
An Economy Driven Resource Management Architecture for Global
Computational Power Grids

Rajkumar Buyya, David Abramson, and Jonathan Giddy‡

School of Computer Science and Software Engineering
Monash University

 Caulfield Campus, Melbourne, Australia

‡CRC for Enterprise Distributed Systems Technology
University of Queensland

St. Lucia, Brisbane, Australia

 Email: {rajkumar, davida, jon}@csse.monash.edu.au

Abstract

The growing computational power requirements of grand
challenge applications has promoted the need for linking high-
performance computational resources distributed across
multiple organisations. This is fueled by the availability of the
Internet as a ubiquitous commodity communication media,
low cost high-performance machines such as clusters across
multiple organisations, and the rise of scientific problems of
multi-organisational interest. The availability of expensive,
special class of scientific instruments or devices and data
sources in few organisations has increased the interest in
offering a remote access to these resources. The recent
popularity of coupling (local and remote) computational
resources, special class of scientific instruments, and data
sources across the Internet for solving problems has led to the
emergence of a new platform called “Computational Grid”.

This paper identifies the issues in resource management
and scheduling driven by computational economy in the
emerging grid computing context. They also apply to clusters
of clusters environment (known as federated clusters or
hyperclusters) formed by coupling multiple (geographically
distributed) clusters located in the same or different
organisations. We discuss our current work on the Nimrod/G
resource broker, whose scheduling mechanism is driven by a
user supplied application deadline and a resource access
budget. However, current Grid access frameworks do not
provide the dynamic resource trading services that are required
to facilitate flexible application scheduling. In order to
overcome this limitation, we have proposed an infrastructure
called GRid Architecture for Computational Economy
(GRACE). In this paper we present the motivations for grid
computing, resource management architecture, Nimrod/G
resource broker, computational economy, and GRACE
infrastructure and its APIs along with future work.

1. Introduction
The concept of grid computing is gaining popularity
with the emergence of the Internet as a medium for
global communication and the wide spread availability
of powerful computers and networks as low-cost

commodity components. The computing resources and
special class of scientific devices or instruments are
located across various organizations around the globe.
These resources could be computational systems (such
as traditional supercomputers, clusters [5], SMPs, or
even powerful desktop machines), special class of
devices (such as sensors, radio telescopes, satellite
receivers), visualization platforms, and storage devices.
A number of applications need more computing power
than can be offered by a single resource or organisation
in order to solve them within a feasible/reasonable time
and cost. This promoted the exploration of logically
coupling geographically distributed high-end
computational resources and using them for solving
large-scale problems. Such emerging infrastructure is
called computational (power) grid [18], analogous to
electric (power) grid, and led to the popularization of a
field called grid computing. It has been predicted that
the global computational grids are expected to drive the
economy of the 21st century similar to the electric
power grid that drove the economy of the 20th century.

Computational grids are expected to offer
dependable, consistent, pervasive, and inexpensive
access to high-end resources [18] irrespective of their
physical location and the location of access points. A
number of projects worldwide are actively exploring the
development of grid computing technology. They
include Globus [17], Legion [25], NASA Information
Power Grid [29], NetSolve [9], Ninf [32], AppLes [7],
Nimrod/G [1], DISCWorld [13], and Unicore [2]. In [3],
all these grid systems have been discussed.

Although wide-area distributed supercomputing has
been a popular application of grid computing, there are
a number of other applications that can benefit from it.
They include collaborative engineering, high-throughput
computing (large-scale simulation and parameter
studies), remote software access, data-intensive

computing, and on-demand computing. However, our
focus is on the use of the grid for solving
supercomputing and high-throughput computing
applications, in particular.

