
In: Advanced Parallel and Distributed Computing
Editor: Yuan-Shun Dai, et. al., pp. 141–173

ISBN 1-60021-202-6
c© 2006 Nova Science Publishers, Inc.

Chapter 8

GRID PROGRAMMING M ODELS

AND ENVIRONMENTS

Harold Soh, Shazia Haque, Weili Liao and Rajkumar Buyya∗

Gr id Computing andDistributedSystems (GRIDS) Laboratory
Department of Computer Science and Software Engineering

The University of Melbourne, Australia

Abstract

This chapter presents various models for creating Grid applications and runtime
environments for managing the execution of applications onglobal Grids. The chap-
ter discusses superscalar, message passing, remote procedure calls, bag of tasks, dis-
tributed objects, threads, workflows, and Grid services programming models supported
by existing implementations Gridsuperscalar, MPICH-G, Ninf-G, Nimrod-G/Gridbus
Broker, ProActive, Alchemi, Gridbus/Kepler workflow, and Globus Toolkit respec-
tively.

1 Introduction

In the last decade, the world has experienced an explosion inthe amount of available data.
Businesses, researchers and engineers have gone on a large-scale data harvest, collecting
records with tremendous diligence. Due to the high computational complexity involved,
the processing of these types of data had been a task exclusive to high-performance com-
puting systems such as supercomputers and clusters. However, the growth in the amount
of data and computational time required has outstripped thepower afforded by isolated
high-performance machines.

In addition, enterprises have grown to a stage where business divisions and units are es-
tablished at multiple geographical locations nationally and even globally. Each unit has the
responsibility of managing their own datasets with some degree of federation. Furthermore,
business units have started conducting not only intra-enterprise but also inter-enterprise
business, which necessitates the sharing of their information resources and assets with their

∗Corresponding author: raj@csse.unimelb.edu.au



142 H. Soh, S. Haque, W. Liao and R. Buyya

partners. The same scenario holds true for the scientific community where many of the
big-science studies and experiments, such as in the domain of physics and the biological
sciences, need to be conducted through global collaboration as no single organization has
the capacity or the financial capability to possess all the required resources.

Figure 1: A world-wide Grid computing environment.

Fortunately, the significant increase in the availability of powerful computers and wide-
area network performance allows us to combine resources across multiple organizations,
yielding the Grid [1]. Grids enable the sharing, exchange, discovery, selection, and aggre-
gation of geographically/Internet-wide distributed heterogeneous resources – such as com-
puters, databases, visualization devices, and scientific instruments [2]. As such, Grids have
emerged as the modern cyber infrastructure for the creationof virtual organizations(VO)
andvirtual enterprises(VE) [3] [4]. Grids offer us a tremendous computational and data
resource, capable of solving many of the worlds most important problems. Examples would
include searching for an AIDS vaccine or discovering the secrets of universe through parti-
cle physics. Figure 1 illustrates a high-level view of the activities involved within a typical
Grid computing environment [2]. Users access the Grid via Grid middleware that perform
resource discovery, job scheduling and process monitoringon the Grid resources.

In this chapter, we discuss the different methods of programming applications that will
work on Grids. Before we actually delve straight into the subject matter, it would be help-
ful to consider the various characteristics of Grids that make application development a
complex task. Grids are by natureheterogeneousand the differences do not start and end
with hardware and software. Grid resources are managed by different organizations that
may have different policies and procedures which dictate how applications are run on those
machines. One or both organizations may decide to take theirresources off the Grid at any
time, perhaps for upgrading or maintenance. Hence, Grids are heterogeneous in terms of
architecture, management systemsandaccess interfaces. The fact that machines of various
types can join or leave the Grid at any time and that the interconnections that exist between



Grid Programming Models and Environments 143

these machines can change lead us to say that a Grid isopenanddynamic.
Now that we have some idea of what kind of entity the Grid is, wecan discuss about

what properties an application has to possess in order to successfully function on the Grid.
Firstly, it has to beportable, meaning it should be able to run on many different types of
machines without recompilation. A term we can use to describe this property isarchitecture
independence. Performance is another property we have to consider. Often, the main reason
for doing work on the Grid is to do it in less time. However, achieving high performance
while performing all the background work necessary to ensure correct program execution is
not a trivial task. We can say an application should haveperformance reliabilitymeaning it
should work efficiently and reliably. Equally important arethe properties offault tolerance
andsecurity. Grid applications should be able to detect and recover fromerrors resulting
from computational and communication faults. In addition,some measure of protection for
the data and code running on the various Grid nodes is necessary. Security mechanisms
should be present to provide both the client applications and the Grid nodes with safety and
privacy.

Figure 2: A Layered Grid Architecture and Components.

Designing an application to possess all the aforementionedproperties is likely to be
complex and difficult. Research over the past two decades hasyielded some interesting
models and environments that simplify Grid programming, making it accessible to main-



144 H. Soh, S. Haque, W. Liao and R. Buyya

stream developers. Figure 2 illustrates the various layerswithin typical Grid architecture.
Grid development or programming environments sit right below the applications layer, pro-
viding an abstraction of the services offered by the core middleware layer. The core middle-
ware interacts with the Grid fabric which consists of the lower-level software and hardware
components that make up the Grid, such as local resource managers, individual operating
systems, computers, networks and communication protocols.

A popular and widely used middleware is the Globus toolkit [5], which provides a
number of services including communication, resource management, security services and
file access services. The Globus Toolkit provides five main types of services as outlined
below:

1. Communication: Multi-method communication is supported via the Nexus commu-
nication library.

2. Resource Management:The Globus Access to Secondary Storage (GASS) is a file
access mechanism that allows applications to pre-fetch andopen remote files and
write them back. GASS is generally used for executable and input file staging and
for relaying output back upon completion. The Globus Resource Allocation Manager
(GRAM) provides for remote execution and status monitoring.

3. Information Services: The Monitoring and Discovery Service (MDS) provides in-
formation about the Grid nodes.

4. Data Management: The GridFTP and Replica Location and Management compo-
nents provide utilities and libraries for transmitting, storing and managing large sets
of data.

5. Security: The Grid Security Infrastructure (GSI) provides authentication, authoriza-
tion and secure communication services via single sign-on and data encryption.

2 GRID PROGRAMMING APPROACHES

Grid-enabling applications involves two major undertakings; program decomposition(or
task composition), resource composition. The Grid programming environments described
in this chapter simplify Grid application programming by automating either (or both) of
these tasks to a certain degree. It should be noted that thesetasks can (and are likely to) be
interdependent. Program decomposition may rely on what resources are available and the
set of resources composed may differ depending on the application requirements.

2.1 Resource Composition

Resource composition is a two step process. First, it is necessary to perform resource dis-
covery, the identification of Grid resources that are available for use. Resources may be
listed in an accessible Grid directory service or a default list can be provided by the user.
Next, the proper resources need to be selected based on the application processing/data re-
quirements and additional external constraints such as financial cost or execution deadline.



Grid Programming Models and Environments 145

Resource composition can be performed by an appropriate application component or by a
Grid resource broker such as the Gridbus broker [6] or Nimrod-G [7].

2.2 Program Decomposition

Decomposing a program involves splitting the work (programcode or data) into chunks
that can be distributed to Grid resources for proper handling. Taking a very simplistic view,
we can classify program decomposition into three approaches, implicit, explicit andsemi-
implicit.

With implicit parallelism, programs are automatically parallelized by the environment
and it is not necessary to identify sections of code that can be performed in parallel, schedul-
ing or data dependencies. An example of an environment capable of this is Grid superscalar
[8], which we discuss later in this chapter. On the other end of the spectrum, explicit paral-
lelism requires the programmer to be responsible for most ofthe parallelization effort such
as task decomposition, mapping tasks to processors and inter-task communication. Exam-
ples of these programming approaches include the explicit communication models such as
message passing and remote procedure calls.

