
Managing Cancellations and No-shows of Reservations
with Overbooking to Increase Resource Revenue

Anthony Sulistio1, Kyong Hoon Kim2, and Rajkumar Buyya1

1Dept. of Computer Science and Software Eng. 2Dept. of Information Science
The University of Melbourne, Australia Gyeongsang National University, Korea
{anthony, raj}@csse.unimelb.edu.au khkim@gnu.ac.kr

Abstract

Advance reservation allows users to request available
nodes in the future, whereas economy provides an incentive
for resource owners to be part of the Grid, and encourages
users to utilize resources optimally and effectively. In this
paper, we use overbooking models from Revenue Manage-
ment to manage cancellations and no-shows of reservations
in a Grid system. Without overbooking, the resource own-
ers are faced with a prospect of loss of income and lower
system utilization. Thus, the models aim to find an ideal
limit that exceeds the maximum capacity, without incurring
greater compensation cost. Moreover, we introduce several
novel strategies for selecting which bookings to deny, based
on compensation cost and user class level, namely Lottery,
Denied Cost First (DCF), and Lower Class DCF. The result
shows that by overbooking reservations, a resource gains
an extra 6–9% in the total net revenue.

1 Introduction

Grid [4] technology enables the aggregation of
distributed resources for solving large-scale and
computationally-intensive applications. However, manag-
ing various resources and applications in highly dynamic
Grid environments is a complex and challenging process.
Resource management is not only about scheduling large
and compute-intensive applications, but also the manner in
which resources are allocated, assigned, and accessed. In
most scheduling systems, submitted jobs are initially placed
into a queue if there are no available resources. Therefore,
there is no guarantee as to when these jobs will be exe-
cuted. This causes problems for time-critical or workflow
applications, where jobs may have interdependencies.

To address these issues and to ensure the specified re-
sources are available for application’s consumption when
required, several researchers have proposed the need for ad-

vance reservation (AR) [5, 11, 18]. Common resources that
can be reserved or requested are compute nodes (CNs) and
network bandwidth.

Buyya et al. [1] introduced a Grid economy concept that
provides a mechanism for regulating demand and supply
of resources, and calculates pricing policies based on these
criteria. With this concept, it offers an incentive for resource
owners to be part of the Grid, and encourages users to utilize
resources optimally and effectively.

In our previous work [19], we studied the use of Revenue
Management (RM) to determine pricing of reservations,
and to increase total revenue of a resource. The main ob-
jective of RM is to maximize profits by providing the right
price for every product to different customers, and to peri-
odically update the prices in response to market demands.
Therefore, the resource provider can apply RM techniques
to shift demands, and to ensure that resources are allocated
to applications that are highly valued by the users. The re-
sult shows an increase in total revenue for resources that uti-
lize RM over those that price their resources statically [19].

In reality, users may cancel their reservations before
starting time or by not submitting at all (no-show), due to
reasons such as resource or network failures on the other
end. Thus, during a period of high demands for example,
the resource provider has no choice but to reject bookings
from potential users, who are committing to use the re-
source and willing to pay for a higher price. As a result,
the resource provider is faced with a prospect of loss of in-
come and lower system utilization.

Overbooking offers a solution for the above problem, by
allowing the resource provider to accept more reservations
than the capacity. Hence, it can be effectively used to mini-
mize the loss of revenue [10, 14]. However, the challenging
issues in using overbooking are determining the appropriate
number of excess reservations, minimizing total compensa-
tion cost, addressing legal and regulatory issues, and deal-
ing with market acceptance, especially the ill-will or nega-
tive effects from users who have been denied access [21].
In this paper, we only consider the first two issues.

The contribution of this paper is as follows. We extend
our previous work in RM [19] by using overbooking mod-
els to manage cancellations and no-shows of reservations in
a Grid system [18]. The overbooking models aim to find an
ideal overbooking limit that exceeds the maximum capacity,
without incurring greater compensation cost. Moreover, we
introduce several novel strategies for selecting which book-
ings to deny, based on compensation cost and user class
level, namely Lottery, Denied Cost First (DCF), and Lower
Class DCF. Finally, we investigate the impact of these mod-
els and strategies on the net resource revenue through per-
formance evaluation.

The rest of the paper is organized as follows. Section 2
mentions some related works on the overbooking issues in
airlines, hotels, networks and Grids. Section 3 gives an
overview of RM techniques, whereas Section 4 explains the
overbooking models. Section 5 integrates overbooking into
a capacity allocation heuristic to estimate a suitable quota
for different users. Section 6 calculates cost and penalties of
each reservation, and presents several strategies for choos-
ing which reservations to be denied. Section 7 conducts a
performance evaluation. Finally, Section 8 concludes the
paper and suggests some further work to be done.

2 Related Work

In a study done by Smith et al. [15] on American Air-
lines, 50% of the bookings were resulted in cancellations or
no-shows. Moreover, the report found that 15% of the flight
seats would be unused, if bookings were only limited to the
capacity of a plane. Therefore, overbooking models were
introduced to address the problem in unanticipated cancel-
lations and no-shows, by several researchers in the airlines
industry [2, 22]. The overbooking policies were also stud-
ied and applied to several industries, such as hotel [8], and
car rentals [7]. Similarly, in this paper, we adopt these over-
booking policies in the context of scheduling jobs by means
of reservations in a Grid resource. Moreover, we propose
several strategies for determining which excess reservations
to deny, based on compensation cost and user class level.

In networks, overbooking is used to optimize through-
put [12] and to address the issue of burst contentions in opti-
cal burst switched networks from a new domain [24]. Simi-
larly, in Grids, Urgaonkar et al. [23] suggested overbooking
as a way to increase resource utilization in shared hosting
platforms, by specifying an overbooking tolerance on each
component of an application running on one compute node.
However, none of these works aim at maximizing revenue
by charging the users with different prices, and calculating
an ideal overbooking limit.

