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Chapter 8

GRID PROGRAMMING MODELS
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Grid Computing andistributedSystems (GRIDS) Laboratory
Department of Computer Science and Software Engineering
The University of Melbourne, Australia

Abstract

This chapter presents various models for creating Gridiegns and runtime
environments for managing the execution of applicationglobal Grids. The chap-
ter discusses superscalar, message passing, remote ym®catls, bag of tasks, dis-
tributed objects, threads, workflows, and Grid servicegmmming models supported
by existing implementations Gridsuperscalar, MPICH-GfNB, Nimrod-G/Gridbus
Broker, ProActive, Alchemi, Gridbus/Kepler workflow, andoBus Toolkit respec-
tively.

1 Introduction

In the last decade, the world has experienced an explosithreiamount of available data.
Businesses, researchers and engineers have gone on adalgeaiata harvest, collecting
records with tremendous diligence. Due to the high comjmrtak complexity involved,
the processing of these types of data had been a task exchoshigh-performance com-
puting systems such as supercomputers and clusters. Howswerowth in the amount
of data and computational time required has outstrippedptveer afforded by isolated
high-performance machines.

In addition, enterprises have grown to a stage where bisstiesions and units are es-
tablished at multiple geographical locations nationafig aven globally. Each unit has the
responsibility of managing their own datasets with someekegf federation. Furthermore,
business units have started conducting not only intrarerise but also inter-enterprise
business, which necessitates the sharing of their infeomagsources and assets with their
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partners. The same scenario holds true for the scientifiaraamty where many of the
big-science studies and experiments, such as in the dorhaimysics and the biological
sciences, need to be conducted through global collabarasmo single organization has
the capacity or the financial capability to possess all thieired resources.

C Grid I nformation Service

* Grid Resource Broker

Grid Resource Broker

@ Grid Information Service

Figure 1: A world-wide Grid computing environment.

Fortunately, the significant increase in the availabilitpowerful computers and wide-
area network performance allows us to combine resourcessaaonultiple organizations,
yielding the Grid [1]. Grids enable the sharing, exchangscavery, selection, and aggre-
gation of geographically/Internet-wide distributed megeneous resources — such as com-
puters, databases, visualization devices, and sciemtgficuiments [2]. As such, Grids have
emerged as the modern cyber infrastructure for the creafi@irtual organizations(VO)
andvirtual enterprisegVE) [3] [4]. Grids offer us a tremendous computational ardad
resource, capable of solving many of the worlds most impopeoblems. Examples would
include searching for an AIDS vaccine or discovering theetsof universe through parti-
cle physics. Figure 1 illustrates a high-level view of théwttes involved within a typical
Grid computing environment [2]. Users access the Grid vid @iddleware that perform
resource discovery, job scheduling and process monitanmigpe Grid resources.

In this chapter, we discuss the different methods of prognang applications that will
work on Grids. Before we actually delve straight into thejeabmatter, it would be help-
ful to consider the various characteristics of Grids thakenapplication development a
complex task. Grids are by natulheterogeneouand the differences do not start and end
with hardware and software. Grid resources are managedfieyedit organizations that
may have different policies and procedures which dictate &oplications are run on those
machines. One or both organizations may decide to takerdsources off the Grid at any
time, perhaps for upgrading or maintenance. Hence, Grielh@terogeneous in terms of
architecture management systerandaccess interfacesl he fact that machines of various
types can join or leave the Grid at any time and that the interections that exist between
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these machines can change lead us to say that a Gkisanddynamic

Now that we have some idea of what kind of entity the Grid is,car discuss about
what properties an application has to possess in order tessfully function on the Grid.
Firstly, it has to beportable meaning it should be able to run on many different types of
machines without recompilation. A term we can use to desttits property isrchitecture
independencePerformance is another property we have to consider. (ftermain reason
for doing work on the Grid is to do it in less time. However, i@sing high performance
while performing all the background work necessary to emsorrect program execution is
not a trivial task. We can say an application should has#formance reliabilitymeaning it
should work efficiently and reliably. Equally important d@he properties ofault tolerance
andsecurity Grid applications should be able to detect and recover &amrs resulting
from computational and communication faults. In additismmne measure of protection for
the data and code running on the various Grid nodes is negesSacurity mechanisms

should be present to provide both the client applicatiorkthe Grid nodes with safety and
privacy.
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‘ Engineering H Collaboration H Prob. Solving Env ‘ ‘ W eb enabled A pps

USER LEVEL
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‘Distributed Resources Coupling Services‘ MIDDLEWARE

Security ‘ Information ‘ Data ‘ ‘ Process H Trading ‘

‘ SECURITY LAYER

‘Local Resource Managers ‘ FABRIC

‘ Operating Systems ‘ Queuing Systems H Libraries & App Kernels ‘ ‘ Internet Protocols

‘Networked Resources across Organizations‘

‘ Computers ‘ N etworks H Storage Systems ‘ Data Sources ‘ ‘ Scientific Instruments

Figure 2: A Layered Grid Architecture and Components.

Designing an application to possess all the aforementigmegerties is likely to be
complex and difficult. Research over the past two decadeyiblled some interesting
models and environments that simplify Grid programmingkimg it accessible to main-
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stream developers. Figure 2 illustrates the various lawétsn typical Grid architecture.
Grid development or programming environments sit righotvethe applications layer, pro-
viding an abstraction of the services offered by the coredieiglare layer. The core middle-
ware interacts with the Grid fabric which consists of the éovevel software and hardware
components that make up the Grid, such as local resourcega@andividual operating
systems, computers, networks and communication protocols

A popular and widely used middleware is the Globus toolkit [Bhich provides a
number of services including communication, resource mament, security services and
file access services. The Globus Toolkit provides five maimesyof services as outlined
below:

1. Communication: Multi-method communication is supported via the Nexus camm
nication library.

2. Resource ManagementThe Globus Access to Secondary Storage (GASS) is a file
access mechanism that allows applications to pre-fetchoged remote files and
write them back. GASS is generally used for executable apdtifile staging and
for relaying output back upon completion. The Globus Reseélocation Manager
(GRAM) provides for remote execution and status monitaring

3. Information Services: The Monitoring and Discovery Service (MDS) provides in-
formation about the Grid nodes.

4. Data Management: The GridFTP and Replica Location and Management compo-
nents provide utilities and libraries for transmittingoratg and managing large sets
of data.

5. Security: The Grid Security Infrastructure (GSI) provides autheattan, authoriza-
tion and secure communication services via single signaoindata encryption.

2 GRID PROGRAMMING APPROACHES

Grid-enabling applications involves two major undertgsinprogram decompositioor
task composition resource compositionThe Grid programming environments described
in this chapter simplify Grid application programming byt@mating either (or both) of
these tasks to a certain degree. It should be noted thattdssecan (and are likely to) be
interdependent. Program decomposition may rely on whauress are available and the
set of resources composed may differ depending on the afiplicrequirements.

2.1 Resource Composition

Resource composition is a two step process. First, it isssace to perform resource dis-
covery, the identification of Grid resources that are atgldor use. Resources may be
listed in an accessible Grid directory service or a defasfitdan be provided by the user.
Next, the proper resources need to be selected based onplieatapn processing/data re-
guirements and additional external constraints such asdialacost or execution deadline.
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Resource composition can be performed by an appropriatécatpn component or by a
Grid resource broker such as the Gridbus broker [6] or NirGdd].

