
Future Generation Computer Systems 29 (2013) 1909–1918
Contents lists available at SciVerse ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Grid Authorization Graph
Mustafa Kaiiali a,c,∗, Rajeev Wankar a, C.R. Rao a, Arun Agarwal a, Rajkumar Buyya b

a Department of Computer and Information Sciences, University of Hyderabad, Hyderabad, India
b Cloud Computing and Distributed Systems (CLOUDS) Laboratory, Department of Computer Science and Software Engineering, The University of
Melbourne, Australia
c Department of Computer Engineering, Mevlana University, Konya, Turkey

h i g h l i g h t s

• A brief overview of access control mechanisms used in grid systems is illustrated.
• The limitations of the Hierarchical Clustering Mechanism (HCM) are highlighted.
• The Grid Authorization Graph (GAG) is introduced to encounter all HCM limitations.
• The GAG Generator Algorithm is illustrated to build GAG decision graph.
• Embedding GAG in GT4 authorization framework is finally discussed.

a r t i c l e i n f o

Article history:
Received 24 July 2012
Received in revised form
21 March 2013
Accepted 6 April 2013
Available online 22 April 2013

Keywords:
Grid computing
Grid authorization
Access control
Hierarchical Clustering Mechanism
Grid Authorization Graph

a b s t r a c t

The heterogeneous and dynamic nature of a grid environment demands a scalable authorization system.
This brings out the need for a fast fine-grained access control mechanism for authorizing grid resources.
Existing grid authorization systems adopt inefficient mechanisms for storing resources’ security policies.
This leads to a large number of repetitions in checking security rules. One of the efficientmechanisms that
handle these repetitions is the Hierarchical Clustering Mechanism (HCM). HCM reduces the redundancy in
checking security rules compared to the Brute Force Approach (BFA) as well as the Primitive Clustering
Mechanism (PCM). Further enhancement is done to HCM to increase the scalability of the authorization
process. However, HCM is not totally free of repetitions and cannot easily describe the OR-based security
policies. A novelGrid AuthorizationGraph (GAG) is proposed to overcomeHCM limitations. GAG introduces
special types of edges named ‘‘Correspondence Edge’’/‘‘Discrepancy Edge’’ which can be used to entirely
eliminate the redundancy and handle the cases where a set of security rules are mutually exclusive.
Comparative studies are made in a simulated environment using the Grid Authorization Simulator (GAS)
developed by the authors. It simulates the authorization process of the existing mechanisms like BFA,
PCM, HCM and the proposed novel GAG. It also enables a comparative analysis to be done between these
approaches.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Grid computing is concernedwith a shared and coordinated use
of heterogeneous resources belong to distributed virtual organi-
zations to deliver nontrivial quality of services [1]. In grids, secu-
rity has a major concern [2]. The heterogeneity, massiveness and
dynamism of grid environments complicate and delay the autho-
rization process. This brings out the need for a fast and scalable
fine-grained access control mechanism to cater to grid require-
ments.

∗ Corresponding author.
E-mail addresses:mustafa_kaiiali@ieee.org (M. Kaiiali),

wankarcs@uohyd.ernet.in (R. Wankar), crrcs@uohyd.ernet.in (C.R. Rao),
aruncs@uohyd.ernet.in (A. Agarwal), raj@csse.unimelb.edu.au (R. Buyya).

0167-739X/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.future.2013.04.010
Currently, themain focus in the literature is on theway towrite
the resource’s security policy, either using a standard specification
language like SAML/XACML as used in VOMS [3] to provide the
interoperability property [4], or it can be specific to a particular
authorization system (as in Akenti [5]). Furthermore, they describe
the authorization process, either to be centralized (push model [6]
as VOMS and CAS [7,8]), or decentralized (pull model [6] as
PERMIS [9] and Akenti [10]). Some systems adopt transport level
security rather than message level security as the latter involves
slow XML manipulations, which make adding security to grid
services a performance bottleneck [11].

Current grid authorization systems seldom look at the way
in which they store and organize the resources’ security policies
in order to work more effectively. There is no well-defined data
structure to store and manage the security policies to provide a
quick response to the user. There are not so many articles that

http://dx.doi.org/10.1016/j.future.2013.04.010
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.future.2013.04.010&domain=pdf
mailto:mustafa_kaiiali@ieee.org
mailto:wankarcs@uohyd.ernet.in
mailto:crrcs@uohyd.ernet.in
mailto:aruncs@uohyd.ernet.in
mailto:raj@csse.unimelb.edu.au
http://dx.doi.org/10.1016/j.future.2013.04.010


1910 M. Kaiiali et al. / Future Generation Computer Systems 29 (2013) 1909–1918
Fig. 1. Example of the Brute Force Approach access control mechanism.
have been published so far, and the most representative methods
are the Brute Force Approach (BFA) [12] and the Primitive Clustering
Mechanism (PCM) [13–15].

Every resource in a grid has its own security policy, which may
be identical or quite similar to other security policies of some other
resources. This fact motivated us to cluster the resources which
have similar security policies in a hierarchical manner based on
their shared security rules. The authorization system can built a hi-
erarchical decision tree to find User Authorization Resource Group
(UARG). The Hierarchical Clustering Mechanism (HCM) [16–19] was
a step in that direction to provide amore fine-grained clustering at
multi-levels.

This paper highlights the limitations of HCM and introduces the
Grid Authorization Graph (GAG) to overcome these limitations and
to further enhance the authorization process by adopting new tools
which cannot be adopted in HCM.

Rest of the paper is organized as follows: Section 2 gives
a brief description of HCM. Section 3 discusses the proposed
GAG and shows how the drawbacks of HCM are addressed. GAG
Generator Algorithm is proposed in Section 4. Section 5 explains
how GAG components can be embedded in current authorization
architecture like GT4. Experiments with results are discussed in
Section 6. Section 7 concludes and suggests future work.

