completion ratio for a particular resource, CJ  is the number of jobs that were 

completed on that particular resource in the previous polling interval and QJ  is the number of jobs that 

were queued on that resource in the previous allocation. 

  The scheduler then calculates the average job completion ratio, SR  at the N th
 polling interval as: 

NrNRR SSS /)/11(*'
+−=  

where
'

SR  is the average job completion ratio for the 1−N th
 polling interval. The averaging of the ratio 

provides a measure of the resource performance from the beginning of the scheduling process and can be 

considered as an approximate indicator of the future performance of that resource.  

Each resource is assigned a job limit, the maximum number of jobs that can be allocated out of current 

list of jobs waiting for execution, proportional to its average job completion ratio. The scheduler then 

iterates through the list of unassigned jobs one at a time. For each job, it first selects the data host that 

contains the file required for the job and then, selects a compute resource that has the highest available 

bandwidth to that data host. If this allocation plus previously allocated jobs and current running jobs on the 

resource exceeds the job limit for that resource, then the scheduler looks for the next available nearest 

compute resource.  

A detailed experimental analysis and performance evaluation of this scheduling algorithm for different 

scenarios is presented in Section 4 with a case study on the deployment of a high energy physics 

application within a Data Grid environment. 
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Figure 3: Adaptive scheduling algorithm for Data Grid. 

4 A Case Study in High Energy Physics 

High Energy Physics (HEP) is a fundamental science studying matter at the very smallest scales. 

Probing this frontier requires accelerators of great complexity, typically beyond the means of any single 

country. Equally, since experiments in HEP are large and technically sophisticated, they necessarily 

involve international collaboration between many institutes over very long time scales. 

Computing resource requirements for HEP are increasing exponentially because of advancements in 

particle accelerators and increasing size of collaborations. Modern experiments will have to provide access 

to petabytes of data, hundreds of teraflops of computing power, for thousands of researchers located in 

many institutions around the world. Existing techniques for analysis using high performance computing 

will not be sufficient. The CERN LHC particle accelerator is a case in point of how current computational 

facilities will prove inadequate for the next generation of scientific experiments and is frequently cited as a 

justification for the need for data grids in experimental high energy physics [30] [31].  

4.1 The Belle Project 

Charge-Parity (CP) violation was first observed in 1964, by studying the decays of K-mesons. Briefly 

C is the symmetry operation of particle - antiparticle inversion, and P that of space inversion. The issue 

today is whether the Standard Model (SM) of Physics offers a complete description of CP violation, or, 

more importantly, whether new physics is needed to explain it. Answering this question requires very 

detailed study of this subtle effect.  

The Belle experiment, built and operated by a collaboration of 400 researchers across 50 institutes 

from 10 countries, is probing CP-violation by studying the decay of the B-mesons produced in the KEKB 

accelerator at the Japanese High Energy Accelerator Research Organization (KEK) in Tsukuba. The 

increasing efficiencies of the KEKB accelerator have led to an increase in the rate of data production from 

Initialisation 

1. Identify characteristics, configuration, capability, and suitability of compute resources using the Grid 

information services (GIS).  

2. From the task definition, obtain the data query parameters (if present), such as the logical file name  

a. Resolve the data query parameter to obtain the list of Logical Data Files (LDFs) from the Data Catalog 

b. For each LDF, get the data sources or Data Hosts that store that file by querying the Data Catalog.   

Scheduling Loop 

Repeat while there exists unprocessed jobs. [This step is triggered for each scheduling event. The event period is a 

function of job processing time, rescheduling overhead, resource share variation, etc.]: 

3. For each compute resource, predict and establish the job consumption rate or the available resource share 

through the measure and extrapolation strategy taking into account the time taken to process previous jobs. 

Use this estimate along with its current commitment to determine expected job completion time. 

4. If any of the compute resource has jobs that are yet to be dispatched for execution and there is variation in 

resource availability in the Grid, then move such jobs to the Unassigned-Jobs-List.  