It is not difficult to recognize that both the implicit and explicit parallelism approaches
have their advantages and disadvantages. Implicit parallelism allows us to rapidly develop
Grid applications but we lose fine grain control. Explicit parallelism gives us near com-
plete control of how our applications will execute but in doing so, cost us time and effort.
Choosing one approach over the other depends largely on the task at hand. Several models
have opted for a balance, a middle ground that offers a good deal of program control while
automating some of the Grid management details. We call these semi-implicit parallelism
models and examples would include the bag of tasks, distributed threads and workflow
models.

2.3 Grid Programming Models

The table below summarizes several different grid programming models and environments:
In the following Sections 3 to 10, we present an overview of each of these programming

models with associated environments to illustrate the principles behind each model.

3 GRID SUPERSCALAR

The first programming model and environment we will be examining is Grid superscalar
which is undergoing further development at the CEPBA-IBM Research Institute in Spain.
Recall from our earlier discussion that Grid superscalar isan implicit parallelization Grid
programming environment. The underlying idea is that Grid applications consist of repet-
itive tasks which can be detected and parallelized automatically while guaranteeing cor-
rect program execution. Hence, the programmer is only required to provide two files, the
sequential source code in an imperative language (C/C++ or Perl) and an interface def-
inition (IDL) file in the CORBA IDL language [16]. The IDL file specifies the subrou-
tines/programs that are to be executed on the Grid and parameters (input/output files or



146 H. Soh, S. Haque, W. Liao and R. Buyya

Table 1: Summary of Grid Programming Models and Environments.
Model Environment Description
Superscalar Grid Supercalar

http://people.ac.upc.edu/
rosab/indexgs.htm

Superscalar is a common concept in parallel comput-
ing. Sequential applications composed of tasks of a
certain granularity are automatically converted into a
parallel application where the tasks are executed in
different servers of a computational Grid [8].

Explicit
Communication

(Message
Passing,
Grid Remote
Procedure Call)

MPICH-G2
http://www3.niu.edu/mpi/

MPICH-G2 is a Grid-enabled implementation of the
Message Passing Interface (MPI) [9]. MPI defines
standard functions for communication between pro-
cesses and groups of processes.MPICH-G2 provides
extensions to MPICH using the Globus Toolkit, giv-
ing users familiar with MPI an easy way of Grid-
enabling their MPI applications.

Grid–enabled RPC
http://ninf.apGrid.org/

GridRPC is a Remote Procedure Call (RPC) model
and API for Grids [10]. Besides providing standard
RPC semantics, it offers a convenient, high-level ab-
straction whereby many interactions with a Grid en-
vironment can be hidden.

Bag of Tasks
Nimrod-G
http://www.csse.monash.edu.
au/∼davida/nimrod/nimrodg
.htm

The Nimrod-G Broker [7] is a Grid-aware version of
Nimrod, a specialized parametric modeling system.
Nimrod uses a simple declarative parametric model-
ing language and automates the task of formulating,
running, monitoring, and aggregating results.

Gridbus Broker
http://www.Gridbus.org/
broker

The Gridbus Broker is a software resource that per-
mits users access to heterogeneous Grid resources
transparently [11]. Gridbus Broker Application
Program Interface (API) provides a straightforward
means to users to Grid-enable their applications with
minimal extra programming [12].

Distributed
Objects

ProActive
http://www-
sop.inria.fr/oasis/Proactive/

ProActive is a Java based library that provides an API
for the creation, execution and management of dis-
tributed active objects. Proactive is composed of only
standard Java classes and requires no changes to the
Java Virtual Machine (JVM) allowing Grid applica-
tions to be developed using standard Java code.

Distributed
Threads

Alchemi
http://www.alchemi.net

Alchemi is a Microsoft .NET Grid computing frame-
work, consisting of service-oriented middleware and
an application program interface (API) [13]. Al-
chemi features a simple and familiar multithreaded
programming model.

Grid Thread
Programming
Environment (GTPE)

GTPE is a programming environment implemented
in Java utilizing the Gridbus Broker API. GTPE fur-
ther abstracts the task of Grid application develop-
ment, automating Grid management while providing
a finer level of logical program control through the
use of distributed threads.



Grid Programming Models and Environments 147

Workflow Kepler
http://kepler-project.org

Kepler is a scientific workflow management sys-
tem along with a set of Application Program Inter-
faces (APIs) for heterogeneous hierarchical model-
ing [14]. Kepler provides a modular, activity oriented
programming environment, with an intuitive GUI to
build complex scientific workflows.

Grid Services OGSA
http://www.ggf.org/
ggf areasarchitecture.htm

Open Grid Services Architecture (OGSA) [3] [15]
is an ongoing project that aims to enable interop-
erability between heterogeneous resources by align-
ing Grid technologies with established Web services
technology. The concept of aGrid serviceis intro-
duced as a Web service that provides a set of well
defined interfaces that follow specific conventions.
These Grid services can be composed into more so-
phisticated services to meet the needs of users.

generic scalars). From these two files, the system generatesa parallel application where
tasks are executed on the Grid.

3.1 Automatic Code Generation

Grid superscalar offers a toolgsstubgenthat generates parallel code for the user automat-
ically. This automatically generated code consists of two files: the function stubs and the
skeleton for the code that is to be executed on the remote servers. Figure 3 [8] illustrates
an example of how files are linked to obtain the final application binaries. One executable
will exist in the client host and one in each server host. The original main program (app.c)
is linked with the generated stubs (app-stubs.c) on the client machine. On any one server
being utilized, the skeleton (app-worker.c) is linked withthe file containing the code of the
original user functions (app-functions.c) [8].

Figure 3: Automatic code generation (C program) [8].



148 H. Soh, S. Haque, W. Liao and R. Buyya

3.2 Run Time

Figure 4 [8] illustrates an instance of Grid superscalar behaviour. The GRID superscalar
run-time system looks for data dependencies which is analysed from the input/output files
between the different tasks. Tasks are denoted as nodes or vertices on the task dependence
graph and data dependencies as edges. Intuitively, tasks that are not connected do not
depend on each other and hence, can be executed in parallel.

Figure 4: Overview of Grid superscalar behaviour [8].

1. Read after Write (RaW) occurs when a task reads a parameterthat is written by a
previous task. For example, consider the situation wherefunctionBreads some file,
file1, which was written to byfunctionA. In this case, the run time will ensure that
functionBis executed afterfunctionA.

2. Write after Read (WaR) occurs when a task writes to a parameter that is read by a
previous one. For this one, we consider the reverse of the situation we examined
earlier. If somefunctionAwrites tofile1 after it is read byfunctionB, thenfunctionA
should be executed afterfunctionBto prevent what we calldirty reads.

3. Write after Write (WaW) occurs when a task writes to a parameter which is also writ-
ten to by a previous task. Let us assume thatfunctionAwrites tofile1 after functionB
and there exists afunctionCreadsfile1. The order in whichfunctionAandfunctionB
get executed will affect the information whichfunctionCreads.

It is possible to eliminate both WaR and WaW dependences through proper renaming
of parameters. Grid superscalar run time does this automatically via the use of a hash table.
However, it is not possible to eliminate RaW dependences andso, we say RaW aretrue
dependences.



Grid Programming Models and Environments 149

3.3 Task Submission and End of Task Notification

If a task does not have any dependence on previous tasks whichhave not been finished or
which are still running (i.e. the task is not waiting for any data that has not been already
generated), it can be submitted for execution to the Grid. The Grid superscalar run-time
requests a Grid server from a resource broker and if a server is provided, it submits the task
for execution. Currently, Grid superscalar is packaged with a simple resource broker but
future work includes interfaces to more sophisticated resource brokers such as the Gridbus
broker which we will examine later in this chapter. Task submission consists of two steps:

1. File submission whereby input files are transmitted to theGrid servers.

2. Task submission whereby the task itself is called to be executed on the Grid server.

When a task completes execution, it notifies the superscalarrun-time so that tasks that
depend on this task and have no other dependencies can be submitted for execution. This
process of task submission proceeds until the program terminates.

