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Abstract

Grid economy provides a mechanism or incentive for
resource owners to be part of the Grid, and encourages
users to utilize resources optimally and effectively. Advance
reservation technique allows users to request resources in
the future. However, few research has been done on deter-
mining pricing of such reservations.

In this paper, we present a novel approach of using Rev-
enue Management (RM) to determine pricing of reserva-
tions in Grids in order to increase profits. Hence, the aim
of RM is to periodically update the prices in response to
market demands, by charging different fares to different cus-
tomers for a same resource. We evaluate the effectiveness of
RM and show that by segmenting customers, charging them
with different pricing schemes and protecting resources for
them who are willing to pay more, will result in an increase
of total revenue for that resource. Moreover, using RM tech-
niques ensure that resources are allocated to applications
that are highly valued by the users.

1 Introduction

Grid [7] and peer-to-peer (P2P) [19] network technolo-
gies enable the aggregation of distributed resources for solv-
ing large-scale and computationally-intensive applications.
Managing various resources and applications in highly dy-
namic Grid environments is a complex and challenging pro-
cess. Resource management is not only about schedul-
ing large and compute-intensive applications, but also the
manner in which resources are allocated, assigned, and ac-
cessed. In most scheduling systems, submitted jobs are ini-
tially placed into a queue if there are no available resources.
Therefore, there is no guarantee as to when these jobs will
be executed. This causes problems in time-critical or par-
allel applications, such as task graph, where jobs may have
interdependencies.

To address these issues and to ensure the specified re-
sources are available for application’s consumption when

required, researchers have proposed the need for advance
reservation (AR) [8, 17, 24, 28]. Common resources that
can be reserved or requested are compute nodes (CNs) and
network bandwidth. AR in a scheduling system solves the
above problem by allowing users to gain simultaneous and
concurrent access to adequate resources for the execution
of such applications [28]. Currently, several Grid systems
are able to provide AR functionalities, such as GARA [8],
and ICENI [17].

Buyya et al. [4] introduced a Grid economy concept that
provides a mechanism for regulating demand and supply
of resources, and calculates pricing policies based on these
criteria. With this concept, it offers an incentive for resource
owners to be part of the Grid, and encourages users to utilize
resources optimally and effectively, especially to meet the
needs of critical applications.

Regulating demand and supply is an important issue in
AR, because a study done by Smith et al. [24] showed that
providing AR functionalities increases waiting times of ap-
plications in the queue by up to 37% with backfilling. This
study was conducted, without using any economy mod-
els, by selecting 20% of applications using reservations on
across different workload models. The finding implies that
without economy models or any set of AR policies, a re-
source accepts reservations based on a first come first serve
basis and subject to availability. Moreover, it also means
that these reservations are treated similarly to high priority
jobs in a local queue.

Several studies have been done to improve handling and
scheduling of reservations in Grid systems with some de-
gree of flexibilities using different techniques [11, 22, 23,
26]. However, [22, 23, 26] provide a simple pricing model
to determine the usage cost of each reservation. Resources
might need to adopt a more complex method to increase
their incentives or profits. In order to address this problem,
we incorporate revenue management (RM) techniques for
determining the pricing model in our on-line algorithm for
elastic Grid reservation-based systems [26].

The goal of elastic Grid systems is to provide users with
suitable reservation options so they can self-select offers ac-



cording to their Quality of Service (QoS) parameters, such
as deadline and budget. Similarly, the main objective of RM
is to maximize profits by providing the right price for every
product to different customers, and periodically update the
prices in response to market demands [20]. Therefore, a re-
source provider can apply RM techniques to shift demands
requested by budget conscious users to off-peak periods as
an example. Hence, more resources are available for users
with tight deadlines in peak periods that are willing to pay
more. As a result, the resource provider gains more revenue
or contributions in this scenario.

Numerous economic models for resource management
have been proposed in the literature. These include: com-
modity market models [3], tendering or contract-net mod-
els [13], auction models [21], bid-based proportional re-
source sharing models [12], and cooperative bartering mod-
els [5]. From these models, RM is more suited to the
commodity market one, where it complements the com-
modity’s pricing. So far, RM techniques have been widely
adopted in various industries, such as airlines, hotels, and
car rentals [16].