Table 1. An example of market segmentation
in Grids for reserving jobs.

Class User Category Restrictions
1 Premium none
2 Business same VO, allow cancellation
3 Budget same VO, non-refundable, only

for a limited number of nodes

3 An Overview of Revenue Management

Revenue Management (RM) has been widely adopted
in various industries, such as airlines, hotels, and car
rentals [10], since they have a limited and perishable capac-
ity. RM can also be applied to Grid computing, as comput-
ing powers or nodes are considered to be perishable. In this
section, we briefly give an overview of RM and its adapta-
tion in Grids before going into more depth about the pro-
posed overbooking models. A more detail explanation can
be found in [19].

3.1 Market Segmentation and Price
Differentiation

An initial step of RM is to identify various customer seg-
ments for a single product, and to apply different prices to
each of them. The airlines industry is a well-known exam-
ple that segments customers into different classes, such as
first, business, and economy. With this approach, the air-
line can offer users from different classes with various fares
and restrictions, based on their flexibility, price sensitivity,
and time of bookings prior to departure times [10]. Hence,
the airlines can set prices for seats in a same flight to be:
p1 > p2 > p3, where p1 denotes the price paid by class 1
(Premium) users, and so on.

In Grids, resources can be part of one or more virtual or-
ganizations (VOs). The concept of a VO allows users and
institutions to gain access to their accumulated pool of re-
sources to run applications from a specific field [6], such as
high-energy physics or aerospace design. Table 1 shows an
example of market segmentation in Grids. The classifica-
tions are based on VOs and time of bookings.

3.2 Booking Limits and Protection Levels

A booking limit, b, denotes a quota that is allocated to
each user class. As listed in Table 1, each user class has a
set of restrictions, which leads to a different price. In this
paper, we assume that class 3 (Budget) users reserve before
class 2 (Business) users before class 1 (Premium) users, as
shown in Figure 1. This assumption is used so that once a

3b

2b

y 1

y 2

class 1
booking period

time

maxCN b 1

booking period
class 2

booking period
class 3

Figure 1. Protection levels (y1, y2) and nested
booking limits (b1, b2, b3) for each time slot.

booking limit for class 3, b3, is reached, then users will be
offered a fare class of the next one, i.e. class 2, and so on.

To prevent high-fare bookings are being rejected in fa-
vor of budget ones, protection levels y1 and y2 are required
to make some compute nodes (CNs) available for class 1
and 2 users respectively, that may book later. Moreover, a
nested approach is used to determine bi, where bi denotes
the booking limit for class i, as shown in Figure 1. With this
approach, the booking limits are always nonincreasing, i.e.
b1 ≥ b2 ≥ b3. In addition, every class has access to all of
the bookings available to lower classes. Hence, b1 equals to
maxCN , where maxCN denotes the maximum capacity
to be reserved.

In this paper, we use an array-based structure for ad-
ministering reservations efficiently [17]. It is a time-slotted
data structure, where each slot contains rv, the number of
already reserved CNs, and bookingList, a list for storing
reservations that start at this time. Thus, it partitions each
reservation duration time dur into slots based on a fixed
time interval δ. If dur spans multiple slots, rv on each of
them is updated accordingly. Moreover, each time slot con-
tains b1, b2, and b3 denoting the booking limit for class 1, 2
and 3 respectively.

4 Overbooking Policies

Figure 2 illustrates an example on how overbooking can
protect a resource provider against unanticipated cancella-
tions and no-shows. We define a cancellation as a reserva-
tion that is terminated by a user before the service or start-
ing time ts, as shown in Figure 2. Moreover, we describe a
no-show as a reservation that fails to arrive and run on the
resource on ts (without a cancellation notice).

By setting the overbooking limit ob to be greater than
maxCN , the resource provider can still accept more reser-
vations (after t1) until total number of reservations totAR

equals to ob (on t2 and t3), as shown in Figure 2. In con-
trast, a resource without overbooking has to deny potential
reservations starting from t1, since the capacity is full.

The overbooking limit itself needs to be updated and
evaluated frequently as ts approaches. Thus, as totAR in-

S t a r t
T i m e

R e s e r v a t i o n s

m a x C N

tt t0

O v e r b o o k i n g l i m i t

t

 w i th ove rbook ing

w i t h o u t o v e r b o o k i n g

c a n c e l l a t i o n p e r i o d

r e s e r v a t i o n s
 show up

n o - s h o w
p e r i o d

s1 2 3t 4

Figure 2. An example of total number of
reservations with and without overbooking.

creases, ob decreases, as shown in Figure 2. Then, the re-
source provider takes an advantage of the cancellation and
no-show periods to reduce totAR. In the best-case scenario,
the resource may not need to deny any excess reservations
due to a large number of no-shows. In the end, on ts, a re-
source with overbooking yields more reservations that show
up than without overbooking.

In this section, we adopt several static overbooking poli-
cies, introduced in the RM literature [14, 21], into our work.
These static policies only calculate the ideal overbooking
limit periodically prior to ts, when the state and proba-
bilities change over time. Thus, we assume the following
things:

• cancellations and no-shows are independent of the
number of total bookings.

• the probability of a cancellation is Markovian, i.e. it
only depends on the current time.

• no-shows are treated as cancellations on ts. Hence,
we can define q(t) as a show rate or a probability that
reservations show up from the time remaining until ts.

