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SYSTEM, METHOD AND COMPUTER
PROGRAM PRODUCT FOR
ENERGY-EFFICIENT AND SERVICE LEVEL
AGREEMENT (SLA)-BASED MANAGEMENT
OF DATA CENTERS FOR CLOUD

COMPUTING
BACKGROUND
[0001] 1. Technical Field
[0002] The embodiments herein generally relate to energy-

efficient management of distributed computing resources and
data centers, and more particularly to cloud computing.
[0003] 2. Description of the Related Art

[0004] Within this application several publications are ref-
erenced by Arabic numerals within brackets. Full citations for
these and other publications may be found at the end of the
specification immediately preceding the claims. The disclo-
sures of all these publications in their entireties are hereby
expressly incorporated by reference into the present applica-
tion for the purposes of indicating the background of the
invention and illustrating the general state of the art.

[0005] Cloud computing has revolutionized the informa-
tion and communications technology (ICT) industry by
enabling on-demand provisioning of computing resources
based on a pay-as-you-go model. An organization can either
outsource its computational needs to the Cloud avoiding high
up-front investments in a private computing infrastructure
and consequent maintenance costs, or implement a private
Cloud data center to improve the resource management and
provisioning processes. However, the problem of data centers
is high energy consumption, which has risen by 56% from
2005 t0 2010, and in 2010 accounted to be between 1.1% and
1.5% of'the global electricity use [20]. Apart from high oper-
ating costs, this results in substantial carbon dioxide (CO,)
emissions, which are estimated to be 2% of the global emis-
sions [14]. The problem has been partially addressed by
improvements in the physical infrastructure of modern data
centers. As reported by the Open Compute Project, Face-
book’s Oregon data center achieves a Power Usage Effective-
ness (PUE) of 1.08, which means that =93% of the data
center’s energy consumption are consumed by the computing
resources. Therefore, now it is important to focus on the
resource management aspect; i.e., ensuring that the comput-
ing resources are efficiently utilized to serve applications.
[0006] One method to improve the utilization of data center
resources, which has been shown to be efficient [25, 32, 40,
15,16,33, 19,39, 21, 17, 7, 4], is dynamic consolidation of
Virtual Machines (VMs). This approach leverages the
dynamic nature of Cloud workloads: the VMs are periodi-
cally reallocated using live migration according to their cur-
rent resource demand in order to minimize the number of
active physical servers, referred to as hosts, required to handle
the workload. The idle hosts are switched to low-power
modes with fast transition times to eliminate the static power
and reduce the overall energy consumption. The hosts are
reactivated when the resource demand increases. This
approach has basically two objectives, namely minimization
of energy consumption and maximization of the Quality of
Service (QoS) delivered by the system, which form an
energy-performance trade-off.

[0007] Prior approaches to host overload detection for
energy-efficient dynamic VM consolidation proposed in the
literature can be broadly divided into three categories: peri-
odic adaptation of the VM placement (no overload detection),
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threshold-based heuristics, and decision-making based on
statistical analysis of historical data. One of the first works, in
which dynamic VM consolidation has been applied to mini-
mize energy consumption in a data center, has been per-
formed by Nathuji and Schwan [25]. They explored the
energy benefits obtained by consolidating VMs using migra-
tion and found that the overall energy consumption can be
significantly reduced. Verma et al. [32] modeled the problem
of power-aware dynamic VM consolidation as a bin-packing
problem and proposed a heuristic that minimizes the data
center’s power consumption, taking into account the VM
migration cost. However, the authors did not apply any algo-
rithm for determining when it is necessary to optimize the VM
placement—the proposed heuristic is simply periodically
invoked to adapt the placement of VMs.

[0008] Zhu et al. [40] studied the dynamic VM consolida-
tion problem and applied a heuristic of setting a static CPU
utilization threshold of 85% to determine when a host is
overloaded. The host is assumed to be overloaded when the
threshold is exceeded. The 85% utilization threshold has been
first introduced and justified by Gmach et al. [15] based on
their analysis of workload traces. In their more recent work,
Gmach et al. [16] investigated the benefits of combining both
periodic and reactive threshold-based invocations of the
migration controller. VMware Distributed Power Manage-
ment [33] operates based on the same idea with the utilization
threshold set to 81%. However, static threshold heuristics
may be unsuitable for systems with unknown and dynamic
workloads, as these heuristics do not adapt to workload
changes and do not capture the time-averaged behavior of the
system.

[0009] Jungetal.[19]investigated the problem of dynamic
consolidation of VMs running multi-tier web-applications to
optimize a global utility function, while meeting service level
agreement (SLA) requirements. The approach is workload-
specific, as the SLA requirements are defined in terms of the
response time pre-computed for each transaction type of the
applications. When the request rate deviates out of an allowed
interval, the system adapts the placement of VMs and the
states of the hosts. Zheng et al. [39] proposed automated
experimental testing of the efficiency of a reallocation deci-
sion prior to its application, once the response time, specified
in the SLAs, is violated. In the approach proposed by Kumar
et al. [21], the resource allocation is adapted when the appli-
cation’s SLAs are violated. Wang et al. [34] applied control
loops to manage resource allocation under response time QoS
constraints at the cluster and server levels. If the resource
capacity of a server is insufficient to meet the applications’
SLAs, a VM is migrated from the server. All these works are
similar to threshold-based heuristics in that they rely on
instantaneous values of performance characteristics but do
not leverage the observed history of system states to estimate
the future behavior of the system and optimize the time-
averaged performance.

[0010] Guenter et al. [17] implemented an energy-aware
dynamic VM consolidation system focused on web-applica-
tions, whose SLLAs are defined in terms of the response time.
The authors applied weighted linear regression to predict the
future workload and proactively optimize the resource allo-
cation. This approach is in line with the Local Regression
(LR) algorithm proposed in [3], which is used as one of the
benchmark algorithms. Bobroff et al. proposed a server over-
load forecasting technique based on time-series analysis of
historical data [ 7]. Unfortunately, the algorithm description is
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generally too high level, which does not allow for easy imple-
mentation to compare it with previous approaches. Weng et
al. [35] proposed a load-balancing system for virtualized
clusters. A cluster-wide cost of the VM allocation is periodi-
cally minimized to detect overloaded and underloaded hosts,
and reallocate VMs. This is a related work but with the oppo-
site objective—the VMs are deconsolidated to balance the
load across the hosts.

[0011] As mentioned above, the common limitations of the
prior works are that, due to their heuristic basis, they lead to
sub-optimal results and do not allow the system administrator
to explicitly seta QoS goal. Accordingly, there remains a need
for anew and improved energy-efficient and SL.A-based man-
agement of data centers for cloud computing.

SUMMARY

[0012] In view of the foregoing, an embodiment herein
provides a method of improving a utilization of physical
resources and reducing energy consumption in a cloud data
center, the method comprising: providing a plurality of virtual
machines in the cloud data center; periodically reallocating
resources of the plurality of virtual machines according to a
current resource demand of the plurality of virtual machines
in order to minimize a number of active physical servers
required to handle a workload of the physical servers,
wherein the reallocating comprises: determining when a
physical server is considered to be overloaded so that some of
the virtual machines are migrated from the overloaded physi-
cal server to other physical servers in order to meet a quality
of'service requirement; determining when a physical serveris
considered to be underloaded so that the virtual machines of
the physical server are migrated to other physical servers,
wherein the physical server is switched to a lower power
mode; selecting particular virtual machines to migrate from
the overloaded physical server; and allocating the selected
virtual machines for migration to other active or re-activated
physical servers. The method further comprises maximizing a
mean inter-migration time between virtual machine migra-
tions under the quality of service requirement based on a
Markov chain model; and using a multisize sliding window
workload estimation process for a non-stationary workload to
maximize the mean inter-migration time.

[0013] The Markov chain model allows a derivation of a
randomized control policy that optimally maximizes the
mean inter-migration time between virtual machine migra-
tions under an explicitly specified quality of service require-
ment for any known stationary workload and a given state
configuration in an online setting. The method may further
comprise: only maximizing an activity time of the overloaded
physical server; and only maximizing an activity time of an
underloaded physical server. A workload of a physical server
comprises a central processing unit utilization created over a
period of time by a set of virtual machines allocated to the
physical server, wherein the workload may be stationary. The
non-stationary workload is approximated as a sequence of
stationary workloads that are enabled one after another.
[0014] The method may further comprise: submitting a
virtual machine provisioning request through a cloud user
interface; processing the request and instantiating required
virtual machines; collecting data on resource utilization of
virtual machines instantiated on a compute host; passing the
data to a local consolidation manager that invokes physical
server overload detection, physical server underload detec-
tion, a virtual machine selection process; passing outcomes
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generated by the local consolidation manager to a global
consolidation manager; invoking a virtual machine place-
ment process to determine a new placement of a virtual
machine required to be migrated; initiating virtual machine
migrations as determined by the virtual machine placement
process; migrating the virtual machines as instructed by the
global consolidation manager; and upon completion of the
required migrations, the global consolidation manager
switching the physical servers from and to a lower power
mode, wherein the lower power mode comprises a sleep
mode. The quality of service requirement may be specified in
terms of a workload independent quality of service metric.
The overload detection occurs using an offline process.
[0015] A system and non-transitory program storage
device readable by computer, tangibly embodying a program
of instructions executable by the computer to perform the
method of improving a utilization of physical resources and
reducing energy consumption in a cloud data center are also
provided, and includes computer code means for performing
the method and a display unit that displays the maximized
mean inter-migration time.

[0016] These and other aspects of the embodiments herein
will be better appreciated and understood when considered in
conjunction with the following description and the accompa-
nying drawings. It should be understood, however, that the
following descriptions, while indicating preferred embodi-
ments and numerous specific details thereof, are given by way
of'illustration and not of limitation. Many changes and modi-
fications may be made within the scope of the embodiments
herein without departing from the spirit thereof, and the
embodiments herein include all such modifications.

BRIEF DESCRIPTION OF THE DRAWINGS

[0017] The embodiments herein will be better understood
from the following detailed description with reference to the
drawings, in which:

[0018] FIG. 1 illustrates a diagram of a high-level view of a
system (e.g., a cloud data center) implementing dynamic VM
consolidation according to an embodiment herein;

[0019] FIG. 2 illustrates a block diagram of the multisize
sliding window workload estimation according to an embodi-
ment herein;

[0020] FIG. 3 illustrates a graphical representation of the
estimated p,, compared to p,, according to an embodiment
herein;

[0021] FIGS. 4A and 4B illustrate graphical representa-
tions of the resulting OTF value and time until a migration
produced by the MHOD and benchmark algorithms accord-
ing to the embodiments herein;

[0022] FIG. 5 illustrates a graphical representation of a
comparison of MHOD with LRR according to an embodi-
ment herein;

[0023] FIG. 6 illustrates a graphical representation of a
comparison of OTFT, OTFTM, and MHOD according to an
embodiment herein;

[0024] FIG. 7 illustrates a schematic diagram of the com-
bined deployment of OpenStack and OpenStack Neat accord-
ing to an embodiment herein;

[0025] FIG. 8 illustrates a system view of a deployment
process according to an embodiment herein;

[0026] FIG. 9 illustrates a schematic diagram of a global
manager including a sequence diagram of handling an under-
load request according to an embodiment herein;
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[0027] FIG. 10 illustrates a schematic diagram of a global
manager including a sequence diagram of handling an over-
load request according to an embodiment herein;

[0028] FIG. 11 illustrates a block diagram of a local man-
ager including an activity diagram according to an embodi-
ment herein;

[0029] FIGS. 12A through 12C illustrate graphical repre-
sentations of the experimental results according to the
embodiments herein;

[0030] FIG. 13 is a flow diagram illustrating a method
according to an embodiment herein; and

[0031] FIG. 14 is a computer system used with the embodi-
ments herein.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

[0032] The embodiments herein and the various features
and advantageous details thereof are explained more fully
with reference to the non-limiting embodiments that are illus-
trated in the accompanying drawings and detailed in the fol-
lowing description. Descriptions of well-known components
and processing techniques are omitted so as to not unneces-
sarily obscure the embodiments herein. The examples used
are intended merely to facilitate an understanding of ways in
which the embodiments herein may be practiced and to fur-
ther enable those of skill in the art to practice the embodi-
ments herein. Accordingly, the examples should not be con-
strued as limiting the scope of the embodiments herein.
[0033] The embodiments herein provide a new and
improved energy-efficient and SLLA-based management of
data centers for cloud computing. Referring now to the draw-
ings, and more particularly to FIGS. 1 through 14, where
similar reference characters denote corresponding features
consistently throughout the figures, there are shown preferred
embodiments.

[0034] The QoS requirements can be defined in terms of a
variety of metrics and are formalized in the SLAs. In this
work, to specify the QoS requirements a modification of the
workload independent metric proposed in [3] is applied.
Therefore, the problem transforms into minimization of
energy consumption under QoS constraints. This problem is
too complex to be treated analytically as a whole, as just the
VM placement, which is a part of dynamic VM consolidation,
is an NP-hard problem [32, 19, 7]. Moreover, many aspects of
the problem have to be addressed, e.g., the heterogeneity of
physical resources and VMs; non-stationary and unknown
workloads, as observed in Infrastructure as a Service (IaaS)
environments; power and performance costs of VM migra-
tions; and the large scale of Cloud data center infrastructures.
Another argument for splitting the problem is decentraliza-
tion of the resource management algorithm, which is desir-
able for scaling the resource management system for efficient
handling of thousands of servers. Therefore, to make the
problem of dynamic VM consolidation tractable and provide
decentralization it is proposed to divide it into 4 sub-prob-
lems:

[0035] 1. Deciding when a host is considered to be over-
loaded, so that some VMs should be migrated from it to other
hosts to meet the QoS requirements.

[0036] 2. Deciding when a host is considered to be under-
loaded, so that its VMs should be migrated, and the host
should be switched to a low-power mode.

[0037] 3. Selecting VMs to migrate from an overloaded
host.
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[0038] 4. Allocating the VMs selected for migration to
other active or re-activated hosts. A system (e.g., a cloud data
center) 1 implementing this model is shown in FIG. 1. The
basic actions performed by the system 1 are the following:
[0039] 1.Users 2 submit VM provisioning requests through
a Cloud user interface 3.

[0040] 2. The VM life cycle manager 4 processes user
requests and instantiates the required VMs 8.

[0041] 3. The resource utilization monitor 7 collects the
data on the resource utilization of VMs 8 instantiated on a
compute host 9 and passes these data to the local consolida-
tion manager 6, which invokes host overload detection (e.g.,
MHOD), host underload detection, and VM selection algo-
rithms, and passes the outcomes to the global consolidation
manager 5.

[0042] 4. The global consolidation manager 5, which is on
the controller host 10, processes requests received from local
consolidation managers 6 and invokes a VM placement algo-
rithm to determine a new placement of VM required to be
migrated. Then, the global consolidation manager 5 initiates
VM migrations as determined by the VM placement algo-
rithm

[0043] 5. VMs 8 are migrated as instructed by the global
consolidation manager 5. Upon completion of the required
migrations, the global consolidation manager 5 switches
hosts 9 from and to the sleep mode accordingly.

[0044] First, with respect to the first sub-problem—the
problem of host overload detection. Detecting when a host
becomes overloaded directly influences the QoS, since if the
resource capacity is completely utilized, it is highly likely that
the applications are experiencing resource shortage and per-
formance degradation. What makes the problem of host over-
load detection complex is the necessity to optimize the time-
averaged behavior of the system, while handling a variety of
heterogeneous workloads placed on a single host. To address
this problem, most of the current approaches to dynamic VM
consolidation apply either heuristic-based techniques, such
as utilization thresholds [40, 15, 16, 33]; decision-making
based on statistical analysis of historical data [17, 7]; or
simply periodic adaptation of the VM allocation [25, 32]. The
limitations of these approaches are that they lead to sub-
optimal results and do not allow the administrator to explic-
itly set a QoS goal. In other words, the performance in regard
to the QoS delivered by the system can only be adjusted
indirectly by tuning parameters of the applied host overload
detection algorithm. In contrast, the embodiments herein
enable the system administrator to explicitly specity a QoS
goal in terms of a workload independent QoS metric. The
underlying analytical model allows a derivation of an optimal
randomized control policy for any known stationary work-
load and a given state configuration. The embodiments herein
provide the following features in the context of algorithm/
method/model:

[0045] 1.Itisanalytically shown that to improve the quality
of VM consolidation, it is necessary to maximize the mean
time between VM migrations initiated by the host overload
detection algorithm.

[0046] 2. An optimal offline algorithm is proposed for host
overload detection, and its optimality is proven.

[0047] 3. A novel Markov Chain model is introduced that
allows a derivation of a randomized control policy that opti-
mally solves the problem of maximizing the mean time
between VM migrations under an explicitly specified QoS
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goal for any known stationary workload and a given state
configuration in the online setting.

[0048] 4. To handle unknown non-stationary workloads,
the Multisize Sliding Window workload estimation approach
[22] is applied to heuristically build an adapted algorithm,
which leads to approximately 15% higher mean inter-migra-
tion time compared to the best benchmark algorithm for the
input workload traces used in our experiments. The adapted
algorithm leads to approximately 88% of the mean inter-
migration time produced by the optimal offline algorithm.

[0049] Some of the features on the system side are the
following:
[0050] 1. An architecture of an extensible software frame-

work (computer program product) for dynamic VM consoli-
dation designed to transparently integrate with OpenStack
installations and allowing configuration-based substitution of
multiple implementations of algorithms for each of the four
defined sub-problems of dynamic VM consolidation.

[0051] 2. An implementation of the framework in Python
released under the Apache 2.0 license and publicly available
online.

[0052] 3. An implementation of several algorithms for
dynamic VM consolidation, including the MHOD algorithm,
proposed and evaluated by simulations described above and
below.

[0053] 4. An initial version of a benchmark suite compris-
ing the software framework, workload traces, performance
metrics, and methodology for evaluating and comparing
dynamic VM consolidation solutions following the distrib-
uted model.