Due to the use of geographically distributed multi-
organizational resources, the grid computing
environment needs to dynamically address issues
involved in inter-domain resource usage and should
have the following features [6] [16]:

• Flexibility and extensibility
• Domain autonomy
• Scalability
• Single global name space
• Ease of use and transparent access
• High performance
• Security
• Management and exploitation of resource

heterogeneity
• Interoperability with multiple systems
• Resource allocation or co-allocation
• Fault-tolerance
• Dynamic adaptability
• Economy of computation

A number of middleware systems including Globus
have addressed some of the above issues. In [11], the
Globus developers have addressed the five challenging
resource management problems introduced by
computational grids: site autonomy, heterogeneous
substrate, policy extensibility, resource allocation or co-
allocation, and online control. The sixth challenging
resource management problem that drives our work is
“economy of computations”. The resource management
architecture presented in this paper is driven by the
concept of a computational economy and the necessary
enabling middleware infrastructure. Importantly, our
work can be combined with existing middleware
systems such as Globus, to produce an environment that
addresses all of the six challenges produced by
production oriented computation grids.

The Nimrod/G resource broker, a global resource
management and scheduling system for computational
grid, built using Globus services has been discussed in
[1][6]. It supports deadline and cost-based scheduling
mechanism, but the costing mechanism is currently
static. We have found that the Globus metacomputing
toolkit does not offer services for trading resources
dynamically. This limitation is overcome by our
proposed GRid Architecture for Computational
Economy (GRACE) middleware infrastructure that co-
exist with Globus, and Nimrod/G can use for trading
resources to support dynamic scheduling capability.

The focus of this paper is on economy driven
resource management architecture for grid computing. It
addresses the first five resource challenges through the
use of Globus middleware services and the sixth
challenge through GRACE infrastructure. Our work is
concerned with the resource discovery, brokering and
economy of computations, resource acquisition,
scheduling, staging data and programs, initiating
computations, adapting to changes in the grid status, and
collecting results.

The remaining sections of this paper discuss resource
management models, related work, motivations for an
economy driven resource management system and its
architecture, GRACE infrastructure, an architecture for
the Nimrod/G resource broker that supports deadline
based scheduling and dynamic resource trading using
Globus and GRACE services. The summary and future
work are presented at the end.

2. Resource Management Structures
The architectural model of resource management
systems is influenced by the way the scheduler is
structured. The structure of scheduler depends on the
number of resources on which jobs and computations
are scheduled, and the domain in which resources are
located. Table 1 shows scheduler structural models for
different combinations of resources and the location of
their existence. Primarily, there are three different
models for structuring schedulers:

• Centralized scheduling model: This can be used for
managing single or multiple resources located either
in a single or multiple domains. It can only support
uniform policy and suits well for cluster management
(or batch queuing) systems such as Condor [10], LSF
[26], and Condine [23]. It is not suitable for grid
resource management systems as they are expected to
honor (local) policies imposed by resource owners.

• Decentralized scheduling model: In this model
schedulers interact among themselves in order to
decide which resource should be applied to the jobs
being executed. In this scheme, there is no central
leader responsible for scheduling, hence this model
appears to be highly scalable and fault-tolerant. As
resource owners can define the policy that schedulers
can enforce, the decentralized scheme suits grid
systems. However, because the status of remote jobs
and resources is not available at single location, the
generation of highly optimal schedule is questionable!
This model seems difficult to implement in the grid
environment, as domain resource owners do not agree
on a global policy for resource management.

Table 1: Scheduling Structure Alternatives.

• Hierarchical scheduling model: This model fits for
grid systems as it allows remote resource owners to
enforce their own policy on external users. This
model looks like a hybrid model (combination of
central and decentralized model), but appears more
like centralized model and therefore suits grid
systems. Our resource management architecture
follows this model. The scheduler at the top of the
hierarchy is called super-scheduler/resource broker
that interacts with local schedulers in order to decide
schedules.