4.1 A Probability-based Policy

This is a simple overbooking policy, where ob is deter-
mined statistically based on the probability of shows. Equa-
tion 1 determines the overbooking limit at time t. For exam-
ple, if maxCN = 100 and q(t) = 0.80, then the amount of
overbooking capacity is 125. Therefore, the lower the prob-
ability of shows, the higher the overbooking limit becomes.

ob =
maxCN

q(t)
(1)

4.2 A Risk-based Policy

A risk-based policy aims to balance the expected cost of
denied service with the revenue by accepting more book-
ings. The cost of denied service refers to the compensation
money given to users who got rejected or bumped at the ser-
vice time. This cost of denied service is denoted as costds

and is usually higher than the resource price p. Thus, a risk
analysis is required in order to calculate a threshold at which
the overbooking is allowed.

For computing the threshold, we need to find out the
probability distribution of users demand and number of
shows. Let A(x) denotes the probability that the demand of
users is less than or equal to x, where x denotes the number
of bookings. Moreover, we define Fx(y) as the probability
that the number of bookings that will show up at the time of
service is less than or equal to y.

Let us assume that the current booking limit and capacity
are b and C, respectively. Then, we derive the expected
revenue change by increasing the booking limit from b to
b+1. By doing this, we are faced with three possible cases:

1. demand < b + 1, which means there are no changes
in the forecasted revenue.

2. demand ≥ b+1 and the number of shows≤ C. Since
the resource provider can serve users at ts, the profit of
p is obtained by accepting an additional reservation.

3. demand ≥ b+1 and the number of shows > C, which
means the resource provider has to deny one user with
a compensation cost. As a result, there is a loss of
p − costds, where costds > p.

Thus, we can derive the expected revenue change by in-
creasing the booking limit from b to b + 1 as follows.

E[R|b + 1]− E[R|b]
= (1−A(b)){pFb+1(C) + (p− costds)(1− Fb+1(C))}
= (1−A(b)){p− costds(1− Fb+1(C))}

(2)

Algorithm 1: Overbooking Limit using a Risk Policy

ob← C;1

IR← (1−A(ob)){p− costds(1− Fob+1(C)) ;2

while IR > 0 do3

ob← ob + 1 ;4

IR← (1−A(ob)){p− costds(1− Fob+1(C)) ;5

end6

return ob ;7

As long as the expected revenue change is greater than
zero, the overbooking limit can be increased, as shown in
Algorithm 1. The booking limit ob starts from the maximum

capacity C (line 1), and is incremented until the expected
revenue change becomes zero or negative (line 3).

In multiple fare classes, the increased revenue from hav-
ing an additional booking can not be easily calculated.
Therefore, a suitable approach is to determine a weighted
average price p̂, based on the mean demands µ in each user
class [14]. More specifically,

p̂ =

n
∑

i=0

µipi (3)

We derive the show distribution Fx(y) at time t, under
the assumption that each customer’s showing probabilities
are independent. The show probability of each customer at
time t is denoted as q. Then, the number of shows, as inves-
tigated by Thompson [22], follows a binomial distribution:

Fx(y) =

y
∑

k=0

(

x

k

)

qk(1− q)x−k (4)

4.3 A Service-Level Policy

Although the risk-based policy enhances the expected
revenue of the resource, users who got denied at the ser-
vice time, tend to submit their jobs to other resources in the
future. Thus, by using this policy, a resource may lose some
of these users in the long term. Moreover, this policy may
increases the negative impact of overbooking towards users’
satisfaction.

A service-level policy addresses the above issues by
defining a specified level or fraction of denied users. For
example, American Airlines and United Airlines have an
involuntary denied boarding (DB) ratio of 0.84 and 0.51
per 10,000 passengers respectively, due to oversales in
2006 [13]. The data were taken from flights within and
originated in the United States. With the service-level pol-
icy, the airlines may set a threshold of involuntary DB ratio
to be 0.50 as an example. Accordingly, the airlines could
determine the overbooking limit based on this threshold.

Suppose that the number of shows for a given x book-
ings is denoted as B(x). Then, the service level of x book-
ings, s(x) is defined by Equation 5, where (B(x)−C)+ =
max(0, B(x)−C). The equation implies the fraction of the
expected denied service over the expected number of shows.

s(x) = E[(B(x)− C)+] / E[B(x)] (5)

If we use a binomial distribution for show demands, then
the service level of x bookings can be defined as follows.

s(x) =
1

xq
×

x
∑

k=C+1

(k − C)

(

x

k

)

qk(1− q)x−k (6)

For a given service level ds threshold, the overbooking
limit for this policy is calculated in Algorithm 2. Initially,
the overbooking limit ob starts from the maximum capacity
C (line 1), and is incremented until s(x) equals to or less
than ds threshold (line 3).

Algorithm 2: Overbooking Limit using Service Policy

ob← C;1

s(x)← E[(B(x)− C)+] / E[B(x)] ;2

while s(x) ≤ ds threshold do3

ob← ob + 1 ;4

s(x)← E[(B(x)− C)+] / E[B(x)] ;5

end6

return ob ;7

4.4 Overbooking Limit Calculation

In this subsection, we give a brief example on the calcu-
lation of the overbooking limit for the above policies. We
consider the price of a single time slot in a resource is fixed,
with p = 100 and C = 50 for simplicity. However, the
denied cost costds and the show-rate q are varied from 125
to 175 and from 0.60 to 0.95, respectively.

ENR = pE[B(ob)]− costds ∗ E[(B(ob)− C)+] (7)

= p ∗ ob ∗ q − costds ∗

ob
X

k=C+1

ob

k

!

q
k(1− q)ob−k

Table 2 shows ob, expected net revenue (ENR in G$), and
service level (SL) for each q, according to the probability-
based policy. In contrast, the risk-based policy adaptively
selects ob with a consideration of both the show rate and the
denied cost, as shown in Table 3. The ENR and SL in both
tables are calculated using Equation 7 and 6 respectively.