[0054] 5. Experimental evaluation of the framework on a
5-node OpenStack deployment using real-world application
workload traces collected from more than a thousand Planet-
Lab VMs hosted on servers located in more than 500 places
around the world [27]. According to the estimates of potential
energy savings, the algorithms reduce energy consumption
by up to 33% with a limited performance impact.

[0055] The embodiments herein use static and dynamic
threshold heuristics as benchmark algorithms in the experi-
mental evaluation of the proposed approach. The embodi-
ments herein evaluate the algorithm by simulations using
real-world workload traces from more than a thousand Plan-
etl.ab VMs hosted on servers located in more than 500 places
around the world. The experiments show that the introduced
algorithm outperforms the benchmark algorithms, while
meeting the QoS goal in accordance with the theoretical
model. The algorithm uses a workload independent QoS met-
ric and transparently adapts its behavior to various workloads
using a machine-learning technique; therefore, it can be
applied in an environment with unknown non-stationary
workloads, such as laaS.

[0056] The model provided by the embodiments herein is
based on Markov chains requiring a few fundamental mod-
eling assumptions. First, the workload must satisfy the
Markov property, which implies memoryless state transitions
and an exponential distribution of state transition delays.
These assumptions must be taken into account in an assess-
ment of the applicability of the proposed model to a particular
system. A more detailed discussion of the modeling assump-
tions and validation of the assumptions is given below.
[0057] Benini et al. [6] describe the power management of
electronic systems using Markov decision processes. A
Markov chain model is created for the case of a known sta-
tionary workload and a given state configuration. Using a
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workload independent QoS metric, a Non-Linear Program-
ming (NLP) problem formulation is derived. The solution of
the derived NLP problem is the optimal control policy that
maximizes the time between VM migrations under the speci-
fied QoS constraint in the online setting. Since most real-
world systems, including laaS, experience highly variable
non-stationary workloads, the Multisize Sliding Window
workload estimation technique proposed by Luiz et al. [22] is
applied to heuristically adapt the proposed model to non-
stationary stochastic environments and practical applica-
tions. Although the final approach is a heuristic approach, in
contrast to the previous works, it is based on an analytical
model that allows the computation of an optimal control
policy for any known stationary workload and a given state
configuration.

The Objective of a Host Overload Detection Algorithm

[0058] To improve the quality of VM consolidation, it is
necessary to maximize the time intervals between VM migra-
tions from overloaded hosts. Since VM consolidation is
applied to reduce the number of active hosts, the VM consoli-
dation quality is inversely proportional to H, the mean num-
ber of active hosts over n time steps:

g M

where a, is the number of active hosts at the time step i=1, 2,
..., n. A lower value of H represents a better quality of VM
consolidation.

[0059] To investigate the impact of decisions made by host
overload detection algorithms on the quality of VM consoli-
dation, consider an experiment, where at any time step, the
host overload detection algorithm can initiate a migration
from a host due to an overload. There are two possible con-
sequences of a decision to migrate a VM relevant to host
overload detection: Case 1, when a VM to be migrated from
an overloaded host cannot be placed on another active host
due to insufficient resources, and therefore, a new host has to
be activated to accommodate the VM and Case 2, whena VM
to be migrated can be placed on another active host. To study
host overload detection inisolation, it is assumed that no hosts
are switched off during the experiment, i.e., once a host is
activated, it remains active until n.

[0060] Letp be the probability of Case 1, i.e., an extra host
has to be activated to migrate a VM from an overloaded host
determined by the host overload detection algorithm. Then,
the probability of Case 2 is (1-p). Let T be a random variable
denoting the time between two subsequent VM migrations
initiated by the host overload detection algorithm. The
expected number of VM migrations initiated by the host
overload detection algorithm over n time steps is n/E[T],
where E[T] is the expected inter-migration time.

[0061] Based on the definitions given above, the number of
extra hosts switched on due to VM migrations initiated by the
host overload detection algorithm over n time steps can be
defined as X~B(w/E[T],p), which is a binomially distributed
random variable. The expected number of extra hosts acti-
vated is E[X], np/E[T]. Let A be a random variable denoting
the time during which an extra host is active between the time
steps 1 and n. The expected value of A can be defined as
follows:
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[0062] Thefirstterm a, is a constant denoting the number of
hosts that have been initially active and remain active until the
end of the experiment. The second term

i
H :;; (@ —-a)

is the mean number of hosts switched on due to VM migra-
tions being active per unit of time over n time steps. It is
desirable to analyze the average behavior, and thus estimate
the expected value of H*. It is proportional to a product of the
expected number of extra hosts switched on due to VM migra-
tions and the expected activity time of an extra host normal-
ized by the total time, as shown in (8-10).
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[0063] Since the objective is to improve the quality of VM
consolidation, it is necessary to minimize E[H*]. From
(8-10), the only variable that can be directly controlled by a
host overload detection algorithm is E[T]; therefore, to mini-
mize E[H*] the objective of a host overload detection algo-
rithm is to maximize E[T], i.e., to maximize the mean time
between migrations from overloaded hosts.

A Workload Independent QoS Metric

[0064] To impose QoS requirements on the system, an
extension of the workload independent QoS metric intro-
duced in [3] is applied. The embodiments herein assume a
host can be in one of two states in regard to its load level: (1)
serving regular load; and (2) being overloaded. It is assumed
that if a host is overloaded, the VMs allocated to the host are
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not being provided with the required performance level lead-
ing to performance degradation. To evaluate the overall per-
formance degradation, a metric denoted Overload Time Frac-
tion (OTF) is defined as follows:

OTF(up) = fo[(_ur) (1

where u, is the CPU utilization threshold distinguishing the
non-overload and overload states of the host; t, is the time,
during which the host has been overloaded, which is a func-
tion of u,; and t, is the total time, during which the host has
been active. Using this metric, SL.As can be defined as the
maximum allowed value of OTF. For example, if in the SL.As
it is stated that OTF must be less or equal to 10%, it means that
on average a host is allowed to be overloaded for not more
than 10% of its activity time. Since the provider is interested
in maximizing the resource utilization while meeting the
SLAs, from his perspective this requirement corresponds to
the QoS goal of OTF—=10%, while OTF=10%. The definition
of'the metric for a single host can be extended to a set of hosts
by substituting the time values by the aggregated time values
over the set of hosts.

[0065] The exact definition of the state of a host, when it is
overloaded, depends on the specific system requirements.
However, the value of the CPU utilization threshold u, defin-
ing the states of a host does not affect the proposed model,
which allows setting the threshold to any value. For example,
in the experiments, it is defined that a host is overloaded,
when its CPU utilization is 100%, in which case the VMs
allocated to this host do not get the required CPU capacity
leading to performance degradation. The reasoning behind
this is the observation that if a host serving applications is
experiencing 100% utilization, the performance of the appli-
cations is constrained by the host’s capacity; therefore, the
VMs are not being provided with the required performance
level.

[0066] It has been claimed in the literature that the perfor-
mance of servers degrade, when their load approaches 100%
[38, 30]. For example, the study of Srikantaiah et al. [30] has
shown that the performance delivered by the CPU degrades
when the utilization is higher than 70%. If due to system
requirements, it is desirable to avoid performance degrada-
tion, the proposed OTF metric allows the specification of the
CPU utilization threshold at the required level below 100%.
The host is considered to be overloaded, when the CPU uti-
lization is higher than the specified threshold.

[0067] Ingeneral, other system resources, such as memory,
disk, and network bandwidth, should also be taken into
account in the definition of QoS requirements. However,
emphasis is placed on CPU as it is one of the main resources
that are usually oversubscribed by Cloud providers.

[0068] Verma et al. [31] proposed a similar metric for esti-
mating the SLA violation level in a system, which they
defined as the number of time instances, when the capacity of
a server is less than the demand of all applications placed on
it. However, their metric shows a non-normalized absolute
value, which, for example, cannot be used to compare sys-
tems processing the same workload for different periods of
time. In contrast, the OTF metric is normalized and does not
depend on the length of the time period under consideration.
[0069] In the next section, based on the objective of a host
overload detection algorithm derived above, the OTF metric
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introduced in this section, an optimal offline algorithm for the
host overload detection problem is proposed, and its optimal-
ity is proved.

An Optimal Offline Algorithm

[0070] As shown above, it is necessary to maximize the
mean time between VM migrations initiated by the host over-
load detection algorithm, which can be achieved by maximiz-
ing each individual inter-migration time interval. Therefore,
the problem formulation is limited to a single VM migration;
i.e., the time span of a problem instance is from the end of a
previous VM migration and to the end of the next. Given the
above, the problem of host overload detection can be formu-
lated as an optimization problem (12)-(13).

15 (tm, 1) > max (12)

1oL Uy) <M 13
Loty )

where t,, is the time when a VM migration has been initiated;
u, is the CPU utilization threshold defining the overload state
of the host; t(t,,,u,) is the time, during which the host has
been overloaded, which is a function of t,, and u,; t,, is the total
time, during which the host has been active, which is also a
function of t,, and u,; and M is the limit on the maximum
allowed OTF value, which is a QoS goal expressed in terms of
OTF. The aim of a host overload detection algorithm is to
select the t,, that maximizes the total time until a migration,
while satisfying the constraint (13). It is important to note that
the optimization problem (12)-(13) is only relevant to host
overload detection, and does not relate to host underload
situations. In other words, maximizing the activity time of a
host is only important for highly loaded hosts. Whereas for
underloaded hosts, the problem is the opposite—the activity
time needs to be minimized.

[0071] Inthe offline setting, the state of the system is known
atany point in time. Consider an offline algorithm that passes
through the history of system states backwards starting from
the last known state. The algorithm decrements the time and
re-calculates the OTF value

Lo (tms )
Loty )

at each iteration. The algorithm returns the time that corre-
sponds to the current iteration if the constraint (13)is satisfied
(Algorithm 1).

Algorithm 1 The Optimal Offline (OPT) algorithm:

Input: A system state history
Input: M, the maximum allowed OTF
Output: A VM migration time
while history is not empty do
if OTF of history _ M then
return the time of the last history state
else
drop the last state from history

[V NIV S

Theorem 1 Algorithm 1 is an optimal offline algorithm (OPT)
for the problem of host overload detection
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[0072] Proof:

[0073] Let the time interval covered by the system state
history be [t,,t, ], and t,,, be the time returned by Algorithm 1.
Then, according to the algorithm the system states corre-
sponding to the time interval (t,,t,] do not satisfy the con-
straint (13). Since t,, is the right bound of the interval [t,.t,,],
then t,, is the maximum possible time that satisfies the con-
straint (13). Therefore, t,, is the solution of the optimization
problem (12)-(13), and Algorithm 1 is an optimal offline
algorithm for the host overload detection problem.

A Markov Chain Model for Host Overload Detection

[0074] In the following sections, the proposed model is
based on the definitions of Markov chains, a mathematical
framework for statistical modeling of real-world processes.

Background on Markov Chain

[0075] This section introduces the basic definitions of the
Markov chains modeling framework. Bolch [8] provides a
detailed introduction to Markov chains.

[0076] A stochastic process {X,, X, ..., X,,1,--- } atthe
consecutive points of observation 0, 1, . . ., n+1 constitutes a
Discrete-Time Markov Chain (DTMC) if the following rela-
tion on the conditional Probability Mass Function (PMF)

holds VneN,, and ¥s,eS=N,:

PX 1 =8, 11X, =8, X, 1=, 1, -, Xo=s0)=P(X,,
158, 11X,=5,,). (14)
[0077] Given an initial state s,, a DTMC evolves step by
step according to the one-step transition probabilities:
PP X1 =811 X, =5, =0). (15)
[0078] If the conditional PMF is independent of the time

parameter n, the DTMC is referred to as time-homogeneous
and (15) reduces to: p,~P(X, ,,5jIX,=1)VneT. Starting from a
state 1, the DTMC transitions to a state j, so that

Zpij=1,
J

where O=p,=<1. The one-step transition probabilities p,; are
usually summarized in a non-negative transition probability
matrix P[p,].

[0079] LetteT be the time parameter, where T = R*=[0,00);
let S be the state space of the stochastic process comprising all
possible values of X, (for each teT). A stochastic process
{X,teT} constitutes a Markov process if for all 0=t,<t,<. ..
<t,<t,.,, YneN, and Vs,eS the conditional Cumulative Dis-
tribution Function (CDF) of X, depends only on the previ-
ous value X, and not on the earlier values X, X, . X,

P, SSuilX =50 X, Sy Xy =s0)=PX, ,
158,11, =5,,). (16)
[0080] A stochastic process {X,:teT} constitutes a Con-

tinuous-Time Markov Chain (CTMC) if for arbitrary t,eR,*,
with 0=ty<t,< ... <t,<t,,,, VneN, and ¥s,eS=N, for the
conditional PMF, the relation (16) holds. In other words, a
CTMC is a Markov process restricted to a discrete, finite, or
countably infinite state space S, and a continuous-parameter
space T. The right-hand side of (16) is referred to as the
transition probability p,(u,v) of the CTMC to travel from
state i to state j during the period of time [u,v), withu,veT and
us=v: p,(u,v)=P(X,=jIX,=). If the transition probabilities p,;
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(u,v) depend only on the time difference t=v—u and not on the
actual values of u and v, the CTMC is time-homogeneous
with simplified transition probabilities: p (D=P(X,,,
—j1X,=1).

[0081] The embodiments herein focus on time-homoge-
neous Markov chains, which can also be described as Markov
chains with stationary transition probabilities. Time-homo-
geneous Markov chains correspond to stationary workloads;
i.e., workloads, whose statistical properties do not change
over time. As provided below, it is shown how a time-homo-
geneous Markov model can be adapted to cases of non-sta-
tionary workloads.

[0082] Another characteristic that describes transitions of a
CTMC between the states is the instantaneous transition rate
q,(t) of the CTMC traveling from state i to state j. The non-
negative, finite, continuous functions q,,(t) satisfy the follow-
ing conditions:

im  p;@, r+A) | 17
g;(0) = R E A
Ar—-0 Ar
lim  py(, 1+ A0 -1 (18
g:(0) = —_—
Ar—-0 Ar

where At is chosen such that

Z giDAL+o(AD =131, j € S.
jes

A matrix Q=[q,;]Vi,jeS is called the infinitesimal generator
matrix of the transition probability matrix P()=[p,(t)]. The
elements g,; on the main diagonal of Q are given by:

qii:_EjES,jsiqij'
[0083] A vector mi(t), [,(t)] VieS contains the probabilities

that the CTMC will be in the state i at the time t. Using the
Kolmogorov forward equation [ 8], the following equation for
the unconditional state probability vector m(t) can be derived:

dnr(n) 19)

ar =n(nQ.

[0084] A transition probability matrix P of an ergodic
DTMC (e.g., a DTMC with all the transition probabilities
being non-zero) can be transformed into an infinitesimal gen-
erator matrix of the corresponding CTMC as follows:

0=P-1, 20)

where [ is the identity matrix. Next, using the definitions
given in this section, a Markov chain model for the host
overload detection problem is introduced.

The Host Model

[0085] Each VM allocated to a host at each point in time
utilizes a part of the CPU capacity determined by the appli-
cation workload. The CPU utilization created over a period of
time by a set of VMs allocated to a host constitutes the host’s
workload. For the initial analysis, it is assumed that the work-
load is known a priori, stationary, and satisfies the Markov
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property. In other words, the CPU utilization of a host mea-
sured at discrete time steps can be described by a single
time-homogeneous DTMC.

[0086] Thereisacontroller component, which monitors the
CPU utilization of the host and according to a host overload
detection algorithm decides when a VM should be migrated
from the host to satisfy the QoS requirements, while maxi-
mizing the time between VM migrations. As provided above,
the problem formulation is limited to a single VM migration;
i.e., the time span of a problem instance is from the end of a
previous VM migration to the end of the next.

[0087] To describe ahostas a DTMC, states are assigned to
N subsequent intervals of the CPU utilization. For example, if
N=11, the state 1 is assigned to all possible values of the CPU
utilization within the interval [0%,10%), 2 to the CPU utili-
zation within [10%,20%), . . ., N to the value 100%. The state
space S of the DTMC contains N states, which correspond to
the defined CPU utilization intervals. Using this state defini-
tion and knowing the workload of a host in advance, by
applying the Maximum Likelihood Estimation (MLE)
method itis possibleto derive a matrix of transition probabili-
ties P. The matrix is constructed by estimating the probabili-
ties of transitions

ke§

between the defined N states of the DTMC for i,jeS, wherec,;
is the number of transitions between states i and j.

[0088] An additional state (N+1) is added to the Markov
chain called an absorbing state. A state keS is said to be an
absorbing state if and only if no other state of the Markov
chain can be reached from it, i.e., p,;,=1. In other words, once
the Markov chain reaches the state k, it stays in that state
indefinitely. The resulting extended state space is S*=SU{
(N+1)}. According to the model provided by the embodi-
ments herein, the absorbing state (N+1) represents the state
where the DTMC transitions once a VM migration is initi-
ated. According to this definition, the control policy can be
described by a vector of the probabilities of transitions from
any non-absorbing state to the absorbing state (N+1), i.e., the
probabilities of VM migrations, which are denoted m,, where
ieS. To add the state (N+1) into the model, the initial transition
probability matrix P is extended with a column of unknown
transition probabilities m=[m;]eieS resulting in an extended
matrix of transition probabilities P*:

P Pivom 2D
Pk = * * >
Pni -+ Pnnv N
0 0 o0 1

where p;* are defined as follows:
Py*=py(1-m,), Vi, jeS. 22

[0089] In general, the workload experienced by the host’s
VMs can lead to any CPU utilization from 0% to 100%;
therefore, the original DTMC can be assumed to be ergodic.
Later, the extended DTMC will be restricted to the states in S;
therefore, using Q=P-I [8], the extended matrix of transition
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probabilities P* can be transformed into a corresponding
extended matrix of transition rates Q*:

ri-1 ... pix my (23)
o= . :
Pnvi - Pww -l omy
0 0 0 0
[0090] Inthe nextsection,a QoS constraint is formulated in

terms of the introduced model, derived extended matrix of
transition rates Q*, and OTF metric.