2. A brief description of the Hierarchical ClusteringMechanism
(HCM)

Consider the following definition:

• Let R = {rj|j = 1, . . . , k} be the set of grid resources.
• Let SR = {srj|j = 1, . . . , l} be the set of security rules.
• Then for each resource rj ∈ R there will be a
corresponding security policy SPj ⊆ SR.

If a user wants to access resource rj then he has to satisfy all the
security rules of SPj. Let us now consider the following example:

A grid environment has 12 resources R = {r1, r2, . . . , r12} and
four security rules SR = {sr1, sr2, sr3, sr4} where:

• sr1 requires the user to be from XYZ University.
• sr2 requires the user to have a teacher role.
• sr3 requires the user to have a student role.
• sr4 requires the user to be in 2nd year .

All the 12 resources are deployed with the following security
policies:

• r1, r2 require the user to be from XYZ University to be able to
access them. So SP1 = SP2 = {sr1}.
Fig. 2. Example of the Primitive Clustering Mechanism.

• r3, r4 require the user to be from XYZ University and to have a
teacher role in order to access them. So SP3 = SP4 = {sr1, sr2}.

• r5, r6, r7, r8, r9 require the user to be a student in XYZ
University. So SP5 = SP6 = SP7 = SP8 = SP9 = {sr1, sr3}.

• r10, r11, r12 require the user to be a 2nd year student in XYZ
University. So SP10 = SP11 = SP12 = {sr1, sr3, sr4}.

BFA for the proposed example stores the security policies as
shown in Fig. 1. We have 12 security policies each of them consists
of a set of security rules, all together need to be checked to find the
UARG. Redundancy of BFA is obvious as we have many redundant
security policies like SP5, SP6, SP7, SP8 and SP9.

PCM reduces BFA redundancy by clustering the resourceswhich
have identical security policies. Fig. 2 shows how PCM stores the
security policies of the proposed example. It is obvious that the
number of security policies to be checked is reduced from 12
security policies to only four security policies.

PCM removes the redundancy of checking identical security
policies, but it cannot remove the redundancy of checking identical
security rules. In other words, it avoids checking identical security
policies SPs more than once; since each security policy SP is a
set of security rules, the security rule (sr) level of redundancy is
still prevailing in PCM. As an example, XYZ security rule has to be
checked four times.

HCM [16] clusters the resources in parent nodes based on their
shared security policies, as in PCM. However, it also achieves a
hierarchical clustering of these parent nodes based on their shared



M. Kaiiali et al. / Future Generation Computer Systems 29 (2013) 1909–1918 1911
Fig. 3. Example of the Hierarchical Clustering Mechanism.

Table 1
Comparisons of the three mechanisms (total number of resources is 12).

X Y Z

BFA 12 25 2.08
PCM 4 8 0.67
HCM – 4 0.33

Table 2
Security table example (resources vs. security rules).

Rid XYZ Teacher Student 2nd year

r1 1 0 0 0
r2 1 0 0 0
r3 1 1 0 0
r4 1 1 0 0
r5 1 0 1 0
r6 1 0 1 0
r7 1 0 1 0
r8 1 0 1 0
r9 1 0 1 0
r10 1 0 1 1
r11 1 0 1 1
r12 1 0 1 1

security rules to reduce the security rule level of redundancy. Fig. 3
shows HCM representation of the proposed example.

Table 1 presents a comparison between the three mechanisms
on the same example discussed earlier. The following parameters
are used in the comparison:
• The number of security policies to be checked, say = x.
• The number of security rules to be checked, say = y.
• The average number of security rules to be checked per single

resource = (y/total number of resources), say = z.

Building HCM decision tree is not a trivial process. An algorithm
that properly chooses the root security rule of the tree and its
sub-trees is required. For that the Counting Algorithm is proposed
in [16]. It is a single-pass, depth-first algorithm developed to build
HCM decision tree based on the data of the Security Table (ST).

The Security Table (ST) is a table representation of all resources’
security policies; where security rules are considered as attributes,
and resources as objects, with table entries of (i, j)th cell as 1 if
the jth security rule is an element of the security policy of the
ith resource. Table 2 is the corresponding Security Table for the
proposed example. Fig. 3 is the output decision tree when we run
the Counting Algorithm on Table 2. Further details on HCM can be
found in [16–19].

3. The Grid Authorization Graph (GAG)

In this section, the limitations of HCM are discussed. Then the
Grid Authorization Graph (GAG), a decision graph derived fromHCM
Table 3
Security table example (resources vs. security rules).

Rid XYZ Univ. Student XYZ Soft. Co. Programmer

r1 1 0 0 0
r2 1 0 0 0
r3 1 1 0 0
r4 1 1 0 0
r4 0 0 1 1
r5 0 0 1 0
r6 0 0 1 1

Fig. 4. Describing OR-based security policies in HCM.

decision tree by embedding various edges and tools, is introduced
to encounter all the issues and limitations of HCM.

3.1. HCM limitations

3.1.1. Describing OR-based security policies
A grid resource may have multiple ways to access it. For

example, consider a grid environment of six resources and four
security rules represented by the security table shown in Table 3.
Resource (r4) has two different ways to access it. That is why it
has two rows in the security table. A user can access resource
(r4) if he/she is a student in XYZ University OR a programmer in
XYZ Software Company.

HCM decision tree cannot represent r4 security policy, unless
it duplicates r4 resource node as shown in Fig. 4. In general, if a
resource has x ways to access it, then HCM decision tree has to
duplicate its resource node x times. This is why HCM cannot easily
describe the OR-based security policies.