Table 4 shows the ob and ENR for a given service level,
i.e. from 0.01 (1%) to 0.0001 (0.01%). Note that the ENR
is also calculated by using Equation 7. From Table 4, it
can be concluded that as SL decreases, ob and ENR become

Table 2. ob using a probability-based policy
Expected Net Revenue (G$) Service

q ob costds = 125 costds = 150 costds = 175 Level
0.60 83 4,770.5 4,728.6 4,686.7 0.0337
0.65 76 4,769.1 4,734.9 4,700.8 0.0277
0.70 71 4,796.7 4,762.1 4,727.4 0.0279
0.75 66 4,805.6 4,776.7 4,747.8 0.0233
0.80 62 4,828.4 4,802.1 4,775.8 0.0212
0.85 58 4,836.5 4,817.8 4,799.1 0.0152
0.90 55 4,870.7 4,854.9 4,839.0 0.0128
0.95 52 4,898.9 4,890.7 4,882.4 0.0067

Table 3. ob using a risk-based policy
costds = 125 costds = 150 costds = 175

q ob ENR SL ob ENR SL ob ENR SL
0.60 90 4,836.9 0.0834 87 4,750.4 0.0600 85 4,689.9 0.0459
0.65 83 4,846.7 0.0813 80 4,766.8 0.0555 78 4,711.1 0.0405
0.70 76 4,858.8 0.0693 74 4,784.2 0.0509 73 4,729.6 0.0425
0.75 71 4,870.4 0.0683 69 4,802.4 0.0480 68 4,753.2 0.0389
0.80 66 4,884.2 0.0600 64 4,824.3 0.0385 63 4,782.2 0.0292
0.85 62 4,898.4 0.0564 60 4,847.9 0.0330 59 4,811.5 0.0232
0.90 58 4,916.7 0.0465 57 4,873.1 0.0334 56 4,846.4 0.0219
0.95 54 4,941.4 0.0294 53 4,912.3 0.0162 53 4,891.9 0.0162

Table 4. ob using a service-level policy (with
costds = 150)

SL = 0.01 SL = 0.001 SL = 0.0001
q ob ENR ob ENR ob ENR

0.60 77 4,555.3 70 4,194.9 66 3,959.4
0.65 71 4,563.3 66 4,283.7 62 4,029.5
0.70 67 4,628.8 62 4,334.6 59 4,129.4
0.75 63 4,667.1 59 4,418.9 56 4,199.6
0.80 60 4,731.7 56 4,475.3 54 4,319.5
0.85 57 4,779.0 54 4,584.0 52 4,419.6
0.90 54 4,813.7 52 4,675.1 50 4,500.0
0.95 52 4,890.7 50 4,750.0 50 4,750.0

smaller for the same q. Moreover, for the same costds of
150 in the service-level policy, the SL of the risk-based pol-
icy varies from 0.0162 (q = 0.95) to 0.0600 (q = 0.60), as
shown in Table 3. This means that about 162 – 600 out of
10,000 reservations are denied by a resource provider when
using the risk-based policy. Hence, from this example, the
service-level policy produces a lower denied-service rate
compared to the probability- and risk-based policy.

5 Capacity Allocation with Overbooking

The capacity allocation problem in RM is to decide the
booking limit for each class user, in order to maximize the
overall expected total revenue. If too many CNs are allo-
cated to lower-class users during peak periods, we may lose
a chance to earn more revenue from accepting future book-
ings from higher-class users. On the contrary, an insuffi-
cient quota for the lower-class users in off-peak periods,
may lead to a lower resource utilization and revenue. Thus,
finding an appropriate capacity allocation to each user class
at different time period is an important factor in RM.

We use an expected marginal seat revenue (EMSR)
heuristic to determine the booking limits of three user
classes, as shown in Algorithm 3. The overbooking limit
needs to be calculated according to one of the models we
previously discussed (line 1). Then, a virtual capacity C+

can be found (line 2), where C+ ≥ maxCN . In order to

determine b3 (line 5), y1 and y2 need to be calculated first
(line 3–4). Then, b2 can found by using the BookingLimit
algorithm with C+ − b3 as the current capacity (line 6).

Algorithm 3: Capacity Allocation with Overbooking

ob← OverbookingLimit(q, maxCN) ;1

C+ ← max(maxCN, ob) ;2

y1 ← C+ − BookingLimit(C+, p1, p3, F1);3

y2 ← C+ − BookingLimit(C+, p2, p3, F2);4

b3 ← max(0, C+ − y1 − y2) ;5

b2 ← b3 + BookingLimit(C+ − b3, p1, p2, F1);6

b1 ← C+ ;7

Let pi denotes the price of class i, and Fi(x) denotes the
probability that the demand of class i user is less than or
equal to x. The BookingLimit algorithm finds the booking
limit of a lower class user, based on the user’s expected rev-
enue and the demand of a higher class user. In Algorithm 3
line 3 and 6, we consider a class 1 user to be the higher class
one. A detailed description of the the BookingLimit algo-
rithm and the expected revenue of a class user have been
omitted in this paper. However, they can be found on [19].

6 Reservation, Penalty and Denied Cost

Apart from overbooking and capacity allocation, the next
important point in RM is to determine the pricing of each
reservation. Moreover, if a cancellation or no-show occurs,
a penalty fee needs to be introduced to discourage users
from misusing it, and to cover some operational cost asso-
ciated with managing reservations. Finally, the denied cost
due to overbooking needs to be addressed.