2.2 Program Decomposition

Decomposing a program involves splitting the work (progremde or data) into chunks
that can be distributed to Grid resources for proper hagdiliaking a very simplistic view,
we can classify program decomposition into three appraadmplicit, explicit and semi-
implicit.

With implicit parallelism, programs are automatically aiéelized by the environment
and itis not necessary to identify sections of code that egrelbformed in parallel, schedul-
ing or data dependencies. An example of an environment tapéthis is Grid superscalar
[8], which we discuss later in this chapter. On the other dritti@spectrum, explicit paral-
lelism requires the programmer to be responsible for mosieparallelization effort such
as task decomposition, mapping tasks to processors ameastecommunication. Exam-
ples of these programming approaches include the expbaiincunication models such as
message passing and remote procedure calls.

It is not difficult to recognize that both the implicit and éixi parallelism approaches
have their advantages and disadvantages. Implicit pbsail@llows us to rapidly develop
Grid applications but we lose fine grain control. Explicirgléelism gives us near com-
plete control of how our applications will execute but inmlpiso, cost us time and effort.
Choosing one approach over the other depends largely oasgket hand. Several models
have opted for a balance, a middle ground that offers a goaldodi@rogram control while
automating some of the Grid management details. We caléthesii-implicit parallelism
models and examples would include the bag of tasks, disgdbthreads and workflow
models.

2.3 Grid Programming Models

The table below summarizes several different grid progralgmmodels and environments:
In the following Sections 3 to 10, we present an overview chea these programming
models with associated environments to illustrate thecipias behind each model.

3 GRID SUPERSCALAR

The first programming model and environment we will be examgins Grid superscalar
which is undergoing further development at the CEPBA-IBMs&&ch Institute in Spain.
Recall from our earlier discussion that Grid superscalanismplicit parallelization Grid
programming environment. The underlying idea is that Gpgliaations consist of repet-
itive tasks which can be detected and parallelized autoaibtiwhile guaranteeing cor-
rect program execution. Hence, the programmer is only redub provide two files, the
sequential source code in an imperative language (C/C++ed) &nd an interface def-
inition (IDL) file in the CORBA IDL language [16]. The IDL filemecifies the subrou-
tines/programs that are to be executed on the Grid and pteesm@put/output files or
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straction whereby many interactions with a Grid €
vironment can be hidden.

Bag of Tasks

Nimrod-G
http://www.csse.monash.e
au/~davida/nimrod/nimrod
.htm

diNimrod, a specialized parametric modeling syste
g Nimrod uses a simple declarative parametric mog
ing language and automates the task of formulati
running, monitoring, and aggregating results.

Gridbus Broker
http://www.Gridbus.org/
broker

The Gridbus Broker is a software resource that p
mits users access to heterogeneous Grid resoy
transparently [11]. Gridbus Broker Applicatio
Program Interface (API) provides a straightforwa
means to users to Grid-enable their applications
minimal extra programming [12].

The Nimrod-G Broker [7] is a Grid-aware version of

ut-
f a

es
O_
des

146 H. Soh, S. Haque, W. Liao and R. Buyya
Table 1: Summary of Grid Programming Models and Environsent
Model Environment Description
Superscalar Grid Supercalar Superscalar is a common concept in parallel comy
http://people.ac.upc.edu/ | ing. Sequential applications composed of tasks ¢
rosab/indexgs.htm certain granularity are automatically converted intp a
parallel application where the tasks are executed in
different servers of a computational Grid [8].
Explicit MPICH-G2 MPICH-G2 is a Grid-enabled implementation of the
Communication http://www3.niu.edu/mpi/ | Message Passing Interface (MPI) [9]. MPI defin
standard functions for communication between p|
(Message cesses and groups of processes.MPICH-G2 prov
Passing, extensions to MPICH using the Globus Toolkit, gi
Grid Remote

GridRPC is a Remote Procedure Call (RPC) mogel
and API for Grids [10]. Besides providing standard
ab-

n_
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el-
ng,
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Distributed ProActive ProActive is a Java based library that provides an API
Objects http://www- for the creation, execution and management of dis-
sop.inria.fr/oasis/Proactive) tributed active objects. Proactive is composed of 0
standard Java classes and requires no changes
Java Virtual Machine (JVM) allowing Grid applica
tions to be developed using standard Java code.
Distributed Alchemi Alchemi is a Microsoft .NET Grid computing frame
Threads http://www.alchemi.net work, consisting of service-oriented middleware al

an application program interface (API) [13]. A
chemi features a simple and familiar multithread
programming model.

Grid Thread
Programming
Environment (GTPE)

GTPE is a programming environment implement
in Java utilizing the Gridbus Broker APIl. GTPE fu
ther abstracts the task of Grid application devel
ment, automating Grid management while providi
a finer level of logical program control through th
use of distributed threads.

p-
ng
e
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Workflow Kepler Kepler is a scientific workflow management syis-
http://kepler-project.org tem along with a set of Application Program Intgr-
faces (APIs) for heterogeneous hierarchical model-
ing [14]. Kepler provides a modular, activity oriented
programming environment, with an intuitive GUI to
build complex scientific workflows.

Grid Services OGSA Open Grid Services Architecture (OGSA) [3] [15]
http://lwww.ggf.org/ is an ongoing project that aims to enable intergp-

ggfareasarchitecture.htm | erability between heterogeneous resources by aljgn-
ing Grid technologies with established Web serviges
technology. The concept of @rid serviceis intro-
duced as a Web service that provides a set of well
defined interfaces that follow specific conventions.

These Grid services can be composed into more|so-
phisticated services to meet the needs of users.

generic scalars). From these two files, the system geneagtesallel application where
tasks are executed on the Grid.

3.1 Automatic Code Generation

Grid superscalar offers a togbkstubgenthat generates parallel code for the user automat-
ically. This automatically generated code consists of tasfithe function stubs and the
skeleton for the code that is to be executed on the remoterserfFigure 3 [8] illustrates
an example of how files are linked to obtain the final applaratinaries. One executable
will exist in the client host and one in each server host. Tiigireal main program (app.c)

is linked with the generated stubs (app-stubs.c) on thatafiechine. On any one server
being utilized, the skeleton (app-worker.c) is linked wiie file containing the code of the
original user functions (app-functions.c) [8].

Automatic code generation: C

app.idl
gsstubgen

app-stubs.c @ app-functions.c

Figure 3: Automatic code generation (C program) [8].
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3.2 Run Time

Figure 4 [8] illustrates an instance of Grid superscalarabiiur. The GRID superscalar
run-time system looks for data dependencies which is aedlfrem the input/output files
between the different tasks. Tasks are denoted as nodesticesen the task dependence
graph and data dependencies as edges. Intuitively, tasksath not connected do not
depend on each other and hence, can be executed in parallel.