3.1.2. Redundancy in HCM
Even though HCM reduces the redundancy compared to BFA

and PCM, it does not entirely eliminate it. For example, consider
a grid environment of 20 resources and five security rules where
Table 4 represents the resources’ security policies.

Fig. 5 shows the output decision tree when the Counting Algo-
rithm runs on Table 4; It can be observed that the security rule
sr4 has to be checked four times and sr5 has to be checked three
times. This shows that HCM does not completely eliminate the re-
dundancy. That leads us to introduce the Grid Authorization Graph
(GAG) as discussed in the next sub-section.

3.2. Resolving HCM limitations using GAG

3.2.1. Describing OR-based security policies using GAG
A graph data structure allows a node to be a child of more than

one parent node. Thus it can easily describe the OR-based security
policies without the need to duplicate any resource’s node. Fig. 6
shows how GAG represents the security policies of Table 3.



1912 M. Kaiiali et al. / Future Generation Computer Systems 29 (2013) 1909–1918
Fig. 5. Redundancy in HCM.
Table 4
Security table example (resources vs. security rules).

Rid sr1 sr2 sr3 sr4 sr5

r1 1 0 0 0 0
r2 1 0 0 0 0
r3 1 1 0 0 0
r4 1 1 0 0 0
r5 1 1 0 0 0
r6 1 1 0 0 0
r7 1 1 0 1 0
r8 1 1 0 1 0
r9 1 1 0 0 1
r10 1 1 0 0 1
r11 1 0 1 0 0
r12 1 0 1 0 0
r13 1 0 1 0 0
r14 1 0 1 1 0
r15 1 0 1 1 1
r16 1 0 1 1 1
r17 1 0 0 0 1
r18 1 0 0 0 1
r19 1 0 0 1 1
r20 1 0 0 1 0

Fig. 6. Describing OR-based security policies in GAG.

3.2.2. Eliminating redundancy of HCM using GAG
Fig. 5 shows an example of redundancy in HCM decision tree. To

encounter this issue, GAG introduces a special type of edges named
‘‘Correspondence Edge’’ which can be used to entirely eliminate
the redundancy.
Fig. 7 represents the Correspondence Edgewith a red dotted line.
It is an edge drawn between redundant nodes and can be used as
the following:

Once a security rule, as an example sr5, is checked for the first
time, a one level BFS (Breadth-First Search) [20] on its Correspon-
dence Edges is enough to mark all the redundant security rules
with the result of the first check. Thus, when the authorization
process reaches a redundant node it will find it already marked
with the result of the first check and no need to do any further
checking.

Consider a user whose credentials satisfy sr1, sr2 and sr5 secu-
rity rules. Fig. 8 shows the decision graph parsed for this particular
user. First, sr1 is checked. As the user satisfies sr1, the system adds
resources r1 and r2 to the UARG then it proceeds to check sr2. As
the user satisfies sr2, the system adds resources r3, r4, r5, and r6 to
the UARG then it proceeds to check sr3. As the user does not sat-
isfy sr3, then the whole sr3’ sub-tree is marked as ‘‘unauthorized’’
and then the system proceeds to sr5. As the user satisfies sr5, the
system adds resources r17 and r18 to the UARG then it makes a BFS
on the Correspondence Edges of sr5 node to mark all redundant sr5
nodes as ‘‘authorized’’ and then all child resources of these redun-
dant nodes, like r9 and r10, are added to the UARG. Then the system
proceeds to sr4 node. As the user does not satisfy sr4 security rule, a
BFS is done on the Correspondence Edges to mark all redundant sr4
nodes as ‘‘unauthorized’’.

There are two rules to be considered while propagating the
authorization result through the Correspondence Edges:

• The ‘‘unauthorized’’ marking dominates the ‘‘authorized’’ mark-
ing, so the system cannot mark a redundant node as ‘‘autho-
rized’’ when it has been previously marked as ‘‘unauthorized’’.
As an example, when we have propagated the ‘‘authorized’’ de-
cision to sr5 node in the sub-tree of sr3 node, the whole sr3 sub-
tree was already marked as ‘‘unauthorized’’. So we cannot mark
this sr5 node as ‘‘authorized’’.

• If the parent security rule of a redundant node is not yet checked
then we cannot add its child resources to the UARG when we
propagate the ‘‘authorized’’ decision until its parent node is
checked. As an example, suppose the decision graph is parsed for
a user whose credentials satisfy sr4 security rule and does not
satisfy sr3. If sr4 security rule is checked before sr3 then while
propagating the ‘‘authorized’’ decision to the redundant sr4 node
in sr3’ sub-tree, we cannot add its child resource r14 to the UARG
because its parent security rule (sr3) is not yet checked.



M. Kaiiali et al. / Future Generation Computer Systems 29 (2013) 1909–1918 1913
Fig. 7. Eliminating redundancy in GAG.
Fig. 8. Example of parsing the decision graphwith the Correspondence Edges in GAG.
It is useful to mention that, apart from eliminating redundancy.
Correspondence Edges provide more functionality listed below:

• Consistency in checking security rules, and
• Can also be used for compatible security rules; that is when

different security rules always share the same authorization
decision. Compatible security rules have to be defined by the
administrator and cannot be discovered automatically.

3.2.3. Handling mutually exclusive security rules
Another type of edges which reflects different meaning of

dependency can be introduced to handle the case where a set of
security rules are mutually exclusive. This type of edges is named
as ‘‘Discrepancy Edge’’. Fig. 9 represents the Discrepancy Edgewith
a black dotted line. It is an edge drawn between each mutually
exclusive security rules. It can be read as the following:

‘‘If sr3 is satisfied then sr4 and sr5 cannot be satisfied’’.
So it is evident not to check sr4 and sr5 if sr3 is satisfied as it

is already known to the system that sr4 and sr5 security rules are
mutually exclusive to sr3 and they cannot be satisfied all together.
Therefore, with the help of the Discrepancy Edges, once sr3 security
rule is checked and satisfied, a one level BFS on the Discrepancy
Edges is enough to mark all the set of mutually exclusive security
rules sr4 and sr5 as ‘‘unauthorized’’.