6.1 Initial Cost of A Reservation

As mentioned previously, in this model, we differentiate
jobs based on whether they are using reservations or not.
For non-AR jobs, we calculate the running cost as

cost = dur ∗ numCN ∗ bcost (8)

where numCN denotes the number of CNs used, and bcost
is the base cost of running a job at one time unit. Intuitively,
the cost for jobs that use AR will incur higher due to the
privilege of having guaranteed resources at a future time.
Hence, the running cost for AR jobs is charged based on the
number of reserved slots in the data structure:

costAR = numSlot ∗ numCN ∗ bcostAR (9)

bcostAR = τ ∗ bcost ∗ δ (10)

where numSlot is the total number of reserved slots,
bcostAR is the cost of running the AR job at one time slot,

Table 5. An example of variable pricing with
different τ1, τ2, and τ3 during the week.

Pricing Name Day Period Time Period τ1 τ2 τ3

Super Saver Weekdays 12 am – 06 am 1.88 1.56 1.25
Peak Weekdays 06 am – 06 pm 3.38 2.81 2.25
Off-Peak Weekdays 06 pm – 12 am 2.63 2.19 1.75
Super Saver Weekends 06 pm – 06 am 1.88 1.56 1.25
Off-Peak Weekends 06 am – 06 pm 2.63 2.19 1.75

and τ is a constant factor (τ ≥ 1) to differentiate the pricing.
Table 5 shows an example of setting different τ of equa-
tion (10), according to demands or daily arrival rate from
several parallel and Grid workload traces [3, 9]. Note that
τ1, τ2, and τ3 denote τ for user class 1, 2 and 3 respectively.

6.2 Cancellation & No-Show Penalty Cost

In this paper, we use a simple penalty cost function,
where the resource provider charges a user with a penalty
rate αp times the price for each canceled or no-show reser-
vation, where 0 ≤ αp ≤ 1. αp = 0 means the reservation is
fully refundable, and αp = 1 means it is not refundable. In
multiple fare classes, we have αp1 < αp2 < αp3.

6.3 Denied or Compensation Cost

In this paper, we use Equation 9 to determine costds, i.e.
the denied service or compensation cost for each reserva-
tion. The value of τds depends on the agreement or policy
set by the resource provider to a particular user class, with
τds > τ . Moreover, we present several strategies for ad-
dressing which excess reservations to deny at the starting
time ts, based on costds and user class level, namely Lot-
tery, Denied Cost First (DCF), and Lower Class DCF, as
shown in Algorithm 4, 5, and 6 respectively.

Algorithm 4: Lottery drawing
Input: ts and C

bookingList← get booking list(ts) ;1
overbookedCN ← get total CN(bookingList)− C;2
denyCN ← 0; // total nodes to be denied3
while denyCN < overbookedCN do4

data← get booking(bookingList, LOTTERY);5
calculate denied cost(data) ;6
remove(data, bookingList) ;7
denyCN ← denyCN + get total CN(data) ;8

end9

The simplest way to deny existing reservations is by con-
ducting a lottery drawing, as depicted in Algorithm 4. Ini-
tially, a list of bookings, bookingList, that start at time

ts is withdrawn from the data structure (line 1). Since a
booking may require more than one node, we also need to
find out the number of overbooked CNs, overbookedCN ,
based on the current capacity C, and the total CNs required
from bookingList (line 2). Then, the algorithm performs a
lottery drawing on bookingList (line 5), with the unlucky
booking is compensated and removed from the list and the
data structure altogether (line 6–7). Next, the total CNs
to be denied, denyCN , is incremented (line 8). Finally,
this algorithm keeps ejecting more bookings from the list as
long as denyCN < overbookedPE (line 4–9).

Algorithm 5: Denied Cost First (DCF)
Input: ts and C

bookingList← get booking list(ts) ;1
overbookedCN ← get total CN(bookingList)− C;2
denyCN ← 0; // total nodes to be denied3
sort(bookingList, GLOBAL DENIED COST) ;4
while denyCN < overbookedCN do5

data← get booking(bookingList, HEAD) ;6
calculate denied cost(data) ;7
remove(data, bookingList) ;8
denyCN ← denyCN + get total CN(data) ;9

end10

In contrast, to minimize the total compensation cost on
ts, the Denied Cost First (DCF) strategy chooses which
bookings to be denied based on costds, as shown in Algo-
rithm 5. Thus, DCF sorts bookingList based on the low-
est costds globally, regardless of any class types (line 3).
Afterwards, DCF removes this booking from the head of
bookingList (line 6), since the list is sorted from lowest to
highest costds. The rest of the operations are similar to the
Lottery strategy.

Lower Class Denied Cost First (LC-DCF), as shown
in Algorithm 6, has a similar strategy as DCF. However,
LC-DCF aims at protecting higher-class bookings from
being denied in the first place. Hence, LC-DCF sorts
bookingList based on costds for each class type (line 3).
Similar to DCF, LC-DCF removes a booking from the head
of bookingList (line 6), but this booking is from a lower-
class user that has the lowest costds. If there are no more
bookings from a lower class, then LC-DCF continues re-
moving bookings from a higher class. The rest of the oper-
ations are similar to the Lottery strategy.

7 Performance Evaluation

We carried out performance evaluation by using the
GridSim toolkit [20] because we need to conduct repeatable
and controlled experiments that would otherwise be difficult
to perform in real Grid testbeds. The details of simulation
parameters are discussed next.

Algorithm 6: Lower Class Denied Cost First (LC-DCF)
Input: ts and C

bookingList← get booking list(ts) ;1
overbookedCN ← get total CN(bookingList)− C;2
denyCN ← 0; // total nodes to be denied3
sort(bookingList, CLASS DENIED COST) ;4
while denyCN < overbookedCN do5

data← get booking(bookingList, HEAD) ;6
calculate denied cost(data) ;7
remove(data, bookingList) ;8
denyCN ← denyCN + get total CN(data) ;9

end10

Table 6. mean CPU rating for Grid and VO
level, and their jobs’ inter-arrival rates (λ).