Application code

initializakion() ;
for (1e=0; 1<M; 1++){
T1 ("filel.txt*, "file2.tmt*);
T2 ("filed.txt”, "“filesS.txt*);
T3 ("rilez.txt*, "rilss.txt”, *filas.tx=tv);
T4 ("file7.txtr, "rilag.tmer);
TS ("fileé.txt”, "fileg.txt®, "files.txt”);

Figure 4: Overview of Grid superscalar behaviour [8].

1. Read after Write (RaW) occurs when a task reads a parathetieis written by a
previous task. For example, consider the situation whanetionBreads some file,
filel, which was written to byflunctionA In this case, the run time will ensure that
functionBis executed aftefunctionA

2. Write after Read (WaR) occurs when a task writes to a paeantieat is read by a
previous one. For this one, we consider the reverse of thatgih we examined
earlier. If somdunctionAwrites tofilel after it is read byfunctionB thenfunctionA
should be executed afteinctionBto prevent what we catlirty reads

3. Write after Write (WaW) occurs when a task writes to a patmwhich is also writ-
ten to by a previous task. Let us assume thattionAwrites tofilel afterfunctionB
and there exists functionCreadsfilel. The order in whicHunctionAandfunctionB
get executed will affect the information whi¢hnctionCreads.

It is possible to eliminate both WaR and WaW dependencesidifwrgroper renaming
of parameters. Grid superscalar run time does this autoatigtivia the use of a hash table.
However, it is not possible to eliminate RawW dependencessanave say RaW arue
dependences
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3.3 Task Submission and End of Task Notification

If a task does not have any dependence on previous tasks wwehnot been finished or
which are still running (i.e. the task is not waiting for argta that has not been already
generated), it can be submitted for execution to the Gride ®hid superscalar run-time
requests a Grid server from a resource broker and if a serypeovided, it submits the task
for execution. Currently, Grid superscalar is packagedh aisimple resource broker but
future work includes interfaces to more sophisticatedussobrokers such as the Gridbus
broker which we will examine later in this chapter. Task sigsion consists of two steps:

1. File submission whereby input files are transmitted taGhid servers.

2. Task submission whereby the task itself is called to bewdere on the Grid server.

When a task completes execution, it notifies the supersoatatime so that tasks that
depend on this task and have no other dependencies can bdtsdidor execution. This
process of task submission proceeds until the program rietes.

4 MESSAGE PASSING

The concept of message passing is a common parallel prograpparadigm. The Mes-
sage Passing Interface (MPI) [17] [18] is widely used in ®uspplications. MPI appli-
cations do not share memory but exchange information visages over some medium,
such as an Ethernet network. We say that the processes in agpdiRation run irdisjoint
address spacesExplicit parallelization via message passing is cumbeescompared to
the automatic parallelization offered by implicit techués like Grid superscalar. However,
the flexibility and control gained may be necessary for tedaplications where automatic
parallelization fails.

4.1 The MPI Standard

In this subsection, we give an overview of the major featames design of MPI. The MPI
Standard describes a standard message passing intenfadistfibuted machines. At the
simplest level, MPI provides a reliable communication neagsm for sending and receiv-
ing messages.

The most basic point-to-point communication operatiomstiae send and receive oper-
ations which can either ddockingor non-blocking Blocking sends will not return until the
data locations specified in the message can be used withwupting the message. Like-
wise, blocking receives do not return until the message kas Buccessfully copied into
the data block specified. Non-blocking sends and receitasnranmediately, not waiting
for any particular event. In addition to the data being semssages contain a fixed num-
ber of fields which are collectively called the message @pel This message envelope
(consisting of the source, destination, tag and commumicaistinguishes messages and
allows for message selectivity.
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4.1.1 Process Groups

It is possible to organize senders and receivers into psogerIps. Each process group is
an ordered collection of processes with each process ugiglentified by its rank. The
rank identifier for a process group is from 0 to n-1 for a preag®up of size n. Although
the number of processes is static or fixed for the lifetime R program, process groups
are dynamic. Process groups can be created, destroyedeasartie process can belong to
multiple process groups. Using process groups, MPI nodedeatructured for collective
communication and to enable task parallelism.

4.1.2 Communication Objects and Contexts

Communicators are abstract objects that define a scope ofmaugnbication operation,
which is defined by the process groups involved and the cormation context. Com-
munication contexts, like message tags, groups and rankifides, provide a mechanism
for message selection. Communication contexts are maedaransparently within com-
municators so that messages sent through a particular coicator can only be received
through the matching communicator. These attributes geofdr both point-to-point and
collective communication.

4.2 MPICH-G2

MPI is a message passing interface and not a full-fledged ropleie Grid programming
environment. As such, MPI does not contain inherent sugpofault tolerance, file sharing
and distribution or security mechanisms. As discussedeeatiese services are essential
for correct and efficient program execution on a Grid. MPIGR{9] is based on the MPI-
1 standard and was developed to enable users to run MPI pregra the Grid without
changing the standard commands. MPICH-G2 was construstad two software systems,
MPICH [19] and the Globus middleware toolkit. The followilsgrvices are provided by
MPICH-G2 system:

1. Co-allocation: The co-allocation problem involves the allocation of reses on
Grid nodes, the initialization of processes and mechaniertisk these processes for
communication. Complications arise because of two maitofac

(a) Heterogeneity: Different nodes may differ in the methatllized for resource
allocation and process creation.

(b) Errors: Co-allocation can be time-intensive and erronp due to the dynamic
nature of the Grid.

MPICH-G2 solves these issues by using the GRAM interfaceiged by the Globus
toolkit and the Dynamically-Updated Request Online Coedtor (DUROC).
DUROC handles request submission, startup verificationpgadess linking under
an umbrella communicator, MEZOMM_WORLD, which spans all processes.

2. Security: MPICH-G2 supports authentication and authorization vea@obus Se-
curity Infrastructure (GSI) which provides single sign-amd automatic mapping to
local accounts.
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3. Executable staging and results collectionOnce the proper security protocols have
been observed, executables are transferred to remote uddse Globus Access
Secondary Storage (GASS) service. GASS is also used tatsindard output and
error streams.

4. Communication: The Nexus library provided by the Globus toolkit is used ti i
processes together allowing them to communicate via TGRtH& wide area, shared
memory within a cluster and vendor specific protocols withitiuster.

5. Monitoring: The GRAM callback functions are used to detect process t&ton
and the GRAM API control functions allow for the terminatiofprocesses.

5 REMOTE PROCEDURE CALLS

This section gives an overview of the GridRPC standard [20] &nd the Ninf-G GridRPC
implementation [21]. Remote Procedure Calls (RPC) methoglaot too different from the
message passing concept discussed in the previous seElmwever, instead of sending
messages through the use of various arguments to a librdryintaraction is based on
function calls. As such, communication between distridygecesses is more of a language
construct. One of the key benefits is that the receiver doesanee to directly interpret
messages.

5.1 GridRPC

GridRPC seeks to combine the standard RPC programming mvatelasynchronous
course-grained parallel tasking. In the GridRPC modelrettexist three major types of
entities as illustrated by Figure 5 (adapted from [20]); ¢hient, service and registry.

handle register

results

Figure 5: The Basic GridRPC model. Adapted from [20].