Consider a user whose credentials satisfy security rules {sr1,
sr2, sr3}. Fig. 10 shows the decision graph (shown earlier in Fig. 9)
parsed for this particular user. First, sr1 is checked. As the user sat-
isfies sr1, the system adds resources r1 and r2 to the UARG then it
proceeds to check sr2. As the user satisfies sr2, the system adds re-
sources r3, r4, r5, and r6 to the UARG then it proceeds to check sr3.
As the user satisfies sr3, the systemadds resources r11, r12 and r13 to
the UARG then it makes a BFS on the Discrepancy Edges of sr3 node
to mark all the set of mutually exclusive security rules sr4 and sr5
as ‘‘unauthorized’’. Correspondence Edges are then used to mark all
the redundant sr4 and sr5 nodes as ‘‘unauthorized’’.

In general, each type of the Dependency Edges (Correspon-
dence/Discrepancy) can have seven forms depicted in Fig. 11. The
‘‘OneWay’’ form propagates the result in one direction only, while
the ‘‘TwoWays’’ form propagates in two directions. The ‘‘Positive’’
form propagates the ‘‘authorized’’ result only while the ‘‘Negative’’
form propagates the ‘‘unauthorized’’ result only.



1914 M. Kaiiali et al. / Future Generation Computer Systems 29 (2013) 1909–1918
Fig. 9. Handling mutually exclusive security rules in GAG.
Fig. 10. Example of parsing the decision graphwith the Correspondence and Discrepancy Edges.
Fig. 11. Different forms of Dependency Edges.

4. GAG Generator Algorithm

Dependency Edges can be added manually by the administrator
as per system requirements. However, it is unfeasible to add
all Correspondence Edges between redundant nodes manually. An
algorithm which automatically tracks the redundant nodes and
draws the Correspondence Edges between them is required.
The Counting Algorithm [16], used earlier to build HCM deci-
sion tree is upgraded in this section to build GAG decision graph
by adding the Correspondence Edges automatically between redun-
dant nodes. It is named as ‘‘GAG Generator Algorithm’’. It uses the
Security Rules Vector (SRV) to avoid the need to draw a clique be-
tween redundant nodes when we are not sure which redundant
node is going to be checked first.

The output of the GAG Generator Algorithm when it runs on
the security table shown in Table 4 is depicted in Fig. 12. During
the authorization process, when the security rule of a particular
node is checked, the result is propagated through the undirected
edge of that node to its correspondent cell in the SRV. Then the
result is further propagated through the correspondent SRV cell
to all redundant nodes via one level BFS. Table 5 describes the
computational complexity of the GAG Generator Algorithm.

After introducing GAG with its powerful tools, we can notice
that: ‘‘HCM decision tree is still at the core of GAG’’. Figs. 7 and 9
show an example of that. This means all the caching mechanisms,
which were designed to work in HCM decision tree like the
Temporal Caching Mechanism (TCM) [17], and the Hamming
Distance Caching Mechanism (HDCM) [17], are still valid to work
in GAG. Thus TCM and HDCM modules of HCM can be embedded
directly in GAG Search Engine described in Section 5. Moreover,



M. Kaiiali et al. / Future Generation Computer Systems 29 (2013) 1909–1918 1915
Fig. 12. Example of the GAG Generator Algorithm.
all the analysis that have been done to prove the stability of HCM
against the dynamic changes in the grid environment [17] is also
valid for GAG.

GAG Generator Algorithm:
Inputs: Resources’ Security Table
Outputs: Grid Authorization Graph (GAG)
Variables:
[1] SRV: A vector of all security rules (Fig. 12).
[2] Each node (N) in the graph is a structure of 3 fields:
– the security rule sr,
– an interim security table ST and
– an undirected correspondent edge from the node to the
representative sr cell in SRV.

Begin:
Step 1: (Initialization)
• Initialize the decision tree by a root node with NULL
securityrule (sr).

• Build the security table which represents the entire
security policies of the system. Assign it as the security
table property (ST) of the root node.

• Assign NULL to the root node correspondent edge.
• Execute Step 2 for the root node.
Step 2: (Processing of one node N)
Step 2.1: (Adding N ’s Resources)
• Add each resource, whose correspondent row in N’s ST
has ‘0’ cells, as a child resource to N

Step 2.2: (Processing of N ’s security table (ST ))
• Sum the cells of each column of N’s ST and refer it as
Count.

• Choose the security rule srj with the highest Count.
• Divide ST into two tables excluding the jth column as
the following:
– The first table (T1) contains the rows of the resources
which demand srj (each row whose jth cell = 1).
– The second table (T2) contains the rows of the
resources which do not demand srj (each row whose
jth cell = 0).
Step 2.3: (N Bifurcation)
• Add a left child node, named ‘‘LCN’’, to Nwith srj as the
security rule (sr) and T1 as the security table (ST). Let
the correspondent edge of LCN refer to srj’s cell in SRV.

• Add a right child node, named ‘‘RCN’’, to N with NULL
as the security rule (sr) and T2 as the security table (ST).
Let the correspondent edge of RCN refer to NULL.

Step 3: (Recurring)
• Repeat step 2 for each child node until a node with
empty security table is reached.

Step 4: (Pruning)
• Prune the graph at nodes labelled NULL.
• Erase all interim security tables (STs) to free space.

End.