Level µ Rating µ runtime λpeak λoff λsaver

Grid 56,000 2 hours 0.13812 0.02290 0.01979
VO 1 56,000 5 hours 0.05087 0.02092 0.01913
VO 2 20,000 5 hours 0.05954 0.00537 0.00295
VO 3 60,000 5 hours 0.15901 0.00097 0.00046
VO 4 68,000 5 hours 0.07098 0.00672 0.00257

7.1 Simulation Setups

Table 6 and 7 summarizes all relevant information of the
traces and resources used for our experiments. In GridSim,
a CPU rating of one node is modeled in the form of MIPS
(Million Instructions Per Second) as devised by Standard
Performance Evaluation Corporation (SPEC) [16]. To de-
termine bcostAR on each resource, we use τ from Table 5
for different time periods. A detailed explanation of these
settings can be found in [19].

We model incoming job traffic at three levels: Grid (with
all 10 resources), VO and resource, by using a Poisson
model with different lambdas for peak (λpeak), off-peak
(λoff) and super saver (λsaver) period, as depicted in Ta-
ble 6 and 7. Thus, we can set the peak period to be arriving
more frequently than the off-peak period, and so on. For
handling no-show of reservations, we use binomial distri-
bution with the probability of no-shows (qns) sets to 0.05,
0.10 and 0.15 for peak, off-peak, and super saver periods
respectively. We use an exponential distribution to model
the mean runtime (µ) of jobs. Finally, we set the number of
reserved CNs to 1 for all jobs.

We identify the Grid-, resource-, and VO-level trace to be
Premium, Business, and Budget users respectively. More-
over, all traces have the same booking period of 2 hours,
and they use exponential distribution to calculate the num-
ber of cancellations. Table 8 lists the job’s canceled rate
(λc), the penalty rate (αp), and τds for the denied service
cost for each user class.

Table 7. Resource specifications and their jobs’ inter-arrival rates (λ).
Resource Name (Location) ID # Nodes CPU Rating VO bcost (G$) µ runtime λpeak λoff λsaver

RAL (UK) R1 41 49,000 1 0.49 3 hours 0.01670 0.00835 0.004175
Imperial College (UK) R2 52 62,000 1 0.62 3 hours 0.01670 0.00835 0.004175
NorduGrid (Norway) R3 17 20,000 2 0.20 3 hours 0.00835 0.004175 0.0020875

NIKHEF (Netherlands) R4 18 21,000 2 0.21 3 hours 0.00835 0.004175 0.0020875
Lyon (France) R5 12 14,000 3 0.14 3 hours 0.00835 0.004175 0.0020875

CERN (Switzerland) R6 59 70,000 3 0.70 3 hours 0.03340 0.00167 0.000835
Milano (Italy) R7 5 7,000 4 0.07 3 hours 0.00418 0.0020875 0.00104375
Torino (Italy) R8 2 3,000 4 0.03 3 hours 0.00167 0.000835 0.0004175
Rome (Italy) R9 5 6,000 4 0.06 3 hours 0.00418 0.00209 0.001045

Bologna (Italy) R10 67 80,000 4 0.80 3 hours 0.03340 0.0167 0.00835

Table 8. Simulated users’ characteristics.
User Class λc αp τds

Premium 0.25 0% 5 τ1

Business 0.45 10% 4 τ2

Budget 0.85 25% 3 τ3

Table 9. The impact of unanticipated cancel-
lations and no-shows (CNS) on net revenue.

Resource No CNS Allow CNS % loss
Name (x 1000) (x 1000)
RAL G$ 31,523 G$ 2,321.44 -92.64

Imperial G$ 61,645 G$ 7,038.12 -88.58
Nordu G$ 4,638 G$ 413.90 -91.08

NIKHEF G$ 5,171 G$ 421.90 -91.84
Lyon G$ 742 G$ 94.08 -87.32

CERN G$ 103,529 G$ 10,400.91 -89.95
Milano G$ 171 G$ 7.46 -95.63
Torino G$ 13 G$ 0.58 -95.43
Rome G$ 119 G$ 5.56 -95.31

Bologna G$ 147,279 G$ 7,606.47 -94.84

The main objective of our performance evaluation is to
examine the impact of the overbooking policies (Probabil-
ity (Pr), Risk, and Service-Level (SL)), and the denied-
booking strategies (Lottery, DCF, and LC-DCF) on the net
revenue of a resource, where cancellations and no-shows
are allowed. For the Service-Level (SL) policy, we set the
ds threshold to be 0.01 or 1%. Overall, we simulate 15
traces in this evaluation for a period of 14 days.

7.2 Experiment Results

Table 9 shows the negative effect of unanticipated can-
cellations and no-shows (CNS) on the net revenue of each
resource. By allowing CNS and without any overbooking
policies, all resources experienced a significant drop in rev-
enue, i.e. by more than 87%. However, if we set RAL and

Bologna to use overbooking policies instead, they both re-
ported around 6–9% increase in net profits from their previ-
ous evaluation (without overbooking), as shown in Figure 3
and 4 respectively. Thus, this finding provides a financial
incentive for other resources to overbook. Note that RAL
has zero denied bookings for all the overbooking policies.
Hence, in this section, we mainly discuss the impact of over-
booking policies and denied-booking strategies in Bologna.

When looking at the performance of each overbooking
policy in Figure 3 and 4, all policies produce about the same
amount of net revenue. However, the main difference be-
tween them is the overbooking limit, ob, at each time slot in
the data structure, as shown in Figure 5 and 6. Note that we
omit figures using Lottery and LC-DCF in Bologna, since
they are similar.