5. Repeat until all unassigned jobs are scheduled or all compute resources have reached their maximum job 

limit. 

a. Select the next job from the Unassigned-Jobs-List. 

b. Identify all Data Hosts that contain the LDF associated with the job.  

c. Create a Data-ComputeResource-List for the selected job:  

• For each data host, identify a compute resource that can complete the job earliest given its current 

commitment, job completion rate, and data transfer time using current available bandwidth 

estimates. 

d. Select a data host and compute resource pair with the earliest job completion time from the Data-

ComputeResource-List. 

e. If there exists such a resource pair, then assign the job to the compute resource and remove it from the 

Unassigned-Jobs-List. 

6. End of scheduling loop. 
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the Belle experiment. The current experiment and simulation data set is tens of terabytes in size. While this 

increase is extremely desirable for the study of B-meson decays, it begins to pose problems for the 

processing and access of data at geographically remote institutions, such as those within Australia. Hence, 

it is important for Data Grid techniques to be applied in this experiment [32]. 

4.2 The Testbed 

The Belle Analysis Data Grid (BADG) [33] testbed has been set up in Australia in collaboration with IBM 

is shown in Figure 4. The testbed resources are located in Sydney (Dept. of Physics, University of Sydney), 

Canberra (Australian National University), Melbourne (School of Physics and the Dept. of Computer 

Science, University of Melbourne) and Adelaide (Dept. of Computer Science, University of Adelaide). All 

the nodes in the testbed, except for the one in Adelaide, are connected via GrangeNet (Grid And Next 

Generation Network) [34]. GrangeNet is a three year program to install, develop and operate a multi-

gigabit network supporting grid and advanced communications services across Australia. Hence, there is a 

higher bandwidth between the Melbourne, Canberra and Sydney resources. Two of these resources 

(Adelaide and Sydney) were effectively functioning as single processor machines as the Symmetric Multi-

Processing (SMP) Linux kernel was not running on them. All the machines in this testbed were running 

Globus 2.4.2 and NWS sensors. The broker was deployed on the Melbourne Computer Science machine 

and broker agents were dispatched at runtime to the other resources for executing jobs and initiating data 

transfers. 

 

Figure 4: Australian Belle Analysis Data Grid testbed. 

Data that was produced on one site in BADG had to be shared with the other sites. For this purpose, a 

Data Catalog was set up for the Belle Data Grid using the Globus Replica Catalog (RC) mechanism. The 

Data Catalog is a global directory structure that stores the logical file names and their physical locations 

and is based on the Lightweight Directory Access Protocol (LDAP). A set of high-level tools emulating 

Unix directory structure commands for creation and management of RC have also been developed by 

utilitsing low-level Globus RC functions. 

The primary application for the Belle experiment is the Belle Analysis Software Framework (BASF). 

This application is used for simulation, filtering of events, and analysis. It is also a legacy application that 

consists of about a Gigabyte of code. Therefore, execution is restricted to those sites which have this 

application already installed. In the case where the data is being transferred across the network, a delay is 

incurred before the data is completely available on the executing node. To eliminate this “dead-time”, 

BASF was modified to execute on streaming data. 
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4.3 Application Parameterisation and Experimental Setup 

A typical analysis is split into two streams: data and simulation.  Raw data is recorded from various 

sensors within a detector and stored as separate measurements or “events”.  Simulated or Monte-Carlo data 

involves the generation of events and then detailed detector simulation.  From this point on, the analysis 

streams are very similar. The data is reconstructed, which involves the correlation of sensor information.    

Data summaries are generated for ease of analysis.  As an example, within the Belle experiment 10 TB of 

data summary information exists.  These are “skimmed” to produce subsets of the data of most interest to 

each physicist’s analysis. These are around 100 GB in size for Belle users.  These are then analysed to 

generate plots and histograms and can then be used for statistical analysis by applying further cuts. For 

simulated data, this process is repeated until the analysis is perfected.  The simulated data can then be used 

for systematic error analysis.  The same analysis process is performed on data to obtain a result, provided 

there are no large differences between data and simulation. Simulation is very CPU-intensive and the 

results must be saved and made available to the whole collaboration.  