Table 5
The average computational complexity of the GAG Generator Algorithm. (M is the
number of resources and N is the number of security rules.)

Step Complexity Repeated

Step 1 O (M × N) (1) time

Step 2 O


M
2i

× (N − i)

: (i) is the node’s level

N
0 2i

× (Step 2)

Step 3 O (1): Simple condition check. (N + 1) times
Step 4 O (N): Maximum NULL nodes is N . (1) time

Total algorithm complexity O

M × N2


: usually N ≪ M .

5. Embedding GAG in GT4 authorization framework

GT4 [21] authorization framework [22] was constructed based
on the OASIS XACML and SAML standards [23]. It contains the PEP
(Policy Enforcement Point) [24], the PDP (Policy Decision Point) [24],
the PIP (Policy Information Point) [24] and the PAP (Policy Adminis-
tration Point) [24]. To make the framework compatible with GAG,
fivemore subcomponentswere added to the architecture as shown
in Fig. 13. These subcomponents are:



1916 M. Kaiiali et al. / Future Generation Computer Systems 29 (2013) 1909–1918
Fig. 13. GAG enabled authorization framework (shaded components are our contributions).
• RAP (Request Analyzer & Processor) and GAG Search Engine in the
PDP.

• XML Parser, GAG Generator Engine and GAG Database.

The resource’s security policy is submitted by the stakeholder to
the PAP through SAML or XACML specification language. Thus an
XML Parser is required to parse the security policies’ files, pick up
the security rules and provide a simplified input to GAG Generator
Engine in the form of Security Table (like Table 2). Typically there
are two types of XML parsers, SAX [25] andDOM [26] parsers. DOM
Parser is slow and consumes a lot of memorywhen it loads an XML
document that contains a lot of data. SAX is faster than DOM and
uses lessmemory. Thus using SAX parser is strongly recommended
in a dynamic and huge environment such as the grid.

GAG Generator Engine is responsible to build the proposed Grid
Authorization Graph (GAG) out of the security table provided by the
XML Parser. Practically, it is a direct implementation of the GAG
Generator Algorithm whose pseudo code is shown in Section 4.
Following this, it maintains the output decision graph in GAG
Database to be used by GAG Search Engine.

When a user raises an access request, the PEP intercepts the
request and propagates it to the PDP. The request is kept in a queue
in the PDP. The RAP is a simple Action Listener which listens on
the PDP queue. Once a request is enrolled into the queue, RAP
picks up the request, fetches the authorization attributes [27] of
the correspondent subject (user) from the PIP then it fires an
authorization process in the GAG Search Engine to find the UARG.

GAG Search Engine is responsible to parse the decision graph for
the incoming requests to find the UARG (Fig. 10). Considering the
large number of users and resources which exist in the grid, GAG
Search Engine may cause a bottleneck to the authorization system
as a centralized process to serve all the incoming authorization
requests. This can be solved either by replicating the decision
graph into several authorization servers to share the authorization
load or by enhancing the search engine itself to serve multiple
authorization requests concurrently. However, this is not a special
issue of GAG. It is inherited from HCM and has already been
addressed by introducing the Concurrent HCM [19]. As HCM
Table 6
Experiments and results: (Unit is the number of checked security rules).

AVG Standard deviation Range [MIN, MAX]

HCM 51 41.8616 [6, 207]
GAG 13 2.4310 [6, 15]

decision tree is nestled at the core of GAG, implementing Concurrent
GAG Search Enginewill be quite similar to implementing Concurrent
HCM.

Finally, GAG Search Engine returns the UARG back to RAP based
on which RAP will make the access decision to the targeted
resources. The access decision is sent back to the PEP. The PEP fulfils
the obligations and either permits or denies the access request
according to the decision of the PDP.

6. Experiments and results

For a grid environment of 200 resources and 15 security rules,
100 different authorization processes have been initiated. For each
authorization process, the posterior analysis of HCM and GAG has
been done and depicted in Table 6 and Fig. 14 (X axis is for the
authorization process number (Experiment No) and Y axis is for
the authorization complexity (No of checked security rules)).

Looking at the most important performance metrics, AVG and
MAX shown in Table 6, we can realize that GAG outperforms HCM.
MAX number of checked security rules in GAG equals the total
number of security rules existing in the system because GAG’s
redundancy is ZERO. While in case of HCM, due to the redundant
nodes in the decision tree, MAX number of checked security rules
was quite large as compared to GAG.

It is also important to notice that while GAG entirely eliminates
the redundancy in checking security rules, it also adds extra
complexity to the authorization process when it does Breadth First
Search (BFS) on the Dependency Edges. However, the cost of the
BFSs operations compared to the cost of checking the redundant
security rules is negligible. As checking a security rule requires



M. Kaiiali et al. / Future Generation Computer Systems 29 (2013) 1909–1918 1917
Fig. 14. Experiments and results.
checking of user credentials (attributes assertions [28] issued by
the Attributes Authorities [29]), and this further requires PKI [30]
operations, which are known to be expensive processes [31].

NOTE: All experiments are done on the Grid Authorization
Simulator (GAS). GAS is a C# based application developed in Grid
Computing Laboratory, University of Hyderabad, India. It is used
to simulate the authorization process of existing mechanisms like
BFA, PCM, HCM as well as our proposed GAG mechanism.

7. Conclusion and future scope

In this paper, a novel grid authorization enhancement is
proposed by introducing the Grid Authorization Graph. While HCM
reduces the redundancy in checking security rules compared to
BFA and PCMmechanisms, GAG eliminates it completely.