4 MESSAGE PASSING

The concept of message passing is a common parallel programming paradigm. The Mes-
sage Passing Interface (MPI) [17] [18] is widely used in cluster applications. MPI appli-
cations do not share memory but exchange information via messages over some medium,
such as an Ethernet network. We say that the processes in an MPI application run indisjoint
address spaces. Explicit parallelization via message passing is cumbersome compared to
the automatic parallelization offered by implicit techniques like Grid superscalar. However,
the flexibility and control gained may be necessary for certain applications where automatic
parallelization fails.

4.1 The MPI Standard

In this subsection, we give an overview of the major featuresand design of MPI. The MPI
Standard describes a standard message passing interface for distributed machines. At the
simplest level, MPI provides a reliable communication mechanism for sending and receiv-
ing messages.

The most basic point-to-point communication operations are the send and receive oper-
ations which can either beblockingor non-blocking. Blocking sends will not return until the
data locations specified in the message can be used without corrupting the message. Like-
wise, blocking receives do not return until the message has been successfully copied into
the data block specified. Non-blocking sends and receives return immediately, not waiting
for any particular event. In addition to the data being sent,messages contain a fixed num-
ber of fields which are collectively called the message envelope. This message envelope
(consisting of the source, destination, tag and communicator) distinguishes messages and
allows for message selectivity.



150 H. Soh, S. Haque, W. Liao and R. Buyya

4.1.1 Process Groups

It is possible to organize senders and receivers into process groups. Each process group is
an ordered collection of processes with each process uniquely identified by its rank. The
rank identifier for a process group is from 0 to n-1 for a process group of size n. Although
the number of processes is static or fixed for the lifetime of aMPI program, process groups
are dynamic. Process groups can be created, destroyed and the same process can belong to
multiple process groups. Using process groups, MPI nodes can be structured for collective
communication and to enable task parallelism.

4.1.2 Communication Objects and Contexts

Communicators are abstract objects that define a scope of a communication operation,
which is defined by the process groups involved and the communication context. Com-
munication contexts, like message tags, groups and rank identifiers, provide a mechanism
for message selection. Communication contexts are maintained transparently within com-
municators so that messages sent through a particular communicator can only be received
through the matching communicator. These attributes provide for both point-to-point and
collective communication.

4.2 MPICH-G2

MPI is a message passing interface and not a full-fledged or complete Grid programming
environment. As such, MPI does not contain inherent supportfor fault tolerance, file sharing
and distribution or security mechanisms. As discussed earlier, these services are essential
for correct and efficient program execution on a Grid. MPICH-G2 [9] is based on the MPI-
1 standard and was developed to enable users to run MPI programs on the Grid without
changing the standard commands. MPICH-G2 was constructed using two software systems,
MPICH [19] and the Globus middleware toolkit. The followingservices are provided by
MPICH-G2 system:

1. Co-allocation: The co-allocation problem involves the allocation of resources on
Grid nodes, the initialization of processes and mechanismsto link these processes for
communication. Complications arise because of two main factors:

(a) Heterogeneity: Different nodes may differ in the methods utilized for resource
allocation and process creation.

(b) Errors: Co-allocation can be time-intensive and error prone due to the dynamic
nature of the Grid.

MPICH-G2 solves these issues by using the GRAM interface provided by the Globus
toolkit and the Dynamically-Updated Request Online Co-allocator (DUROC).
DUROC handles request submission, startup verification andprocess linking under
an umbrella communicator, MPICOMM WORLD, which spans all processes.

2. Security: MPICH-G2 supports authentication and authorization via the Globus Se-
curity Infrastructure (GSI) which provides single sign-onand automatic mapping to
local accounts.



Grid Programming Models and Environments 151

3. Executable staging and results collection:Once the proper security protocols have
been observed, executables are transferred to remote nodesvia the Globus Access
Secondary Storage (GASS) service. GASS is also used to collect standard output and
error streams.

4. Communication: The Nexus library provided by the Globus toolkit is used to link
processes together allowing them to communicate via TCP/IPin the wide area, shared
memory within a cluster and vendor specific protocols withina cluster.

5. Monitoring: The GRAM callback functions are used to detect process termination
and the GRAM API control functions allow for the terminationof processes.

5 REMOTE PROCEDURE CALLS

This section gives an overview of the GridRPC standard [10] [20] and the Ninf-G GridRPC
implementation [21]. Remote Procedure Calls (RPC) methodsare not too different from the
message passing concept discussed in the previous section.However, instead of sending
messages through the use of various arguments to a library call, interaction is based on
function calls. As such, communication between distributed processes is more of a language
construct. One of the key benefits is that the receiver does not have to directly interpret
messages.

5.1 GridRPC

GridRPC seeks to combine the standard RPC programming modelwith asynchronous
course-grained parallel tasking. In the GridRPC model, there exist three major types of
entities as illustrated by Figure 5 (adapted from [20]); theclient, service and registry.

Figure 5: The Basic GridRPC model. Adapted from [20].

Clients make use of services which have registered themselves with a proper registry.
When an RPC client performs a look-up for a desired service, the registry returns afunction
handle. The function handle represents a mapping from a flat function name string to an
instance of that function on a Grid node. The client then can make a RPC call using that



152 H. Soh, S. Haque, W. Liao and R. Buyya

function handle to execute the function, which returns results after it completes. Another
term we have to be familiar with is thesession IDwhich is an identifier representing a
specificnon-blockingGridRPC call. The GridRPC API provides multiple data types and
methods for function initialization, creation and destruction of function handles, function
calls, asynchronous waits and error reporting. We direct readers wanting a full description
of these API functions to the GridRPC model and API document [15].

5.2 Ninf-G GridRPC system

Ninf-G was designed by researchers at the National Institute of Advanced Industrial Sci-
ence and Technology and the Tokyo Institute of Technology tosimplify the development
of large-scale Grid programs. Ninf-G was built as a GridRPC layer on top of the Globus
Toolkit as illustrated in Figure 6 [21] and utilizes GRAM to invoke remote executables,
MDS to publish internation information and file paths of components, Globus I/O for com-
munication and GASS for results and error collection.

Figure 6: The Ninf-G GridRPC System.

The Ninf-G client APIs provide the following functions:

1. Initializing and Finalizing functions similar to that of MPI.

2. Function Handle Management functionsthat allow for the creation and destruction
of function handles.

3. GridRPC Call functions that can be blocking or non-blocking and may use a vari-
able number of arguments or an argument stack.



Grid Programming Models and Environments 153

4. Asynchronous GridRPC Control Functions that are used to probe or terminate
outstanding non-blocking function calls.

5. Asynchronous GridRPC Wait functions that are used to wait instead of polling on
a set of session IDs.

6. Error Reporting functions that provide error codes and human-readable error de-
scriptions in the event on an error.

7. Argument Stack functions such aspushandpop that allow for the run-time con-
struction of arguments.

5.2.1 Server-Side Library Interface Information

The Ninf Interface Description Language (IDL) is used to specify interface information
for Grid libraries hosted on servers. The IDL file specifies the Grid functions that can be
called, which arguments are input or output, argument typesas well as information needed
to compile and link the necessary libraries. The IDL files canbe compiled into stub main
routines and makefiles. To provide access to libraries or applications over the Grid using
Ninf-G, four main steps are required:

1. Create an IDL interface file for the library function or application.

2. Compile the IDL file and generate a stub main routine and a makefile for the remote
program.

3. Compile the stub main routine and link it with the remote library.

4. Publish the necessary information (via MDS).

The final two steps are automatically performed by the makefile and no IDL handling
is required on the client.

5.2.2 Utilizing GridRPC

Invoking the relevant functions published by the remote libraries involves three main steps.
The client performs a query to the MDS and obtains the interface information along with
an executable pathname that was registered. Following this, the client and server mutually
authenticate each other using GSI and the client invokes theremote executable. Finally, the
remote executable callbacks to the client utilizing the Globus I/O for further communication
(e.g. parameter transfer and error reporting).