The rest of the paper is organized as follows. Section 2
mentions an overview of RM techniques. Section 3 explains
the overall model and how a RM system can be incorpo-
rated into an existing Grid system. Section 4 describes the
tactics of RM. Section 5 conducts a performance evaluation,
whereas Section 6 concludes the paper and suggests some
further work to be done.

2 Revenue Management Techniques and
Strategy

Revenue management (RM) is applicable when the fol-
lowing requirements are met [20]:

• capacity is limited and immediately perishable. For ex-
ample, an empty hotel room of today cannot be stored
to satisfy future demand.

• customers book capacity ahead of time to guarantee its
availability when they need to consume it.

• the seller manages a set of fare classes and updates
their availability based on market demands.

From the above criteria, RM is suitable in determining
the pricing of reservations in Grids, as computing powers
can be considered perishable. To successfully adapt RM,
a resource provider needs to have an initial strategy, estab-
lishes a system that handles bookings and updates its tactics
periodically based on demands [20]. These aspects are dis-
cussed next.

Table 1. An example of market segmentation
in Grids for reserving jobs.

Class User Category Restrictions
1 Premium none
2 Business same VO, allow cancellation
3 Budget same VO, non-refundable, only

for a limited number of CNs

Table 2. Characteristics of different users.
Budget Business & Premium
Relaxed deadline Tight deadline
Run longer jobs Run short/medium jobs
Highly price sensitive Less price sensitive
Book earlier Book later
More flexible Less flexible
More accepting of restrictions Less accepting

2.1 Market Segmentation

This is an initial step of RM that identifies different cus-
tomer segments for a product, and applies different pricing
to each of them. The resource provider only needs to come
up with a strategy quarterly or annually. Note that a product
means a reservation requested by a user.

The airlines industry is a well-known example that seg-
ments customers and offers them different fare classes
based on when their book their flights prior to departure
times. Each fare class is a combination of a price and a set
of restrictions on who can purchase the product and when.
For example, a customer that books a flight one day prior
to a departure time can be identified as a business customer.
The airline knows from historical data that business cus-
tomers are less flexible to changes and less price sensitive
than leisure customers who book a week before. Therefore,
the airline can sell a higher price to business customers com-
pare to leisure customers for seats in a same flight.

In Grids, resources can be part of one or more virtual or-
ganizations (VOs). The concept of a VO allows users and
institutions to gain access to their accumulated pool of re-
sources to run applications from a specific field [9], such
as high-energy physics or aerospace design. Table 1 shows
an example of market segmentation in Grids. The classi-
fications are based on VOs and time of bookings prior to
reservations. Moreover, we profile each user category in
Table 2.

2.2 Price Differentiation

Once users’ classifications and profiling are identified,
restrictions can be introduced to create virtual products ori-
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Figure 1. An overview of the model for two
Virtual Organizations (VOs). Resource 0 is
part of VO domain A and B.

ented toward different market segments to make additional
profits. As an example, products for the Budget users have
many restrictions, as shown in Table 1, that make them un-
suitable and unavailable to users with tight deadlines and
from different VOs respectively. As a result, an inferior
product can be sold to a more price-sensitive segment of
the market [20]. Therefore, the resource provider can set
prices for the same product to be: p1 > p2 > p3, where p1

denotes the price paid by the Premium (class 1) users and
so on. This practice is commonly known in the economics
literature as price differentiation or discrimination.

The main advantage of this approach is that these prices
can be adjusted dynamically based on demands, since Grid
resources are limited. Hence, by increasing the price to all
classes during peak periods, it can shift some demands from
the Budget users to off-peak periods. As a result, more re-
sources are available for reservations for both the Premium
and Business users.

3 Description of the Model

In our model, as depicted in Figure 1, each resource has a
Revenue Management System (RMS). The RMS is respon-
sible for handling requests and bookings. Also in the model,
one VO consists of a Grid Information Service (GIS) and
one or more resources and users. Figure 1 also shows the
interaction between relevant components in our model. The
explanation of these interaction steps are explained below:

1. User 0 sends tasks and an initial fund, with a speci-
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Figure 2. Revenue Management System as
part of a Grid resource.

fied deadline time, to his/her broker. The same applies
to User 1. In this model, the money is represented in
Grid dollars (G$) term.

2. Each resource advertises its availability to a designated
GIS. In Figure 1, Resource 0 is part of VO domain A
and B. Hence, this resource registers to both GIS of
domain A and B.