Clients make use of services which have registered theeselith a proper registry.
When an RPC client performs a look-up for a desired serviwetegistry returns function
handle The function handle represents a mapping from a flat funateme string to an
instance of that function on a Grid node. The client then cakera RPC call using that
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function handle to execute the function, which returns ltesafter it completes. Another

term we have to be familiar with is thgession IDwhich is an identifier representing a
specificnon-blockingGridRPC call. The GridRPC API provides multiple data typed a
methods for function initialization, creation and destimt of function handles, function

calls, asynchronous waits and error reporting. We direedlees wanting a full description

of these API functions to the GridRPC model and APl documgBl. [

5.2 Ninf-G GridRPC system

Ninf-G was designed by researchers at the National InstivfitAdvanced Industrial Sci-

ence and Technology and the Tokyo Institute of Technologsirtmlify the development

of large-scale Grid programs. Ninf-G was built as a GridRBg&I on top of the Globus
Toolkit as illustrated in Figure 6 [21] and utilizes GRAM tovbke remote executables,
MDS to publish internation information and file paths of caments, Globus I/O for com-

munication and GASS for results and error collection.

. Ninf-G GridRPC System N

CLIENT SERVER
Library

IDL File

\

Client &—f 4 Connect back .
\ Using Globus 1/0 IDL Compiler
3. Invoke |
Executable Generate
Remote Library
- - fork -
GRAM Executable
2. Interface
i Interf
nterface
1. Interface ) -
Request _ MDS —retrieve Information
" LDIF File

L /

Figure 6: The Ninf-G GridRPC System.

The Ninf-G client APIs provide the following functions:
1. Initializing and Finalizing functions similar to that of MPI.

2. Function Handle Management functionsthat allow for the creation and destruction
of function handles.

3. GridRPC Call functions that can be blocking or non-blocking and may use a vari-
able number of arguments or an argument stack.
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4. Asynchronous GridRPC Control Functions that are used to probe or terminate
outstanding non-blocking function calls.

5. Asynchronous GridRPC Wait functions that are used to wait instead of polling on
a set of session IDs.

6. Error Reporting functions that provide error codes and human-readable error de-
scriptions in the event on an error.

7. Argument Stack functions such aspushand pop that allow for the run-time con-
struction of arguments.

5.2.1 Server-Side Library Interface Information

The Ninf Interface Description Language (IDL) is used todfyeinterface information
for Grid libraries hosted on servers. The IDL file specifies @rid functions that can be
called, which arguments are input or output, argument tgsesell as information needed
to compile and link the necessary libraries. The IDL files barcompiled into stub main
routines and makefiles. To provide access to libraries olicgtipns over the Grid using
Ninf-G, four main steps are required:

1. Create an IDL interface file for the library function or &épation.

2. Compile the IDL file and generate a stub main routine andleefila for the remote
program.

3. Compile the stub main routine and link it with the remobedry.

4. Publish the necessary information (via MDS).

The final two steps are automatically performed by the makefild no IDL handling
is required on the client.

5.2.2 Utilizing GridRPC

Invoking the relevant functions published by the remotesliles involves three main steps.
The client performs a query to the MDS and obtains the interfaformation along with
an executable pathname that was registered. Followingtti@sclient and server mutually
authenticate each other using GSI and the client invokersethete executable. Finally, the
remote executable callbacks to the client utilizing thel®kl/O for further communication
(e.g. parameter transfer and error reporting).

6 BAG OF TASKS

The Bag of Tasks (BoT) paradigm involves treating applaragi as being composed of
independent tasks that can be performed in parallel. An plawf a BoT model is the
parameters sweep, which distributes the same programsacnatiple Grid nodes to work
on different parameters. Such processes may require thieespof shared resources such
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as databases or authentication servers. Examples of asstidbe developed parameter
sweep applications include a molecular modeling appbecatising the Nimrod-G resource
broker [7] for drug discovery [22] and a high energy physid&P) application modeling

the decay of B-mesons using the Gridbus Broker [6] [7]. THi®fdng subsection details

the Gridbus Broker but similar principles underly the Nim@ broker. We direct readers
wanting more information regarding Nimrod-G to [7].

6.1 Gridbus Broker

The Gridbus Broker [11] [12] is a software resource thatvedlaisers to access heteroge-
neous Grid resources transparently. Implemented in Japegvides a variety of services
including resource discovery, transparent access to ctatiguoal resources, job scheduling
and job monitoring. The Gridbus broker transforms userirequents into a set of jobs that
are scheduled on the appropriate resources, managing ticeookecting results. Figure 7
[12] illustrates the possible interactions the Gridbuskbracan participate in.

f
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-Condor

ﬂ] ﬂ] m ~Alchami

-1 Data Catalog
Alchemill"\ \I ,.féiobus
A, : DT ...... ST _______________________________________ P S— i
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The Gridbus broker works with middlewars such as Globus, UNICORE, Alchemi; JobManagers such as Conder, PBS; Data catalogs and also Data
storage systems such as the Replica Catalog and SRE .

Figure 7: Gridbus broker block diagram [12].

6.1.1 Design

The Gridbus broker was designed based on object-orieniecigdes to be simple, modular,
reusable, extendable and flexible. There are six main desigties within the Gridbus
broker:
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1. Compute Server: This entity describes a computational node on the Grid,i§feg
relevant properties such as middleware, architecture pachting system. The entity
also implements a monitor for tracking the rate of progréssugh the number of
jobs that have finished, failed or are currently executing.

2. Job: Ajobis an abstraction for a unit of work submitted to a Grigdledor execution.
A job consists ofvariablesand atask Variables specify the parameters associated
with the job. The task is a description of what is to be donehendompute server
and consists afommandsA command is one of either three types; Copy, Execute or
Substitute. The Copy Command and Execute Command are $&ilfyexplanatory.
The Copy Command copies a file from the source to a remote ramdevice versa)
and the Execute Command executes a specified program onntiteraode. The
Substitute command tells the broker to substitute valuesddable names in text
files, automating the generation of configuration files fahgab.

3. Data Hosts: Data hosts describe nodes that contain data files with speseifich as
file access protocols and file paths.

4. Data Files: Data Files link to the Data Hosts that store the file and spgxifperties
of input files such as size and location.

5. Farming Engine: The farming engine is the central component that maintdias t
overall state of the broker. It contains all the job and secediections and interacts
with external applications.

6. Scheduler: The scheduler is responsible for distributing jobs to Grdles. It is
middleware independent and is capable of scheduling jobsdhan metrics that are
not platform-dependant.

6.1.2 Architecture

The broker consists of three main sub-systems; the Apmitdterface, the Core and the
Execution sub-systems. A high level overview of the thrdesgstems is shown in Table 2.
Figure 8 [12] illustrates the Gridbus broker architecture.

6.1.3 Grid Programming with the Gridbus Broker

The Gridbus broker provides an Application Program IntféAPI) that allows users to
program the broker and use its services in a user-devel@edapplication. Developing a
Java application that utilizes the broker is relatively glien It is first necessary to create an
instance ofcridFarmingEngine. The broker’s properties can be configured via the broker
configuration file (Broker.properties). If no configuratifile is found, default values are
used. A listing of default values and their properties caridomd in the Gridbus broker
manual [12]. It is then necessary to set up jobs and servenereTare two methods of
achieving this:
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Table 2: The three main sub-systems of the Gridbus Broker.