For RAL in Figure 5, the maximum ob percentage gain
from maxCN is 7%, 12% and 27% for SL, Risk and Pr
policies respectively. For Bologna in Figure 6, it is 8%,
12% and 24% for SL, Risk and Pr policies respectively.
Thus, in both cases, the SL policy is the most conserva-
tive of all, since it estimates the lowest ob. This is consis-
tent with the calculation that we performed in Section 4.4.
However, with costds can be up to five times more expen-
sive than costAR, the Risk policy sets a lower limit than the
Pr policy in both Figure 5 and 6.

In this evaluation, we found that a lower ob leads to a
smaller the total number of denied bookings and compen-
sation cost, as shown in Figure 7 and 8 for Bologna respec-
tively. In both figures, on average, the Risk and SL policies
are 49% and 74% lower than the Pr policy respectively.

Apart from estimating ob, another important issue is se-
lecting which excess bookings to deny. In terms of total net
revenue, the denied-booking strategies (Lottery, DCF, and
LC-DCF) in Bologna produced a similar income, i.e. within
0.1–2% of each other, as shown in Figure 4. On average,
DCF gives the highest total amount of income, followed by
LC-DCF and then Lottery.

Surprisingly, the Lottery strategy has the lowest total de-
nied bookings compared to DCF and LC-DCF in the Pr and
Risk policies, as shown in Figure 7. The Lottery strategy

2300.00

2350.00

2400.00

2450.00

2500.00

2550.00

Probability Risk Service-Level

T
ot

al
 R

ev
en

ue
 (x

 G
$1

00
0)

Overbooking Policy

No overbooking

Figure 3. Total net revenue for
RAL.

7500.00

7600.00

7700.00

7800.00

7900.00

8000.00

8100.00

8200.00

8300.00

8400.00

Probability Risk Service-Level

T
ot

al
 R

ev
en

ue
 (x

 G
$1

00
0)

Overbooking Policy

Lottery
DCF

LC-DCF
No overbooking

Figure 4. Total net revenue for
Bologna.

 40

 42

 44

 46

 48

 50

 52

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

O
ve

rb
oo

ki
ng

 L
im

it

Time (slot)

Pr Policy
Risk Policy

SL Policy
maximum CN

Figure 5. Overbooking Limit
in RAL.

Table 10. Total denied bookings for the
Service-Level policy.

Premium Users Business Users Budget Users
Lottery 14 23 1
DCF 15 33 2

LC-DCF 6 38 7

is 4% and 35% lower than DCF in the Pr and Risk policies
respectively. Moreover, it is 12% and 40% lower than LC-
DCF in the Pr and Risk policies respectively. For the SL
policy, the Lottery strategy is 2% higher than DCF, but 27%
lower than LC-DCF, as depicted in Figure 7. As a result, the
Lottery strategy works best in reducing total denied book-
ings. Moreover, it is the simplest and easiest to implement.

However, each denied booking has a different value in
terms of the job duration time, user class level, and more im-
portantly costds. Thus, due to its randomness, the Lottery
strategy pays the most amount of money to denied users, by
up to 16%, 10% and 65% in the Pr, Risk and SL policies
respectively, compared to DCF and LC-DCF, as depicted
in Figure 8. Hence, from the compensation cost’s point of
view, the Lottery strategy is the least desirable.

Measuring DCF against LC-DCF, DCF has the lowest
number of denied bookings by 7%, 3% and 30% in the Pr,
Risk and SL policies respectively, as highlighted in Fig-
ure 7. Hence, in terms of total costds, DCF is about 5%
and 94% lower than LC-DCF in the Pr and SL policies re-
spectively, as indicated in Figure 8. For the Risk policy,
both DCF and LC-DCF have a similar cost, less than 0.5%
of each other. Moreover, when combining with the SL pol-
icy, the total net revenue with DCF is the highest of all, as
shown in Figure 4. Overall, from these findings, DCF seems
to be a better choice than LC-DCF.

In our previous work [19], we found out that Premium
and Business users contribute more than 60% on smaller

and medium-sized resources (e.g. Torino and NorduGrid),
and 50% on large-sized resources (e.g. CERN and Bologna)
respectively. The main disadvantage of DCF is that this
strategy does not take into consideration which user class
level each booking belongs to. In contrast, LC-DCF re-
moves bookings from lower-class users first, based on their
costds. As a result, LC-DCF has the lowest number of de-
nied Premium users, as shown in Table 10. Therefore, to
minimize the negative effects from high-paying users who
have been denied access, the combination of SL and LC-
DCF policies is a better solution in the long run.

8 Conclusion and Future Work

Advance reservation allows users to request available resources
in the future. In this paper, we adopt several static overbooking
policies, such as Probability (Pr), Risk, and Service-Level (SL),
in managing unexpected cancellations and no-shows of reserva-
tions in a Grid system. Moreover, we present several strategies for
selecting which excess reservations to deny, based on compensa-
tion cost and user class level, namely Lottery, Denied Cost First
(DCF), and Lower Class DCF (LC-DCF). By overbooking, a re-
source provider is able to accept more reservations than the current
capacity. As a result, it can be effectively used to increase the total
net revenue of a resource by up to 9%.

From the performance evaluation, the Pr policy suffers from
excessive denied bookings and compensation cost (costds), since
it calculates the overbooking limit (ob) based only on user de-
mands at that particular time. The Risk policy manages to balance
the show rate and costds well. However, it tends to set a more
conservative ob, when the compensation cost is much higher than
the weighted average price of all class users. Finally, the SL policy
defines a specified level or fraction of denied users. This approach
has the advantage of having the lowest denied bookings and costds

compared to other policies.
With regards to the denied-booking strategies, we consider

DCF to be the best as it has both the lowest costds compared to
Lottery and LC-DCF, and the highest net revenue when associated
with the SL policy. However, to prevent high-paying users from
submitting their jobs to other resources due to overbooking, the

 66

 68

 70

 72

 74

 76

 78

 80

 82

 84

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

O
ve

rb
oo

ki
ng

 L
im

it

Time (slot)

Pr Policy
Risk Policy

SL Policy
maximum CN

Figure 6. Overbooking Limit
using DCF in Bologna.