3. The broker queries a list of available resources to the
GIS. In Figure 1, the broker of User 0 queries to the
GIS of domain A, because it is running an application
specific to domain A only. Likewise for User 1 run-
ning an application in domain B.

4. Before making a booking, the broker queries to each
resource about future availabilities and their prices.
Once the broker has decided on which offers to choose,
it sends tasks and money to these resources.

3.1 Revenue Management System

Figure 2 shows how the RMS can be integrated into an
existing Grid resource [26]. With the adoption of RMS,
the Booking Control (BC) is now responsible for handling
users queries and bookings. This is done by consulting and
checking booking limits in the data structure. A booking
limit is the maximum number of CNs that may be reserved
at each fare class. Once the query yields a list of options,
the Billing System (BS) calculates a fare class for each of
them. Then, the BS sends this information to the user or
his/her broker. The BS also handles the user payment and
confirms his/her booking by submitting this information to
the data structure.

Forecasting Module (FM) is responsible for generating
and updating forecasts of demands in the future. Initially,
the forecast can be done about two to three weeks prior to
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Figure 3. An example of existing reservation
bookings.

an opening of bookings. Then the FM updates this forecast
frequently as bookings and cancellations are received over
time from the BS.

These forecasts are then used as inputs by the Booking
Optimization to re-generate booking limits for each user
class. Hence, if the demands are deemed to be low, the
booking limit for the Budget users is set to a higher number
in order to increase the existing capacity. Forecasting and
optimization will be discussed in more details in Section 4.

3.2 Resource

Figure 2 also shows the open queuing network model of
a resource applied to our work. In this model, there are two
queues: one is reserved for AR jobs while the other one is
for parallel and independent tasks. Each queue stores jobs
waiting to be processed by one of P independent CNs. All
CNs are connected by a high-speed network. The CNs in
the resource can be homogeneous or heterogeneous. In this
paper, we assume that a resource has homogeneous CNs,
each having same processing power, memory and hard disk.

A resource scheduler is responsible for managing incom-
ing jobs and assigning them to available CNs. To prevent
starvation among tasks or jobs that do not utilize reserva-
tions, the resource provider might want to partition the CNs
initially. Then, the scheduler can use an EASY backfilling
method [18] to schedule these jobs to empty CNs that are
used for reservations.

3.3 Data Structure

A well-designed data structure provides the flexibility
and easiness in implementing various algorithms. Hence,
some data structures are tailored to specific applications,
e.g. a tree-based data structure is commonly used for ad-
mission control in network bandwidth reservation [2, 29].

For our model, we use an array-based structure for ad-
ministering reservations efficiently, as shown in Figure 4.
It is a time-slotted structure, where each slot contains rv,
the number of already reserved CNs, and a linked list for
storing reservations that start at this time. Thus, it parti-
tions dur into slots based on a fixed time interval δ. If dur
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Figure 4. A representation of storing reserva-
tions with a sorted queue and δ = 1.

spans multiple slots, rv on each of them is updated accord-
ingly. Figure 4 shows how reservations are stored with a
sorted queue and δ = 1 time interval, by using the example
described in Figure 3. For enabling a fast O(1) access to a
particular slot, we use the following formula:

i =

⌈

t

δ

⌉

mod M (1)

where i is the slot index, t is the request time (in minutes),
and M is the number of slots in the data structure. Note that
in order not to overlap reservation from different months,
we assume that no reservations are made more than one
month in advance. As a result, the data structure can be
reused for the next month interval. Hence, it is only going
to be built once in the beginning.

To incorporate RM functionalities into the data structure,
each slot contains b1, b2, and b3 denoting the booking limit
for class 1, 2 and 3 respectively.

4 Revenue Management Tactics

RM tactics are used in a daily operational planning to
calculate and update booking limits. For these tactics, we
assume that class 3 (Budget) users reserve before class 2
users before class 1 users, as shown in Figure 5. This as-
sumption is used so that once a booking limit for class 3,
b3, is reached, then users will be offered a fare class of the
next one, i.e. class 2, and so on.

4.1 Protection Levels and Nested Booking
Limits

When an initial demand is generated, the Forecasting
Module sets protection levels, y1 and y2 for class 1 and 2
respectively. A protection level is required in order to make
some CNs available for business and premium users that
might book later in time, as shown in Figure 5.