6 BAG OF TASKS

The Bag of Tasks (BoT) paradigm involves treating applications as being composed of
independent tasks that can be performed in parallel. An example of a BoT model is the
parameters sweep, which distributes the same program across multiple Grid nodes to work
on different parameters. Such processes may require the services of shared resources such



154 H. Soh, S. Haque, W. Liao and R. Buyya

as databases or authentication servers. Examples of a successfully developed parameter
sweep applications include a molecular modeling application using the Nimrod-G resource
broker [7] for drug discovery [22] and a high energy physics (HEP) application modeling
the decay of B-mesons using the Gridbus Broker [6] [7]. The following subsection details
the Gridbus Broker but similar principles underly the Nimrod-G broker. We direct readers
wanting more information regarding Nimrod-G to [7].

6.1 Gridbus Broker

The Gridbus Broker [11] [12] is a software resource that allows users to access heteroge-
neous Grid resources transparently. Implemented in Java, it provides a variety of services
including resource discovery, transparent access to computational resources, job scheduling
and job monitoring. The Gridbus broker transforms user requirements into a set of jobs that
are scheduled on the appropriate resources, managing them and collecting results. Figure 7
[12] illustrates the possible interactions the Gridbus broker can participate in.

Figure 7: Gridbus broker block diagram [12].

6.1.1 Design

The Gridbus broker was designed based on object-oriented principles to be simple, modular,
reusable, extendable and flexible. There are six main designentities within the Gridbus
broker:



Grid Programming Models and Environments 155

1. Compute Server:This entity describes a computational node on the Grid, specifying
relevant properties such as middleware, architecture and operating system. The entity
also implements a monitor for tracking the rate of progress through the number of
jobs that have finished, failed or are currently executing.

2. Job: A job is an abstraction for a unit of work submitted to a Grid node for execution.
A job consists ofvariablesand atask. Variables specify the parameters associated
with the job. The task is a description of what is to be done on the compute server
and consists ofcommands. A command is one of either three types; Copy, Execute or
Substitute. The Copy Command and Execute Command are fairlyself-explanatory.
The Copy Command copies a file from the source to a remote node (and vice versa)
and the Execute Command executes a specified program on the remote node. The
Substitute command tells the broker to substitute values for variable names in text
files, automating the generation of configuration files for each job.

3. Data Hosts: Data hosts describe nodes that contain data files with specifics such as
file access protocols and file paths.

4. Data Files: Data Files link to the Data Hosts that store the file and specify properties
of input files such as size and location.

5. Farming Engine: The farming engine is the central component that maintains the
overall state of the broker. It contains all the job and server collections and interacts
with external applications.

6. Scheduler: The scheduler is responsible for distributing jobs to Grid nodes. It is
middleware independent and is capable of scheduling jobs based on metrics that are
not platform-dependant.

6.1.2 Architecture

The broker consists of three main sub-systems; the Application Interface, the Core and the
Execution sub-systems. A high level overview of the three subsystems is shown in Table 2.
Figure 8 [12] illustrates the Gridbus broker architecture.

6.1.3 Grid Programming with the Gridbus Broker

The Gridbus broker provides an Application Program Interface (API) that allows users to
program the broker and use its services in a user-developed Java application. Developing a
Java application that utilizes the broker is relatively simple. It is first necessary to create an
instance ofGridFarmingEngine . The broker’s properties can be configured via the broker
configuration file (Broker.properties). If no configurationfile is found, default values are
used. A listing of default values and their properties can befound in the Gridbus broker
manual [12]. It is then necessary to set up jobs and servers. There are two methods of
achieving this:



156 H. Soh, S. Haque, W. Liao and R. Buyya

Table 2: The three main sub-systems of the Gridbus Broker.

Sub-system Description
Application Interface

• Accepts input to the broker consisting of an application-
description (tasks and associated parameters with values)
and a resource description.

Core

• Converts application-descriptions to job entities.

• Converts resource-descriptions into server entities, which
represent grid nodes.

• Evaluates task and data requirements to discover appropri-
ate resources.

• Schedules jobs and submits using the execution sub-
system.

• Updates the book-keeper using the job monitoring compo-
nent of the execution sub-system.

Execution

• Interacts with the Scheduler.

• Submits jobs to the remote grid via the actuator compo-
nent.

• Provides job monitoring services.

1. The simpler method is to create an application-description file1 and a resource list
file and provide these filenames to the Farming engine.

2. The more flexible method of using theTask, Command andServerFactory APIs.
Details on using these APIs follow.

To use the API method, first instantiate a newJob object and callJob.setJobID() to
set the job’s identification. Then set up the commands that need to be run. The com-
mands objects which are available are the copy commands (CopyCommand, MCopy2 and
GCopy), theExecuteCommand, andSubstituteCommand. All three types provide meth-
ods that allow the user to set member variables necessary forproper execution (e.g.Copy-
Command.setSource()andCopyCommand.setDestination()). These commands are then
added to a createdTask object viaTask.addCommand(). After all the commands have
been added, the task is provided to theJob object usingJob.setTask(). Variables can be

1Application-description files are written in XPML format.
2Instructs the broker to copy multiple files using wildcards.More information available in the broker API

at http://www.gridbus.org/broker/2.0/docs/.



Grid Programming Models and Environments 157

Figure 8: Gridbus broker Architecture.

added to theJob object usingJob.addVariable(). Finally, the job is added supplied to the
FarmingEngine.addJob()method.

Server resources are supplied to the farming engine,GridFarmin-
gEngine.addServer(), as ComputeServer objects. A ComputeServer object can
be generated viaServerFactory.getComputeServer()method (e.g. ComputeServer
cs = ServerFactory.getComputeServer(“globus2.4” , “belle.cs.mu.oz.au”)). We can
now schedule the jobs using GridFarmingEngine.schedule(). It is possible to set up
the scheduling method or even define a new scheduler by using the GridFarmin-
gEngine.setScheduler()method.

The Gridbus broker also provides an API for modifying the broker but this is outside
the scope of this chapter and is detailed in [12].

7 DISTRIBUTED OBJECTS

Most readers should be familiar with object oriented programming. Object oriented pro-
gramming or OOP is a widely used computer programming paradigm where computer pro-



158 H. Soh, S. Haque, W. Liao and R. Buyya

grams are viewed as collections of individual units calledobjects. Objects are run-time
entities instantiated from classes which encapsulate dataand functions. Java is an example
of an object oriented programming language. Examples of object-oriented programming
languages include Java and C++. Distributed objects are objects that are distributed across
multiple computing systems, communicating via messages across some communication
network. In the context of Grids, these objects may be located across multiple organiza-
tions connected via the Internet.

7.1 ProActive

ProActive [23] extends Java with a Grid API library for the creation, execution and man-
agement of active distributed objects with the intention ofsimplifying parallel computing
on LANs, clusters and Internet Grids. ProActive is composedof only standard Java classes
and requires no changes to the Java Virtual Machine (JVM) allowing Grid applications to
be developed using standard Java code. The ProActive library is based on an Active Object
Pattern which is a standard method of encapsulating a remoteobject, a thread, an actor, a
server and a secure mobile entity. In addition, ProActive features group communication,
object oriented Single Program Multiple Data (OO SPMD), distributed and hierarchical
components, security, fault tolerance, a peer-to-peer infrastructure, a graphical user inter-
face and a powerful XML-based deployment model.

7.1.1 Active Objects

In standard Java, existing code has to be extensively modified to transform local objects into
distributed objects, presenting a barrier to developers. ProActive provides simple methods
of transforming standard objects into Active objects whichpossess synchronization capa-
bilities and location and activity transparency. Grid Applications are structured into subsys-
tems, each of which is composed of a single active object and anumber of passive objects.
Each active object consist of Passive objects are not sharedbetween subsystems. Active
objects are composed of two objects, namely abodyand a standard Java object, and can
be created on any host involved in the activity. The body receives stores and executes calls
(requests) made to the object. Calls are stored in a queue of id no synchronization policy
id provided, manages them in a first-in-first-out (FIFO) manner. The authors note that no
parallelism is provided inside of an active object.