Sub-system Description
Application Interface

e Accepts input to the broker consisting of an applicatipn-
description (tasks and associated parameters with values)
and a resource description.

Core
e Converts application-descriptions to job entities.

e Converts resource-descriptions into server entitieschvin
represent grid nodes.

e Evaluates task and data requirements to discover apprppri-
ate resources.

e Schedules jobs and submits using the execution sub-
system.

e Updates the book-keeper using the job monitoring cormnpo-
nent of the execution sub-system.

Execution
e Interacts with the Scheduler.

e Submits jobs to the remote grid via the actuator compo-
nent.

e Provides job monitoring services.

1. The simpler method is to create an application-desoripfile! and a resource list
file and provide these filenames to the Farming engine.

2. The more flexible method of using thask, Command and ServerFactory APIs.
Details on using these APIs follow.

To use the API method, first instantiate a néab object and calllob.setJoblID() to
set the job’s identification. Then set up the commands thati e be run. The com-
mands objects which are available are the copy comma&@ujsyCommand, MCopy? and
GCopy), theExecuteCommand andSubstituteCommand All three types provide meth-
ods that allow the user to set member variables necessapydper execution (e.g-opy-
Command.setSource(andCopyCommand.setDestination(). These commands are then
added to a create@iask object viaTask.addCommand() After all the commands have
been added, the task is provided to thod object usingJob.setTask() Variables can be

1Application-description files are written in XPML format.
2|nstructs the broker to copy multiple files using wildcarti4ore information available in the broker API
at http://www.gridbus.org/broker/2.0/docs/
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Figure 8: Gridbus broker Architecture.

added to thelob object usingJob.addVariable(). Finally, the job is added supplied to the
FarmingEngine.addJob()method.

Server resources are supplied to the farming engin&ridFarmin-
gEngine.addServer() as ComputeServer objects. A ComputeServer object can
be generated viégerverFactory.getComputeServer()method (e.g. ComputeServer
cs = ServerFactory.getComputeServer(“globus2.4” , “belle.cs.mu.0z.ay). We can
now schedule the jobs using GridFarmingEngine.scheduldf)is possible to set up
the scheduling method or even define a new scheduler by usiedstidFarmin-
gEngine.setScheduler(jnethod.

The Gridbus broker also provides an API for modifying thelarobut this is outside
the scope of this chapter and is detailed in [12].

7 DISTRIBUTED OBJECTS

Most readers should be familiar with object oriented prograng. Object oriented pro-
gramming or OOP is a widely used computer programming pgnadihere computer pro-
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grams are viewed as collections of individual units calbdjects Objects are run-time
entities instantiated from classes which encapsulateatatdunctions. Java is an example
of an object oriented programming language. Examples @foptgriented programming
languages include Java and C++. Distributed objects aextsbjhat are distributed across
multiple computing systems, communicating via messagesssacsome communication
network. In the context of Grids, these objects may be lacatzoss multiple organiza-
tions connected via the Internet.

7.1 ProActive

ProActive [23] extends Java with a Grid API library for theation, execution and man-
agement of active distributed objects with the intentiorsiaiplifying parallel computing
on LANS, clusters and Internet Grids. ProActive is compasfeohly standard Java classes
and requires no changes to the Java Virtual Machine (JVMyatlg Grid applications to
be developed using standard Java code. The ProActiveylitlrdased on an Active Object
Pattern which is a standard method of encapsulating a reohgeet, a thread, an actor, a
server and a secure mobile entity. In addition, ProActiaufees group communication,
object oriented Single Program Multiple Data (OO SPMD)trisited and hierarchical
components, security, fault tolerance, a peer-to-peeastiucture, a graphical user inter-
face and a powerful XML-based deployment model.

7.1.1 Active Objects

In standard Java, existing code has to be extensively mddditansform local objects into
distributed objects, presenting a barrier to developersAé&tive provides simple methods
of transforming standard objects into Active objects whicissess synchronization capa-
bilities and location and activity transparency. Grid Apations are structured into subsys-
tems, each of which is composed of a single active object andréer of passive objects.
Each active object consist of Passive objects are not shmaideen subsystems. Active
objects are composed of two objects, namelyodyand a standard Java object, and can
be created on any host involved in the activity. The bodyivesestores and executes calls
(requests) made to the object. Calls are stored in a queuktraf synchronization policy
id provided, manages them in a first-in-first-out (FIFO) memmThe authors note that no
parallelism is provided inside of an active object.

7.1.2 Migration and Group Communication

Any active object is capable of migration, which is eithelf-s@ggered or initiated by an

external agent. All referenced passive objects would atsmigrated. Migration relies on
serialization and hence, all active objects implement #r@kizable interface. ProActive
implements a simple scheme for enabling group communitati@roups can be easily
created and method calls to a group of objects are broadctstd members by default.
However, it is also possible scatter parameters througluskeof the member’s rank in a
group. Additionally, group communication can be used toutate MPI-style collective

communication within the OO SPMD programming model.
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7.1.3 Security

ProActive provides a set of security features that can be tiaasparently by applications.
These features include communications authenticatidegiity and confidentiality, migra-
tion security, hierarchical security policies and dynamadicy negotiation. The security
framework allows for the dynamic deployment of applicati@md the automatic configura-
tion of security in accordance with the deployment. Eacivaadbject has a distinguished
element, termed thmot, which is the only entry point. As such, all other objectshivit
the subsystem are passive objects and cannot be referemeetlyd Access is based on
the Public Key Infrastructure (PKI) with each entity posdeg its’ own certificate and a
private key generated from the certificate of the user. Aalutitlly, ProActive allows for all
RMI and HTTP communication to be tunneled through SSH. A# salk communication
can be encrypted and firewalls blocking RMI ports can be tsgxhs

7.1.4 Fault Tolerance

ProActive provides a fault-tolerance through a fully-sparent Communication-Induced
Checkpointing protocol. Active objects are made persidtaough the use of serialization
and hence, an object checkpoint consists of a serializey abthe object and protocol-

related information. Each persistent object has to chdokja least every TTC (Time to

Checkpoint) seconds. A global state is formed when all dabjeave been checkpointed.
In the event of a failure, the system restarts from the glohatkpoint. The TTC value is
user-defined and can be set to balance the overhead asgoeuidtérequent check-pointing

and the smaller roll-back time associated with more reclaiitad states.

7.1.5 Web Services Functionality

Active objects can be exported as web services and as suthpecealled from any web
service language including C#. A web service is a softwatéyethat can be exposed,
discovered and accessed by heterogeneous resources os®vaknin a standard way.
ProActive utilizes the SOAP Engine and HTTP servers to entit$ functionality.

8 DISTRIBUTED THREADS

Thread programming is a well developed model and is usedsixtdy, even on single
processor machines to simplify application developmemte €an think of threads as light
weight processes. For example, a single program could stookitwo threads: one to
manage the graphical user interface (GUI) and another forpethe actual computations.
Distributed threads are threads that span multiple add@sses [24]. In this section, we
discuss two programming environments, Alchemi [8] [20] d@ne GridThread Program-
ming Environment (GTPE) [25], that utilize the distributéaiead model.