As HCM is still at the core of GAG, TCM and HDCM caching
mechanisms are still valid for work in GAG and all the analysis,
which have been done to prove the stability of HCM against the
dynamic changes in the grid are also valid for GAG. GAG introduces
special types of edges named Correspondence Edge/Discrepancy
Edge which are used to completely eliminate the redundancy
and handle the cases where a set of security rules are mutually
exclusive, to speed up the authorization process.

This paper also shows how GAG can be embedded in the GT4
authorization framework. Thus, GAG is an efficient and superior
access control mechanism which can be integrated in the present
popular grid authorizing systems like VOMS, Akenti, PERMIS, etc.
The real impact on the performance can be observed if GAG is used
in a medium/large environments.

GAG provides the UARG onwhich a scheduling algorithm has to
run later to coordinate job execution among the selected resources.
As GAG covers the entire grid resources during the authorization
process, one can think of utilizing this process to collect initial
information about resources’ availability and other important
scheduling parameters to the scheduler which may help to speed
up the scheduling process.

One of the things which leads us to develop our own simulator
is that existing GridSim does not have an authorization module
where we can integrate our mechanisms and test them. One of the
future works is to implement an authorization module in GridSim.
Moreover, a realtime implementation of GAG in real grid systems
such as GridBus and Globus can be a follow-up step.

References

[1] I. Foster, What is the grid? A three point checklist, GRID Today (2002).
[2] A. Chakrabarti, A. Damodaran, S. Sengupta, Grid computing security: a

taxonomy, IEEE Security & Privacy 6 (1) (2008) 44–51.
[3] R. Alfieri, R. Cecchini, V. Ciaschini, L. dell’Agnello, Á. Frohner, K. Lörentey,

F. Spataro, From gridmap-file to VOMS: managing authorization in a grid
environment, Future Generation Computer Systems 21 (4) (2005) 549–558.

[4] B. Lang, I. Foster, F. Siebenlist, R. Ananthakrishnan, T. Freeman, A multipolicy
authorization framework for grid security, in: IEEE NCA06 Workshop on
Adaptive Grid Computing, Cambridge, USA, July 24–26, 2006.

[5] W. Johnston, S. Mudumbai, M. Thompson, Authorization and attribute
certificates for widely distributed access control, in: Proceedings of IEEE
7th International Workshops on Enabling Technologies: Infrastructures for
Collaborative Enterprises—WETICE’98.

[6] A. Chakrabarti, Grid Computing Security, Springer, 2007.
[7] L. Pearlman, V. Welch, I. Foster, C. Kesselman, S. Tuecke, A community

authorization service for group collaboration, in: IEEE 3rd International
Workshop on Policies for Distributed Systems and Networks, 2002.

[8] L. Pearlman, V. Welch, I. Foster, C. Kesselman, S. Tuecke, The community
authorization service: status and futures, in: Computing in High Energy
Physics, CHEP03, 2003.

[9] D.W. Chadwick, O. Otenko, The PERMIS X.509 role based privilege manage-
ment infrastructure, in: Proceedings of the 7th ACM Symposium on Access
Control Models and Technologies, SACMAT 2002, June 2002.

[10] M. Thompson, A. Essiari, S. Mudumbai, Certificate-based authorization policy
in a PKI environment, ACM Transactions on Information and System Security
(TISSEC) 6 (4) (2003) 566–588.

[11] S. Shirasuna, A. Slominski, L. Fang, D. Gannon, Performance comparison of
security mechanisms for grid services, in: Proceedings of Fifth IEEE/ACM
International Workshop on Grid Computing, 8 November 2004, pp. 360–364.

[12] A. Hoheisel, S. Mueller, B. Schnor, Fine-grained security management in
a service-oriented grid architecture, in: Proceedings of the Cracow Grid
Workshop, Poland, 2006, pp. 433–440.

[13] E. Bertino, P. Mazzoleni, B. Crispo, S. Sivasubramanian, Towards supporting
fine-grained access control for Grid resources, in: 10th IEEE International
Workshop on Future Trends of Distributed Computing Systems, FTDCS’04,
pp. 59–65.

[14] W. Johnston, S. Mudumbai, M. Thompson, Authorization and attribute
certificates for widely distributed access control, in: Proceedings of Seventh
IEEE International Workshop on Enabling Technologies: Infrastucture for
Collaborative Enterprises, WET ICE’98, 1998, pp. 340–345.



1918 M. Kaiiali et al. / Future Generation Computer Systems 29 (2013) 1909–1918
[15] M. Kaiiali, R. Wankar, C.R. Rao, A. Agarwal, A rough set based PCM
for authorizing grid resources, in: Proceeding of IEEE 10th International
Conference on Intelligent Systems Design and Applications, ISDA, Cairo, 29th
November 2010, pp. 391–396.

[16] M. Kaiiali, R. Wankar, C.R. Rao, A. Agarwal, Design of a structured fine-
grained access control mechanism for authorizing grid resources, in: IEEE
11th International Conference on Computational Science and Engineering, São
Paulo, Brazil, 16–18 July 2008, pp. 399–404.

[17] M. Kaiiali, R. Wankar, C.R. Rao, A. Agarwal, Enhancing the hierarchical
clustering mechanism of storing resources’ security policies in a grid
authorization system, in: The 6th International Conference on Distributed
Computing and Internet Technology, ICDCIT, in: LNCS, vol. 5966, Springer,
2010, pp. 134–139.

[18] M. Kaiiali, R. Wankar, C.R. Rao, A. Agarwal, New efficient tree-building
algorithms for creating HCM decision tree in a grid authorization system,
in: The 2nd International Conference on Network Applications Protocols and
Services, NETAPPS, Malaysia, 22–23 September 2010, pp. 1–6.

[19] M. Kaiiali, R. Wankar, C.R. Rao, A. Agarwal, Concurrent HCM for authorizing
grid resources, in: The 8th International Conference on Distributed Computing
and Internet Technology, ICDCIT, in: LNCS, vol. 7154, Springer, 2012,
pp. 255–256.