In order to prevent high-fare bookings are being rejected
in favor of budget ones, a nested approach is used to deter-
mine bi, where bi denotes the booking limit for class i, as
shown in Figure 5. With this approach, the booking limits
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are always nonincreasing, i.e. b1 ≥ b2 ≥ b3. In addition,
every class has access to all of the bookings available to
lower classes. Hence, b1 denotes the maximum number of
CNs to be reserved.

4.2 Capacity Allocation Problem

The capacity allocation problem in RM is to decide the
booking limit for each class user, in order to maximize the
overall expected total revenue. If too many CNs are al-
located to lower-class users during peak periods, we may
loose a chance to earn more revenue from accepting future
bookings from higher-class users. On the contrary, an insuf-
ficient quota for the lower-class users in off-peak periods,
may lead to a lower resource utilization and revenue. Thus,
finding an appropriate capacity allocation to each user class
at different time periods is an important factor in RM.

Let pi denotes the price of class i. Since the price of
higher class is more expensive than that of a lower class,
it follows that pi > pi+1. We assume that a cumulative
distribution function of class i’s demand is given by Fi(x),
because the capacity allocation analysis is based on fore-
casting future bookings [16]. Thus, Fi(x) is the probability
that the demand of class i user is less than or equal to x.

Let us first consider a two-class allocation problem for
a given capacity C, where h denotes a higher class and l
denotes a lower class. We assume that the current booking
limit for the lower class is bl− 1. The expected revenue, E,
can be changed by increasing the booking limit from bl − 1
to bl, i.e. IR(bl), and depends on the demand dl of the two
classes. If dl ≤ (bl − 1), then the expected revenue is the
same. However, if dl > (bl − 1), then the revenue depends
on dh. In this case, the revenue can be increased by pl, if
dh ≤ (C − bl). On the contrary, if dh > (C − bl), the
resource provider will lose (ph−pl). The expected revenue
increase from bl − 1 to bl is defined by the following [20]:

E[IR(bl)] = (1− Fl(bl − 1))×

{Fh(C−bl)pl − (1−Fh(C−bl))(ph−pl)}

= (1− Fl(bl − 1)){pl − (1− Fh(C − bl))ph}

The algorithm to calculate bl is shown in Algorithm 1,

Algorithm 1: BookingLimit (C, ph, pl, Fh)

bl ← 0;
while bl < C do

bl ← bl + 1 ;
E[IR(bl)]← (1−Fl(bl − 1)){pl−(1−Fh(C − bl))ph} ;
if E[IR(bl)] ≤ 0 then return bl − 1 ;

end
return bl ;

where it starts from zero and keeps incrementing until the
expected revenue becomes zero or negative. As a result of
Algorithm 1, the protection level of a higher class is also
determined by C − bl.

Let us consider the capacity allocation problem of three
classes in the RMS. We use an expected marginal seat
revenue (EMSR) heuristic [1] to determine the booking
limits of three classes, as shown in Algorithm 2. In or-
der to determine b3, the protection levels of class 1 and
2 need to be calculated first, as shown in Algorithm 2.
Then, b2 can be found by using the two-class problem with
C = maxCN − b3.

Algorithm 2: CapacityAllocation
y1 ← maxCN − BookingLimit (maxCN, p1, p3, F1) ;
y2 ← maxCN − BookingLimit (maxCN, p2, p3, F2) ;
b3 ← max(0, maxCN− y1 − y2) ;
b2 ← b3+ BookingLimit (maxCN − b3, p1, p2, F1) ;
b1 ← maxCN ;

4.3 Cost and Variable Pricing

As mentioned previously, in this model, we differentiate
jobs based on whether they are using reservations or not.
Therefore, costs for executing these jobs would also be dif-
ferent. For non-AR jobs, we calculate the running cost as

Cost = dur ∗ numCN ∗ bcost (2)

where dur denotes the job runtime, numCN denotes the
number of CNs used, and bcost is the base cost of running a
job at one time unit. Intuitively, the cost for jobs that use AR
will incur higher due to the privilege of having guaranteed
resources at a future time. Hence, the running cost for AR
jobs is charged based on the number of reserved slots in the
data structure. More precisely,

CostAR = numSlot ∗ numCN ∗ bcostAR (3)

bcostAR = τ ∗ bcost ∗ δ (4)

where numSlot is the total number of reserved slots,
bcostAR is the cost of running the AR job at one time slot,
and τ is a constant factor (τ ≥ 1) to differentiate the pricing.