For validating the broker, a simulation of a “decay chain” of particles has been used. A decay chain 

occurs when an unstable particle decays into another and so on until a stable particle state is reached. This 

is typical of the events that happen within a particle accelerator. The experiment consists of 2 parts, both of 

which involve execution over the Grid using the Gridbus broker. In the first part, 100,000 events of the 

decay chain B
0
->D*

+
D*

-
Ks shown in Figure 5 are simulated via distributed generation and this data is 

entered into the replica catalog. In the analysis part, the replica catalog is queried for the generated data and 

this is analysed over the Belle Data Grid. The histograms resulting from this analysis are then returned as 

output. Here only the results of the analysis are discussed as it involved accessing remote data. 

 

Figure 5: The B
0
->D*+D*-Ks decay chain. 

A plan file for the composing analysis of Belle data as a parameter sweep application is shown in 

Figure 6. The plan file follows Nimrod-G’s declarative parametric programming language which has been 

extended in this work by introducing a new type of parameter called “Gridfile”. This dynamic parameter 

describes a logical file location, either a directory or a collection of files and the broker resolves it to the 

actual file names and their physical locations. The plan file also instructs copying of user defined analysis 

modules and configuration files to the remote sites before any execution is started. The main task involves 

executing a user-defined shell script at the remote site which has 2 input parameters: the full network path 

to the data file and the name of the job itself.  The shell script invokes BASF at the remote site to conduct 

the analysis over the data file and produce histograms. The histograms are then copied over to the broker 

host machine. 

The Logical file name in this particular experiment resolved to 100 Monte Carlo simulation data files. 

Therefore, the experiment set consisted of 100 jobs, each dealing with the analysis of one data file using 

BASF. Each of these input data files was 30 MB in size. The entire data set was equally distributed among 

the five data hosts i.e. each of them has 20 data files each. The data was also not replicated between the 

resources, therefore, the dataset on each resource remained unique to it. The histograms generated were 968 

KB in size and online visualization of histogram outputs is shown in Figure 7. 

For monitoring the bandwidth between the resources, an NWS sensor was started on each of the 

resources which reports to the NWS name server located in Melbourne. An NWS activity for monitoring 

bandwidth was defined at the name server within which a clique containing all the resources on the testbed 

was created. Members of the clique conduct experiments one at a time to determine network conditions 

between them. Querying the name server at any point provides the bandwidth and latency between any 2 

members of the clique. 
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parameter INFILE  Gridfile lfn:/users/winton/fsimddks/fsimdata*.mdst;

task nodestart

copy ddks_ana.so node:ddks_ana.so

copy libanalyser.so node:libanalyser.so

copy libbase_analyser.so node:libbase_analyser.so

copy libreconstructor.so node:libreconstructor.so

copy libtools.so node:libtools.so

copy event.conf node:event.conf

copy recon.conf node:recon.conf

copy particle.conf node:particle.conf

endtask

task main

node:execute ./runme.ddksana $INFILE $jobname

copy node:runme.log runme.log.$jobname

copy node:ddks-$jobname.hbook ddks-$jobname.hbook

endtask

����������	���	
����������	����������������	���	�����

�������������������	���	��	�������	�����	������������	����

parameter INFILE  Gridfile lfn:/users/winton/fsimddks/fsimdata*.mdst;

task nodestart

copy ddks_ana.so node:ddks_ana.so

copy libanalyser.so node:libanalyser.so

copy libbase_analyser.so node:libbase_analyser.so

copy libreconstructor.so node:libreconstructor.so

copy libtools.so node:libtools.so

copy event.conf node:event.conf

copy recon.conf node:recon.conf

copy particle.conf node:particle.conf

endtask

task main

node:execute ./runme.ddksana $INFILE $jobname

copy node:runme.log runme.log.$jobname

copy node:ddks-$jobname.hbook ddks-$jobname.hbook

endtask

����������	���	
����������	����������������	���	�����

�������������������	���	��	�������	�����	������������	����

 

Figure 6: Plan file for Data Analysis. 