[20] BFS (Breadth-First Search). http://en.wikipedia.org/wiki/Breadth-first_search.
[21] Globus Toolkit 4. http://www.globus.org/toolkit/.
[22] GT4 Authorization Framework. http://www.globus.org/alliance/events/sc06/

AuthZ.pdf.
[23] OASIS, eXtensible Access Control Markup Language (XACML), V2.0, January

2005.
[24] J. Vollbrecht, P. Calhoun, S. Farrell, L. Gommans, G. Gross, B. de Bruijn, C. de

Laat, M. Holdrege, D. Spence, AAA authorization framework, IETF, RFC 2904,
August 2000.

[25] Y. Pan, Y. Zhang, K. Chiu, Hybrid parallelism for XML SAX parsing, in: IEEE
International Conference on Web Services, ICWS08, 23–26 September 2008,
pp. 505–512.

[26] T. Takase, K. Tajima, Lazy XML parsing/serialization based on literal and DOM
hybrid representation, in: IEEE International Conference on Web Services,
ICWS08, 23–26 September 2008, pp. 295–303.

[27] S. Farrell, R. Housley, An Internet attribute certificate profile for authorization,
IETF, RFC 3281, April 2002.

[28] M. Lorch, B. Cowles, R. Baker, L. Gommans, P. Madsen, A. McNab, L. Ramakrish-
nan, K. Sankar, D. Skow,M.R. Thompson, Conceptual grid authorization frame-
work and classification, GGF, 2004. http://www.gridforum.org/documents/
GFD.38.pdf.

[29] S. Turner, S. Chokhani, Clearance attribute and authority clearance constraints
certificate extension, IETF, RFC 5913, June 2010.

[30] C. Adams, S. Farrell, Internet X.509 public key infrastructure certificate
management protocols, IETF, RFC 2510, March 1999.

[31] Developing and maintaining a PKI can be expensive. http://www.tpub.com/
content/cg2001/d01277/d012770050.htm.

Mustafa Kaiiali is working as Assistant Professor in the
Department of Computer Engineering, Mevlana Univer-
sity, Konya, Turkey since 2013. He has completed his un-
dergraduate studies (B.E.) at Aleppo University. After his
Bachelor degree he had his postgraduate studies (M.Tech
degree) and (Ph.D. degree) at the Department of Computer
and Information Sciences (DCIS), University of Hyderabad,
India. His areas of expertise are: Algorithms, Networking,
Information Security, Parallel and Distributed Computing,
Grid & Cloud Computing, and Database Systems. His cur-
rent research work focus is on Grid Security. He has publi-

cations in many IEEE and Springer proceedings.

Rajeev Wankar is working as an Associate Professor in
the Department of Computer and Information Sciences
at University of Hyderabad since July 2004. Before
joining this University he was serving as a Lecturer
in the Department of Computer Sciences of North
Maharashtra University Jalgaon for ten years. He earned
Ph.D. in Computer Science from the Department of
Computer Science, Devi Ahilya University Indore. In 1998,
the German Academic Exchange Service awarded him
‘‘Sandwich Model’’ fellowship. He was working in the
Institut für Informatik, Freie Universität, Berlin and had

collaboration with Scientists of Konrad Zuse Institut für Informationstechnik
(ZIB), a Supercomputing Laboratory in Berlin, for almost two years. Currently
he is working in the area of Parallel Computing, especially Parallel Algorithms
design using Reconfigurable Bus System, Distributed Shared Memory Computing,
Grid Computing and Multi Core Computing. He is actively participated in an
International Geo-Grid activity known as GEON with San Diego Supercomputing
Centre, University of California, San Diego. He served as a program committee
member in many prestigious conferences such as HiPC-07, TEAA, ICDCIT, TENCON
etc. He published many Journal and Conference papers and served as the Guest
Editor of IJCSA’s Special issue on Grid and Parallel Systems.

C.R. Rao completed his B.Sc. and M.Sc. in Statistics from
Andhra University and Osmania University respectively,
Ph.D. in Statistics and M.Tech (CS & Engineering) from Os-
mania University.

He worked as a lecturer in Statistics at Osmania Uni-
versity. Since 1986, he is working in the School of Mathe-
matics and Computer/Information Sciences, University of
Hyderabad. Presently he is a Professor in the Department
of Computer and Information Sciences, University of Hy-
derabad. His current research interests are Simulation &
Modeling and Knowledge Discovery. Prof. Rao is a mem-

ber of the Operation Research Society of Indian, Indian Mathematical Society, In-
ternational Association of Engineers, Society for development of statistics, Andhra
Pradesh Society forMathematical Sciences, Indian Society for Probability and Statis-
tics, Society for High Energy Materials, International Rough Set Society, Indian
Society for Rough sets, International Rough Set Society and also a Fellow of The In-
stitution of Electronics and Telecommunication Engineers and Society for Sciences.

Prof. Rao Guided 5 Ph.Ds, 40 M.Techs, 8 M.Phils. He has nearly 40 Journal and
80 Proceeding Papers. He is Co-author for a book on ‘Evaluation of Total Literacy
Campaigns’.

Arun Agarwal completed his B.Tech (Electrical Engineer-
ing) in 1979 and Ph.D. (Computer Science) in 1989 both
from IIT Delhi. He started his career as a Senior Research
Assistant in IIT Delhi in 1979 and then joined University of
Hyderabad in 1984, where at present he is a Professor of
Department of Computer/Information Sciences.