Table 3. An example of variable pricing with
different τ1, τ2, and τ3 during the week.

Pricing Name Day Period Time Period τ1 τ2 τ3

Super Saver Weekdays 12 am – 06 am 1.88 1.56 1.25
Peak Weekdays 06 am – 06 pm 3.38 2.81 2.25
Off-Peak Weekdays 06 pm – 12 am 2.63 2.19 1.75
Super Saver Weekends 06 pm – 06 am 1.88 1.56 1.25
Off-Peak Weekends 06 am – 06 pm 2.63 2.19 1.75

The above cost model is considered to be static because
it does not consider the case where demand fluctuates over
time in a predictable way. Hence, to increase profitability,
a resource owner needs to consider variable pricing for dif-
ferent user segments and time period. Table 3 shows an
example of setting different τ of equation (4), according to
demands or daily arrival rate from several parallel and Grid
workload traces [6, 15]. Note that τ1, τ2, and τ3 denote τ
for user class 1, 2 and 3 respectively.

4.4 Overbooking

Once users book a certain amount of CNs, the resource
provider expects them to submit their jobs before reserva-
tions start. However, in a real-life scenario, users may can-
cel their jobs beforehand or by not submitting at all (no-
show). Overbooking deals with these issues, and it can be
effectively used to minimize the loss of revenue [16, 20]. In
this paper, we present possible strategies for the overbook-
ing problem in Grids. However, a detailed analysis will be
conducted as part of future work.

• A probability-based policy: The amount of over-
booking capacity is determined statistically based on
the probability of cancellation (pcancel) and no-show
(pnoshow). Hence, the FM can determine the booking
capacity to be maxCN / (1− pcancel − pnoshow).

• A penalty-based risk analysis: We can define various
penalty policies to allow users to pay nominal fees for
cancellations and/or no-shows.

• A compensation-based risk analysis: When the RMS
accepts more bookings than the maximum capacity,
the resource provider should offer compensations to
the affected users for canceling their reservations.
Thus, a risk analysis is required in order to increase
the revenue and to minimize total compensation costs.

• A hybrid scheme: The total revenue can be improved
by using a hybrid scheme based on the above methods.
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Figure 6. The simulated topology of EU Data-
Grid TestBed 1.

5 Performance Evaluation

We carried out the performance evaluation by using sim-
ulation, because we need to conduct repeatable and con-
trolled experiments that would otherwise be difficult to per-
form in real Grid testbeds. Therefore, we use GridSim
toolkit [27] to create an experiment based on EU DataGrid
TestBed 1 [10]. The testbed topology is shown in Figure 6.
The details of simulation parameters are discussed next.

5.1 Simulation Setups

Table 4 summarizes all the resource relevant informa-
tion. In GridSim, a CPU rating of one node is modeled
in the form of MIPS (Million Instructions Per Second) as
devised by Standard Performance Evaluation Corporation
(SPEC) [25]. The resource settings were obtained from the
current characteristics of the real LHC testbed [14]. We
took the data about these resources and scaled the number
of nodes of each resource by 10. This is because simulating
original computing capacities is not possible due to limited
physical memory in a computer, since many resources and
jobs need to be created during the simulation.

We divide the resources into four VOs based on their lo-
cation, as shown in Table 4. Moreover, all of them use the
same data structure with δ = 5 minutes, and has a fixed in-
terval length of 30 days. To determine bcostAR, we use τ
from Table 3 for different time period.

We model incoming job traffic at three levels: resource,
VO and Grid, by using a Poisson model with different
lambdas for peak (λpeak), off-peak (λoff ) and super saver
(λsaver) period, as depicted in Table 4 and 5. With these
lambdas, we can set the peak period to be arriving more fre-
quently than the off-peak period and so on. The lambdas for
Grid and VO levels are taken from [15], where the authors



Table 4. Resource specifications and their jobs’ inter-arrival rates (λ).
Resource Name (Location) ID # Nodes CPU Rating VO bcost (G$) µ runtime λpeak λoff λsaver

RAL (UK) R1 41 49,000 1 0.49 3 hours 0.01670 0.00835 0.004175
Imperial College (UK) R2 52 62,000 1 0.62 3 hours 0.01670 0.00835 0.004175
NorduGrid (Norway) R3 17 20,000 2 0.20 3 hours 0.00835 0.004175 0.0020875