3. Related Work
A number of resource management architectures have
been proposed at the Grid Forum (GF) [21] Scheduling
Working Group. The first proposal tries to explicitly
capture almost all features supported by resource
management systems currently being developed [8].
The second proposal comprises a scheduling tile with
three parts: a "mapper", a "commit agent" and a
"deploy agent" [30]. These tiles could be layered in a

hierarchical manner, so that one can have tiles—each
to represent the local systems, a tile higher up as a
system-level scheduler, and so on. The third proposal,
Abstract Owner (AO) model, emphasizes order and
delivery approach and captures real world model,
however, currently there are no software systems that
support this model [12]. Our resource management
architecture captures the essence of all of them and
presents in a simple, realistic, and easily realizable
manner. Based on the reply [22] to our proposal for
including computational economy (economy driven
resource management/scheduling model) in the charter,
it is expected that the GF scheduling group will address
it in future! The infrastructure supporting the
distributed accounting model discussed in the GF
account management working group draft [33], can
become a substrate for our work.

The existing systems have addressed computational
economy in a different context: Mariposa, a distributed
database system, supports economy in database query
processing [27]. Rexec, remote execution environment,
is targeted for clusters where resource share is allocated

based on the relative economical value that the user
assigns to the job [4]. The grid systems such as
Globus[19], Legion [25], Netsolve [9], AppLes [7], and
Condor [10] neither offer resource trading services nor
support job scheduling with economy of computations.
JaWS [24] follows an economy-based web-computing
model where resource owners (desktop users) visit a
URL to contribute their resources.

4. Why Computational Economy?
The grid is constructed by coupling resources
distributed across various organizations and
administrative domains and may be owned by different
organisations. The need for an economy driven
resource management and scheduling system comes
from the answers to the following questions:

• What comprises the Grid?
• What motivates one to contribute their resource to

the Grid?
• Is it possible to have access to all resources in the

Grid by contributing our resource?
• If not, how do we have access to all Grid resources?
• If we have access to resources through collaboration,

are we allowed to solve commercial problems?
• If we gain access to Grid resources by paying

money, do resource owners need to charge the same
or different price for other users?

• Is access cost the same for peak and off-peak hours?
• How can resource owners maximize their profit?
• How can users solve their problems within a

minimum cost?
• If the user relaxes the deadline by which results are

required, can solution cost be reduced?

The motivations or incentives for contributing
resources towards building grids, to date, has been
driven by public good, prizes, fun, fame, or
collaborative advantage. This is clearly evident from
the construction of public or research test-beds such as,
SETI@Home [31], Distributed.net [14], DAS [15], and
GUSTO[20]. The computational resource contributors
to these test-beds are mostly motivated by the
aforementioned reasons. The chances of gaining
access to such computational test-beds for solving
commercial problems are low. Furthermore,
contributing resources to a testbed does not guarantee
access to all of the other resources in the testbed. For
example, although we are part of the GUSTO testbed,
we do not have automatic access to all of its resources.
Unless we have some kind of collaboration with
contributors, it is difficult to get access to their
resources. In this situation, we believe that a model that
encourages resource owners to let their resources for
others use is computational economy – wherein users

are charged for access at a rate that varies with time.
This necessitates the need for a mechanism where one
can buy compute power on-demand from
computational grids or resource owners. As both
resource owners and users want to maximize their
profit (i.e., the owners wish to earn more money and
the users wish to solve their problems within a
minimum possible cost), the grid computing
environment needs to support this economy of
computations.

In order to push the concept of grid into mainstream
computing, we need a mechanism that motivates
owners to contribute their machine (idle) resources.
One of the best mechanisms for achieving this is
supporting the concept of computational economy in
building and managing grid resources. It allows
resource owners to earn money by letting others use
their (idle) computational resources for solving their
problems. In such a production oriented (commercial)
computational grid, the resource owners’ act as sellers
and the users act as buyers. The pricing of resources
will be driven by demand and supply and is one of the
best mechanisms to regulate and control access to
computational resources.

The grid resource management systems must
dynamically trade for the best resources based on a
metric of the price and performance available and
schedule computations on these resources such that
they meet user requirements. The grid middleware
needs to offer services that help resource brokers and
resource owners to trade for resource access.

The benefits of economy-based resource
management include the following:

• It helps in building large-scale computational grid
as it motivates resource owners to contribute their
idle resources for others to use and profit from it.

• It provides fair basis for access to grid resources
for everyone.