Prof. Agarwal was a Visiting Scientist at The Robotics
Institute, Carnegie-Mellon University, USA and Research
Associate at Sloan School of Management, Massachusetts
Institute of Technology, USA. He has also visited, Monash
and Melbourne University in Australia; National Center

for High Performance Computing, Hsinchu, Taiwan; Chinese Academy of Sciences,
Beijing, China; San Diego Supercomputing Centre USA; BioInformatics Institute in
Singapore, Queensland, Australia; NECTEC, Thailand; NCSA, University of Illinois,
Urbana-Champaign, USA; USM, Penang, Malaysia; KISTI, South Korea; IOIT, VAST,
Hanoi, Vietnam etc.

He is on the Editorial Board of Editor, Journal of Emerging Technologies in Web
Intelligence, International Journal of Pattern Recognition (RBCS); and Engineering
Letters of International Association of Engineers. He is also a Fellow of Andhra
Pradesh Akademi of Sciences, Fellow of IETE, Senior Member of IEEE, USA; Expert
Member of AICTE to recognize new colleges to start engineering courses; Member
of Board of Studies of several Universities. Hewas Chairman of IEEE Hyderabad Sec-
tion for the years 2001 and 2002. He also received the IEEE Region 10 Outstanding
Volunteer Award in 2009 in recognition of his dedications and contributions.

He has served on the technical program committee of numerous conferences in
the area of Pattern Recognition and Artificial Intelligence. He has served as commit-
tee chairs of a number of these conferences. He is also on the Steering Committee
of PRAGMA, Member APGrid PMA. He is a member of GARUDA project, a national
initiative on Grid Computing.

His areas of interest are in Computer Vision, Image Processing, Neural Networks
and Grid Computing. He has guided 9 Ph.D. Thesis andmore than 125 postgraduate
dissertation and has published about 90 papers. He has several projects and consul-
tancy in hand with several industry/research laboratories.

Rajkumar Buyya is Professor of Computer Science and
Software Engineering; and Director of the Cloud Com-
puting and Distributed Systems (CLOUDS) Laboratory at
the University of Melbourne, Australia. He is also serv-
ing as the founding CEO of Manjrasoft, a spin-off com-
pany of the University, commercializing its innovations in
Cloud Computing. He has authored over 400 publications
and four text books. He also edited several books includ-
ing ‘‘Cloud Computing: Principles and Paradigms’’ (Wiley
Press, USA, Feb 2011). He is one of the highly cited authors
in computer science and software engineering worldwide

(h-index = 62 and 18700 + citations).
Software technologies for Grid and Cloud computing developed under Prof.

Buyya’s leadership have gained rapid acceptance and are in use at several aca-
demic institutions and commercial enterprises in 40 countries around the world.
Prof. Buyya has led the establishment and development of key community activ-
ities, including serving as foundation Chair of the IEEE Technical Committee on
Scalable Computing and five IEEE/ACM conferences. These contributions and in-
ternational research leadership of Prof. Buyya are recognized through the award
of ‘‘2009 IEEE Medal for Excellence in Scalable Computing’’ from the IEEE Com-
puter Society TCSC, USA. Manjrasoft’s Aneka Cloud technology developed under his
leadership has received ‘‘2010 Asia Pacific Frost & Sullivan New Product Innova-
tion Award’’ and ‘‘2011 Telstra Innovation Challenge, People’s Choice Award’’. For
further information on Prof. Buyya, please visit his cyberhome: www.buyya.com.

http://en.wikipedia.org/wiki/Breadth-first_search
http://www.globus.org/toolkit/
http://www.globus.org/alliance/events/sc06/AuthZ.pdf
http://www.globus.org/alliance/events/sc06/AuthZ.pdf
http://www.globus.org/alliance/events/sc06/AuthZ.pdf
http://www.globus.org/alliance/events/sc06/AuthZ.pdf
http://www.globus.org/alliance/events/sc06/AuthZ.pdf
http://www.globus.org/alliance/events/sc06/AuthZ.pdf
http://www.globus.org/alliance/events/sc06/AuthZ.pdf
http://www.globus.org/alliance/events/sc06/AuthZ.pdf
http://www.globus.org/alliance/events/sc06/AuthZ.pdf
http://www.gridforum.org/documents/GFD.38.pdf
http://www.gridforum.org/documents/GFD.38.pdf
http://www.gridforum.org/documents/GFD.38.pdf
http://www.gridforum.org/documents/GFD.38.pdf
http://www.gridforum.org/documents/GFD.38.pdf
http://www.gridforum.org/documents/GFD.38.pdf
http://www.gridforum.org/documents/GFD.38.pdf
http://www.gridforum.org/documents/GFD.38.pdf
http://www.tpub.com/content/cg2001/d01277/d012770050.htm
http://www.tpub.com/content/cg2001/d01277/d012770050.htm
http://www.tpub.com/content/cg2001/d01277/d012770050.htm
http://www.tpub.com/content/cg2001/d01277/d012770050.htm
http://www.tpub.com/content/cg2001/d01277/d012770050.htm
http://www.tpub.com/content/cg2001/d01277/d012770050.htm
http://www.tpub.com/content/cg2001/d01277/d012770050.htm
http://www.tpub.com/content/cg2001/d01277/d012770050.htm
http://www.tpub.com/content/cg2001/d01277/d012770050.htm
http://www.buyya.com

	Grid Authorization Graph
	Introduction
	A brief description of the Hierarchical Clustering Mechanism (HCM)
	The Grid Authorization Graph (GAG)
	HCM limitations
	Describing OR-based security policies
	Redundancy in HCM

	Resolving HCM limitations using GAG
	Describing OR-based security policies using GAG
	Eliminating redundancy of HCM using GAG
	Handling mutually exclusive security rules


	GAG Generator Algorithm
	Embedding GAG in GT4 authorization framework
	Experiments and results
	Conclusion and future scope
	References