7.1.2 Migration and Group Communication

Any active object is capable of migration, which is either self-triggered or initiated by an
external agent. All referenced passive objects would also be migrated. Migration relies on
serialization and hence, all active objects implement the serializable interface. ProActive
implements a simple scheme for enabling group communication. Groups can be easily
created and method calls to a group of objects are broadcasted to all members by default.
However, it is also possible scatter parameters through theuse of the member’s rank in a
group. Additionally, group communication can be used to simulate MPI-style collective
communication within the OO SPMD programming model.



Grid Programming Models and Environments 159

7.1.3 Security

ProActive provides a set of security features that can be used transparently by applications.
These features include communications authentication, integrity and confidentiality, migra-
tion security, hierarchical security policies and dynamicpolicy negotiation. The security
framework allows for the dynamic deployment of applications and the automatic configura-
tion of security in accordance with the deployment. Each active object has a distinguished
element, termed theroot, which is the only entry point. As such, all other objects within
the subsystem are passive objects and cannot be referenced directly. Access is based on
the Public Key Infrastructure (PKI) with each entity possessing its’ own certificate and a
private key generated from the certificate of the user. Additionally, ProActive allows for all
RMI and HTTP communication to be tunneled through SSH. As such, all communication
can be encrypted and firewalls blocking RMI ports can be bypassed.

7.1.4 Fault Tolerance

ProActive provides a fault-tolerance through a fully-transparent Communication-Induced
Checkpointing protocol. Active objects are made persistent through the use of serialization
and hence, an object checkpoint consists of a serialized copy of the object and protocol-
related information. Each persistent object has to checkpoint at least every TTC (Time to
Checkpoint) seconds. A global state is formed when all objects have been checkpointed.
In the event of a failure, the system restarts from the globalcheckpoint. The TTC value is
user-defined and can be set to balance the overhead associated with frequent check-pointing
and the smaller roll-back time associated with more recent global states.

7.1.5 Web Services Functionality

Active objects can be exported as web services and as such, can be called from any web
service language including C#. A web service is a software entity that can be exposed,
discovered and accessed by heterogeneous resources over a network in a standard way.
ProActive utilizes the SOAP Engine and HTTP servers to enable this functionality.

8 DISTRIBUTED THREADS

Thread programming is a well developed model and is used extensively, even on single
processor machines to simplify application development. One can think of threads as light
weight processes. For example, a single program could consist of two threads: one to
manage the graphical user interface (GUI) and another to perform the actual computations.
Distributed threads are threads that span multiple addressspaces [24]. In this section, we
discuss two programming environments, Alchemi [8] [20] andthe GridThread Program-
ming Environment (GTPE) [25], that utilize the distributedthread model.

8.1 Alchemi

Alchemi [13] [26] is Microsoft .NET Grid computing framework, consisting of service-
oriented middleware and an application program interface (API) geared towards simple,



160 H. Soh, S. Haque, W. Liao and R. Buyya

rapid Grid software development. Alchemi is based on the master-worker parallel program-
ming paradigm and implements the concept of Grid threads. A Grid thread is essentially
a thread object capable of running on distributed nodes and is the smallest unit of parallel
execution. Hence, an Alchemi Grid application consists of multiple Grid threads.

8.1.1 Owner, Manager, Executor and Cross-Platform Manager

Alchemi consists of four major distributed components described in Table 3. Figure 9 [26]
illustrates the interactions between the components.

Table 3: The four main components of the Alchemi Framework.

Component Description
Owner Executes applications created with the Alchemi API.

Submits threads to the Manager and collects completed
threads.

Manager Schedules and manages the execution of threads on execu-
tors.
Tracks of the availability of executors.

Executor Accepts and executes threads from the Manager.
Can be configured to be dedicated or non-dedicated (Ded-
icated Executors expose an interface so that the Manager
may communicate with it directly. Non-dedicated Execu-
tors perform work on a voluntary basis and poll the Manager
for threads to execute).

Cross-Platform Man-
ager

A sub-component of the Manager.
A web-services interface that enables Alchemi to manage
the execution of platform independent grid jobs.

Grid thread scheduling is performed by the Manager and is performed on a Priority
and First Come First Served (FCFS) basis. Priorities can be specified when threads created
within the Owner (defaults to highest priority if none is specified). Alchemi can be deployed
as a hierarchical multi-cluster system with one Manager passing threads to another Manager
(defined as the Intermediate-Manager) for execution. As an Intermediate-Manager receives
a thread from higher-level Managers, the thread’s prioritylevel is reduced by one unit. This
serves to allow resources within one administrative domain(managed by a Manager) to be
shared without creating a significant impact to local users.

8.1.2 Grid Application Programming with Alchemi

Alchemi3 provides a .NET Software Development Kit (SDK) consisting of standard classes
and an API. An Alchemi Grid application consists of two parts:

3A good tutorial on programming with Alchemi can be found at the Alchemi Documentation at
http://www.alchemi.net/doc/06 1/index.html.



Grid Programming Models and Environments 161

Figure 9: The interactions between the four main componentsof the Alchemi Framework.

1. “Local Code” which creates a Grid application and runs threads and

2. “Grid Code” which is executed remotely i.e. a Grid thread class4.

To create a Grid thread class, derive a new class from theAlchemi.Core.GThread
class. It is necessary to override thevoid Start() method and add theSerializableattribute
to the class. Then additional modifications (e.g. addition of member functions etc.) can be
made to the derived class to perform the necessary computations.

The “Local Code” portion executes on the owner and can be implemented in a variety of
ways. The standard method is to create aGApplication object with the host and port num-
ber provided to the constructor. It is then necessary to create aModuleDependencyobject
and provide it with the module of the derived Grid thread class. TheModuleDependency
object is added to theManifest object within theGApplication object (i.e. GApplica-
tion.Manifest) via theManifest.Add() method.

The derived threads are then instantiated. AGThreadFinish delegate which is called
when the thread finishes executing is set for each thread (e.g. myThread.FinishCallback
= new GThreadFinish(ThreadFinished)). TheThreadFinished function, as used in the
example, is user-defined and may consist of code to perform cleanup operations or to save
the results to disk. It is possible to define a delegate for each thread created. The threads
are then added to theGApplication object via theGApplcation.Threads.Add() method.

As with the threads, we can set an application callback method by creating aGAppli-
cationFinish object with the function passed to the constructor and setting theGapplica-
tion.FinishCallback member variable. The application is then ready to be startedvia the
GApplication.Start() method.

4Inter-thread communication is currently not supported by the version of Alchemi (v.0.61) at the time of
writing. It is then necessary to break the application into parallel threads that do not require constant commu-
nication with each other.



162 H. Soh, S. Haque, W. Liao and R. Buyya

8.2 Grid Thread Programming Environment (GTPE)

The main objective of implementing GridThreads library forGridbus Broker was to mini-
mize the entry barriers associated with Grid applications development. GTPE [25] is imple-
mented in pure Java and consists of a thread library that interacts with the Gridbus broker
to provide transparent access to Grid services. GTPE provides a finer level of application
control as compared to working with coarse grained jobs and frees the developer from the
complexities introduced by Grid resource management. Figure 10 illustrates an architec-
ture block-diagram of GTPE. GTPE consists of two main components, theGridApplication
class and theGridThreadclass.

Figure 10: Grid Thread Programming Environment (GTPE) Architecture.

The GridThreadobject forms the atomic unit of remote, independent work. All user
defined Grid threads derive from theGridThreadabstract base class. The subclass has to
override thestart and thecallback methods. Thestart method is executed on the remote
nodes and hence, the computational work intended for remoteexecution should be defined
in this method. Thecallbackmethod is executed at the local client node once the thread has
finished executing on the remote node and has been transported back. Thecallbackmethod
can be used for a variety of functions including the aggregation of results and the reporting
of thread completion to the user.