 

 

Figure 7: A histogram generated from Belle analysis. 

4.4 Results of Evaluation 

Three scheduling scenarios were evaluated: (1) scheduling with computation limited to only those 

resources with data, (2) scheduling without considering location of data, and (3) our adaptive scheduling 

(shown in Figure 3) that optimizes computation based on the location of data. The experiments were carried 

out on April 19
th

, 2004 between 18:00 and 23:00 AEST. At that time, the Globus gatekeeper service on the 

Adelaide machine was down and so, it could not be used as a computational resource. However, it was 

possible to obtain data from it through GridFTP. Hence, jobs that depended on data hosted on the Adelaide 

server were able to be executed on other machines in the second and third strategies. A graph depicting the 

comparison of the total time taken for each strategy to execute all the jobs is shown in Figure 8 and another 

comparing resource performance for different scheduling strategies is shown in Figure 9. 
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Figure 8: Total time taken for each scheduling strategy. 
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Figure 9: Comparison of resource performance under different scheduling strategies. 

In the first strategy (scheduling limited to resources with the data for the job), jobs were executed only 

on those resources which hosted the data files related to those jobs. No data transfers were involved in this 

scenario. As is displayed in the graph in Figure 9, all of the resources except the one in Adelaide were able 

to execute 20 jobs each. The jobs that were scheduled on that resource failed, as its computational service 

was unavailable. Hence, Figure 8 shows the total time taken for only 80 successful jobs out of 100. 

However, this time also includes the time taken by the scheduler to conclude that the remaining 20 jobs 

have failed. In this setup, the related data was exclusively located on that resource and hence, these jobs 

were not reassigned to other compute resources. Thus, a major disadvantage of this scheduling strategy was 

exposed.  

In the second strategy (scheduling without any data optimization), the jobs were executed on those 

nodes that have the most available computational resources. That is, there was no optimization based on 

location of data within this policy. The Adelaide server was considered a failed resource and was not given 

any jobs. However, the jobs that utilized data files hosted on this machine were able to be executed on other 
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resources. This strategy involves the maximum amount of data transfer which makes it unsuitable for 

applications involving large data transfers and utilising resources connected by slow networks. 

The last evaluation (scheduling with data optimization) was carried out by scheduling jobs to the 

compute resources that satisfied the algorithm given in Section 3.4. In this case, as there were no multiple 

data hosts for the same data, the policy was reduced to dispatching jobs to the best available compute 

resource that had the best available bandwidth to the host for the related data. It can be seen from Figure 9 

that most of the jobs that accessed data present on the Adelaide resource were scheduled on the Melbourne 

Physics and CS resources because the latter had consistently higher available bandwidth to the former. This 

is shown in the plot of the available bandwidth from the University of Adelaide to other resources within 

the testbed measured during the execution, given in Figure 10. The NWS name server was polled every 

scheduling interval for the bandwidth measurements. As can be seen from Figure 8, this strategy took the 

least time of all three. 
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Figure 10: Available bandwidth from University of Adelaide to other resources in the testbed. 

5 Summary and Conclusion 

We have presented a grid broker for executing distributed data-oriented jobs on a grid. The broker 

discovers computational and data resources, schedules jobs based on optimization of data transfer and 

returns results back to the user.  We have applied this broker to a data-intensive environment, which is the 

analysis of the Belle high-energy physics experiment data and have presented the results of our evaluation 

with different scheduling strategies. The scheduling strategy proposed within the broker took into 

consideration the network conditions and has produced the best possible outcome by executing the jobs 

within the least amount of time.  

We plan to conduct further evaluations with larger file sizes and multiple repositories for the same 

datasets. This will ensure that the data transfer time becomes more significant when making scheduling 

decisions and that the scheduler will be able to choose between different data hosts. 
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