• It helps in regulating the demand and supply.
• It offers an incentive for users to back off when

solving low priority problems and thus encourages
the solution of time critical problems first.

• It removes the need for a central coordinator
(during negotiation).

• It offers uniform treatment to all resources. That is,
it allows trading of everything including
computational power, memory, storage, network
bandwidth/latency, and devices or instruments.

• It helps in developing scheduling policies that are
user centric rather than system centric.

• It offers an efficient mechanism for allocation and
management of resources.

• It helps in building a highly scalable system as
decision-making process is distributed across all
users and resource owners.

• Finally, it places the power in the hand of both
resource owners and users—they can make their
own decisions to maximize the utility and profit.

5. Economy driven Grid Resource
Management Architecture

The resources that are coupled in grid computing
environment are geographically distributed and
different individuals or organizations own each one of
them and have their own access policies, cost, and
mechanisms. The resource owners manage and control
resources using their favorite resource management and
scheduling system (called local scheduler) and the grid
users are expected to honor that and make sure they do
not interfere with resource owners’ policies. They may
charge different prices for different users for their
resource usage and it may vary from time to time. The
global resource management and scheduling systems
(e.g., Nimrod/G [1]), popularly called grid schedulers
or meta-schedulers, coordinate the user access to
remote resources in cooperation with local schedulers
(e.g., Condor [10], Codine/GRD [23] and LSF [26]) via
grid middleware services (e.g., Globus [19]).
Traditionally, most of the schedulers follow system
centric approach (e.g., they just care about system
performance) in resource selection and often
(completely) ignore the user requirements (e.g.,
resource access cost). In order to overcome this
problem, we proposed an economy-based approach for

grid resource management and scheduling system
architecture shown in Figure 1. When the user submits
an application for execution, they expect that the
application be executed within a given deadline and
cost. They also need a means for trading off the cost
and the deadline. These requirements appear complex,
but under a computational economy they simplify the
scheduling problem and reduce the complexity
involved in the design and development of grid
schedulers. There is no single perfect solution that
meets all user requirements, hence the requirements
(schedulers) are tailored for each class of applications.
The following are the key components of our resource
management system:

• User Applications (sequential, parametric, or
parallel applications)

• Grid Resource Broker (a.k.a., Super Scheduler, or
Global Scheduler)

• Grid Middleware
• Local Resource Manager (Scheduler) such as

Condor and LSF

Grid Resource Broker (GRB)

The resource broker acts as a mediator between the
user and grid resources using middleware services. It is
responsible for resource selection, binding of software
(application), data, and hardware resources, initiate
computations, adapt to the changes in grid resources
and present the grid to the user as a single, unified
resource. The components of resource broker are the
following:

Figure 1: Economy driven Grid Resource Management Architecture.

• Job Control Agent (JCA): This component is a
persistent central component responsible for
shepherding a job through the system. It takes care
of schedule generation, the actual creation of jobs,
maintenance of job status, interacting with
clients/users, schedule advisor, and dispatcher.

• Schedule Advisor: This component is responsible
for resource discovery (using grid explorer), resource
selection, and job assignment. Its key function is to
select those resources that meet user requirements
such as meet the deadline and minimize the cost of
computation while assigning jobs to resources.

• Grid Explorer: This is responsible for resource
discovery by interacting with grid-information server
and identifying the list of authorized machines, and
keeping track of resource status information.

• Trade Manager: This works under the direction of
resource selection algorithm (schedule advisor) to
identify resource access costs. It interacts with trade
servers and negotiates for access to resources at low
costs.

• Deployment Agent: This is responsible for
activating task execution on the selected resource as
per the scheduler’s instruction. It periodically
updates the status of task execution to JCA.

Grid Middleware

The grid middleware offers services that help in
coupling a grid user through resource broker or grid
enable application and (remote) resources. It offers
core services such as remote process management, co-
allocation of resources, storage access, information
(directory), security, authentication, and Quality of
Service (QoS) such as resource reservation and trading.
The Globus middleware offers a number of these
services [17][19] that we use in our work:

• Resource allocation and process management
(GRAM).