TheGridApplicationobject is responsible for thread management and providing near-



Grid Programming Models and Environments 163

transparent access to the Grid via the Gridbus broker. The class presents a single point of
control to the programmer.GridThreadsare added to aGridApplication object for exe-
cution on remote nodes. The GridApplication object provides mechanisms to capture and
restore thread states, as well as job wrapping and thread monitoring services.

The Gridbus-Thread Programming Environment architectureis relatively simple and
supports the aforementioned design objectives. GTPE is implemented in pure Java and as
such, benefits from its “write-once-run-anywhere” model. User derived Grid threads are
inherently portable and able to run on any system which provides access to a Java Virtual
Machine. Performance is supported via dynamic scheduling and modern Java compilers,
which are able to able to generate Java code capable of execution speeds comparable to
traditional high-performance languages [27] . Secure access and job submission to remote
nodes is supported via the Gridbus broker and thread monitoring provides a mechanism for
detecting thread failures on remote nodes.

8.2.1 Resource Discovery and Access

Version 2.0 of the Gridbus broker (and hence, GTPE) supportsthe following a range of
middleware for computational resources (Globus v2.4 and v3.2, Alchemi v0.8, and Unicore
Gateway v41) and data resources (SRB v3.x and Globus ReplicaCatalog) [3]. If no re-
sources are specified, a set of servers is loaded from a resource file (resources.xml), which
specifies default resources and their attributes. The Gridbus broker manages access to these
systems, providing secure access via proxies and credentials.

8.2.2 Thread Object State Capture and Job Wrapping

To capture objects into a form which can be distributed, GTPEutilizes Javaserialization.
Serialization is automated by the GridApplication class and is transparent to the user appli-
cation. However, it is possible for application developersto override the default serialization
methods in their derived thread classes to specify optimized implementations that best suit
their needs. When a thread is added to for execution on the Grid, it is immediately serialized
to a state file with a unique filename. This state file is groupedtogether with the user derived
GridThread class file (obtained using Java class inspection), and the GridThread class file.
These files are wrapped into a Gridbus broker job along with the appropriate low-level copy
and execute commands. The job object is then added to the Gridbus broker for scheduling
and submission to a suitable Grid node.

8.2.3 Thread Scheduling

The Gridbus broker utilizes the concept of acomputational economy[6] [22] and version
2.0 provides five different scheduling types; cost-optimized, time-optimized, cost-and-time-
optimized, cost-and-data-optimized and time-and-data-optimized [12]. If no scheduler is
specified, GTPE defaults to using the cost-optimized approach.



164 H. Soh, S. Haque, W. Liao and R. Buyya

8.2.4 Thread Execution and Monitoring

At the remote node, the appropriate user defined subclass is detected and the appropri-
ate thread object instantiated via Javareflection. The thread is de-serialized to restore the
thread’s state and the thread’sstart method is invoked. When thestart method returns, the
thread’s state is serialized to a file on disk and transportedback to the local node. Each
GridThread has an associated status variable which stores one of four possible execution
states;notsubmmited, running, finishedor failed. The default status is thenotsubmmited
state and remains unchanged while it is waiting for transport. When the thread has been
submitted to the remote node, its status variable is updatedto running. If a thread success-
fully completes, its state is updated by de-serializing thefinished thread state file and its
status is set tofinished. If a thread fails during execution, an error report is generated and
its status is changed tofailed.

8.2.5 Additional Functionality

GTPE provides additional functionality to minimize the effort necessary to work with Grid
threads. A simple barrier function is implemented allowingusers to synchronize threads
and thegetThreadsmethod is available for retrieving threads that have been added to the
threads array. These methods are especially useful when aggregating results or performing
some final analysis which requires all threads to have completed execution. Hence, unlike
regular broker jobs, it is possible to work with updated threads after execution on a remote
node. Additionally, thestopmethod is provided to terminate the scheduling and distribution
of threads.

9 WORKFLOW

A workflow is a collection of tasks that are executed in some pre-defined order to accom-
plish a goal. A classic example is the assembly line of a car factory. A Grid workflow is
then just a workflow which is executed on the Grid. It should benoted that Grid workflows
tend to involve long lasting execution tasks with a large data flow [28]. Grid workflow
systems are designed to define, manage and execute Grid workflows. Figure 11 [28] gives
an overview of the architecture of a Grid workflow system based on a reference model
proposed in 1995.

9.1 Kepler

Kepler [14] is a scientific workflow management system which allows scientists to design,
execute and deploy workflows using a number of technologies including web and Grid
services, Relational Database Management Systems (RDBMS)and local applications im-
plemented in various programming languages. It is built on top of Ptolemy II, a mature
software application developed at the University of California at Berkeley. Ptolemy II [29]
is a Java-based component assembly framework with a graphical user interface called Vergil
along with a set of Application Program Interfaces (APIs) for heterogeneous hierarchical
modeling.



Grid Programming Models and Environments 165

Figure 11: Grid Workflow Management System [28].

9.1.1 Programming aspects of Kepler

Kepler provides domain scientists with an easy to use yet powerful system for capturing
scientific workflows via its intuitive programming Graphical User Interface (GUI). It is also
a modular, activity oriented programming environment thatlends itself to design of reusable
components. Its core capabilities that improve the effectiveness and efficiency of scientific
research consist of

• Capturing Scientific WorkFlow (SWF)s

• Acessing heterogeneous data

• Executing SWFs

9.1.2 Capturing Workflows

In Kepler individual workflow steps are implemented as reusable actors [14]. Each actor
defines zero or more typed input and output ports that can be linked into a directed graph
to allow data flow between actors. Kepler also allows scientists to prototype a workflow
before implementing actors needed for the workflow.

Actors: Actors are reusable processing steps that perform computations such as signal
processing, statistical operations and Booelan logic operations. Kepler has an extensible
library of actors. In-house or third-party software can be added to this library by users.
Web and Grid services can be implemented as actors and can be added to the library and
used from within Kepler. This is done using the generic Web and Grid Service actors. These
actors expose one operation in a Web Service Description Language (WSDL) file or Grid
Web Service Description Language (GWSDL) file by exposing the operation’s messages as



166 H. Soh, S. Haque, W. Liao and R. Buyya

input and output ports. Kepler contains a tool to harvest a group of Web Service descriptions
from a repository and save them to the actor library to be usedlater in workflows. Most
actors are Java processes that run locally on a single machine. However, some may call
external native applications such as Matlab. Other actors access arbitrary web services that
execute a process remotely and return a handle to the results.

Prototyping actors: The actor library may not contain all of the necessary actors to
complete a particular scientific computation, so an actor prototyping tool is provided in
Kepler (Figure 12 [30]). This tool prompts scientists for critical information about an actor,
including its name, icon, and input/output ports. Each porthas a name and a data type.
Once the user has defined the actor, a stub is compiled and added to the actor library.

Figure 12: The actor prototype tool creates a stub actor class, compiles it, and then adds it
to the actor library where it can be dragged onto the workspace [30].

The user can then use this stub on the workflow canvas to prototype a workflow. The
ports can be connected to other actors (stubs or not) and the typing system will validate
these connections. However, since these actors are stubs that do not implement the intended
computations, they simply inform the user that the workflow implementation is incomplete.
The stubs must be implemented by writing a Java method for thepre-fire, fire, and post-fire
stages of the workflow execution. The intended algorithm canbe implemented within the
fire event processor or call an external program or service torun. The intent of this tool is
to allow a scientist to quickly assemble a workflow without needing to implement the code
for every individual piece of the workflow at design time.

Serialization, documentation and provenance: Workflows within Kepler are serial-
ized in an XML dialect called Modeling Markup Language (MoML). XML serialization
allows the workflow itself to be used as documentation (metadata) for the research project.
The workflow also provides the provenance for derived data products, allowing researchers
to return to previous states as needed. The workflow can easily be versioned and archived
in any XML storage facility and can be indexed for easy querying and access.