The QoS Constraint
[0091] Let

' 24)
L(t):fﬂ(u)du,
0

then L,(t) denotes the total expected time the CTMC spends in
the state i during the interval [0,t). By integrating an equation
for the unconditional state probability vector zt(t): dm(t)/dt=n
(1)Q on both sides, a new differential equation for L(t) is
derived [8]:

d L(r) (25)
o = L@ +x(0), L(0) =0.

[0092] The expected time spent by the CTMC before
absorption can be calculated by finding the limit

lim
Lg(o0) = 5 o0 Ls(n)

restricting the state space to the states in S. The limit exists
due to a non-zero probability of a transition to the absorbing
state (N+1). However, the limit does not exist for the state
(N+1). Therefore, to calculate [L(o), the extended infinitesi-
mal generator matrix Q¥ is restricted to the states in S, result-
ing in a matrix Q * of the size NxN. The initial probability
vector 7(0) is also restricted to the states in S resulting in
(0). Restricting the state space to non-absorbing states
allows the computation of

lim

100

on both sides of (25) resulting in the following linear equation
[8]:
L()Qs*=—15(0). (26)

[0093] Let N denote the state of a host when it is over-
loaded, e.g., when the CPU utilization is equal to 100%, then
the expected time spent in the state N before absorption can be
calculated by finding [.,(o) from a solution of the system of
linear equations (26). Similarly, the total expected time of the
host being active can be found as
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ZL;(oo).

=AY

Letting the VM migration time be T,,, the expected OTF can
be calculated as follows:

T + T (00) 27

OTF = ——————.
T+ 2 Li(eo)
=AY

The Optimization Problem
[0094] By the solution of (26), closed-form equations for
Ly(0),Lo(), . . . L)

are obtained. The unknowns in these equations are m,, m,, .
.., My, which completely describe the policy of the control-
ler. In the model provided by the embodiments herein, the
utility function is the total expected time until absorption, as
the objective is to maximize the inter-migration time. To
introduce the QoS goal in the problem formulation, a limit M
on the maximum allowed value of the OTF metric is specified
as a constraint resulting in the following optimization prob-
lem:

Z L;(c0) » max 28)
ieS
Tn + Ly (o0) 29
T+ X Lifeo) ~ 7
ieS
[0095] The equations (28-29) form an NLP problem. The

solution of this NLP problem is the vector m of the probabili-
ties of transitions to the absorbing state, which forms the
optimal control policy defined as a PMF m=[m,|eieS. At
every time step, the optimal control policy migrates a VM
with the probability m,, where i€S is the current state. The
control policy is deterministic if IkeS:m,=1 and VieS,i=m=0,
otherwise the policy is randomized.

[0096] Since the total time until absorption and T,, are
non-negative, the problem formulation (28-29) can be sim-
plified to (30-31).

Z L;(00) - max (30)
ieS
(1 —M)(Tm+LN(oo))—MZ Li(co) < 0. @B
ieS
Modeling Assumptions
[0097] Theintroduced model allows the computation ofthe

optimal control policy of a host overload detection controller
for a given stationary workload and a given state configura-
tion. Itis important to take into account that this result is based
on a few fundamental modeling assumptions. First, it is
assumed that the system satisfies the Markov property, or in
other words, the sojourn times (i.e., the time a CTMC remains
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in a state) are exponentially distributed. Assuming an expo-
nential distribution of sojourn times may not be accurate in
many systems. For instance, state transition delays can be
deterministic due to a particular task scheduling, or follow
other than exponential statistical distribution, such as a bell-
shaped distribution. Another implication of the Markov prop-
erty is the assumption of memoryless state transitions, which
means that the future state can be predicted solely based on
the knowledge of the current state. It is possible to envision
systems, in which future states depend on more than one past
state.

[0098] Another assumption is that the workload is station-
ary and known a priori, which does not hold in typical com-
puting environments. In the next section, it is shown how the
introduced model can be heuristically adapted to handle
unknown non-stationary workloads. The proposed heuristi-
cally adapted model removes the assumption of stationary
and known workloads; however, the assumptions implied by
the Markov property must still hold. Further below, the pro-
posed heuristically adapted model is evaluated, and the
assumptions are tested through a simulation study using real
workload traces from more than a thousand PlanetLab VMs.
The simulation results show that the model is efficient for this
type of mixed computing workloads.

[0099] With a correct understanding of the basic model
assumptions and careful assessment of the applicability of the
proposed model to a particular system, an application of the
model can bring substantial performance benefits to the
resource management algorithms. As demonstrated by the
simulation study provided below, the proposed approach out-
performs the benchmark algorithms in terms of both the mean
inter-migration time and the precision of meeting the speci-
fied QoS goal.

Non-Stationary Workloads

[0100] The model introduced above works with the
assumption that the workload is stationary and known. How-
ever, this is not the case in systems with unknown non-sta-
tionary workloads, such as IaaS. One of the ways to adapt the
model defined for known stationary workloads to the condi-
tions of initially unknown non-stationary workloads is to
apply the Sliding Window workload estimation approach pro-
posed by Chung et al. [10].

[0101] The base idea is to approximate a non-stationary
workload as a sequence of stationary workloads U=(u,, u,, .
.., u, ) that are enabled one after another. In this model, the
transition probability matrix P becomes a function of the
current stationary workload P(u).

[0102] Chung et al. [10] called a policy that makes ideal
decisions for a current stationary workload u, the best adap-
tive policy. However, the best adaptive policy requires the
perfectknowledge of the whole sequence of workloads U and
the times, at which the workloads change. In reality, a model
of a workload u, can only be built based on the observed
history of the system behavior. Moreover, the time at which
the current workload changes is unknown. Therefore, it is
necessary to apply a heuristic that achieves results compa-
rable to the best adaptive policy. According to the Sliding
Window approach, a time window of length 1, slides over
time and is always capturing the last 1, events. Let c;; be the
observed number of transitions between states i and j, 1,j€S,
during the last window 1,,. Then, applying the MLE method,
the transition probability p;; is estimated as
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As the window length 1,,—, the estimator p,, converges to
the real value of the transition probability p,; if the length of
the current stationary workload v, is equal to 1, [10].

[0103] However, the Sliding Window approach introduces
three sources of errors in the estimated workload:

[0104] 1. The biased estimation error, which appears when
the window length 1, is shorter than the length of a sequence
of outliers.

[0105] 2. The resolution error (referred to as the sampling
error by Luiz et al. [22]), which is introduced due to the
maximum precision of the estimates being limited to 1/1 .
[0106] 3. The adaptation time (referred to as the identifica-
tion delay by Luiz et al. [22]), which is a delay required to
completely fill the window with new data after a switch from
a stationary workload v, | to a new stationary workload u,.
[0107] Luiz et al. [22] extended the Sliding Window
approach by employing multiple windows with different
sizes, where a window to use is selected dynamically using
the information about the previous system state and variances
of the estimates obtained from different windows. They
referred to the extended approach as the Multisize Sliding
Window approach. The proposed algorithm dynamically
selects the best window size to eliminate the bias estimate
error and benefit from both the small sampling error of large
window sizes and small identification error of small window
sizes. The embodiments herein use the Multisize Sliding
Window approach to the model introduced above to adaptitto
initially unknown non-stationary workloads.

[0108] The calculation of the expected OTF (27) is adapted
by transforming it to a function of teR* to incorporate the
information that is known by the algorithm at the time of
decision making:

T+ y(0) + Ly (o0) (32

OO T S
=AY

where y(t) is a function returning the total time spent in the
state N during the time interval [0,t].

Multisize Sliding Window Workload Estimation

[0109] This section briefly introduces the Multisize Sliding
Window approach; for more details, reasoning and analysis
please refer to Luiz et al. [22]. A high level view of the
estimation algorithm is shown in FIG. 2, with reference to
FIG. 1. First, to eliminate the biased estimation error, the
previous history is stored separately for each state in S result-
ing in S state windows W, i=1,2, ..., S.

[0110] LetJ, D, and N, be positive numbers; the following
represents a sequence of window sizes:

L=~(JJ+D,J+2D, . .. J+(N1)D)

L, =MN~1)D
is the maximum window size. At each time t, the Previous
State Buffer 20 stores the system state s, ; at the time t-1 and
controls the window selector 22, which selects a window W,
such that s, ,=i. The notation W (t) denotes the content of the
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window W, in a position k at the time t. The selected window
shifts its content one position to the right to store the current
system state:

W =wFe) k=1, ... ]

discards the rightmost element W »=(1); and stores s, in the
position W,'(t). Once the selected state window W, is
updated, new probability estimates are computed based on
this state window for all window sizes as follows:

33)
Z(ka
pilt, m) = T,
where “==" is the -equivalence operation, i.e.,

(1=1)=1,(1=0)=0. A computed probability estimate is
stored in N, out of the SSN, estimate windows B, (t), where
1,jeS, and m is the estimate window size index, 1=m=N . N,
estimate windows E,; (t) are selected such thats, , =i and s,=j,
Vm=1,...,N;,
[0111] Similar to the update process of the state windows,
the selected estimate windows shift their contents one posi-
tion to the right, discard the nghtmost element B, E(t), and
store p,(t,L,,) in the position Eym 1. To evaluate the preci-
sion of the probability estimates, the variance S(ij,t,m) of the
probability estimates obtained from every updated estimate
window is estimated:

(34)
B

Pyt m) = o

TMg

E

o 1 L , (35)
SG, jot.m) = me (B0 = Pt L)),

where “p,(t,m) is the mean value of the probability estimates
calculated from the state window W, of length L. To deter-
mine what values of the variance can be considered to be low
enough, the following function of acceptable variance V,,.(p,;
(t,m),m) is defined [22]:

Pijts Lm)(1 = pyjt, L)) (36)
- L

Vac(py(t, m), m) =

[0112] Using the function of acceptable variance, probabil-
ity estimates are considered to be adequate if S(i,j,t,m)=V .
(p, (tm).m)

[0113] Based on the definitions given above, a window size
selection algorithm can be defined (Algorithm 2). According
to the selected window sizes, transition probability estimates
24 are selected from the estimate windows.

Algorithm 2 The window size selection algorithm

Input: I, D, N t, i, |
Output: The selected window size

1: L,<17
2: fork=0toN,- 1do
3: if S(i,j,tk) = V,,.(p;(tk) k) then
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-continued

Algorithm 2 The window size selection algorithm

L,<J+kD
else
break loop

A

return 1,

[0114] The presented approach addresses the errors men-
tioned above as follows:

[0115] 1.Thebiased estimation error is eliminated by intro-
ducing dedicated history windows for each state: even if a
burst of transitions to a particular state is longer than the
length of the window, the history of transitions from the other
states is preserved.

[0116] 2. The sampling error is minimized by selecting the
largest window size constrained by the acceptable variance
function.

[0117] 3. The identification error is minimized by selecting
a smaller window size when the variance is high, which can
be caused by a change to the next stationary workload.

The Control Algorithm

[0118] A control algorithm based on the model introduced
above is referred to as the Optimal Markov Host Overload
Detection (MHOD-OPT) algorithm. The MHOD-OPT algo-
rithm adapted to unknown non-stationary workloads using
the Multisize Sliding Window workload estimation technique
introduced above is referred to as the Markov Host Overload
Detection (MHOD) algorithm. A high-level view of the
MHOD-OPT algorithm is shown in Algorithm 3. In the online
setting, the algorithm is invoked periodically at each time step
to make a VM migration decision.

Algorithm 3 The MBOD-OPT algorithm

Input: Transition probabilities
Output: A decision on whether to migrate a VM
1: Build the objective and constraint functions

2: Invoke the brute-force search to find the m vector
3: If a feasible solution exists then

4: Extract the VM migration probability

5: if the probability is < 1 then

6: return false

7: return true

[0119] Closed-form equations for L, (), L.,(®), ..., L (o)
are precomputed offline from (26); therefore, the run-time
computation is not required. The values of transition prob-
abilities are substituted into the equations for

Li(@)L5(), . . . Ln(®)

and the objective and constraint functions of the NLP prob-
lem are generated by the algorithm. To solve the NLP prob-
lem, a brute-force search algorithm with a step of 0.1 is
applied, as its performance was sufficient for the purposes of
simulations. In MHOD-OPT, a decision to migrate a VM is
made only if either no feasible solution can be found, or the
migration probability corresponding to the current state is 1.

[0120] The justification for this is the fact that if a feasible
solution exists and the migration probability is less than 1,
then for the current conditions there is no hard requirement
for an immediate migration of a VM.
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Algorithm 4 The MHOD algorithm

Input: A CPU utilization history
Output: A decision on whether to migrate a VM

1: if the CPU utilization history size > T, then

2: Convert the last CPU utilization value to a state

3: Invoke the Multisize Sliding Window estimation to obtain the
estimates of transition probabilities

4: Invoke the MHOD-OPT algorithm

5: return the decision returned by MHOD-OPT

6: return false

[0121] The MHOD algorithm shown in Algorithm 4 can be

viewed as a wrapper over the MHOD-OPT algorithm, which
adds the Multisize Sliding Window workload estimation.
During the initial learning phase T,, which was set to 30 time
steps, the algorithm does not migrate a VM. Once the learning
phase is over, the algorithm applies the Multisize Sliding
Window technique to estimate the probabilities of transitions
between the states and invokes the MHOD-OPT algorithm
passing the transition probability estimates as the argument.
The result of the MHOD-OPT algorithm invocation is
returned to the user.

The CPU Model

[0122] The proposed models and algorithms are suitable
for both single core and multi-core CPU architectures. The
capacity of a single core CPU is modeled in terms of its clock
frequency F. AVM’s CPU utilization u, is relative to the VM’s
CPU frequency f; and is transformed into a fraction of the
host’s CPU utilization U. These fractions are summed up over
the N VMs allocated to the host to obtain the host’s CPU
utilization, as shown in (37).

N 37
U=FY fu.

[0123] For the purpose of the host overload detection prob-
lem, multi-core CPUs are modeled as proposed in [3]. A
multi-core CPU with n cores each having a frequency f is
modeled as a single core CPU with the nf frequency. In other
words, F in (37) is replaced by nf. This simplification is
justified, as applications and VMs are not tied down to a
specific core, but can by dynamically assigned to an arbitrary
core by a time-shared scheduling algorithm. The only physi-
cal constraint is that the CPU capacity allocated to a VM
cannot exceed the capacity of a single core. Removing this
constraint would require the VM to be executed on more than
one core in parallel. However, automatic parallelization of
VMs and their applications cannot be assumed.

Performance Evaluation on a Single Computing Server

Importance of Precise Workload Estimation

[0124] The purpose of this section is to show that the pre-
cision of the workload estimation technique is desirable to
achieve high performance of the MHOD algorithm. To show
this, an artificial workload was constructed that illustrates a
case when the MHOD algorithm with the Multisize Sliding
Window workload estimation leads to lower performance
compared to MHOD-OPT due to its inability to adapt quickly
enough to a highly non-stationary workload.

11
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TABLE 1

An artificial non-stationary workload

0-60's 60-86 s 86-160 s
Poo 1.0 0.0 1.0
Por 0.0 1.0 0.0
Pio 1.0 0.0 1.0
Put 0.0 1.0 0.0

It is defined that the host can be in one of two possible states
{0,1}, where the state 1 means that the host is being over-
loaded. Let the non-stationary workload be composed of a
sequence of three stationary workloads, whose probabilities
of transitions between the states are shown in Table 1. Simu-
lations are used to evaluate the algorithms. For this experi-
ment, the OTF constraint was set to 30%, and the sequence of
window sizes for the Multisize Sliding Window workload
estimation was (30, 40, 50, 60, 70, 80, 90, 100). The code of
the simulations is written in Clojure. To foster and encourage
reproducibility of experiments, the source code of the simu-
lations has been made publicly available online.

TABLE 2

Comparison of MHOD, MHOD-OPT and OPT

MHOD-30 MHOD-OPT-30 OPT-30
OTF 29.97% 16.30% 16.30%
Time 87 160 160
[0125] Thesimulation results are shown in Table 2. Accord-

ing to the results, for the workload defined in Table 1 the
MHOD-OPT algorithm provides exactly the same perfor-
mance as the optimal offline algorithm (OPT). However, the
MHOD algorithm migrates a VM at the beginning of the third
stationary workload because it is not able to immediately
recognize the change of the workload, as shown for p,, and
Poo i FIG. 3, with reference to FIGS. 1 and 2.

[0126] Insummary, eventhough the Multisize Sliding Win-
dow workload estimation provides high quality of estimation
[22], in some cases it may result in an inferior performance of
the MHOD algorithm compared to MHOD-OPT. This result
was expected, as MHOD-OPT skips the estimation phase and
utilizes the knowledge of real transition probabilities. The
artificial workload used in this section was specifically con-
structed to show that imprecise workload estimation may lead
to unsatisfactory performance of the MHOD algorithm. How-
ever, as shown in the next section, the MHOD algorithm
performs closely to OPT for real-world workloads.

Evaluation Using Planetlab Workload Traces

[0127] In an environment with multiple hosts, the MHOD
algorithm operates in a decentralized manner, where indepen-
dent instances of the algorithm are executed on every host.
Therefore, to evaluate the MHOD algorithm under a real-
world workload, a single host with a quad-core CPU serving
a set of heterogeneous VMs was simulated. The clock fre-
quency of a single core of the host was set to 3 GHz, which
according to the model introduced above transforms into 12
GHz. These CPU characteristics correspond to a mid-range
Amazon EC2 physical server type [24]. The amount of the
host’s memory is assumed to be enough for the VMs. The
CPU frequency ofa VM was randomly set to one of the values
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approximately corresponding to the Amazon EC2 instance
types: 1.7 GHz, 2 GHz, 2.4 GHz, and 3 GHz. The CPU
utilization of the VMs was simulated based on the data pro-
vided as a part of the CoMon project, a monitoring infrastruc-
ture for PlanetLab [27]. The project provides the data mea-
sured every five minutes from more than a thousand VMs
running in more than 500 locations around the world. For the
experiments, ten days were randomly selected from the work-
load traces collected during March and April 2011.