NIKHEF (Netherlands) R4 18 21,000 2 0.21 3 hours 0.00835 0.004175 0.0020875
Lyon (France) R5 12 14,000 3 0.14 3 hours 0.00835 0.004175 0.0020875

CERN (Switzerland) R6 59 70,000 3 0.70 3 hours 0.03340 0.00167 0.000835
Milano (Italy) R7 5 7,000 4 0.07 3 hours 0.00418 0.0020875 0.00104375
Torino (Italy) R8 2 3,000 4 0.03 3 hours 0.00167 0.000835 0.0004175
Rome (Italy) R9 5 6,000 4 0.06 3 hours 0.00418 0.00209 0.001045

Bologna (Italy) R10 67 80,000 4 0.80 3 hours 0.03340 0.0167 0.00835

Table 5. mean CPU rating for Grid and VO
level and their jobs’ inter-arrival rates (λ).

Level µ Rating µ runtime λpeak λoff λsaver

Grid 56,000 2 hours 0.13812 0.02290 0.01979
VO 1 56,000 5 hours 0.05087 0.02092 0.01913
VO 2 20,000 5 hours 0.05954 0.00537 0.00295
VO 3 60,000 5 hours 0.15901 0.00097 0.00046
VO 4 68,000 5 hours 0.07098 0.00672 0.00257

used a 3-stage Markov Modulated Poisson Process (MMPP)
model in their workload analysis. For job runtime, we use
an exponential distribution with different mean (µ) for each
level. Since we are trying to simulate BoT applications, we
set the number of reserved CNs to be 1 for all jobs.

We identify the Grid-level trace to be Premium users
with a booking period of 2 hours and a search limit time
(slt1) of 2 hours. The search limit time is used for finding
alternative time slots if resources in the initial starting time
are unavailable. We choose each resource-level trace to be
Business users with slt2 of 4 hours. Finally, each VO-level
trace is set to Budget users with slt3 of 24 hours because
they are more flexible. All traces have the same booking
period as in the Grid-level one.

For the Premium users, they will choose a resource from
the Grid based on the earliest job completion time, whereas
for the Budget users, they will submit jobs to a resource
within the VO based on the cheapest price. Since all re-
sources have different CPU ratings, we scale each job dura-
tion in the trace according to the µ rating found in Table 5.
However each Business user is designated to submit to a
particular resource, so no scaling is required. For all users,
if a reservation for the current job can not be found, then
we ignore this job and proceed to the next one. Overall, we
simulate 15 traces in this evaluation for a period of 14 days.

The main objective of this experiment is to look at the
impact of using RM in increasing the revenue of a resource.
Therefore, we have two scenarios: in Scenario 1 (S1), we
select R1 (RAL) and R10 (Bologna) to use a static pricing

Table 6. Total revenue for each resource.
Resource S1 (x1000) S2 (x1000) % gain / loss

RAL G$ 834 G$ 31,523 3,678.70
Imperial G$ 66,662 G$ 61,645 -7.53

NorduGrid G$ 2,570 G$ 4,638 80.44
NIKHEF G$ 4,928 G$ 5,171 4.94

Lyon G$ 684 G$ 742 8.37
CERN G$ 101,997 G$ 103,529 1.50
Milano G$ 170 G$ 171 0.57
Torino G$ 10 G$ 13 26.46
Rome G$ 114 G$ 119 4.07

Bologna G$ 2,051 G$ 147,279 7,079.71

Table 7. Initial protection levels, y1 and y2.
Resource Peak Off-Peak Super Saver

Name y1 y2 y1 y2 y1 y2

RAL 10 20 5 15 3 7
Imperial 12 27 6 20 2 11

NorduGrid 5 8 2 6 1 3
NIKHEF 5 8 2 6 1 3

Lyon 3 6 2 4 0 3
CERN 12 32 6 23 3 11
Milano 1 2 0 2 0 1
Torino 0 1 0 0 0 0
Rome 1 2 0 2 0 1

Bologna 15 35 8 25 4 12

method with τs = 1.9 (without RM), and R2−R9 to adopt
RM. Then in Scenario 2 (S2), all resources use RM. We
compare these scenarios with the same set of parameters.