• Unicast and multicast communications services
(Nexus)

• Authentication and related security services (GSI)
• Distributed access to structure and state

information (MDS)
• Monitoring of health and status of system

components (HBM)
• Remote access to data via sequential and parallel

interfaces (GASS)
• Construction, caching, and location of executables

(GEM)
• Advanced resource reservation (GARA)

The resource trading services are offered by our
middleware infrastructure, GRACE (see next section):

• GRid Architecture for Computational Economy

Local Resource Manager

The local resource manager is responsible for
managing and scheduling computations across local
resources such as workstations and clusters. They are
even responsible for offering access to storage devices,
databases, and special scientific instruments such as a
radio telescope. The example local resource managers
include, cluster operating systems such as MOSIX [28]
and queuing systems such as LSF and Condor.

6. GRid Architecture for Computational
Economy (GRACE)

The GRACE infrastructure is a middleware component
that can co-exist with grid middleware systems such as
Globus. It offers services that help resource brokers in
dynamically trading (cheap) resource to support
computational economy. The components of GRACE
infrastructure are:

• A Trade Manger (it is actually a GRACE client
and a component of the resource broker).

• Trading Protocols and APIs.
• A Trade Server (it uses pricing algorithms defined

by the resource owner and interacts with Resource
Usage Accounting and Billing system).

Grid Trade Manager and Trade Server
The Trade Manager (TM) is a client that uses GRACE
trading APIs to interact with trade servers and
negotiates for access to resources at low cost. It works
under the direction of resource selection algorithm
(schedule advisor) to identify resource access costs.

The Trade Server (TS) is a resource owner agent
that negotiates with resource users and sells access to
resources. It aims to maximize the resource utility and
profit its owner (earn as much money as possible). It
uses pricing algorithms as defined by the resource
owner that may be driven by the demand and supply. It
also interacts with the accounting system for recording
resource usage that bills the user. In effect, we are
employing a “competitive” market approach to
resource allocation, wherein the TM tries to minimize
the cost of computation for resource users and the TS
tries to maximize the profit for resource owners.

Grid Open Trading Protocols and APIs

The Trading Protocols define the rules and format for
exchanging commands and messages between GRACE
client (Trade Manager) and Trade Server. Figure 2
shows multilevel protocols or steps that both client and
server need to follow while trading for the cost of
resource access. The wire-level (low-level) details of
these protocols are skipped, as they are obvious.

Figure 2: GRACE Open Trading Protocols.

The finite state machine representation of GRACE
trading protocols is show in Figure 3. In our model, the
Trade Manager (TM) contacts trade server with a
request for a quote/bid. The TM specifies resource
requirements in Deal Template (DT), which can be
represented by a simple structure (record) with its
fields corresponding to deal items or by a “Deal
(Template) Specification Language” similar to the
ClassAds mechanism employed by the Condor [10]
system. The contents of DT include, CPU time units,
expected usage duration, storage requirements, etc.,
along with its initial offer or leave it blank. The TM
looks into DT and updates its contents with price etc.,
and sends back to TS. This negotiation between TM
and TS continues until one of them says that its offer is
final (no more negotiation). Then it is up to the other
party to decide whether to accept or reject the deal. If
accepted, then both works as per the agreement
mentioned in the deal. The overhead introduced by the
multilevel point-to-point protocol can be reduced when
resource access prices are announced (like in the
market) through GIS.

Grid Open Trading APIs

The GRACE infrastructure supports generic
Application Programming Interfaces (APIs) that can be
used by the grid tools and application programmers to
develop software supporting the computational
economy. The trading APIs are C-like functions (high
level view of trading protocols) that GRACE clients
can use to communicate with trading agents:

• grid_trade_connect(resource_id, tid)
• grid_request_quote(tid, DT)
• grid_trade_negotiate (tid, DT)
• grid_trade_confirm(tid, DT)
• grid_trade_cancel(tid, DT)
• grid_trade_change(tid, DT)

• grid_trade_reconnect(tid, resource_id)

• grid_trade_disconnect(tid)
where,

tid = Trade Identification code

 DT = Deal Template

Figure 3: A Finite State Machine.