[0128] For a simulation run, a randomly generated set of
VMs with the CPU utilization traces assigned is allocated to
the host. At each time step, the host overload detection algo-
rithm makes a decision of whether a VM should be migrated
from the host. The simulation runs until either the CPU uti-
lization traces are over, or until a decision to migrate a VM is
made by the algorithm. At the end of a simulation run, the
resulting value of the OTF metric is calculated according to
(11). The algorithm of assigning the workload traces to a set
of VM is presented in Algorithm 5. To avoid trivial cases and
stress the algorithms with more dynamic workloads, the
original workload traces were filtered. The maximum
allowed OTF after the first 30 time steps was constrained to
10% and the minimum overall OTF was constrained to 20%.
Using the workload assignment algorithm, 100 different sets
of VMs that meet the defined OTF constraints were pregen-
erated. Every algorithm was run for each set of VMs.

Algorithm 5 The workload trace assignment algorithm

Input: A set of CPU utilization traces

Output: A set of VMs

1: Randomly select the host’s minimum CPU utilization at the time O
from 80%, 85%, 90%, 95%, and 100%

2: while the host’s utilization < the threshold do

3: Randomly select the new VM’s CPU frequency

4: Randomly assign a CPU utilization trace

5: Add the new VM to the set of created VMs

6: return the set of created VMs

Benchmark Algorithms

[0129] In addition to the optimal offline algorithm intro-

duced above, a number of benchmark algorithms were imple-
mented. The benchmark algorithms were run with different
parameters to compare with the proposed MHOD algorithm.
This section gives a brief overview of the benchmark algo-
rithms; a detailed description of each of them is given in [3].
The first algorithm is a simple heuristic based on setting a
CPU utilization threshold (THR), which monitors the host’s
CPU utilization and migrates a VM if the defined threshold is
exceeded. This threshold-based heuristic was applied in a
number of related works [40, 15, 16, 33]. The next two algo-
rithms apply statistical analysis to dynamically adapt the
CPU utilization threshold: based on the median absolute
deviation (MAD), and on the interquartile range (IQR).

[0130] Two other algorithms are based on estimation of the
future CPU utilization using local regression and a modifica-
tion of the method robust to outliers, referred to as robust local
regression. These algorithms are denoted Local Regression
(LR) and Local Regression Robust (LRR) respectively. The
LR algorithm is in line with the regression-based approach
proposed by Guenter et al. [17]. Another algorithm continu-
ously monitors the host’s OTF and decides to migrate a VM if
the current value exceeds the defined parameter. This algo-
rithm is referred to as the OTF Threshold (OTFT) algorithm.
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The last benchmark algorithm, the OTF Threshold Migration
Time (OTFTM) algorithm, is similar to OTFT; however, it
uses an extended metric that includes the VM migration time:

T +1o (38)

OTF(tor 1a) = 77— —
m+la

where t, is the time, during which the host has been over-
loaded; t, is the total time, during which the host has been
active; and T, is the VM migration time.

MHOD Compared with Benchmark Algorithms

[0131] To shorten state configuration names of the MHOD
algorithm, they are referred to by denoting the thresholds
between the utilization intervals. For example, a 3-state con-
figuration ([0%,80%), [80%,100%), 100%) is referred to as
80-100. The following 2- and 3-state configurations of the
MHOD algorithm were simulated: 80-100, 90-100, and 100
(a 2-state configuration). Each state configuration with the
OTF parameter set to 10%, 20% and 30% was simulated. For
experiments, the VM migration time was set to 30 secs.
[0132] In order to find out whether different numbers of
states and different state configurations of the MHOD algo-
rithm significantly influence the algorithm’s performance in
regard to the time until a migration and the resulting OTF
value, paired t-tests were conducted. The tests on the pro-
duced time until a migration data for comparing MHOD
80-100 with MHOD 100 and MHOD 90-100 with MHOD
100 showed non-statistically significant differences with the
p-values 0.20 and 0.34 respectively. This means that the simu-
lated 2- and 3-state configurations of the MHOD algorithm on
average lead to approximately the same time until a migra-
tion. However, there are statistically significant differences in
the resulting OTF value produced by these algorithms:
0.023% with 95% Confidence Interval (CI) (0.001%,
0.004%) and p-value=0.033 for MHOD 100 compared with
MHOD 80-100; and 0.022% with 95% CI (0.000%, 0.004%)
and p-value=0.048 for MHOD 100 compared with MHOD
90-100. However, differences in the resulting OTF value in
the order of less than 0.1% are not practically significant;
therefore, the conclusion is that the simulated 2- and 3-state
configurations produce approximately the same results. Fur-
ther in this section, only the ([0%, 100%), 100%) 2-state
configuration of MHOD is compared with the benchmark
algorithms, as it requires simpler computations compared
with the 3-state configurations.

[0133] The experimental results comparing the 2-state con-
figuration of the MHOD algorithm (for the MHOD algorithm,
the OTF parameter is denoted in the suffix of the algorithm’s
name, e.g., for 10%, 20% and 30%: MHOD-10, MHOD-20
and MHOD-30) with the benchmark algorithms are depicted
in FIGS. 4A and 4B, with reference to FIGS. 1 through 3. It is
remarkable how closely the resulting OTF value of the
MHOD algorithm resembles the value set as the parameter of
the algorithm for 10% and 20%. The wider spread for 30% is
explained by the characteristics of the workload: in many
cases the overall OTF is lower than 30%, which is also
reflected in the resulting OTF of the optimal offline algorithm
(OPT-30). The experimental results show that the algorithm is
capable of meeting the specified OTF goal, which is consis-
tent with the theoretical model introduced above.

[0134] FIGS. 4A and 4B show that the THR, MAD, and
IQR algorithms are not competitive compared with the LR,
LRR and MHOD algorithms, as the produced time until a
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migration is low and does not significantly improve by adjust-
ments of the algorithm parameters. To compare the LR and
LRR algorithms with the MHOD algorithms, additional
simulations of the MHOD algorithm with the OTF parameter
matching the mean value of the resulting OTF produced by
LR and LRR were conducted. The following OTF parameter
values of the MHOD algorithm were set to match the mean
resulting OTF values of LR and LRR: to match LR-1.05,
LR-0.95 and LR-0.85—9.9%, 18.2% and 31% respectively;
to match LRR-1.05, LRR-0.95 and LRR-0.85—9.9%, 17.9%
and 30.4% respectively.

TABLE 3

Paired T-tests with 95% CIs for comparing the time
until a migration produced by MHOD, LR and LRR

Alg. 1 (x10%) Alg. 2 (x10%) Diff. (x10%) p-value
MHOD (39.64) LR (44.29) 4.65(2.73, 6.57) <0.001
MHOD (39.23) LRR (44.23) 5.00 (3.09, 6.91) <0.001

[0135] As intended, paired t-tests for the comparison of
MHOD with LR and MHOD with LRR showed non-statisti-
cally significant differences in the resulting OTF values with
both p-values >0.9. Results of paired t-tests for comparing the
time until a migration produced by the algorithms with
matching resulting OTF values are shown in Table 3. The
MHOD and LRR algorithms are graphically compared in
FIG. 5, with reference to FIGS. 1 through 4B.

[0136] According to the results, there is a statistically sig-
nificant difference in the time until a migration produced by
the algorithms: the MHOD algorithm on average leads to
approximately 10.5% and 11.3% shorter time until a migra-
tion than LR and LRR respectively with the same mean
resulting OTF values. This means that the MHOD algorithm
leads to a slightly lower quality of VM consolidation com-
pared with the LR and LRR algorithms, while providing the
advantage of explicit specification of a QoS goal in terms of
the OTF metric. In contrast, the performance of the LR and
LRR algorithms in regard to the QoS can only be adjusted
indirectly by tuning the safety parameter. As seen in FIG. 5,
the lower time until a migration produced of the MHOD
algorithm can be partially explained by the fact that the spread
of the resulting OTF produced by the LRR algorithm is much
wider than that of MHOD, while MHOD precisely meets the
specified QoS goal. This means that in many cases LRR
provides worse QoS than MHOD, which leads to a higher
time until a migration.

Comparison of MHOD with OTFT and OTFTM

[0137] OTFT and OTFTM are two other algorithms that
apart from the MHOD algorithm allow explicit specification
of the QoS goal in terms of the OTF parameter. To compare
the performance of the OTFT, OTFTM and MHOD algo-
rithms, another performance metrics introduced. This metric
is the percentage of SLA violations relatively to the total
number of VM migrations, where SLA requirements are
defined as OTF=<M, M is the limit on the maximum allowed
resulting OTF value. The SLA violation counter is incre-
mented if after a VM migration the resulting OTF is higher
than the value M specified in the SLAs.

[0138] The OTFT, OTFTM and MHOD algorithms were
simulated using the Planetl.ab workload described earlier.
The algorithms were simulated with the following values of
the OTF parameter set as the SLA requirement: 10%, 20%
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and 30%. The simulation results are shown in FIG. 6, with
reference to FIGS. 1 through 5. The graphs show that MHOD
leads to slightly lower resulting OTF values and time until a
migration. The SLA violation levels caused by the algorithms
are shown in Table 4. It is clear that the MHOD algorithm
substantially outperforms the OTFT and OTFTM algorithms
in the level of SLA violations leading to only 0.33% SLA
violations, whereas both OTFT and OTFTM cause SLA vio-
lations of 81.33%.

TABLE 4

SLA violations by OTFT, OTFTM and MHOD

OTF Parameter OTFT OTFTM MHOD
10% 100/100 100/100 0/100
20% 100/100 100/100 1/100
30% 44/100 44/100 0/100

Overall 81.33% 81.33% 0.33%

[0139] The obtained results can be explained by the fact
that both OTFT and OTFTM are unable to capture the overall
behavior of the system over time and fail to meet the SLA
requirements. In contrast, the MHOD algorithm leverages the
knowledge of the past system states and by estimating future
states avoids SLA violations. For instance, in a case of a steep
rise in the load, OTFT and OTFTM react too late resulting in
an SLA violation. In contrast, MHOD acts more intelligently
and by predicting the potential rise migrates a VM before an
SLA violation occurs. As a result, for the simulated PlanetLab
workload the MHOD algorithm keeps the level of SLA vio-
lations at less than 0.5%.

Comparison of MHOD with OPT

[0140] FIGS.4A and 4B include the results produced by the
optimal offline algorithm (OPT) for the same values of the
OTF parameter set for the MHOD algorithm: 10%, 20% and
30%. The results of paired t-tests comparing the performance
of OPT with MHOD are shown in Table 5. The results show
that there is no statistically significant difference in the result-
ing OTF value, which means that for the simulated PlanetLab
workload the MHOD algorithm on average leads to approxi-
mately the same level of adherence to the QoS goal as the
optimal offline algorithm.

TABLE 5

Paired T-tests for comparing MHOD with OPT

OPT MHOD Difference p-value
OTF 18.31% 18.25%  0.06% (-0.03,0.15)  =0.226
Time 45,767 41,128 4,639 (3617, 5661)  <0.001

[0141] There is a statistically significant difference in the
time until a migration with the mean difference of 4,639 with
95% CI: (3617, 5661). Relatively to OPT, the time until a
migration produced by the MHOD algorithm converts to
88.02% with 95% CI: (86.07%, 89.97%). This means that for
the simulated Planetl.ab workload, the MHOD algorithm on
average delivers approximately 88% of the performance of
the optimal offline algorithm, which is highly efficient for an
online algorithm.



US 2015/0039764 Al

System Architecture and Implementation for Dynamic VM
Consolidation in a Cloud Data Center

[0142] This section introduces an architecture and imple-
mentation of OpenStack Neat, a software framework (com-
puter program product) for distributed dynamic VM consoli-
dation in Cloud data centers based on the OpenStack
platform. The framework is designed and implemented as a
transparent add-on to OpenStack, which means that the
OpenStack installation need not be modified or specifically
configured to benefit from OpenStack Neat. FIG. 7, with
reference to FIGS. 1 through 6, depicts a typical system 70
deployment of the key components of OpenStack and Open-
Stack Neat, which may include multiple instances of compute
71 and controller hosts 72. The framework acts independently
of the base OpenStack platform and applies VM consolida-
tion processes by invoking public Application Programming
Interfaces (APIs) of OpenStack. The purpose of the Open-
Stack Neat framework is twofold: (1) providing a fully opera-
tional software for dynamic VM consolidation that can be
applied to existing OpenStack Clouds; and (2) providing an
extensible software framework for conducting research on
dynamic VM consolidation.

[0143] OpenStack Neat is designed and implemented fol-
lowing the distributed approach to dynamic VM consolida-
tion introduced previous sections. The target environment is
an [aa8, e.g., Amazon EC2, where the provider is unaware of
applications and workloads served by the VMs, and can only
observe them from outside. The proposed approach to dis-
tributed dynamic VM consolidation consists in splitting the
problem into four sub-problems: underload/overload detec-
tion, VM selection, and VM placement.

[0144] The current implementation of OpenStack Neat
assumes a single instance of the controller responsible for
placing VMs selected for migrations on hosts. However, due
to distributed underload/overload detection and VM selection
algorithms, the overall scalability is significantly improved
compared with existing centralized solutions. Furthermore, it
is potentially possible to implement replication of OpenStack
Neat’s global manager, which would provide a completely
distributed system, as discussed below.

Related Work in System Context

[0145] Research work can be divided into two categories:
(1) theoretical work on various approaches to dynamic VM
consolidation; and (2) practically implemented and publicly
available software systems. The framework presented in this
case study follows the distributed approach to dynamic VM
consolidation proposed in the previous sections, where every
compute host locally solves the problems of underload/over-
load detection and VM selection. Then, it sends a request to a
global manager to place only the selected for migration VMs
on other hosts.

[0146] A similarapproach was followed by Wood et al. [36]
in their system called Sandpiper aimed at load balancing in
virtualized data centers using VM live migration. The main
objective of the system is to avoid host overloads referred to
as hot spots by detecting them and migrating overloaded VMs
to less loaded hosts. The authors applied an application-ag-
nostic approach, referred to as a black-box approach, in
which VMs are observed from outside, without any knowl-
edge of applications resident in the VMs. A hot spot is
detected when the aggregate usage of a host’s resources
exceeds the specified threshold for k out of n last measure-
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ments, as well as for the next predicted value. Another pro-
posed approach is gray-box, when a certain application-spe-
cific data are allowed to be collected. The VM placement is
computed heuristically by placing the most loaded VM to the
least loaded host. The difference from the approach proposed
in this case study is that VMs are not consolidated; therefore,
the number of active hosts is not reduced to save energy.
[0147] Despite the large volume of research published on
the topic of dynamic VM consolidation, there are very few
software implementations publicly available online. One of
the earliest implementation of a VM consolidation manager is
the Entropy project. Entropy is a VM consolidation manager
for homogeneous clusters developed by Hermenier et al. [18]
and released under the LGPL license. Entropy is built on top
of Xen and focused on two objectives: (1) maintaining a
configuration of the cluster, where all VMs are allocated
sufficient resources; and (2) minimizing the number of active
hosts.

[0148] To optimize the VM placement, Entropy applies a
two-phase approach. First, a constraint programming prob-
lem is solved to find an optimal VM placement, which mini-
mizes the number of active hosts. Then, another optimization
problem is solved to find a target cluster configuration with
the minimal number of active hosts that also minimizes the
total cost of reconfiguration, which is proportional to the cost
of VM migrations. In comparison to OpenStack Neat,
Entropy may find a more optimal VM placement by comput-
ing a globally optimal solution for VM placement. However,
the required optimization problems must be solved by a cen-
tral controller with limited opportunities for replication, thus
limiting the scalability of the system and introducing a single
point of failure. This approach is applicable to relatively
small-scale private Clouds; however, it cannot be applied to
large-scale data centers with tens of thousands of nodes, such
as Rackspace [28], where decentralization and fault-toler-
ance are essential.

[0149] Feller et al. [12, 13] proposed and implemented a
framework for distributed management of VMs for private
Clouds called Snooze. In addition to the functionality pro-
vided by the existing Cloud management platforms, such as
OpenStack, Fucalyptus, and OpenNebula, Snooze imple-
ments dynamic VM consolidation as one of its base features.
Another difference is that Snooze implements hierarchical
distributed resource management. The management hierar-
chy is composed of three layers: local controllers on each
physical node; group managers managing a set of local con-
trollers; and a group leader dynamically selected from the set
of group managers and performing global management tasks.
The distributed structure enables fault-tolerance and self-
healing by avoiding single points of failure and automatically
selecting a new group leader if the current one fails.

[0150] Snooze also integrates monitoring of the resource
usage by VMs and hosts, which can be leveraged by VM
consolidation policies. These policies are intended to be
implemented at the level of group managers, and therefore
can only be applied to subsets of hosts. This approach par-
tially solves the problem of scalability of VM consolidation
by the cost of losing the ability of optimizing the VM place-
ment across all the nodes of the data center. OpenStack Neat
enables scalability by distributed underload/overload detec-
tion and VM selection, and potentially replicating the VM
placement controllers. In contrast to Snooze, it is able to apply
global VM placement algorithms for the selected for migra-
tion VMs by taking into account the full set of hosts. Another
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difference is that OpenStack Neat transparently integrates
with OpenStack, a Cloud platform widely adopted and sup-
ported by the industry, thus ensuring long-term development
of the platform.

System Design

[0151] The aim of the OpenStack Neat project is to provide
an extensible framework for dynamic consolidation of VMs
based on the OpenStack platform. Extensibility in this con-
text means the ability to implement new VM consolidation
algorithms and apply them in OpenStack Neat without the
necessity to modify the source code of the framework itself.
Different implementations of the algorithms can be plugged
into the framework by modifying the appropriate options in
the configuration file. More information on configuring and
extending the framework is given below.