Grid Programming Models and Environments 167

9.1.3 Accessing heterogeneous data

Kepler includes several data access actors including a relational database access actor
(DatabaseQuery) and a metadata-based data ingestion actor for handling heterogeneous
data (EMLDataSource). Kepler also provides data transformation facility as actors and web
services are generally designed in isolation and thereforeinput/output incompatibilities are
common. Using widely available tools for the two languages,two actors are designed to
provide a Kepler interface to XSLT and XQuery. These actors transform XML and HTML
data for use in Kepler or outside of Kepler (e.g., browsers).

9.1.4 Executing workflows

Kepler’s powerful programming environment supports the varying models of computation
that domain scientists may want to use for their models. Kepler can execute processes lo-
cally either within the Kepler environment (Java) or withina native environment (compiled
native code, or code interpreted by another environment such as Perl). In addition, pro-
cesses can be executed in a distributed fashion, using web and Grid services. Remotely
executed processes behave as a single step in the model of computation regardless of their
complexity [30].

Distributed computation: Kepler’s web and Grid services actors allows scientists to
utilize computational resources on the network in a distributed scientific workflow. Invoca-
tion of each of the distributed services is controlled by thecurrent model of computation in
use. The genericWebService actorprovides the user with an interface to connect to a Web
Service defined by a WSDL URL. To customize a Web Service actor, the user provides
the URL for the WSDL and selects an operation of the Web Service. The actor automati-
cally customizes its ports with the correct inputs and outputs of the Web Service (Figure 13
[30]), and acts as a proxy to the Web Service when executed. A genericGridServiceactor
operates similarly for a given GWSDL URL.

TheWeb Service Harvester actoris used for importing all the operations of a specific
Web Service. It can also be used to harvest all of the Web Services in a Universal De-
scription, Discovery and Integration (UDDI) repository. This feature makes it simple for
scientists to locate and integrate computational web services of relevance into their compu-
tational workflows.

In addition to generic web and Grid services, Kepler includes actors to use Grid based
services such as certificate-based authentication (ProxyInit), Grid job submission (Globus-
GridJob), and Grid-based data access (DataAccessWizard). Each of these actors access
specific Grid-based services using Open Grid Services Architecture (OGSA) interfaces.

10 GRID SERVICES

In recent years, Web services have gained popularity and importance as a distributed com-
puting paradigm. Its focus is on applying Internet-based standards such as eXtensible
Markup Language (XML) to describe the remote software components, the methods by
which to access these components and the procedures why which these methods are dis-
covered. These accessible software components are called services and are made available



168 H. Soh, S. Haque, W. Liao and R. Buyya

Figure 13: Customizing a Web Service actor [30].

by service providers. In general, a service can be defined as anetwork enabled entity that
provides come capability through the exchange of messages [4]. A Grid Serviceis Web
service that provides a set of well defined interfaces and that follows specific conventions
[4] [15]. The Grid services paradigm views the Grid as an extensible set of Grid services
that can be composed to meet the needs of users, specifically virtual enterprises and virtual
organizations [4].

10.1 Open Grid Services Architeture (OGSA)

The Open Grid Services Architecture (OGSA) [4] [15] is an architecture specification defin-
ing the semantics and mechanisms governing the creation, access, use, maintenance and de-
struction of Grid services. In the OGSA world, an entity is represented by a Grid service as
defined above. Grid services arecharacterizedor typedby the capabilities that are offered
[4]. Grid services are accessed via standard interface(s) defined by OGSA and as such,
these services can be composed to form more sophisticated services. Each interface con-
sists of a set of operation definitions that are invoked by a defined sequence of exchanged
messages. Note that OGSA does not address how these servicesare actually implemented
i.e. what the service is or how it performs its function(s). This allows for a flexible approach
to service construction, as long as the service complies with the semantics outlined in the
OGSA specification.

10.1.1 Grid Service Instances

Grid services maintain an internal state for the lifetime ofthe service and it via this internal
state thatinstancesof services are differentiated from one another. Typically, Grid service
users would not require a static set of persistent services but would rather need to instantiate
service instances dynamically. As such, OGSA provides specifications for the management



Grid Programming Models and Environments 169

of transient service instances, i.e. temporary service instances which can be destroyed after
being used. OGSA specifies theFactory interface for the purpose of creating a requested
Grid service. Each Grid service instance is assigned a global Grid service handle (GSH),
by which it is uniquely identified.

10.1.2 Upgradeability and Communication

The GSH provides only a unique identifier for each instance and does not include protocol
or instance specific information required to interact with the instance. This information is
contained within another entity termed the Grid service reference (GSR). Separating these
two information entities allows for the instance to be changed or upgraded over its lifetime
without requiring a new unique identifier. While an instance’s GSH is static, its GSR may
change. To obtain a valid GSR from a GSH, OGSA defines a handle-to-reference mapper
interface (HandleMap).

10.1.3 Service Discovery

GSHs can be initially obtained via aregistry, which is a grid service that supports service
discovery. A registry service is defined by theRegistryinterface and a service data element
containing information relating to registered GSHs. TheRegistryinterface provides a set of
operations that allow the registration of a GSH. Information regarding registered GSHs is
obtained via theGridServiceinterface’s FindServiceData operation.

10.1.4 Notification

Services are able to provide notification messages to clients by supporting theNotifica-
tionSourceinterface to manage notification request subscriptions. A client can invoke this
service using the subscribe operation and providing the GSHof the notification destination
(termed the notification sink). The sink is required to send the notification source periodic
keepalive messages to continue to receive notifications. Keepalive messages are also used
to manage the lifetime of a transient service.

10.1.5 Service Lifetime Management

The introduction of transient services poses the problem ofservice lifetime determination
and management. As the grid is open and dynamic, various components may fail and a
created service may not be explicitly terminated by the client. OGSA solves this problem
via a soft state approach [31] which consist of operations for the negotiation of an initial
lifetime, extension requests and service instance harvestafter lifetime expiry. During the
initial lifetime negotiation, the client specifies a minimum and maximum acceptable initial
lifetimes. From this range, the factory selects an initial lifetime which is returned to the
client. A client can extend a lifetime by specifying a new minimum and maximum lifetime
using the SetTerminationTime message i.e. a keepalive message. If a service instance
lifetime expires, the host environment terminates the service and reclaims the associated
resources.



170 H. Soh, S. Haque, W. Liao and R. Buyya

10.1.6 Higher Level Capabilities

The latest specification of OGSA [15] at the time of writing also specifies a wide range
of higher level capabilities including Execution Management Services (EMS), Data Ser-
vices, Resource Management Services, Security Services, Self-Management Services and
Information Services. We refer readers requiring more detail regarding these services to
[15].

11 SUMMARY AND CONCLUSION

In this chapter we have considered various programming models and environments for the
development of Grid applications. We began by motivating the need for Grid programming
environments that make transparent the heterogeneous and dynamic nature of the Grid.
A successful Grid programming environment should support portability, interoperability,
adaptivity, discovery, security and fault tolerance whilemaintaining high performance.

We discussed an implicit parallelization environment, Grid superscalar, two ex-
plicit parallelization environments, MPICH-G2 and Ninf-GGridRPC and finally semi-
parallelization environments, the Gridbus Broker, Alchemi, GTPE and the Kepler work-
flow system. It is tempting to compare these systems directlyin an attempt to deduce the
best system for general purpose use. However, we believe that such a comparison would
be premature. All the systems we reviewed yield promising results in terms of usability
and performance. The choice of a Grid programming model depends largely on the task at
hand and the skills available to the application developers. An application developer who
is familiar with the MPI method of programming clusters may find the transition to a Grid-
enabled MPI implementation to be simpler than implementingGrid applications using an
automated but unfamiliar system.

What we believe to be important is not which model will emergeas the dominant system
but that there are already exist tools available for us to develop applications that are able
to take advantage of the incredible computational power of the Grid. The diversity of the
models provides us with choice and assures us that there is likely a model that best suits
a particular application. In addition, all of the programming environments discussed are
works in progress and we expect advances in all areas yielding better systems over time.
This is an exciting time in this area of research and while much work needs to be done, the
results thus far are very promising.