8.1 Alchemi

Alchemi [13] [26] is Microsoft .NET Grid computing framewlr consisting of service-
oriented middleware and an application program interfadel) geared towards simple,
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rapid Grid software development. Alchemi is based on thaenagorker parallel program-
ming paradigm and implements the concept of Grid threads.rid t@read is essentially
a thread object capable of running on distributed nodes atftei smallest unit of parallel
execution. Hence, an Alchemi Grid application consists oftiple Grid threads.

8.1.1 Owner, Manager, Executor and Cross-Platform Manager

Alchemi consists of four major distributed components dbsd in Table 3. Figure 9 [26]
illustrates the interactions between the components.

Table 3: The four main components of the Alchemi Framework.

Component Description

Owner Executes applications created with the Alchemi API.
Submits threads to the Manager and collects completed
threads.

Manager Schedules and manages the execution of threads on execu-
tors.
Tracks of the availability of executors.

Executor Accepts and executes threads from the Manager.

Can be configured to be dedicated or non-dedicated (Ded-
icated Executors expose an interface so that the Manager
may communicate with it directly. Non-dedicated Execu-
tors perform work on a voluntary basis and poll the Manager
for threads to execute).
Cross-Platform  Man- | A sub-component of the Manager.
ager A web-services interface that enables Alchemi to manage
the execution of platform independent grid jobs.

Grid thread scheduling is performed by the Manager and i®peed on a Priority
and First Come First Served (FCFS) basis. Priorities campéeified when threads created
within the Owner (defaults to highest priority if none is siied). Alchemi can be deployed
as a hierarchical multi-cluster system with one Managesipgghreads to another Manager
(defined as the Intermediate-Manager) for execution. Anierhediate-Manager receives
a thread from higher-level Managers, the thread'’s prideisel is reduced by one unit. This
serves to allow resources within one administrative dor{ra@naged by a Manager) to be
shared without creating a significant impact to local users.

8.1.2 Grid Application Programming with Alchemi

Alchem@ provides a .NET Software Development Kit (SDK) consistifigtandard classes
and an API. An Alchemi Grid application consists of two parts

3A good tutorial on programming with Alchemi can be found ae tAlchemi Documentation at
http://www.alchemi.net/doc/6_1/index.html
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Figure 9: The interactions between the four main compongfrttse Alchemi Framework.

1. “Local Code” which creates a Grid application and runsdlls and

2. “Grid Code” which is executed remotely i.e. a Grid thretasé.

To create a Grid thread class, derive a new class fromAtbkemi.Core.GThread
class. It is necessary to override teed Start() method and add th8erializable attribute
to the class. Then additional modifications (e.g. additibmember functions etc.) can be
made to the derived class to perform the necessary conmaati

The “Local Code” portion executes on the owner and can beamphted in a variety of
ways. The standard method is to creatéApplication object with the host and port num-
ber provided to the constructor. It is then necessary taem@sloduleDependencyobject
and provide it with the module of the derived Grid thread €laBheModuleDependency
object is added to th#&lanifest object within theGApplication object (i.e. GApplica-
tion.Manifest) via theManifest.Add() method.

The derived threads are then instantiatedGBhreadFinish delegate which is called
when the thread finishes executing is set for each threadrfe/g§hread.FinishCallback
= new GThreadFinish(ThreadFinished). The ThreadFinished function, as used in the
example, is user-defined and may consist of code to perfaeanalp operations or to save
the results to disk. It is possible to define a delegate foh dlaead created. The threads
are then added to tH@Application object via theGApplcation.Threads.Add() method.

As with the threads, we can set an application callback naellyocreating aGAppli-
cationFinish object with the function passed to the constructor andrgettie Gapplica-
tion.FinishCallback member variable. The application is then ready to be statitethe
GApplication.Start() method.

4Inter-thread communication is currently not supported hmy wersion of Alchemi (v.0.61) at the time of
writing. It is then necessary to break the application irdoafiel threads that do not require constant commu-
nication with each other.
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8.2 Grid Thread Programming Environment (GTPE)

The main objective of implementing GridThreads library @&ridbus Broker was to mini-
mize the entry barriers associated with Grid applicatiansetbpment. GTPE [25] is imple-
mented in pure Java and consists of a thread library thaticte with the Gridbus broker
to provide transparent access to Grid services. GTPE me\adfiner level of application
control as compared to working with coarse grained jobs aeekfthe developer from the
complexities introduced by Grid resource management. rei@0 illustrates an architec-
ture block-diagram of GTPE. GTPE consists of two main conepts) theGridApplication
class and thé&ridThreadclass.

User Application
'( User GridThreads
(derved from GrdThread)
Il
]l
Grid Thread Programming
Environment (GTPE) User GridThread
Array
-+
State Capture
Thread to Job
. Wrapper
allled
Y Thiead Stales

Job Monitor
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| |
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= a1

Local Node

Rermate Node

Figure 10: Grid Thread Programming Environment (GTPE) Recliure.

The GridThread object forms the atomic unit of remote, independent workl usker
defined Grid threads derive from tl@&ridThreadabstract base class. The subclass has to
override thestart and thecallback methods. Thestart method is executed on the remote
nodes and hence, the computational work intended for reexaeution should be defined
in this method. Theallbackmethod is executed at the local client node once the thremad ha
finished executing on the remote node and has been trandpartk. Thecallbackmethod
can be used for a variety of functions including the aggiegaif results and the reporting
of thread completion to the user.

The GridApplicationobject is responsible for thread management and providiag-n
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transparent access to the Grid via the Gridbus broker. Tdws giresents a single point of
control to the programmerGridThreadsare added to &ridApplication object for exe-
cution on remote nodes. The GridApplication object prosideechanisms to capture and
restore thread states, as well as job wrapping and threaitaring services.

The Gridbus-Thread Programming Environment architecisinelatively simple and
supports the aforementioned design objectives. GTPE itemmgnted in pure Java and as
such, benefits from its “write-once-run-anywhere” modekelUderived Grid threads are
inherently portable and able to run on any system which ges/access to a Java Virtual
Machine. Performance is supported via dynamic schedulmynaodern Java compilers,
which are able to able to generate Java code capable of exespeeds comparable to
traditional high-performance languages [27] . Securesxaad job submission to remote
nodes is supported via the Gridbus broker and thread momgtprovides a mechanism for
detecting thread failures on remote nodes.

8.2.1 Resource Discovery and Access

Version 2.0 of the Gridbus broker (and hence, GTPE) supgbédollowing a range of
middleware for computational resources (Globus v2.4 ang,vdchemi v0.8, and Unicore
Gateway v41) and data resources (SRB v3.x and Globus Repéitalog) [3]. If no re-
sources are specified, a set of servers is loaded from a oesfiler (resources.xml), which
specifies default resources and their attributes. The GsiBboker manages access to these
systems, providing secure access via proxies and cretientia

8.2.2 Thread Object State Capture and Job Wrapping

To capture objects into a form which can be distributed, GTRIizes Javaserialization
Serialization is automated by the GridApplication clasd mrtransparent to the user appli-
cation. However, it is possible for application develogersverride the default serialization
methods in their derived thread classes to specify optithizglementations that best suit
their needs. When a thread is added to for execution on tltg iG8 immediately serialized
to a state file with a unique filename. This state file is groupgdther with the user derived
GridThread class file (obtained using Java class inspg¢tonl the GridThread class file.
These files are wrapped into a Gridbus broker job along witagipropriate low-level copy
and execute commands. The job object is then added to theuSrimroker for scheduling
and submission to a suitable Grid node.