[0152] OpenStack Neat provides an infrastructure required
for monitoring VMs and hypervisors, collecting resource
usage data, transmitting messages and commands between
the system components, and invoking VM live migrations.
The infrastructure is agnostic to VM consolidation algorithms
in use and allows implementing custom decision-making
algorithms for each of'the four sub-problems of dynamic VM
consolidation: host underload/overload detection, VM selec-
tion, and VM placement. The implementation of the frame-
work includes the algorithms proposed in sections. The fol-
lowing sections discuss the requirements and assumptions,
integration of the proposed framework with OpenStack, each
of the framework’s components, as well as configuration and
extensibility of the framework.

Requirements and Assumptions

[0153] The components of the framework are implemented
in the form of OS services running on the compute and con-
troller hosts of the data center in addition to the core Open-
Stack services. The framework components interact through
a Representational State Transfer (REST) interface; there-
fore, network communication via the corresponding port
specified in the framework’s configuration must be enabled.
[0154] OpenStack Neat relies on live migration to dynami-
cally relocate VMs across physical machines. To enable live
migration, it is required to set up a shared storage and corre-
spondingly configure OpenStack Nova (i.e. the OpenStack
Compute service) to use this storage for storing VM instance
data. For instance, a shared storage can be provided using the
Network File System (NFS), or the GlusterF'S distributed file
system [5].

[0155] OpenStack Neat uses a database for storing infor-
mation about VMs and hosts, as well as resource usage data.
Itis possible to use the same database server used by the core
OpenStack services. In this case, it is only required to create
a new database and user for OpenStack Neat. The required
database tables are automatically created by OpenStack Neat
on the first launch of its services.

[0156] Another requirement is that all the compute hosts
must have a user, which is enabled to switch the host into a
low-power mode, such as Suspend to RAM. This user account
is used by the global manager to connect to the compute hosts
via the Secure Shell (SSH) protocol and switch them into the
sleep mode when necessary. More information on deactivat-
ing and reactivating physical nodes is given below.

[0157] Since OpenStack Neat is implemented in Python,
VM consolidation algorithms to be plugged in should also be
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implemented in Python. It may be required to implement VM
consolidation algorithms in another programming language
for various reasons, such as performance requirements. Inte-
gration of such algorithms can be achieved by providing
Python wrappers that redirect calls to the corresponding
external programs.

Integration with OpenStack

[0158] OpenStack Neat services are installed indepen-
dently of the core OpenStack services. Moreover, the activity
of the OpenStack Neat services is transparent to the core
OpenStack services. This means that OpenStack does not
need to be configured in a special way to be able to take
advantage of dynamic VM consolidation implemented by
OpenStack Neat. It also means, that OpenStack Neat can be
added to an existing OpenStack installation without the need
to modify its configuration.

[0159] The transparency is achieved by the independent
resource monitoring implemented by OpenStack Neat, and
the interaction with the core OpenStack services using their
public APIs. The OpenStack APIs are used for obtaining
information about the current state of the system and per-
forming VM migrations. In particular, the APIs are used to get
the current mapping of VMs to hosts, hardware characteris-
tics of hosts, parameters of VM flavors (i.e., instance types),
VM states, and invoke VM live migrations. Although Open-
Stack Neat performs actions affecting the current state of the
system by relocating VMs across hosts, it is transparently
handled by the core OpenStack services since VM migrations
are invoked via the public OpenStack APIs, which is equiva-
lent to invoking VM migrations manually by the system
administrator.

[0160] In the following sections, hosts running the Nova
Compute service; i.e., hosting VM instances, are referred to
as compute hosts; and a host running the other OpenStack
management services but not hosting VM instances is
referred to as the controller host.

System Components

[0161] OpenStack Neat is composed of a number of com-
ponents and data stores, some of which are deployed on the
compute hosts 72, and some on the controller host 71, which
can potentially have multiple replicas. As shown in FIG. 8,
with reference to FIGS. 1 through 7, the system 80 is com-
posed of three main components:

[0162] Global manager 87—a component that is
deployed on the controller host 71 and makes global
management decisions, such as mapping VM instances
to hosts, and initiating VM live migrations.

[0163] Local manager 83—acomponent thatis deployed
on every compute host 72 and makes local decisions,
such as deciding that the host is underloaded or over-
loaded, and selecting VMs to migrate to other hosts.

[0164] Data collector 86—a component that is deployed
on every compute host 72 and is responsible for collect-
ing data on the resource usage by VM instances and
hypervisors, and then storing the data locally 84 and
submitting it to the central database 85.

[0165] The deployment model may vary for each particular
system 80 depending on its requirements. For instance, the
central database 85 can be deployed on a separate physical
node, or be distributed across multiple physical nodes. The
location and deployment of the database server (e.g., central
database 85) is transparent to OpenStack Neat, which only
requires a configuration parameter to be set to the network
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address of the database front-end server. For simplicity, in the
experimental testbed used in this case study, the database
server (e.g., central database 85) is deployed on the same
physical node hosting the global manager 87, as shown in
FIG. 8.

The Global Manager

[0166] The global manager 87 is deployed on the controller
host 71 and is responsible for making VM placement deci-
sions and initiating VM migrations. It exposes a REST web
service, which accepts requests from local managers 83. The
global manager 87 processes two types of requests: (1) relo-
cating VMs from an underloaded host; and (2) offloading a
number of VMs from an overloaded host.

[0167] FIG. 9, with reference to FIGS. 1 through 8, shows
a sequence diagram of handling a host underload request by
the global manager 87. First, a local manager 83 detects an
underload of the host using the specified in the configuration
underload detection algorithm. Then, it sends an underload
request to the global manager 87 including the name of the
underloaded host. The global manager 87 calls the OpenStack
Nova API191 to obtain the list of VM currently allocated to the
underloaded host. Once the list of VMs is received, the global
manager 87 invokes the VM placement algorithm with the
received list of VMs along with their resource usage and
states of hosts fetched from the database as arguments. Then,
according to the VM placement generated by the algorithm,
the global manager 87 submits the appropriate VM live
migration requests to the OpenStack Nova API 91, and moni-
tors the VM migration process to determine when the migra-
tions are completed. Upon the completion of the VM migra-
tions, the global manager 87 switches the now idle source host
into the sleep mode using the procedure described below.
[0168] As shown in FIG. 10, with reference to FIGS. 1
through 9, handling overload requests is similar to underload
requests. The difference is that instead of sending just the host
name, the local manager 83 also sends a list of UUIDs of the
VMs selected by the configured VM selection algorithm to be
offloaded from the overloaded host. Once the request is
received, the global manager 87 invokes the specified in the
configuration VM placement algorithm and passes as argu-
ments the list of VMs received from the local manager 83 to
be placed on other hosts along with other system information.
If some of the VMs are placed on hosts that are currently in the
sleep mode, the global manager reactivates them using the
Wake-on-LLAN technology, as described below. Then, simi-
larly to handling underload requests, the global manager 87
submits VM live migration requests to the OpenStack Nova
API 91.

Rest API

[0169] The global manager exposes a REST web service
(REST API) for processing VM migration requests sent by
local managers. The service Uniform Resource Locator
(URL) is defined according to configuration options specified
in /etc/neat/neat.conf, which is discussed in detail below. The
two relevant options are:
[0170] global_manager_host—the name of the host run-
ning the global manager;
[0171] global_managerport—the port that should be
used by the web service to receive requests.
[0172] Using these configuration options, the service URL
is composed according to the following template: http://glo-
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bal_manager_host:global_manager_port/. The global man-
ager 87 processes two types of requests from local managers
83: host underloads, and host overloads discussed in the pre-
vious section. Both types of requests are served at a single
resource ‘/” accessed using the PUT method of the Hypertext
Transfer Protocol (HTTP). The type of a received request is
determined by the global manager 87 by analyzing the param-
eters included in the request. The following parameters are
common to both types of requests:

[0173] username—the admin user name specified in the
configuration file, which is used to authenticate the cli-
ent making the request as being allowed to access the
web service. This parameter is sent SHA-1-encrypted to
avoid sending the user name in the open form over the
network.

[0174] password—the admin password specified in the
configuration file, which is used to authenticate the cli-
ent making the request as being allowed to access the
web service. Similarly to username, this parameter is
also sent encrypted with the SHA-1 algorithm.

[0175] time—the time when the request has been sent.
This parameter is used by the global manager to identify
and enforce time-outs, which may happen if a request
has been sent a long time ago rendering it non-represen-
tative of the current state of the system.

[0176] host—the host name of the overloaded or under-
loaded host, where the local manager sending the
request is deployed on.

[0177] reason—an integer specifying the type of the
request, where 0 represents a host underload request,
and 1 represents a host overload request.

[0178] Iftherequest type specified by the reason parameter
is 1 (i.e., denoting an overload request), there is an extra
mandatory parameter vim_uuids. This is a string parameter,
which must contain a coma-separated list of Universally
Unique Identifiers (UUIDs) of VMs selected for migration
from the overloaded host.

[0179] Ifarequest contains all the required parameters and
the provided credentials are correct, the service responds with
the HTTP status code 200 OK. The service uses standard
HTTP error codes to respond in cases of errors. The following
error codes are used:

[0180] 400—bad input parameter: incorrect or missing
parameters;

[0181] 401—unauthorized: user credentials are missing;

[0182] 403—forbidden: user credentials do not much the
ones specified in the configuration file;

[0183] 405—method not allowed: the request has been
made with a method other than the only supported PUT
method;

[0184] 422—precondition failed: the request has been

sent more than 5 seconds ago, which means that the
states of the hosts or VMs may have changed—a retry is
required.

Switching Power States of Hosts

[0185] One of the main features required to be supported by
the hardware and OS in order to take advantage of dynamic
VM consolidation to save energy is the Advanced Configu-
ration and Power Interface (ACPI). The ACPI standard
defines platform-independent interfaces for power manage-
ment by the OS. The standard is supported by Linux, the
target OS for the OpenStack platform. ACPI defines several
sets of power states, the most relevant of which is the sleep
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state S3, referred to as Suspend to RAM. Meisner et al. [23]
showed that power consumption of a typical blade server can
be reduced from 450 W in the active state to just 10.4 W in the
S3 state. The transition latency is currently mostly con-
strained by the Power Supply Unit (PSU) of the server, which
leads to the total latency of approximately 300 ms. This
latency is acceptable for the purposes of dynamic VM con-
solidation, as VM live migrations usually take tens of sec-
onds.

[0186] The Linux OS provides an API to programmatically
switch the physical machine into the sleep mode. In particu-
lar, CentOS supports a pm-utils package, which includes
command line programs for changing the power state of the
machine. First, to check whether the Suspend to RAM state is
supported, the following command can be used: pm-is-sup-
ported—suspend. If the command returns 0, the Suspend to
RAM state is supported, otherwise it is not supported. If the
state is supported, the following command can be used to
enable it: pm-suspend.

[0187] It is possible to reactivate a physical machine over
the network using the Wake-on-LAN technology. This tech-
nology has been introduced in 1997 by the Advanced Man-
ageability Alliance (AMA) formed by Intel and IBM, and is
currently supported by most modern servers. To reactivate a
server using Wake-on-LLAN, it is necessary to send over the
network a special packet, called the magic packet. This can be
done using the ether-wake Linux program as follows: ether-
wake-i interface mac_address, where interface is replaced
with the name of the network interface to send the packet
from, and mac_address is replaced with the actual Media
Access Control (MAC) address of the host to be reactivated.

The Local Manager

[0188] The local manager component 83 is deployed on
every compute host as an OS service running in the back-
ground. The service periodically executes a function that
determines whether itis necessary to reallocate VMs from the
host. A high-level view of the workflow performed by the
local manager 83 is shown in FIG. 11, with reference to FIGS.
1 through 10. Atthe beginning of each iteration it reads (1101)
from the local storage 84 the historical data on the resource
usage by the VMs and hypervisor stored by the data collector
86. Then, the local manager 83 invokes (1103) the specified in
the configuration underload detection algorithm to determine
(1105) whether the host is underloaded. If the host is under-
loaded, the local manager sends (1107) an underload request
to the global manager’s REST API to migrate all the VMs
from the host and switch the host to a low-power mode.
[0189] If the host is not underloaded, the local manager
proceeds to invoking (1109) the specified in the configuration
overload detection algorithm. Then, another decision process
(1111) occurs. If the host is overloaded, the local manager
invokes (1113) the configured VM selection algorithm to
select VM to oftload from the host. Once the VMs to migrate
from the host are selected, the local manager sends (1115) an
overload request to the global manager’s REST API to
migrate the selected VMs. Similar to the global manager 87,
the local manager 83 can be configured to use custom under-
load detection, overload detection, and VM selection algo-
rithms using the configuration file discussed below.

The Data Collector

[0190] The data collector 86 is deployed on every compute
host 72 as an OS service running in the background. The
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service periodically collects the CPU utilization data for each
VM running on the host, as well as data on the CPU utilization
by the hypervisor. The collected data are stored in the local
file-based data store 84, and also submitted to the central
database 85. The data are stored as the average number of
MHz consumed by a VM during the last measurement inter-
val of length T. In particular, the CPU usage C,"(t,,t;) of aVM
1, which is a function of the bounds of a measurement interval
[to.t;], is calculated as shown in (39).

m F(7] (1) — 7 (00)) (39

Cltg, 1) =
T(t0, 1) p—

where n," is the number of virtual CPU cores allocated to the
VM i; F is the frequency of a single CPU core in MHz; and
T,"(t) is the CPU time consumed by the VM i up to the time t.
The CPU usage of the hypervisor th (t,-t;) is calculated as a
difference between the overall CPU usage and the CPU usage
by the set of VMs allocated to the host, as shown in (40).
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where njh is the number of physical cores of the host j; 'cjh(t) is
the CPU time consumed by the host overall up to the time t;
and V; is the set of VM allocated to the host j. The CPU usage
data are stored as integers. This data format is portable: the
stored values can be approximately converted to the CPU
utilization percentages for any host or VM type, supporting
heterogeneous hosts and VMs.

[0191] The actual data are obtained using libvirt’s API in
the form of the CPU time consumed by VMs and hosts overall
to date. Using the CPU time collected at the previous time
step, the CPU time for the last time interval is calculated.
According to the CPU frequency of the host and the length of
the time interval, the CPU time is converted into the required
average MHz consumed by the VM over the last time interval.
Then, using the VMs’ CPU utilization data, the CPU utiliza-
tion by the hypervisor is calculated. The collected data are
stored both locally 84 and submitted to the central database
85. The number of the latest data values to be stored locally
and passed to the underload/overload detection and VM
selection algorithms is defined by the data_collector_data_
length option in the configuration file.

[0192] At the beginning of every iteration, the data collec-
tor 86 obtains the set of VMs currently running on the host
using the Nova API 91 and compares them to the VMs run-
ning on the host at the previous time step. If new VMs have
been found, the data collector fetches the historical data about
them from the central database 85 and stores the data in the
local file-based data store 84. If some VMs have been
removed, the data collector 86 removes the data about these
VMs from the local data store 84.

[0193] While OpenStack Neat oversubscribes the CPU of
hosts by taking advantage of information on the real-time
CPU utilization, it does not overcommit RAM. In other
words, RAM is still a constraint in placing VMs on hosts;
however, the constraint is the maximum amount of RAM that
can be used by a VM statically defined by its instance type,
rather than the real-time RAM consumption. One of the rea-
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sons for thatis that RAM is amore critical resource compared
with the CPU, as an application may fail due to insufficient
RAM, whereas insufficient CPU may just slow down the
execution of the application. Another reason is that in contrast
to the CPU, RAM usually does not become a bottleneck
resource, as shown by an analysis of workload traces and
information from the industry [29, 1].

Data Stores

[0194] As shown in FIG. 8, the system 80 contains two
types of data stores:

[0195] Central database 85—a database server, which
can be deployed either on the controller host 71, or on
one or more dedicated hosts (not shown).

[0196] Local file-based data storage 84—a data store
deployed on every compute host 72 and used for tempo-
rary caching the resource usage data to use by the local
managers 83 in order to avoid excessive database que-
ries.

[0197] The details about the data stores are given in the
following subsections.

Central Database

[0198] The central database 85 is used for storing historical
data on the resource usage by VMs and hypervisors, as well as
hardware characteristics of hosts. The central database 85 is
populated by the data collectors 86 deployed on compute
hosts 72. There are two main use cases when the data are
retrieved from the central database 85 instead of the local
storage 84 of the compute hosts 72. First, it is used by local
managers 83 to fetch the resource usage data after VM migra-
tions. Once a VM migration is completed, the data collector
86 deployed on the destination host fetches the required his-
torical data from the central database 85 and stores them
locally 84 for use by the local manager 83.

[0199] The second use case of the central database 85 is
when the global manager 87 computes a new placement of
VMs on hosts. VM placement algorithms require information
on the resource consumption of all the hosts in order to make
global allocation decisions. Therefore, every time there is a
need to place VMs on hosts, the global manager 87 queries the
central database 85 to obtain the up-to-date data on the
resource usage by hypervisors and VMs.

TABLE 6

The database schema:

Field Type

The hosts table

id Integer
hostname String(255)
cpu_mhz Integer
cpu__cores Integer
ram Integer

The host__resource__usage table

id Integer
host-id Integer
timestamp DateTime
cpu_mhz Integer

The vms table

id Integer
uuid String(36)
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TABLE 6-continued

The database schema:

Field Type

The vim__resource__usage table

id Integer
vm__id Integer
timestamp DateTime
cpu_mhz Integer

[0200] As shown in Table 6, the database schema contains
four main tables: hosts, host_resource_usage, vms, and
vm_resource_usage. The hosts table stores information about
hosts, such as the host names, CPU frequency of a physical
core in MHz, number of CPU cores, and amount of RAM in
MB. The vms table stores the UUIDs of VMs assigned by
OpenStack. The host_resource_usage and vm_resource_us-
age tables store data on the resource consumption over time
by hosts and VMs respectively.