7. A new Nimrod/G Resource Broker
The Nimrod/G resource broker is a tailored global
scheduler for running parametric applications on
computational grid [1][6]. It is developed using Globus
toolkit services and can be easily extended to operate
with any other emerging grid middleware services. It
uses MDS services for dynamic resource discovery and
GRAM APIs to dispatch jobs over wide-area distributed
grid resource. It allows scientists and engineers to model
whole parametric experiments and transparently stage
the data (using GASS) and program (using GEM) at
remote sites, and run the program on each element of a
data set on different machines and finally gather results
from remote sites to the user site. The user need not
worry about the way in which the complete experiment
is set up, data or executable staging, or management.
The user can also set the deadline by which the results
are needed and the Nimrod/G broker tries to find the
cheapest computational resources available in the grid
and use them so that the user deadline is met and cost of
computation is kept to a minimum. However, the grid
resources are shared and their availability and load
varies from time to time. When scheduler notices that it
cannot meet the deadline with the current resource set, it
tries to select the next cheapest resource and continues
to do this until the completion of task farm application

meets the (soft) deadline. We have performed a number
of experiments using this approach on the GUSTO test-
bed, and these are reported in [1]

The Nimrod/G (discussed in [1][6]) uses static cost
model (stored in a file) for resource access cost trade-off
with the deadline. In this paper we propose a new
architecture for Nimrod/G resource broker (see Figure
4) to overcome the current limitation using GRACE
middleware services (discussed earlier). It is possible to
make a one-to-one mapping between the generic
architecture of grid resource management system
(shown in Figure 1) and the Nimrod/G architecture.

The key components of Nimrod/G system are
Client/User Station, a Persistent Parametric/Task-
farming Nimrod Engine, Scheduler, and Dispatcher (for
detailed discussion of these components, see [1][6]).
One of the key components of proposed Nimrod/G
architecture is trading manager. The functionality of TM
has already been discussed earlier sections. It will also
explore the advance resource reservation during trading.
We believe that with this new architecture, the
Nimrod/G should be able to answer the user queries
such as “I am willing to pay $$$, can you complete this
job by deadline D?”. This ability means, users can trade-
off the deadline against the cost and decide the manner
in which computations are to be performed.

Figure 4: A new Nimrod/G Grid Resource Broker.

8. Conclusions and Future Work
We have discussed issues involved in the resource
management architecture for computational grids. We
identified a number of challenging problems including
economy of computations that have driven the resource
management architecture discussed in this paper. We
discussed a new middle service infrastructure called
GRid Architecture for Computational Economy
(GRACE). Our future work focuses on the realization of
various scheduling models driven by computational
economy and incorporation of these into Nimrod/G
resource broker. The scheduling algorithms that we
would like to explore are based on reservation of
resources in advance, and dynamic computational
economy based on advertised costs, trading, and auction
mechanisms. We plan to drive the scheduling work
based on fuzzy logic and genetic algorithms.

We expect that economy driven approach to resource
management will have impact on the success of the grid
as much as the web had on the Internet! It enables us to
build a truly scalable computational grid that follows
user-centric approach in scheduling. In this, one can
“sell” excess computational resource or “buy” when in
need and thus commoditizing compute power!

Acknowledgements

We thank Sudharshan Vazhkudai, Spyros Lalis, Rob
Gray, and David DiNucci for their comments on the
paper. The support of IPRS, MGS, DSTC, DSSE, and
IEEE Computer Society scholarships are acknowledged.

References
[1] Abramson, D., Giddy, J., and Kotler, L., High

Performance Parametric Modeling with Nimrod/G:
Killer Application for the Global Grid?, IPDPS’2000,
Mexico, IEEE CS Press, USA, 2000.