8.2.3 Thread Scheduling

The Gridbus broker utilizes the concept o€@mputational economi] [22] and version
2.0 provides five different scheduling types; cost-optediztime-optimized, cost-and-time-
optimized, cost-and-data-optimized and time-and-datavized [12]. If no scheduler is
specified, GTPE defaults to using the cost-optimized amproa
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8.2.4 Thread Execution and Monitoring

At the remote node, the appropriate user defined subclasstéstdd and the appropri-
ate thread object instantiated via Jag#lection The thread is de-serialized to restore the
thread’s state and the threag®rt method is invoked. When thetart method returns, the
thread’s state is serialized to a file on disk and transpdrtezk to the local node. Each
GridThread has an associated status variable which stoegfdfour possible execution
states;notsubmmitedrunning finishedor failed. The default status is theotsubmmited
state and remains unchanged while it is waiting for trartsp@fhen the thread has been
submitted to the remote node, its status variable is updatadhning If a thread success-
fully completes, its state is updated by de-serializingfthnshed thread state file and its
status is set tdinished If a thread fails during execution, an error report is gatest and
its status is changed failed.

8.2.5 Additional Functionality

GTPE provides additional functionality to minimize theaftfnecessary to work with Grid
threads. A simple barrier function is implemented allowirggrs to synchronize threads
and thegetThreadsnethod is available for retrieving threads that have beeleddo the
threads array. These methods are especially useful wheagadiung results or performing
some final analysis which requires all threads to have caegplexecution. Hence, unlike
regular broker jobs, it is possible to work with updated #ik® after execution on a remote
node. Additionally, thestopmethod is provided to terminate the scheduling and digiahu
of threads.

9 WORKFLOW

A workflow is a collection of tasks that are executed in soneqefined order to accom-
plish a goal. A classic example is the assembly line of a agofg A Grid workflow is
then just a workflow which is executed on the Grid. It shoulahbted that Grid workflows
tend to involve long lasting execution tasks with a largead&iw [28]. Grid workflow
systems are designed to define, manage and execute GridawskiFigure 11 [28] gives
an overview of the architecture of a Grid workflow system base a reference model
proposed in 1995.

9.1 Kepler

Kepler [14] is a scientific workflow management system whilbbwes scientists to design,
execute and deploy workflows using a number of technologiekiding web and Grid

services, Relational Database Management Systems (RDBNSBlocal applications im-

plemented in various programming languages. It is built@mdaf Ptolemy II, a mature

software application developed at the University of Catifa at Berkeley. Ptolemy Il [29]

is a Java-based component assembly framework with a gedplsier interface called Vergil
along with a set of Application Program Interfaces (API9) lieterogeneous hierarchical
modeling.
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9.1.1 Programming aspects of Kepler

Kepler provides domain scientists with an easy to use yetepolvsystem for capturing
scientific workflows via its intuitive programming Graphli¢dser Interface (GUI). It is also
a modular, activity oriented programming environment teads itself to design of reusable
components. Its core capabilities that improve the effeaiss and efficiency of scientific
research consist of

e Capturing Scientific WorkFlow (SWF)s
e Acessing heterogeneous data

e Executing SWFs

9.1.2 Capturing Workflows

In Kepler individual workflow steps are implemented as rélesactors[14]. Each actor
defines zero or more typed input and output ports that camkediinto a directed graph
to allow data flow between actors. Kepler also allows scigtio prototype a workflow
before implementing actors needed for the workflow.

Actors: Actors are reusable processing steps that perform conmmgaguch as signal
processing, statistical operations and Booelan logicaijmers. Kepler has an extensible
library of actors. In-house or third-party software can biee to this library by users.
Web and Grid services can be implemented as actors and caidbd to the library and
used from within Kepler. This is done using the generic Web@rid Service actors. These
actors expose one operation in a Web Service Descriptioguage (WSDL) file or Grid
Web Service Description Language (GWSDL) file by exposirgdperation’s messages as
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input and output ports. Kepler contains a tool to harvesbagof Web Service descriptions
from a repository and save them to the actor library to be Ueted in workflows. Most
actors are Java processes that run locally on a single neachlowever, some may call
external native applications such as Matlab. Other actaress arbitrary web services that
execute a process remotely and return a handle to the results

Prototyping actors. The actor library may not contain all of the necessary actor
complete a particular scientific computation, so an actotgbyping tool is provided in
Kepler (Figure 12 [30]). This tool prompts scientists fatical information about an actor,
including its name, icon, and input/output ports. Each pa$ a name and a data type.
Once the user has defined the actor, a stub is compiled and smittee actor library.
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Figure 12: The actor prototype tool creates a stub actosctasnpiles it, and then adds it
to the actor library where it can be dragged onto the worles|j2@].

The user can then use this stub on the workflow canvas to ppatat workflow. The
ports can be connected to other actors (stubs or not) ang/pigtsystem will validate
these connections. However, since these actors are sattothot implement the intended
computations, they simply inform the user that the workfloypliementation is incomplete.
The stubs must be implemented by writing a Java method fqoriidire, fire, and post-fire
stages of the workflow execution. The intended algorithmlmimplemented within the
fire event processor or call an external program or serviecarto The intent of this tool is
to allow a scientist to quickly assemble a workflow withouédimg to implement the code
for every individual piece of the workflow at design time.

Serialization, documentation and provenance Workflows within Kepler are serial-
ized in an XML dialect called Modeling Markup Language (MoMIXML serialization
allows the workflow itself to be used as documentation (nmegtgdor the research project.
The workflow also provides the provenance for derived datdymts, allowing researchers
to return to previous states as needed. The workflow carydasversioned and archived
in any XML storage facility and can be indexed for easy quapand access.
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9.1.3 Accessing heterogeneous data

Kepler includes several data access actors including siardd database access actor
(DatabaseQueryand a metadata-based data ingestion actor for handlireydgetneous
data EMLDataSource Kepler also provides data transformation facility aoesctand web
services are generally designed in isolation and theréfug/output incompatibilities are
common. Using widely available tools for the two language& actors are designed to
provide a Kepler interface to XSLT and XQuery. These act@ssform XML and HTML
data for use in Kepler or outside of Kepler (e.g., browsers).

9.1.4 Executing workflows

Kepler's powerful programming environment supports theyivey models of computation
that domain scientists may want to use for their models. &eghn execute processes lo-
cally either within the Kepler environment (Java) or witlaimative environment (compiled
native code, or code interpreted by another environmertt agcPerl). In addition, pro-
cesses can be executed in a distributed fashion, using welsdd services. Remotely
executed processes behave as a single step in the model pfiation regardless of their
complexity [30].