Local File-Based Data Store

[0201] Alocal manager 83 ateach iteration requires data on
the resource usage by the VMs and hypervisor of the corre-
sponding host in order to pass them to the underload/overload
detection and VM placement algorithms. To reduce the num-
ber of queries to the central database 85 over the network
(e.g., network 1425 in FIG. 14), apart from submitting the
data into the central database 85, the data collector 86 tem-
porarily stores the data locally 84. This way, the local man-
ager 83 can justread the data from the local file storage 84 and
avoid having to retrieve data from the central database 85.
[0202] The data collector 86 stores the resource usage data
locally 84 in local_data_directory/vms/ as plain text files,
where local_data_directory is defined in the configuration file
discussed below. The data for each VM are stored in a sepa-
rate file named after the UUID of the VM. The data on the
resource usage by the hypervisor are stored in the local_data_
directory/host file. The format of the files is a new line sepa-
rated list of integers representing the average CPU consump-
tion in MHz during measurement intervals.

Configuration

[0203] The configuration of OpenStack Neat is stored in the
/etc/neat/neat.cont file in the standard INI format using the ‘#’
character for denoting comments. It is assumed that this file
exists on all the compute and controller hosts and contains the
same configuration.

[0204] One of the ideas implemented in OpenStack Neat is
providing the user with the ability to change the implemen-
tation and parameters of any of the four VM consolidation
algorithms simply by modifying the configuration file. This
provides the means of adding to the system and enabling
custom VM consolidation algorithms without modifying the
source code of the framework. The algorithms are configured
using the options with the algorithm_prefix. More informa-
tion on adding and enabling VM consolidation algorithms is
given below.

Extensibility of the Framework

[0205] One of the main points of the framework’s extensi-
bility is the ability to add new VM consolidation algorithm to
the system and enable them by updating the configuration file



US 2015/0039764 Al

19

without the necessity in modifying the source code of the
framework itself. There are four algorithms that can be
changed through a modification of the configuration file:
underload/overload detection, VM selection, and VM place-
ment algorithms. The values of the corresponding configura-
tion options should be fully qualified names of functions
available as a part of one of the installed Python libraries. The
fact that the functions are specified by their fully qualified
names also means that they can be installed as a part of a
Python library independent from OpenStack Neat. The four
corresponding configuration options are the following:

[0206] 1. algorithm_underload_detection_factory

[0207] 2. algorithm_overload_detection_factory

[0208] 3. algorithm_vm_selection_factory

[0209] 4. algorithm_vm_placement_factory

[0210] Since an algorithm may need to be initialized prior

to its usage, the factory function pattern is applied. The func-
tions specified as values of any of the algorithm_*_factory
configuration options are not functions that actually imple-
ment VM consolidation algorithms, rather they are functions
that return initialized instances of functions implementing the
corresponding VM consolidation algorithms. All functions
implementing VM consolidation algorithms and their facto-
ries should adhere to the corresponding predefined interfaces.
For example, all factory functions of overload detection algo-
rithms must accept a time step, migration time, and algorithm
parameters as arguments. The function must return another
function that implements the required consolidation algo-
rithm, which in turn must follow the interface predefined for
overload detection algorithms.

[0211] Every function implementing an overload detection
algorithm must: (1) accept as arguments a list of CPU utili-
zation percentages and dictionary representing the state of the
algorithm; and (2) return a tuple containing the decision of the
algorithm as a boolean and updated state dictionary. If the
algorithm is stateless, it should return an empty dictionary as
the state. Definitions of the interfaces of functions imple-
menting VM consolidation algorithms and their factories are
given in Table 7.

[0212] Table7: Interfaces of VM Consolidation Algorithms
and their Factory Functions
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parameters must be specified as an object in the JSON format
on asingle line. The specified JSON strings are automatically
parsed by the system and passed to factory functions as
Python dictionaries. Apart from being parameterized, a con-
solidation algorithm may also preserve state across invoca-
tions. This can be useful for implementing stateful algo-
rithms, or as a performance optimization measure, e.g., to
avoid repeating costly computations. Preserving state is done
by accepting a state dictionary as an argument, and returning
the updated dictionary as the second element of the return
tuple.

[0214] Currently, the data collector 86 only collects data on
the CPU utilization. It is possible to extend the system 80 to
collect other types of data that may be passed to the VM
consolidation algorithms. To add another type of data, it is
necessary to extend the host_resource_usage and vm_re-
source_usage database tables by adding new fields for storing
the new types of data. Then, the execute function of the data
collector should be extended to include the code required to
obtain the new data and submit them to the central database
85. Finally, the local managers 83 and global managers 87
need to be extended to fetch the new type of data from the
central database 85 to be passed to the appropriate VM con-
solidation algorithms.

Deployment

[0215] OpenStack Neat needs to be deployed on all the
compute hosts 72 and controller hosts 71. The deployment
includes installing dependencies, cloning the project’s Git
repository, installing the project, and starting up the services.
The process is cumbersome since multiple steps should be
performed on each host. The OpenStack Neat distribution
includes a number of Shell scripts that simplify the deploy-
ment process. The following steps are required to perform a
complete deployment of OpenStack Neat:

[0216] 1. Clone the project’s repository on the controller
host by executing:

[0217] git clone git://github.com/beloglazov/openstack-
neat.git

Algorithm Factory arguments Algorithm arguments

Algorithm return

Underload 1. time_ step: int. =0 1. cpu__utilization: list(float) 1. decision: bool
detection 2. migration_ time: float, =0 2. state: dict(str: *) 2. state: dict(str: *)
3. params: dict(str: *)
Overload 1. time_ step: int. =0 1. cpu__utilization: list(float) 1. decision: bool
detection 2. migration_ time: float, =0 2. state: dict(str: *) 2. state: dict(str: *)
3. params: dict(str: *)
VM 1. time__step: int. =0 1. vms__cpu: dict(str: list(int)) 1. vms: list(str)
selection 2. migration_ time: float, =0 2. vms__ram: dict(str: list(int)) 2. state: dict(str: *)
3. params: dict(str: *) 3. state: dict(str: *)
VM 1. time__step: int. =0 1. hosts__cpu__usage: dict(str: int) 1. alloc.: dict(str: str)
placement 2. migration_ time: float,=0 2. hosts_ cpu__total: dict(str: int) 2. state: dict(str: *)
3. params: dict(str: *) 3. hosts__ram__usage: dict(str: int)
4. hosts__ram__total: dict(str: int)
5. inactive__hosts__cpu: dict(str: int)
6. inactive__hosts__ram: dict(str: int)
7. vims__cpu: dict(str: list(int))
8. vims__ram: dict(str: list(int))
9. state: dict(str: *)
[0213] Using the algorithm_*_parameters configuration [0218]

options, it is possible to pass arbitrary dictionaries of param-
eters to VM consolidation algorithm factory functions. The

2. Install the required dependencies by executing
the following command from the cloned repository ifthe
OS of the controller is CentOS: ./setup/deps-centos.sh
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[0219] 3. In the cloned repository, modify neat.conf to
meet the requirements. In particular, it is necessary to
enter the names of the available compute hosts 72. It is
also necessary to create a database on the database server
accessible with the details specified in the configuration
file.

[0220] 4. Install OpenStack Neat on the controller host
71 by executing the following command from the
project’s directory: sudo python setup.py install. This
command will also copy the modified configuration file
to /etc/neat/neat.conf.

[0221] 5. Using the scripts provided in the package, it is
possible to install OpenStack Neat on all the compute
hosts 72 specified in the configuration file remotely from
the controller 71. First, the following command can be
used to clone the repository on all the compute hosts 72:
/compute-clone-neat.py.

[0222] 6. Once the repository is cloned, OpenStack Neat
and its dependencies can be installed on all the compute
hosts 72 by executing the two following commands on
the controller 71: ./compute-install-deps.py; ./compute-
install-neat.py

[0223] 7. Next, it is necessary to copy the modified con-
figuration file to the compute hosts 72, which can be
done by the following command: ./compute-copy-conf.
py

[0224] 8. All OpenStack Neat services can be started on
the controller 71 and compute hosts 72 with the follow-
ing single command ./all-start.sh

[0225] Once all the steps listed above are completed, Open-
Stack Neat’s services should be deployed and started up. If
any service fails, the log files can be found in /var/log/neat/ on
the corresponding host.

VM Consolidation Algorithms

[0226] As mentioned earlier, OpenStack Neat is based on
the approach to the problem of dynamic VM consolidation,
proposed in the previous sections, which includes dividing
the problem into four sub-problems: (1) host underload detec-
tion; (2) host overload detection; (3) VM selection; and (4)
VM placement. This section discusses some of the imple-
mented algorithms.

Host Underload Detection

[0227] Inthe experiments of this case study, a simple heu-
ristic is used for the problem of underload detection shown in
Algorithm 6. The algorithm calculates the mean ofthe n latest
CPU utilization measurements and compares it to the speci-
fied threshold. If the mean CPU utilization is lower than the
threshold, the algorithm detects a host underload situation.
The algorithm accepts three arguments: the CPU utilization
threshold, the number of last CPU utilization values to aver-
age, and a list of CPU utilization measurements.

Algorithm 6 The averaging threshold-
based underload detection algorithm

Input: threshold, n, utilization
Output: Whether the host is underloaded

1: If utilization is not empty then
2: utilization < last n values of utilization
3: meanUtilization < sum(utilization) / len(utilization)
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-continued

Algorithm 6 The averaging threshold-
based underload detection algorithm

return meanUtilization = threshold
5: return false

Host Overload Detection

[0228] OpenStack Neat includes several overload detection
algorithms, which can be enabled by modifying the configu-
ration file. One of the simple included algorithms is the aver-
aging Threshold-based (THR) overload detection algorithm.
The algorithm is similar to Algorithm 6, while the only dif-
ference is that it detects overload situations if the mean of the
n last CPU utilization measurements is higher than the speci-
fied threshold.

[0229] Another overload detection algorithm included in
the default implementation of OpenStack Neat is based on
estimating the future CPU utilization using local regression
(i.e., the Loess method), referred to as the Local Regression
Robust (LRR) algorithm shown in Algorithm 7, which has
been introduced in [3]. The algorithm calculates the Loess
parameter estimates, and uses them to predict the future CPU
utilization at the next time step taking into account the VM
migration time. In addition, the LR algorithm accepts a safety
parameter, which is used to scale the predicted CPU utiliza-
tion to increase or decrease the sensitivity of the algorithm to
potential overloads.

Algorithm 7 The Local Regression Robust
(LRR) overload detection algorithm

Input: threshold, param, n, migrationTime, utilization
Output: Whether the host is overloaded
1: if len(utilization) < n then.

2: return false

3: estimates <— loessRobustParameterEstimates(last n values of
utilization)

4: prediction < estimates[0] + estimates[1] x (1 + migrationTime)

5: return param x prediction = threshold

[0230] A more complex overload detection algorithm

included in OpenStack Neat is the Markov Overload Detec-
tion (MHOD) algorithm introduced and described in detail in
the previous sections.

VM Selection

[0231] Once a host overload has been detected, it is neces-
sary to determine what VMs are the best to be migrated from
the host. This problem is solved by VM selection algorithms.
An example of such an algorithm is simply randomly select-
ing a VM from the set of VMs allocated to the host. Another
algorithm shown in Algorithm 8 is called Minimum Migra-
tion Time Maximum CPU utilization (MMTMC). This algo-
rithm first selects VMs with the minimum amount of RAM to
minimize the live migration time. Then, out of the selected
subset of VMs, the algorithm selects the VM with the maxi-
mum CPU utilization averaged over the last n measurements
to maximally reduce the overall CPU utilization of the host.
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Algorithm 8 The MMTMC algorithm

Input: n, vimsCpuMap, vmsRamMap
Output: A VM to migrate
1: minRam < min(values of vmsRamMap)
2 maxCpu < 0
3 selectedVm < None
4: for vim, cpu in vimsCpuMap do
5: if vmsRamMap[vm] > minRam then
6: continue
7 vals <= last n values of cpu
8 mean < sum(vals) / len(vals)
9 if maxCpu < mean then
maxCpu < mean
selectedVm < vm
return selectedVm

VM Placement

[0232] The VM placement problem can be seen as a bin
packing problem with variable bin sizes, where bins represent
hosts; bin sizes are the available CPU capacities of hosts; and
items are VMs to be allocated with an extra constraint on the
amount of RAM. As the bin packing problem is NP-hard, it is
appropriate to apply a heuristic to solve it. OpenStack Neat
implements a modification of the Best Fit Decreasing (BFD)
algorithm, which has been shown to use no more than 11/9.
OPT+1 bins, where OPT is the number of bins of the optimal
solution [37].

Algorithm 9 The Best Fit Decreasing
(BFD) VM placement algorithm

Input: n, hostsCpu, hostsRam, inactiveHostsCpu, inactiveHostsRam,
vmsCpu, vmsRam
Output: A map of VM UUIDs to host names

1: vmTuples < empty list

2: for vm, cpu in vimsCpu do

3: vals < last n values of cpu
4: append a tuple of the mean of vals, vmsRam[vm], and v to
vmTuples

5: vms < sortDecreasing(vinTuples)

6: hostTuples < empty list

7: for host, cpu in hostsCpu do

8: append a tuple of cpu, hostsRam[host] host to host(Tuples
9: hosts < sortIncreasing(hostTuples)

10: inactiveHostTuples <= empty list

11: for host cpu in inactiveHostsCpu do

12: append a tuple of cpu, inactiveHostsRam[host], host to
inactiveHostTuples

13: inactiveHosts <= sortIncreasing(inactiveHost Tuples)

14: mapping < empty map

15: for vinCpu, vinRam, vmUuid in vims do

16: mapped < false

17: while not mapped do

18: allocated < false

19: for _, _, host in hosts do

20: if hostsCpulhost] = vinCpu and hostsRam[host] =

vmRam then

21: mapping[vmUuid] < host

22: hostsCpulhost] <= hostsCpu[host] - vimCpu

23: hostsRam[host] <= hostsRam[host] — vmRam

24: mapped < true

25: allocated < true

26: break

27: if not allocated then

28: if inactiveHosts is not empty then

29: activatedHost <= pop the first from inactiveHosts

30: append activatedHost to hosts

31: hosts < sortIncreasing(hosts)

32: hostsCpu[activatedHost[2]] < activatedHost[0]

33: hostsRam[activatedHost[2]] < activatedHost[1]
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-continued

Algorithm 9 The Best Fit Decreasing
(BFD) VM placement algorithm

else
break
: if len(vms) == len(mapping) then
return mapping
: return empty map

[0233] The implemented modification of the BFD algo-
rithm shown in Algorithm 9 includes several extensions: the
ability to handle extra constraints, namely, consideration of
currently inactive hosts, and a constraint on the amount of
RAM required by the VMs. An inactive host is only activated
when a VM cannot be placed on one of the already active
hosts. The constraint on the amount of RAM is taken into
account in the first fit manner; i.e., if a host is selected for a
VM as a best fit according to its CPU requirements, the host
is confirmed if it just satisfies the RAM requirements. In
addition, similarly to the averaging underload and overload
detection algorithms, the algorithm uses the mean values of
the last n CPU utilization measurements as the CPU con-
straints. The worst-case complexity of the algorithm is (n+m/
2)m, where n is the number of physical nodes, and m is the
number of VMs to be placed. The worst case occurs when
every VM to be placed requires a new inactive host to be
activated.

Implementation

[0234] OpenStack Neat is implemented in Python. The
choice of the programming language has been mostly deter-
mined by the fact that OpenStack itself is implemented in
Python; therefore, using the same programming language
could potentially simplify the integration of the two projects.
Since Python is a dynamic language, it has a number of
advantages, such as concise code, no type constraints, and
monkey patching, which refers to the ability to replace meth-
ods, attributes, and functions at run-time. Due to its flexibility
and expressiveness, Python typically helps to improve pro-
ductivity and reduce the development time compared with
statically typed languages, such as Java and C++. The down-
sides of dynamic typing are the lower run-time performance
and lack of compile time guarantees provided by statically
typed languages.

[0235] To compensate for the reduced safety due to the lack
of compile time checks, several programming techniques are
applied in the implementation of OpenStack Neat to mini-
mize bugs and simplify maintenance. First, the functional
programming style is followed by leveraging the functional
features of Python, such as higher-order functions and clo-
sures, and minimizing the use ofthe object-oriented program-
ming features, such as class hierarchies and encapsulation.
One desirable technique that is applied in the implementation
of OpenStack Neat is the minimization of mutable state.
Mutable state is one of the causes of side effects, which
prevent functions from being referentially transparent. This
means that if a function relies on some global mutable state,
multiple calls to that function with the same arguments do not
guarantee the same result returned by the function for each
call.

[0236] The implementation of OpenStack Neat tries to
minimize side effects by avoiding mutable state where pos-
sible, and isolating calls to external APIs in separate functions
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covered by unit tests. In addition, the implementation splits
the code into small easy to understand functions with explicit
arguments that the function acts upon without mutating their
values. To impose constraints on function arguments, the
Design by Contract (DbC) approach is applied using the
PyContracts library. The approach prescribes the definition of
formal, precise, and verifiable interface specifications for
software components. PyContracts lets the programmer to
specify contracts on function arguments via a special format
of Python docstrings. The contracts are checked at run-time,
and if any of the constraints is not satisfied, an exception is
raised. This approach helps to localize errors and fail fast,
instead of hiding potential errors. Another advantage of DbC
is comprehensive and up-to-date code documentation, which
can be generated from the source code by automated tools.
[0237] To provide stronger guarantees of the correctness of
the program, it is desirable to apply unit testing. According to
this method, each individual unit of source code, which in this
context is a function, should be tested by an automated pro-
cedure. The goal of unit testing is to isolate parts of the
program and show that they perform correctly. One of the
most efficient unit testing techniques is implemented by the
Haskell QuickCheck library. This library allows the defini-
tion of tests in the form of properties that must be satisfied,
which do not require the manual specification of the test case
input data. QuickCheck takes advantage of Haskell’s rich
type system to infer the required input data and generates
multiple test cases automatically.