20

40

60

80

100

120

140

160

180

Probability Risk Service-Level

N
um

be
r o

f D
en

ie
d

B
oo

ki
ng

s

Overbooking Policy

Lottery
DCF

LC-DCF

Figure 7. Denied bookings for
Bologna (lower is better).

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

500.00

550.00

Probability Risk Service-Level

T
ot

al
 C

om
pe

ns
at

io
n

C
os

t (
x

G
$1

00
0)

Overbooking Policy

Lottery
DCF

LC-DCF

Figure 8. Total costds for
Bologna (lower is better).

combination of the SL and LC-DCF policies is the better option.
As for future work, we need to consider a dynamic scenario

where cancellations and no-shows are dependent of the number of
total bookings. Moreover, we need to consider handling a group
cancellation for batch reservations.

Acknowledgment

This work is partially supported by research grants from the
Australian Research Council (ARC), and Australian Department
of Education, Science and Training (DEST). We would like to
thank C. S. Yeo for his comments on the paper.

References

[1] R. Buyya, D. Abramson, and S. Venugopal. The Grid Econ-
omy. Proceedings of the IEEE, 93(3):698–714, 2005.

[2] J. Coughlan. Airline Overbooking in the Multi-Class Case.
Operational Research Society, 50(11):1098–1103, 1999.

[3] D. Feitelson. Parallel workloads archive.
http://www.cs.huji.ac.il/labs/parallel/workload, 2007.

[4] I. Foster and C. Kesselman, editors. The Grid: Blueprint
for a Future Computing Infrastructure. Morgan Kaufmann
Publishers, 1999.

[5] I. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt, and
A. Roy. A distributed resource management architecture that
supports advance reservations and co-allocation. In Proc. of
the 7th Intl. Workshop on Quality of Service, London, 1999.

[6] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the
grid: Enabling scalable virtual organizations. The Interna-
tional Journal of Supercomputer Applications, 15(3), 2001.

[7] M. K. Geraghty and E. Johnson. Revenue Management
Saves National Car Rental. Interfaces, 27:107–127, 1997.

[8] G. C. Hadjinicola and C. Panayi. The Overbooking Prob-
lem in Hotels with Multiple Tour Operators. Operations and
Production Management, 17(9):874–885, 1997.

[9] H. Li and M. Muskulus. Analysis and modeling of job ar-
rivals in a production grid. SIGMETRICS Performance Eval-
uation Review, 34(4):59–70, 2007.

[10] J. I. McGill and G. J. V. Ryzin. Revenue Management:
Research Overview and Prospects. Transportation Science,
33(2):233–256, 1999.

[11] S. McGough, L. Young, A. Afzal, S. Newhouse, and J. Dar-
lington. Workflow enactment in ICENI. UK e-Science All
Hands Meeting, pages 894–900, Sep 2004.

[12] J. Milbrandt, M. Menth, and J. Junker. Experience-based Ad-
mission Control with Type-Specific Overbooking. In Proc.
of the 6th Intl. Workshop on IP Operations and Management
(IPOM), Dublin, Ireland, Oct. 23–25 2006.

[13] D. of Transportation. Air Travel Consumer Report. In Office
of Aviation Enforcement and Proceedings (OAEP), Washing-
ton, DC, USA, April 2007.

[14] R. L. Phillips. Pricing and Revenue Optimization. Stanford
University Press, 2005.

[15] B. C. Smith, J. F. Leimkuhler, and R. M. Darrow. Yield Man-
agement at American Airlines. Interfaces, 22:8–31, 1992.

[16] SPEC. Standard Performance Evaluation Corporation.
http://www.spec.org, 2007.

[17] A. Sulistio, U. Cibej, S. Prasad, and R. Buyya. GarQ: An Ef-
ficient Scheduling Data Structure for Advance Reservations
of Grid Resources. Intl. Journal of Parallel, Emergent and
Distributed Systems, (in press, accepted on Jan. 19, 2008).

[18] A. Sulistio, K. H. Kim, and R. Buyya. On Incorporat-
ing an On-line Strip Packing Algorithm into Elastic Grid
Reservation-based Systems. In Proc. of the 13th Intl.
Conference on Parallel and Distributed Systems (ICPADS),
Hsinchu, Taiwan, Dec. 5–7 2007.

[19] A. Sulistio, K. H. Kim, and R. Buyya. Using Revenue Man-
agement to Determine Pricing of Reservations. In Proc. of
the 3rd Intl. Conference on e-Science and Grid Computing
(e-Science), Bangalore, India, Dec. 10–13 2007.

[20] A. Sulistio, G. Poduval, R. Buyya, and C.-K. Tham. On
Incorporating Differentiated Levels of Network Service into
GridSim. Future Generation Computer Systems, 23(4):606–
615, May 2007.

[21] K. T. Talluri and G. J. V. Ryzin. The Theory and Practice of
Revenue Management. Springer Science + Bussiness Media,
Inc., 2004.

[22] H. R. Thompson. Statistical Problems in Airline Reservation
Control. Operations Research Quaterly, 12:167–185, 1961.

[23] B. Urgaonkar, P. Shenoy, and T. Roscoe. Resource Over-
booking and Application Profiling in Shared Hosting Plat-
forms. In Proc. of the 5th USENIX Symposium on Operating
Systems Design & Implementation (OSDI), Dec. 9–11 2002.

[24] Y.-X. Zhao and C.-J. Chen. A Redundant Overbooking
Reservation Algorithm for OBS/OPS Networks. Computer
Networks, 51(13):3919–3934, 2007.