Distributed computation: Kepler's web and Grid services actors allows scientists to
utilize computational resources on the network in a digtétd scientific workflow. Invoca-
tion of each of the distributed services is controlled bydteent model of computation in
use. The generigVebService actgprovides the user with an interface to connect to a Web
Service defined by a WSDL URL. To customize a Web Service atteruser provides
the URL for the WSDL and selects an operation of the Web Servite actor automati-
cally customizes its ports with the correct inputs and otstpfithe Web Service (Figure 13
[30]), and acts as a proxy to the Web Service when executednaricGridServiceactor
operates similarly for a given GWSDL URL.

TheWeb Service Harvester act@® used for importing all the operations of a specific
Web Service. It can also be used to harvest all of the Web &snin a Universal De-
scription, Discovery and Integration (UDDI) repositoryhi$ feature makes it simple for
scientists to locate and integrate computational web seswif relevance into their compu-
tational workflows.

In addition to generic web and Grid services, Kepler inctudetors to use Grid based
services such as certificate-based authenticakooxyInit), Grid job submissionGlobus-
GridJob), and Grid-based data access (DataAccessWizard). Eadtesé @actors access
specific Grid-based services using Open Grid Services factire (OGSA) interfaces.

10 GRID SERVICES

In recent years, Web services have gained popularity andriaapce as a distributed com-
puting paradigm. Its focus is on applying Internet-basexhdirds such as eXtensible
Markup Language (XML) to describe the remote software camepts, the methods by
which to access these components and the procedures whiy thieise methods are dis-
covered. These accessible software components are caildes and are made available
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Figure 13: Customizing a Web Service actor [30].

by service providers. In general, a service can be definechasnrk enabled entity that
provides come capability through the exchange of messajesA[ Grid Serviceis Web
service that provides a set of well defined interfaces andftilaws specific conventions
[4] [15]. The Grid services paradigm views the Grid as an msitde set of Grid services
that can be composed to meet the needs of users, specifictligl enterprises and virtual
organizations [4].

10.1 Open Grid Services Architeture (OGSA)

The Open Grid Services Architecture (OGSA) [4] [15] is arhétecture specification defin-
ing the semantics and mechanisms governing the creaticessause, maintenance and de-
struction of Grid services. In the OGSA world, an entity ipnesented by a Grid service as
defined above. Grid services arlearacterizedor typedby the capabilities that are offered
[4]. Grid services are accessed via standard interfacef@etl by OGSA and as such,
these services can be composed to form more sophisticatddese Each interface con-
sists of a set of operation definitions that are invoked byfenelé sequence of exchanged
messages. Note that OGSA does not address how these semaa@sually implemented
i.e. what the service is or how it performs its function(shisTallows for a flexible approach
to service construction, as long as the service complids tivé semantics outlined in the
OGSA specification.

10.1.1 Grid Service Instances

Grid services maintain an internal state for the lifetiméhaf service and it via this internal
state thatnstancesof services are differentiated from one another. Typic&Hgid service

users would not require a static set of persistent servigesauld rather need to instantiate
service instances dynamically. As such, OGSA providesipations for the management
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of transient service instancese. temporary service instances which can be destroyed af
being used. OGSA specifies thactory interface for the purpose of creating a requested
Grid service. Each Grid service instance is assigned a lg®bd service handle (GSH),
by which it is uniquely identified.

10.1.2 Upgradeability and Communication

The GSH provides only a unique identifier for each instanckedies not include protocol
or instance specific information required to interact with instance. This information is
contained within another entity termed the Grid servicemnaice (GSR). Separating these
two information entities allows for the instance to be chathgr upgraded over its lifetime
without requiring a new unique identifier. While an instaad@SH is static, its GSR may
change. To obtain a valid GSR from a GSH, OGSA defines a hdodieference mapper
interface HandleMayp).

10.1.3 Service Discovery

GSHs can be initially obtained viaragistry, which is a grid service that supports service
discovery. A registry service is defined by tRegistryinterface and a service data element
containing information relating to registered GSHs. Rwgistryinterface provides a set of
operations that allow the registration of a GSH. Informatiegarding registered GSHSs is
obtained via th&ridServiceinterface’s FindServiceData operation.

10.1.4 Notification

Services are able to provide notification messages to slieptsupporting theéNotifica-
tionSourceinterface to manage notification request subscriptionsliehiccan invoke this
service using the subscribe operation and providing the GiSkk notification destination
(termed the notification sink). The sink is required to sdm@notification source periodic
keepalive messages to continue to receive notificationep&&e messages are also used
to manage the lifetime of a transient service.

10.1.5 Service Lifetime Management

The introduction of transient services poses the problesenfice lifetime determination
and management. As the grid is open and dynamic, various @oemps may fail and a
created service may not be explicitly terminated by thentli®©GSA solves this problem
via a soft state approach [31] which consist of operatiomgife negotiation of an initial
lifetime, extension requests and service instance haafest lifetime expiry. During the
initial lifetime negotiation, the client specifies a minimwand maximum acceptable initial
lifetimes. From this range, the factory selects an initi@time which is returned to the
client. A client can extend a lifetime by specifying a new miom and maximum lifetime
using the SetTerminationTime message i.e. a keepaliveapesslf a service instance
lifetime expires, the host environment terminates theiserand reclaims the associated
resources.
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10.1.6 Higher Level Capabilities

The latest specification of OGSA [15] at the time of writingalspecifies a wide range
of higher level capabilities including Execution Managem8ervices (EMS), Data Ser-
vices, Resource Management Services, Security ServietfsM@nagement Services and
Information Services. We refer readers requiring moreiddetgarding these services to
[15].

11 SUMMARY AND CONCLUSION

In this chapter we have considered various programming fe@ste environments for the
development of Grid applications. We began by motivatiregrtbed for Grid programming
environments that make transparent the heterogeneousyaaanit nature of the Grid.
A successful Grid programming environment should supportability, interoperability,
adaptivity, discovery, security and fault tolerance whilaintaining high performance.

We discussed an implicit parallelization environment, dGsuperscalar, two ex-
plicit parallelization environments, MPICH-G2 and Ninf-GridRPC and finally semi-
parallelization environments, the Gridbus Broker, Alcihe®TPE and the Kepler work-
flow system. It is tempting to compare these systems dir@ctin attempt to deduce the
best system for general purpose use. However, we believeutlh a comparison would
be premature. All the systems we reviewed yield promisirsglie in terms of usability
and performance. The choice of a Grid programming modelripkargely on the task at
hand and the skills available to the application develapérsapplication developer who
is familiar with the MPI method of programming clusters mandfthe transition to a Grid-
enabled MPI implementation to be simpler than implemen@igl applications using an
automated but unfamiliar system.

What we believe to be important is not which model will emaageéhe dominant system
but that there are already exist tools available for us teeldgvapplications that are able
to take advantage of the incredible computational powehefGrid. The diversity of the
models provides us with choice and assures us that thereelg b model that best suits
a particular application. In addition, all of the programignienvironments discussed are
works in progress and we expect advances in all areas yigluktter systems over time.
This is an exciting time in this area of research and while muork needs to be done, the
results thus far are very promising.
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