[0238] The implementation of OpenStack neat uses Pyqcy,
a QuickCheck-like unit testing framework for Python. This
library allows the specification of generators, which can be
seen as templates for input data. Similarly to QuickCheck,
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addition to the ability to set artificial return values of methods
and functions, Mocktest allows setting expectations on the
number of the required function calls. If the expectations are
not met, the test fails. Currently, OpenStack Neat includes
more than 150 unit tests.

TABLE 8

The OpenStack Neat codebase summary

Package Files Lines of code Lines of comments
Core 21 2,144 1,946
Tests 20 3,419 260

[0239] OpenStack Neat applies Continuous Integration

(CI) using the Travis CI service. The aim of the CI practice is
to detect integration problems early by periodically building
and deploying the software system. Travis CI is attached to
OpenStack Neat’s source code repository through Git hooks.
Every time modifications are pushed to the repository, Travis
CI fetches the source code and runs a clean installation in a
sandbox followed by the unit tests. If any step of the integra-
tion process fails, Travis CI reports the problem.

[0240] Despite all the precautions, run-time errors may
occur in a deployed system. OpenStack Neat implements
multi-level logging functionality to simplify the post-mortem
analysis and debugging process. The verbosity oflogging can
be adjusted by modifying the configuration file. Table 8 pro-
vides information on the size of the current codebase of
OpenStack Neat. Table 9 summarizes the set of libraries used
in the implementation of OpenStack Neat.

TABLE 9

Libraries used by OpenStack Neat

Library License Description

Distribute Python 2.0 A library for managing Python projects and distributions.
http://bitbucket.org/tarek/distribute

Pyqey FreeBSD A QuickCheck-like unit testing framework for Python,
http://github.com/Xion/pyqey

Mocktest LGPL A Python library for mocking objects and functions.
http://github.com/gfxmonk/mocktest

PyContracts LGPL A Python library for Design by Contract (DbC).
http://github.com/AndreaCensi/contracts

SQLAlchemy MIT A Python SQL toolkit, also used by the core OpenStack services.
http://www.sqlalchemy.org/

Bottle MIT A micro web-framework for Python.
http://bottlepy.org/

Requests ISC A Python HTTP client library.
http://python-requests.org/

libvirt LGPL A visualization toolkit with Python bindings.

Python-novaclient Apache 2.0

http://libvirt.org/
A Python Nova API client implementation.
http://github.com/openstack/python-novaclient

NumPy BSD A library for scientific computing.
http:/numpy.scipy.org/
SciPy BSD A library of extra tools for scientific computing.
http://scipy.org/
Pyqcy uses the defined templates to automatically generate Workload Traces
input data for hundreds of'test cases for each unit test. Another
Python library used for testing of OpenStack Neat is Mock- [0241] To make experiments reproducible, it is desirable to

test. This library leverages the flexibility of Python’s monkey
patching to dynamically replace, or mock, existing methods,
attributes, and functions at run-time. Mocking is essential for
unit testing the code that relies on calls to external APIs. In

rely on a set of input traces to reliably generate the workload,
which would allow the experiments to be repeated as many
times as necessary. It is also desirable to use workload traces
collected from a real system rather than artificially generated,
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as this would help to reproduce a realistic scenario. This case
study uses workload trace data provided as a part of the
CoMon project, a monitoring infrastructure of Planetlab
[27]. The traces include data on the CPU utilization collected
every five minutes from more than a thousand VMs deployed
on servers located in more 500 places around the world. Ten
days of workload traces collected during March and April
2011 have been randomly chosen, which resulted in the total
of 11,746 24-hour long traces.

[0242] The workload from Planetl.ab VMs is representa-
tive of an IaaS Cloud environment, such as Amazon EC2, in
the sense that the VMs are created and managed by multiple
independent users, and the infrastructure provider is not
aware of what particular applications are executing in the
VMs. Furthermore, this implies that the overall system work-
load is composed of multiple independent heterogeneous
applications, which also corresponds to an laaS environment.
However, there is difference from a public Cloud provider,
such as Amazon EC2. The difference is that PlanetLab is an
infrastructure mainly used for research purposes; therefore,
the applications are potentially closer to the HPC type, rather
than web services, which are common in public Clouds.
[0243] HPC applications are typically CPU-intensive with
lower dynamics in the resource utilization compared with
web services, whose resource consumption depends on the
number of user requests and may vary over time. HPC work-
load is easier to handle for a VM consolidation system due to
infrequent variation in the resource utilization. Therefore, to
stress the system in the experiments, the original workload
traces have been filtered to leave only the ones that exhibit
high variability. In particular, only the traces that satisfy the
following two conditions have been selected: (1) at least 10%
of'time the CPU utilization is lower than 20%:; and (2) at least
10% of time the CPU utilization is higher than 80%. This
significantly reduced the number of workload traces resulting
inonly 33 out 0of 11,746 24-hour traces left. The set of selected
traces and filtering script are available online [2].

[0244] The resulting number of traces was sufficient for the
experiments, whose scale was limited by the size of the test-
bed described below. If a larger number of traces are required
to satisfy larger scale experiments, one approach is to relax
the conditions of filtering the original set of traces. Another
approach is to randomly sample with replacement from the
limited set of traces. If another set of suitable workload traces
becomes publicly available, it can be included in the bench-
mark suite as an alternative.

Performance Metrics

[0245] For effective performance evaluation and compari-
son of algorithms it is essential to define performance metrics
that capture the relevant characteristics of the algorithms. One
of the objectives of dynamic VM consolidation is the mini-
mization of energy consumption by the physical nodes, which
can be a metric for performance evaluation and comparison.
However, energy consumption is highly dependent on the
particular model and configuration of the underlying hard-
ware, efficiency of power supplies, implementation of the
sleep mode, etc. A metric that abstracts from the mentioned
factors, but is directly proportional and can be used to esti-
mate energy consumption, is the time of a host being idle,
aggregated over the full set of hosts. Using this metric, the
quality of VM consolidation can be represented by the
increase in the aggregated idle time of hosts. However, this
metric depends on the length of the overall evaluation period

Feb. 5, 2015

and the number of hosts. To eliminate this dependency, a
normalized metric is proposed that is referred to as the Aggre-
gated Idle Time Fraction (AITF) defined as shown in (41).
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where H is a set of hosts; t,(h) is the idle time of the host h; and
t,(h) is the total activity time of the host h. To quantify the
overall QoS delivered by the system, the Aggregated Over-
load Time Fraction (AOTF) metric is applied, which is based
on (11) and defined as in (42).

>t ) 42

heH

AOTFu) ="
h
h{‘[b( )

where t,(h,u,) is the overload time of the host h calculated
according to the overload threshold u,; and t,(h) is the total
busy (non-idle) time of the host h. The overhead of dynamic
VM consolidation in the system is proposed to be evaluated in
terms of the number of VM migrations initiated as a part of
dynamic consolidation. This metric is referred to as the VM
Migration Count (VMMC). Apart from that, the execution
time of various components of the system including the
execution time of the VM consolidation algorithms is evalu-
ated.

Performance Evaluation Methodology

[0246] One of the key points of the proposed performance
evaluation methodology is the minimization of manual steps
required to run an experiment through automation. Automa-
tion begins from scripted installation of the OS, OpenStack
services and their dependencies on the testbed’s nodes, as
described in the OpenStack installation guide [5]. The next
step is writing scripts for preparing the system for an experi-
ment, which includes starting up the required services, boot-
ing VM instances, and preparing them for starting the work-
load generation.

[0247] While most of the mentioned steps are trivial, work-
load generation is complicated by the requirement of syn-
chronizing the time of starting the workload generation on all
the VMs. Another desirable aspect of workload generation is
the way workload traces are assigned to VMs. Typically, the
desired behavior is assigning a unique workload trace out of
the full set of traces to each VM. Finally, it is desirable to
create and maintain a specific level of CPU utilization for the
whole interval between changes of the CPU utilization level
defined by the workload trace for each VM.

[0248] This problem is addressed using a combination of a
CPU load generation program, and a workload distribution
web service and clients deployed on VMs [2]. When a VM
boots from a pre-configured image, it automatically starts a
script that polls the central workload distribution web service
to be assigned a workload trace. Initially, the workload dis-
tribution web service drops requests from clients deployed on
VMs to wait for the moment when all the required VM
instances are booted up and ready for generating workload.
When all clients are ready, the web service receives a com-
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mand to start the workload trace distribution. The web service
starts replying to clients by sending each of them a unique
workload trace. Upon receiving a workload trace, every client
initiates the CPU load generator and passes the received
workload trace as an argument. The CPU load generator reads
the provided workload trace file, and starts generating CPU
utilization levels corresponding to the values specified in the
workload trace file for each time frame.

[0249] During an experiment, OpenStack Neat continu-
ously logs various events into both the database and log files
on each host. After the experiment, the logged data are used
by special result processing scripts to extract the required
information and compute performance metrics discussed
above, as well as the execution time of various system com-
ponents. This process should be repeated for each combina-
tion of VM consolidation algorithms under consideration.
After the required set of experiments is completed, other
scripts are executed to perform automated statistical tests and
plotting graphs for comparing the algorithms.

[0250] The next section presents an example of application
of'the proposed benchmark suite, and in particular applies: (1)
OpenStack Neat as the dynamic VM consolidation frame-
work; (2) the filtered PlanetLab workload traces above; (3)
the performance metrics defined above; and (4) the proposed
evaluation methodology. The full set of scripts used in the
experiments is available online [2].

Performance Evaluation Using a Cloud Data Center

[0251] In this section, the embodiments herein evaluate
OpenStack Neat and several dynamic VM consolidation
algorithm discussed above

Experimental Testbed

[0252] The testbed used for performance evaluation of the
system comprises of the following example hardware:
[0253] 1x Dell Optiplex 745
[0254] Intel® Core™ 2 CPU (2 cores, 2 threads) 6600 @
2.40 GHz
[0255] 2 GB DDR2-667
[0256] Seagate Barracuda 80 GB, 7200 RPM SATA II
(ST3808110AS)

[0257] Broadcom 5751 NetXtreme Gigabit Controller
[0258] 4x IBM System x3200 M3
[0259] Intel® Xeon® CPU (4 cores, 8 threads), X3460
@ 2.80 GHz
[0260] 4 GB DDR3-1333
[0261] Western Digital 250 GB, 7200 RPM SATA 1I

(WD2502ABYS-23B7A)
[0262] Dual Gigabit Ethernet (2x Intel 825741 Ethernet
Controller)

[0263] 1x Netgear ProSafe 16-Port 10/100 Desktop Switch
FS116
[0264] The Dell Optiplex 745 machine was chosen to serve

as the controller host 71 running all the major OpenStack
services and the global manager 87 of OpenStack Neat. The 4
IBM System x3200 M3 servers were used as compute hosts
72; i.e. running OpenStack Nova, and local managers 83 and
data collectors 86 of OpenStack Neat. All of the machines
formed a local network connected via the Netgear FS 116
network switch.

[0265] Unfortunately, there was a hardware problem pre-
venting the system from taking advantage of dynamic VM
consolidation to save energy. The problem was that the com-
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pute nodes of the testbed did not support the Suspend to RAM
power state, which is the most suitable for the purpose of
dynamic VM consolidation. This state potentially provides
very low switching latency, on the order of 300 ms, while
reducing the energy consumption to a negligible level [23].
Therefore, rather than measuring the actual energy consump-
tion by the servers, the AITF metric introduced above was
applied to evaluate the system, which can be seen as a repre-
sentation of potential energy savings.

Experimental Setup and Algorithm Parameters

[0266] From the point of view of experimenting with close
to real world conditions, it is interesting to allocate as many
VMs on a compute host as possible. This would create a more
dynamic workload and stress the system. At the same time, it
is desirable to use full-fledged VM images representing real-
istic user requirements. Therefore, the Ubuntu 12.04 Cloud
Image [9] was used in the experiments, which is one of the
Ubuntu VM images available in Amazon EC2.

[0267] Since the compute hosts of the testbed contained
limited amount of RAM, to maximize the number of VMs
served by a single host, it was necessary to use a VM instance
type with the minimum amount of RAM sufficient for Ubuntu
12.04. The minimum required amount of RAM was empiri-
cally determined to be 128 MB. This resulted in the maximum
of 28 VMs being possible to instantiate on a single compute
host. Therefore, to maximize potential benefits of dynamic
VM consolidation on the testbed containing 4 compute nodes,
the total number of VM instances was set to 28, so that in an
ideal case all of them can be placed on a single compute host,
while the other 3 hosts are kept idle. Out of the 33 filtered
PlanetLab workload traces discussed above, 28 traces were
randomly selected; i.e., one unique 24-hour trace foreach VM
instance. The full set of selected traces is available online [2].

[0268] During the experiments, all the configuration
parameters of OpenStack Neat were set to their default values
except for the configuration of the overload detection algo-
rithm. The overload detection algorithm was changed for
each experiment by going through the following list of algo-
rithms and their parameters:

[0269] 1. MAX-ITF algorithm—a base line algorithm,
which never detects host overloads leading to the maxi-
mum [TF for the host, where the algorithm is used.

[0270] 2. The THR algorithm with the n parameter set to
2, and the CPU utilization threshold set to 0.8, 0.9, and
1.0.

[0271] 3. The LRR algorithm with the safety parameter
sett0 0.9, 1.0, and 1.1.

[0272] 4. The MHOD algorithm with the OTF parameter
setto 0.2, 0.3, and 0.4.

[0273] Each experiment was run three times to handle the
variability caused by random factors, such as the initial VM
placement, workload trace assignment, and component com-
munication latency. All of the system initialization and result
processing scripts, along with the experiment result packages
are available online [2].



Experimental Results and Analysis
[0274]
TABLE 10

The experimental results (mean values with 95% CIs)
Algorithm AITF AOTF VM migrations
THR-0.8 36.9% (35.6, 38.2) 15.4% (12.5, 18.3) 167.7 (152.7, 182.6)
THR-0.9 43.0% (42.6, 43.5) 27.0% (25.7, 28.1) 75.3 (70.2, 80.5)
THR-1.0 49.2% (49.2, 49.4) 42.2% (33.0, 51.3) 11.3 (9.9,12.8)
LRR-1.1 37.9% (37.9, 38.0) 17.8% (12.8,22.7) 195.7 (158.3, 233.0)
LRR-1.0 40.3% (38.1, 42.4) 23.8% (21.4, 26.1) 93.7 (64.6, 122.8)
LRR-0.9 47.3% (45.2, 49.4) 34.4% (28.8, 40.0) 28.3 (23.2, 33.5)
MHOD-0.2 37.7% (36.8, 38.5) 16.0% (13.5, 18.5) 158.3 (153.2,163.5)
MHOD-0.3 38.1% (37.7, 38.5) 17.9% (16.8, 18.9) 138.0 (81.6, 194.4)
MHOD-0.4 40.7% (37.0, 44.4) 21.4% (16.7, 26.0) 116.3 (26.6, 206.0)
MAX-ITF 49.2% (49.1, 49.3) 40.4% (35.8, 44.9) 14.0 (7.4, 20.6)
[0275] The results of experiments are graphically depicted
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lower values of the AOTF metric (higher level of QoS) for

in FIGS. 12A through 12C, with reference to FIGS. 1 through
11. The mean values of the obtained AITF and AOTF metrics,
and the number of VM migrations along with their 95%
Confidence Intervals (Cls) are displayed in Table 10. The
results of MAX-ITF show that for the current experiment
setup it is possible to obtain high values of AITF of up to 50%,
while incurring a high AOTF of more than 40%. All the THR,
LRR, and MHOD allow tuning of the AITF values by adjust-
ing the algorithm parameters. For the THR algorithm, the
mean AITF increases from 36.9% to 49.2% with the corre-
sponding decrease in the QoS level from 15.4% to 42.2% by
varying the CPU utilization threshold from 0.8 to 1.0. The
mean number of VM migrations decreases from 167.7 for the
80% threshold to 11.3 for the 100% threshold. The THR
algorithm with the CPU utilization threshold set to 100%
reaches the mean AITF shown by the MAX-ITF algorithm,
which is expected as setting the threshold to 100% effectively
disables host overload detection. Similarly, adjusting the
safety parameter of the LRR algorithm from 1.1 to 0.9 leads
to an increase of the mean AITF from 37.9% to 47.3% with a
growth of the mean AOTF from 17.8% to 34.4% and decrease
of the mean number of VM migrations from 195.7 to 28.3.
THR-1.0 reaches the mean AITF of 49.2% with the mean
AOTF of 42.2%, while LRR-0.9 reaches a close mean AITF
of 47.3% with the mean AOTF of only 34.4%, which is a
significant decrease compared with the AOTF of THR-1.0.

[0276] Varyingthe OTF parameter of the MHOD algorithm
from 0.2 to 0.4 leads to an increase of the mean AITF from
37.7% to 40.7% with an increase of the mean AOTF from
16.0%10 21.4%. First, itis desirable to note that the algorithm
meets the specified QoS constraint by keeping the value of the
AOTF metric below the specified OTF parameters. However,
the resulting mean AOTF is significantly lower than the speci-
fied OTF parameters: 17.9% for the 30% OTF, and 21.4% for
the 40% OTF. This can be explained by a combination of two
factors: (1) the MHOD algorithm is parameterized by the
per-host OTF, rather than AOTF, which means that it meets
the OTF constraint for each host independently; (2) due to the
small scale of the experimental testbed, a single underloaded
host used for offloading VMs from overloaded hosts is able to
significantly skew the AITF metric. The AITF metric is
expected to be closer to the specified OTF parameter for
large-scale OpenStack Neat deployments. A comparison of
the results produced by LRR-1.1 and LRR-1.0 with MHOD-
0.2 and MHOD-0.4 reveals that the MHOD algorithm leads to

approximately equal values of the AITF metric.