5.2 Experiment Results

Table 6 shows the total revenue earned by each resource
in both scenarios. R1 and R10 make a huge profit by adopt-
ing RM in S2, instead of using a static pricing in S1. This is
because R1 and R10 protect some nodes for the Premium
and Business users’ bookings. Moreover, these users pay a
higher rate of τ compare to τs and τ3. However, RM also
provide a limited number of available nodes with a cheaper
price to the Budget users. According to Table 3, the average
of τ3 is 1.65 or at least 15% cheaper than τs. As a result,
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 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

R10R9R8R7R6R5R4R3R2R1

P
er

ce
nt

ag
e 

of
 R

ev
en

ue
 G

ai
ne

d

Resource ID

Premium Users
Business Users

Budget Users

Figure 8. Percentage of income revenue in
scenario 2 (S2 - all resources using RM).

RM is beneficial to both time- and budget-conscious users,
and resource providers.

Table 7 shows the initial protection levels, y1 and y2 for
the Premium and Business users respectively for S2. Based
on this table, the Budget users are allocated to 25%, 50%
and 75% of total capacity during peak, off-peak and su-
per saver period respectively. Since y1 and y2 will be re-
forecasted dynamically based on demand fluctuation, ac-
cording to Algorithm 2, a resource provider is only required
to give an initial estimation.

Figure 7 shows the total number of bookings made by
each resource for different user classes. When R1 uses a
static pricing (without RM) in S1, although bcost of R2 is
more expensive, the Budget users prefer to send their jobs
to R2, due to a cheaper price overall in the VO, as depicted
in Figure 7 (a). However, when R1 adopts RM in S2, more
bookings from these users are being made. The same trend
can be observed for R10 in VO 4.

Figure 7 (b) and (c) show the bookings made by the Busi-
ness and Premium users respectively. Due to the fact that no
protection levels are imposed on R1 and R10 in S1, when
they want to book closer to the reservation time, no avail-
able nodes are found. As a consequence, the Business users
have to cancel their bookings, and the Premium users have

to use other resources in the Grid. This situation is called
dilution, since R1 and R10 decrease the revenue they would
have received from protecting additional nodes, y1 and y2,
for these users.

When R1 and R10 utilizing RM in S2, the number of
bookings are significantly grown for all user classes, espe-
cially the Business and Premium users. As a result, R1
and R10 are experiencing a huge increase in the revenue,
as shown in Table 6. However, the increased number of
bookings have an effect in other resources, as depicted in
Figure 7 (a) and (c). This is because the Budget and Pre-
mium users can book to any available resources within the
VO and Grid respectively. Among other resources, the im-
pact was felt by R2 the hardest, with a decrease of 7.53%
in the revenue as mentioned in Table 6, since R2 is located
on the same VO as R1.

Figure 8 shows the percentage of incoming revenue for
each user class. For smaller and medium-sized resources,
such as Torino (R8) and NorduGrid (R3), the Premium
users contribute more than 60% of the total revenue. On the
other hand, the Business users contribute more than 50%
on large-sized resources, such as CERN (R6) and Bologna
(R10). Hence, from this figure, both the Business and Pre-
mium users are a major source of revenue for a resource.
Therefore, in a competitive demand and supply market, a
resource needs to differentiate itself among others to attract
these users.

6 Conclusion and Future Work

Advance Reservation (AR) in a Grid system allows users
to gain simultaneous and concurrent access to adequate re-
sources for running their applications or jobs. Common re-
sources that can be reserved are compute nodes and network
bandwidth. In this paper, we present a novel approach of
using Revenue Management (RM) to determine pricing of
reservations in a Grid system.

The main objective of RM is to maximize profits by pro-
viding the right price for every product to different cus-
tomers, and to periodically update the prices in response to



market demands. Therefore, a resource provider can apply
RM techniques to shift demands requested by budget con-
scious users to off-peak periods as an example. As a result,
more resources are available for users with tight deadlines
in peak periods that are willing to pay more.

We evaluate the effectiveness of RM and show that
by segmenting users, charging them with different pricing
schemes, and protecting resources for those who are will-
ing to pay more, will result in an increase of total revenue
for that resource.

As for future work, we need to consider a scenario where
the demands are dependent, such as budget users reserve
compute nodes at a full-fare price, normally known as a buy-
up. We also need to consider cancellation and overbooking
strategies in the model.
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