ACKNOWLEDGEMENT

We would like to thank Marco A. S. Netto for typesetting this chapter using Latex.

REFERENCES

[1] I. Foster and C. Kesselman,The grid: blueprint for a new computing infrastructure:
Morgan Kaufmann Publishers Inc., 1999.



Grid Programming Models and Environments 171

[2] P. Asadzadeh, R. Buyya, C. L. Kei, D. Nayar, and S. Venugopal, “Global Grids and
Software Toolkits: A Study of Four Grid Middleware Technologies”, High Perfor-
mance Computing: Paradigm and Infrastructure, Laurence Yang and Minyi Guo
(eds), pp.431-458 (Chapter 22), ISBN: 0-471-65471-X, Wiley Press, New Jersey,
USA, June 2005.

[3] I. Foster, “The Anatomy of the Grid: Enabling Scalable Virtual Organizations”,Pro-
ceedings of the 7th International Euro-Par Conference Manchester on Parallel Pro-
cessing: Springer-Verlag, 2001, pp. 1-4.

[4] I. Foster, C. Kesselman, J. Nick, and S. Tuecke, “The Physiology of the Grid: An
Open Grid Services Architecture for Distributed Systems Integration”, 2002. URL:
www.globus.org/research/papers/ogsa.pdf

[5] I. Foster and C. Kesselman, “The Globus toolkit”,The grid: blueprint for a new
computing infrastructureMorgan Kaufmann Publishers Inc., 1999 pp. 259-278

[6] R. Buyya, D. Abramson, and J. Giddy, “An Economy Driven Resource Manage-
ment Architecture for Global Computational Power Grids”, Proceedings of the 2000
International Conference on Parallel and Distributed Processing Techniques and Ap-
plications (PDPTA 2000), Las Vegas, USA, 2000

[7] R. Buyya, D. Abramson, and J. Giddy, “Nimrod/G: an architecture for a resource
management and scheduling system in a global computationalgrid”, Proceedings of
the 4th International Conference on High Performance Computing in the Asia-Pacific
Region, May 2000.

[8] R. M. Badia, J. S. Labarta, R. L. Sirvent, J. M. Pérez, J. M. Cela, and R. Grima, “Pro-
gramming Grid Applications with GRID Superscalar”,Journal of Grid Computing,
vol. 1, pp. 151-170, 2003.

[9] N. T. Karonis, B. Toonen, and I. Foster, “MPICH-G2: A Grid-Enabled Implementa-
tion of the Message Passing Interface”,Journal of Parallel and Distrbuted Computing
(JPDC), vol. 63, pp. 551-563, 2002.

[10] K. Seymour, H. Nakada, S. Matsuoka, J. Dongarra, C. Lee,and H. Casanova,
“Overview of GridRPC: A Remote Procedure Call API for Grid Computing”, Pro-
ceedings of the Third International Workshop on Grid Computing, Lecture Notes in
Computer Science, Springer, ed 2536, pp. 274–278, Baltimore, USA, November
2002.

[11] S. Venugopal, R. Buyya, and L. Winton, “A grid service broker for scheduling dis-
tributed data-oriented applications on global grids”, Proceedings of the 2nd workshop
on Middleware for grid computing, pp. 75–80, Toronto, Canada, 2004.

[12] K. Nadiminti, S. Venugopal, H. Gibbins, T. Ma, and R. Buyya, “The Gridbus Grid
Service Broker and Scheduler (v.2.2) User Guide”, Grid Computing and Distributed
Systems (GRIDS) Laboratory, Department of Computer Science and Software Engi-
neering, The University of Melbourne, Australia 2005.



172 H. Soh, S. Haque, W. Liao and R. Buyya

[13] A. Luther, R. Buyya, R. Ranjan, and S. Venugopal, “Peer-to-Peer Grid Computing
and a .NET-based Alchemi Framework”,High Performance Computing: Paradigm
and Infrastructure, L. Y. a. M. Guo, Ed.: Wiley Press, 2005.

[14] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludascher, and S. Mock, “Kepler:
an extensible system for design and execution of scientific workflows”, Proceedings
of the 16th International Conference on Scientific and Statistical Database Manage-
ment(SSDBM), Santorini Island, Greece, 2004

[15] J. Frey, T. Mori, J. Nick, C. Smith, D. Snelling, L. Srinivasan, and J.
Unger, “The Open Grid Services Architecture, Version 1.0”,2005. URL:
https://forge.gridforum.org/projects/ogsa-wg

[16] “CORBA 3.0 - OMG IDL Syntax and Semantics chapter”, Object Management
Group 2005. URL: http://www.omg.org/cgi-bin/doc?formal/02-06-39

[17] “MPI: A Message-Passing Interface Standard”, The Message Passing Interface Fo-
rum, 1995.

[18] “MPI-2: Extensions to the Message-Passing Interface”, The Message Passing Inter-
face Forum, 1997.

[19] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A high-performance, portable imple-
mentation of the MPI message passing interface standard”,Parallel Computing, vol.
22, pp. 789-828, 1996

[20] H. Nakada, S. Matsuoka, K. Seymour, J. Dongarra, C. Lee,and H. Casanova, “A
GridRPC Model and API”, Global Grid Forum, 2003.

[21] Y. T. Hidemoto Nakada, Satoshi Matsuoka, Satoshi Sekiguchi, “Ninf-G: A GridRPC
System on the Globus Toolkit”,Grid Computing, G. F. Fran Berman, Tony Hey, Ed.,
2003, pp. 625-637.

[22] R. Buyya, K. Branson, J. Giddy, and D. Abramson, “The Virtual Laboratory: En-
abling Molecular Modeling for Drug Design on the World Wide Grid”, Concurrency
and Computation: Practice and Experience (CCPE), Volume 15, Issue 1, Pages: 1-25,
Wiley Press, USA, January 2003.

[23] ProactiveTeam, “Proactive Manual REVISED 2.2”, Proactive, INRIA April 2005.

[24] D. T. Craig Lee, “Grid Programming Models: Current Tools, Issues and Directions”,
Grid Computing, G. F. Fran Berman, Tony Hey, Ed., pp. 555–578, Wiley Press, USA,
2003.

[25] H. Soh, S. Haque, W. Liao, K. Nadiminti, and R. Buyya, “GTPE: A Thread Program-
ming Environment for the Grid”, Proceedings of the 13th International Conference
on Advanced Computing and Communications, Coimbatore, India, 2005

[26] A. Luther, R. Buyya, R. Ranjan, and S. Venugopal, “Alchemi: A .NET-Based Enter-
prise Grid Computing System”, Proceedings of the 6th International Conference on
Internet Computing (ICOMP’05), June 27-30, 2005, Las Vegas, USA.



Grid Programming Models and Environments 173

[27] J. Bull, L. Smith, P. L, and R. Freeman, “Benchmarking Java against C and Fortran
for Scientific Applications”, Proceedings of the ACM 2001 Java Grande/ISCOPE
Conference, 2001.

[28] J. Yu and R. Buyya, “A Taxonomy of Workflow Management Systems for Grid Com-
puting”, Journal of Grid Computing, volume 3, numbers 3-4, pp. 171-200, Springer
Science+Business Media B.V., New York, USA, September 2005.

[29] E. A. Lee, “Overview of the Ptolemy Project”, Center forHybrid and Embedded
Software Systems (CHESS), University of California, Berkeley. UCB/ERL M03/25,
2003.

[30] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludascher, and S. Mock, “Kepler: To-
wards a Grid-Enabled System for Scientific Workflows”, Workflow in Grid Systems
Workshop in GGF10 - The Tenth Global Grid Forum, Berlin, Germany, 2004

[31] D. D. Clark, “The Design Philosophy of the DARPA Internet Protocols”,SIGCOMM
Symposium on Communications Architectures and Protocols, pp. 106-114, 1988.