[2] Almond J., Snelling D., UNICORE: uniform access to
supercomputing as an element of electronic commerce,
Future Generation Computer Systems 15(1999) 539-548,
NH-Elsevier.

[3] Baker M., Buyya R., Laforenza D., The Grid:
International Efforts in Global Computing, Intl.
Conference on Advances in Infrastructure for Electronic
Business, Science, and Education on the Internet
(SSGRR'2000), Italy, 2000 (to appear).

[4] Brent C. and Culler, D., Rexec: A decentralized, secure
remote execution environment for clusters, 4th Workshop
on Communication, Architecture, and Applications for
Network-based Parallel Computing, France, 2000.

[5] Buyya, R. (ed.), High Performance Cluster Computing:
Architectures and Systems, Volume 1 and 2, Prentice Hall
PTR, NJ, USA, 1999.

[6] Buyya, R., Abramson, D., and Giddy, J., Nimrod/G: An
Architecture for a Resource Management and Scheduling

System in a Global Computational Grid, HPC
ASIA’2000, China, IEEE CS Press, USA, 2000.

[7] Berman F. and Wolski R., The AppLeS Project: A Status
Report, Proceedings of the Eight NEC Research
Symposium, Germany, May 1997.

[8] Chapin S., Clement M., and Snell Q., Strawman 1: A
Grid Resource Management Architecture, Grid Forum
Scheduling Working Group, Nov. 1999.

[9] Casanova H. and Dongarra, J., NetSolve: A Network
Server for Solving Computational Science Problems, Intl.
Journal of Supercomputing Applications and High
Performance Computing, Vol. 11, No. 3, 1997.

[10] Condor - http://www.cs.wisc.edu/condor/

[11] Czajkowski K., Foster I., Karonis N., Kesselman C.,
Martin S., Smith W., and Tuecke S., A Resource
Management Architecture for Metacomputing Systems,
IPPS/SPDP '98 Workshop on Job Scheduling Strategies
for Parallel Processing, 1998.

[12] DiNucci D., Abstract Owner (AO) Strawman, Grid
Forum Scheduling Working Group, Dec. 1999.

[13] DISCWorld - http://dhpc.adelaide.edu.au/
[14] Distributed.Net – http://www.distributed.net/

[15] Distributed ASCI Supercomputer (DAS) -
http://www.cs.vu.nl/das/

[16] Dongarra J., An Overview of Computational Grids and
Survey of a Few Research Projects, Symposium on
Global Information Processing Technology, Japan, 1999.

[17] Foster I. and Kesselman C., Globus: A Metacomputing
Infrastructure Toolkit, International Journal of
Supercomputer Applications, 11(2): 115-128, 1997.

[18] Foster, I., and Kesselman, C. (editors), The Grid:
Blueprint for a New Computing Infrastructure, Morgan
Kaufmann Publishers, USA, 1999.

[19] Globus Project - http://www.globus.org

[20] Globus Testbeds - http://www-fp.globus.org/testbeds/

[21] Grid Forum - http://www.gridforum.org/

[22] GF Scheduling Working Group, General Meeting Notes,
3rd Grid Forum Meeting, March’2000.

[23] Gridware, Codine/GRD, http://www.gridware.com

[24] JaWS - http://roadrunner.ics.forth.gr:8080/

[25] Legion - http://legion.virginia.edu/

[26] LSF Home Page - http://www.platform.com
[27] Mariposa-http://mariposa.cs.berkeley.edu:8000/mariposa/

[28] MOSIX - http://www.mosix.cs.huji.ac.il/

[29] NASA IPG – http://www.ipg.nasa.gov
[30] Schopf J., Nitzberg B., Chapin S., Clement M., and Snell

Q., Strawman2: A Grid Resource Management
Architecture, GF Scheduling Working Group, Dec. 1999.

[31] SETI@Home – http://setiathome.ssl.berkeley.edu/

[32] Ninf - http://ninf.etl.go.jp/

[33] Thigpen B. and Hacker T., Distributed Accounting on the
Grid, The Grid Forum Working Drafts, 2000.