[0277] Usingthe obtained AITF and AOTF metrics for each
algorithm and data on power consumption by servers, it is
possible to compute estimates of potential energy savings
relatively to a non-power-aware system assuming that hosts
are switched to the sleep mode during every idle period. To
obtain a lower bound on the estimated energy savings, it is
assumed that when dynamic VM consolidation is applied, the
CPU utilization of each host is 80% when it is active and
non-overloaded, and 100% when it is overloaded. According
to the data provided by Meisner et al. [23], power consump-
tion of a typical blade server is 450 W in the fully utilized
state, 270 W in the idle state, and 10.4 W in the sleep mode.
Using the linear server power model proposed by Fan et al.
[11] and the power consumption data provided by Meisner et
al. [23], it is possible to calculate power consumption of a
server at any utilization level.

[0278] To calculate the base energy consumption by a non-
power-aware system, it is assumed that in such a system 80 all
the compute hosts 72 are always active with the load being
distributed across them. Since, the power model applied in
this study is linear, it is does not matter how exactly the load
is distributed across the servers. The estimated energy con-
sumption levels for each overload detection algorithm, along
with the corresponding base energy consumption by a non-
power-aware system, and percentages of the estimated energy
savings are presented in Table 11.

TABLE 11

Energy consumption estimate;

Energy, Base energy, Energy
Algorithm kWh kWh savings
THR-0.8 25.99 34.65 24.99%
THR-0.9 24.01 33.80 28.96%
THR-1.0 22.09 32.93 32.91%
LRR-1.1 25.66 34.50 25.63%
LRR-1.0 24.96 34.18 26.97%
LRR-0.9 22.60 33.20 31.93%
MHOD-0.2 25.70 34.53 25.59%
MHOD-0.3 25.59 34.48 25.76%
MHOD-0.4 24.72 34.12 27.54%
MAX-ITF 22.07 32.94 33.01%

[0279] According to the estimates, MAX-ITF leads to the
highest energy savings over the base energy consumption of
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approximately 33% by the cost of substantial performance
degradation (AOTF=40.4%). The THR, LRR, and MHOD
algorithms lead to energy savings from approximately 25% to
32% depending on the specified parameters. Similarly to the
above comparison of algorithms using the AITF metric, LRR-
0.9 produces energy savings close to those of THR-1.0 (31.
93% compared with 32.91%), while significantly reducing
the mean AOTF from 42.2%t0 34.4%. The MHOD algorithm
produces approximately equal or higher energy savings than
the LRR algorithm with lower mean AITF values, i.e., higher
levels of QoS, while also providing the advantage of speci-
fying a QoS constraint as a parameter of the algorithm. The
obtained experimental results confirm the hypothesis that
dynamic VM consolidation is able to significantly reduce
energy consumption in an IaaS Cloud with a limited perfor-
mance impact.

[0280] Table 12 lists mean values of the execution time
along with 95% Cls measured for each overload detection
algorithm during the experiments for some of the system
components: processing underload and overload requests by
the global manager (GM) 87, overload detection algorithms
executed by the local manager (M) 83, and iterations of the
data collector (DC) 86. Request processing by the global
manager 87 takes on average between 30 and 60 seconds,
which is mostly determined by the time required to migrate
VMs. The mean execution time of the MHOD algorithm is
higher than those of THR and LRR, while still being under
half a second resulting in a negligible overhead considering
that it is executed at most once in five minutes. The mean
execution time of an iteration of the data collector is similarly
under a second, which is also negligible considering that it is
executed only once in five minutes.

TABLE 12
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by the central controller is the placement of VMs selected for
migration, which constitute only a fraction of the total num-
ber of VMs in the system. To address the problem of a single
point of failure, it is possible to run a second instance of the
global manager 87, which initially does not receive requests
from the local managers 83 and gets automatically activated
when the primary instance of the global manager 87 fails.
However, the problem of scalability is more complex since it
is necessary to have multiple independent global managers 87
concurrently serving requests from local managers 83.
[0283] Potentially itis possible to implement replication of
the global manager 87 in line with OpenStack’s approach to
scalability by replication of its services. From the point of
view of communication between the local managers 83 and
global managers 87, replication can be simply implemented
by a load balancer that distributes requests from the local
managers 83 across the set of replicated global managers 87.
A more complex problem is synchronizing the activities of
the replicated global managers 87. It is necessary to avoid
situations when two global managers 87 place VMs on a
single compute host 72 simultaneously, since that would
imply that they use an out-of-date view of the system state.
One potential solution to this problem could be a continuous
exchange of information between global managers 87 during
the process of execution of the VM placement algorithm; i.e.,
ifahostis selected by a global manager 87 fora VM, it should
notify the other global managers 87 to exclude that host from
their sets of available destination hosts.

[0284] The embodiments herein proposed a Markov chain
model and control algorithm for the problem of host overload
detection as a part of dynamic VM consolidation. The model
allows a system administrator to explicitly set a QoS goal in

The execution time of components in seconds (mean values with 95% Cls)

terms ofthe OTF parameter, which is a workload independent
QoS metric. For a known stationary workload and a given

Algorithm GM underload GM overload LM overload DC

THR 33.5(26.4,40.5)  60.3 (54.0,66.7) 0.003 (0.000,0.006) 0.8 (0.84, 0.92)
LRR 344 (27.6,41.1) 50.3 (47.8,52.8) 0.006 (0.003,0.008) 0.76 (0.73, 0.80)
MHOD 41.6 (27.1,56.1)  53.7(50.9,56.6) 0.440 (0.429,0.452) 0.92 (0.88, 0.96)
MAX-ITF  41.7 (9.6, 73.7) — 0.001 (0.000, 0.001)  1.03 (0.96, 1.10)
Scalability Remarks

[0281] Scalability and eliminating single points of failure

are desirable benefits of designing a dynamic VM consolida-
tion system in a distributed way. According to the approach
adopted in the design of OpenStack Neat, the underload/
overload detection and VM selection algorithms are able to
inherently scale with the increased number of compute hosts.
This is due to the fact that they are executed independently on
each compute host 72 and do not rely on information about
the global state of the system. In regard to the database setup,
there exist distributed database solutions, e.g., the MySQL
Cluster [26].

[0282] On the other hand, in the current implementation of
OpenStack Neat, there assumed to be only one instance of the
global manager 87 deployed on a single controller host 71.
This limits the scalability of VM placement decisions and
creates a single point of failure. However, even with this
limitation the overall scalability of the system is significantly
improved compared with existing completely centralized VM
consolidation solutions. Compared with centralized solu-
tions, the only functionality implemented in OpenStack Neat

state configuration, the control policy obtained from the
Markov model optimally solves the host overload detection
problem in the online setting by maximizing the mean inter-
migration time, while meeting the QoS goal.

[0285] Using the Multisize Sliding Window workload esti-
mation approach, the model has been heuristically adapted to
handle unknown non-stationary workloads. In addition, an
optimal offline algorithm for the problem of host overload
detection has been proposed to evaluate the efficiency of the
MHOD algorithm. The conducted experimental study has led
to the following conclusions:

[0286] 1. For the simulated PlanetLab workload, 3-state
configurations of the MHOD algorithm on average produce
approximately the same results as the ([0,100),100) 2-state
configuration of the MHOD algorithm; therefore, the 2-state
configuration is preferred, as it requires simpler computa-
tions.

[0287] 2.The 2-state configuration of the MHOD algorithm
leads to approximately 11% shorter time until a migration
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than the LRR algorithm, the best benchmark algorithm. How-
ever, the MHOD algorithm provides the advantage of explicit
specification of a QoS goal in terms of the OTF metric. In
contrast, the performance of the LR and LRR algorithms in
regard to the QoS can only be adjusted indirectly by tuning
the safety parameter. Moreover, the spread of the resulting
OTF value produced by the MHOD algorithm is substantially
narrower compared with the LR and LRR algorithms, which
means the MHOD algorithm more precisely meets the QoS
goal.

[0288] 3. The MHOD algorithm substantially outperforms
the OTFT and OTFTM algorithms in the level of SLA viola-
tions resulting in less than 0.5% SLA violations compared to
81.33% of OTFT and OTFTM.

[0289] 4. The MHOD algorithm on average provides
approximately the same resulting OTF value and approxi-
mately 88% of the time until a VM migration produced by the
optimal offline algorithm (OPT).

[0290] 5. The MHOD algorithm enables explicit specifica-
tion of a desired QoS goal to be delivered by the system
through the OTF parameter, which is successfully met by the
resulting value of the OTF metric.

[0291] The introduced model is based on Markov chains
requiring a few fundamental assumptions. It is assumed that
the workload satisfies the Markov property, which may not be
true for all types of workloads. Careful assessment of the
assumptions discussed above is desirable in an investigation
of the applicability of the proposed model to a particular
system. However, the experimental study involving multiple
mixed heterogeneous real-world workloads has shown that
the algorithm is efficient in handling them. For the simulated
PlanetLab workload the MHOD algorithm performed within
a 12% difference from the performance of the optimal offline
algorithm, which is highly efficient for an online algorithm.
[0292] The MHOD algorithm has been implemented and
evaluated as part of a framework for dynamic VM consolida-
tion in OpenStack Clouds, called OpenStack Neat. The
experimental results and estimates of energy consumption
have shown that OpenStack Neat is able to reduce energy
consumption by the compute nodes of a 4-node testbed by
25% to 33%, while resulting in a limited application perfor-
mance impact from approximately 15% to 40% AOTF. The
MHOD algorithm has led to approximately equal or higher
energy savings with lower mean AOTF values compared with
the other evaluated algorithms, while also allowing the sys-
tem administrator to explicitly specify a QoS constraint in
terms of the OTF metric.

[0293] The performance overhead of the framework is
nearly negligible taking on average only a fraction ofa second
to execute iterations of the components. The request process-
ing of the global manager takes on average between 30 and 60
seconds and is mostly determined by the time required to
migrate VMs. The results have shown that dynamic VM con-
solidation brings significant energy savings with a limited
impact on the application performance. The proposed frame-
work can be applied in both further research on dynamic VM
consolidation, and real OpenStack Cloud deployments to
improve the utilization of resources and reduce energy con-
sumption.

[0294] Theembodiments herein have proposed a novel sys-
tem and framework for dynamic VM consolidation in Open-
Stack Clouds, called OpenStack Neat. The framework fol-
lows a distributed model of dynamic VM consolidation,
where the problem is divided into four sub-problems: host
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underload detection, host overload detection, VM selection,
and VM placement. Through its configuration, OpenStack
Neat can be customized to use various implementations of
algorithms for each for the four sub-problems of dynamic VM
consolidation. OpenStack Neat is transparent to the base
OpenStack installation by interacting with it using the public
APIs, and not requiring any modifications of OpenStack’s
configuration. The embodiments herein have also proposed a
benchmark suite comprising OpenStack Neat as the base
software framework, a set of Planetlab workload traces, per-
formance metrics, and methodology for evaluating and com-
paring dynamic VM consolidation algorithms following the
distributed model.

[0295] Through a synchronization model and replication of
global managers 87, a complete distributed and fault-tolerant
dynamic VM consolidation system can be achieved. The data
collector 86 can be extended to collect other types of data in
addition to the CPU utilization that can be used by VM con-
solidation algorithms.

[0296] The experimental results and estimates of energy
consumption have shown that OpenStack Neat is able to
reduce energy consumption by the compute nodes of a 4-node
testbed by 25% to 33%, while resulting in a limited applica-
tion performance impact from approximately 15% to 40%
AOTF. The MHOD algorithm has led to approximately equal
or higher energy savings with lower mean AOTF values com-
pared with the other evaluated algorithms, while also allow-
ing the system administrator to explicitly specify a QoS con-
straint in terms of the OTF metric. The performance overhead
of the framework is nearly negligible taking on average only
afraction of a second to execute iterations of the components.
The request processing of the global manager 87 takes on
average between 30 and 60 seconds and is mostly determined
by the time required to migrate VMs. The results have shown
that dynamic VM consolidation brings significant energy sav-
ings with a limited impact on the application performance.

[0297] FIG. 13, withreference to FIGS. 1 through 12C, is a
flow diagram illustrating a method for improving a utilization
of physical resources and reducing energy consumption in a
cloud data center according to an embodiment herein. The
method comprises providing (1301) a plurality of virtual
machines 8 in the cloud data center 1426 (of FIG. 14); peri-
odically reallocating (1303) resources of the plurality of vir-
tual machines 8 according to a current resource demand of the
plurality of virtual machines 8 in order to minimize a number
ofactive physical servers required to handle a workload of the
physical servers (e.g., hosts 9, 10), wherein the reallocating
comprises: determining when a physical server is considered
to be overloaded so that some of the virtual machines 8 are
migrated from the overloaded physical server to other physi-
cal servers in order to meet a quality of service requirement;
determining when a physical server is considered to be under-
loaded so that the virtual machines 8 of the physical server are
migrated to other physical servers, wherein the physical
server is switched to a lower power mode; selecting particular
virtual machines 8 to migrate from the overloaded physical
server; and allocating the selected virtual machines for migra-
tion to other active or re-activated physical servers. The
method further comprises maximizing (1305) a mean inter-
migration time between virtual machine migrations under the
quality of service requirement based on a Markov chain
model; and using (1307) a multisize sliding window work-
load estimation process for a non-stationary workload to
maximize the mean inter-migration time.
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[0298] The Markov chain model allows a derivation of a
randomized control policy that optimally maximizes the
mean inter-migration time between virtual machine migra-
tions under an explicitly specified quality of service require-
ment for any known stationary workload and a given state
configuration in an online setting. The method may further
comprise only maximizing an activity time of the overloaded
physical server; and only maximizing an activity time of an
underloaded physical server. A workload of a physical server
comprises a central processing unit utilization created over a
period of time by a set of virtual machines allocated to the
physical server, wherein the workload may be stationary. The
non-stationary workload is approximated as a sequence of
stationary workloads that are enabled one after another.

[0299] The method may further comprise submitting a vir-
tual machine provisioning request through a cloud user inter-
face 3; processing the request and instantiating required vir-
tual machines 8; collecting data on resource utilization of
virtual machines 8 instantiated on a compute host 9, 72;
passing the data to a local consolidation manager 6, 83 that
invokes physical server overload detection, physical server
underload detection, a virtual machine selection process;
passing outcomes generated by the local consolidation man-
ager 6, 83 to a global consolidation manager 5, 87; invoking
a virtual machine placement process to determine a new
placement of a virtual machine 8 required to be migrated;
initiating virtual machine migrations as determined by the
virtual machine placement process; migrating the virtual
machines 8 as instructed by the global consolidation manager
5, 87; and upon completion of the required migrations, the
global consolidation manager 5, 87 switching the physical
servers from and to a lower power mode, wherein the lower
power mode comprises a sleep mode. The quality of service
requirement may be specified in terms of a workload inde-
pendent quality of service metric, and the overload detection
occurs using an offline process.

[0300] The techniques provided by the embodiments
herein may be implemented on an integrated circuit chip (not
shown). The chip design is created in a graphical computer
programming language, and stored in a computer storage
medium (such as a disk, tape, physical hard drive, or virtual
hard drive such as in a storage access network). If the designer
does not fabricate chips or the photolithographic masks used
to fabricate chips, the designer transmits the resulting design
by physical means (e.g., by providing a copy of the storage
medium storing the design) or electronically (e.g., through
the Internet) to such entities, directly or indirectly. The stored
design is then converted into the appropriate format (e.g.,
GDSII) for the fabrication of photolithographic masks, which
typically include multiple copies of the chip design in ques-
tion that are to be formed on a wafer. The photolithographic
masks are utilized to define areas of the wafer (and/or the
layers thereon) to be processed.

[0301] The embodiments herein can include both hardware
and software elements. The embodiments that are imple-
mented in software include but are not limited to, firmware,
resident software, microcode, etc. Furthermore, the embodi-
ments herein can take the form of a computer program prod-
uct accessible from a computer-usable or computer-readable
medium providing program code for use by or in connection
with a computer or any instruction execution system. For the
purposes of this description, a computer-usable or computer
readable medium can be any apparatus that can comprise,

Feb. 5, 2015

store, communicate, propagate, or transport the program for
use by or in connection with the instruction execution system,
apparatus, or device.

[0302] Themedium can be an electronic, magnetic, optical,
electromagnetic, infrared, or semiconductor system (or appa-
ratus or device) or a propagation medium. Examples of a
computer-readable medium include a semiconductor or solid
state memory, magnetic tape, a removable computer diskette,
a random access memory (RAM), a read-only memory
(ROM), a rigid magnetic disk and an optical disk. Current
examples of optical disks include compact disk—read only
memory (CD-ROM), compact disk—read/write (CD-R/W)
and DVD.

[0303] A dataprocessing system suitable for storing and/or
executing program code will include at least one processor
coupled directly or indirectly to memory elements through a
system bus. The memory elements can include local memory
employed during actual execution of the program code, bulk
storage, and cache memories which provide temporary stor-
age of at least some program code in order to reduce the
number of times code must be retrieved from bulk storage
during execution.

[0304] Input/output (I/O) devices (including but not limited
to keyboards, displays, pointing devices, etc.) can be coupled
to the system either directly or through intervening 1/O con-
trollers. Network adapters may also be coupled to the system
to enable the data processing system to become coupled to
other data processing systems or remote printers or storage
devices through intervening private or public networks.
Modems, cable modem and Ethernet cards are just a few of
the currently available types of network adapters.

[0305] A representative hardware environment for practic-
ing the embodiments herein is depicted in FIG. 14, with
reference to FIGS. 1 through 13. This schematic drawing
illustrates a hardware configuration of an information han-
dling/computer system 1400 in accordance with the embodi-
ments herein. The system 1400 comprises at least one pro-
cessor or central processing unit (CPU) 1410. The CPUs 1410
are interconnected via system bus 1412 to various devices
such as a random access memory (RAM) 1414, read-only
memory (ROM) 1416, and an input/output (I/O) adapter
1418. The I/O adapter 1418 can connect to peripheral devices,
such as disk units 1411 and tape drives 1413, or other program
storage devices that are readable by the system 1400. The
system 1400 can read the inventive instructions on the pro-
gram storage devices and follow these instructions to execute
the methodology of the embodiments herein. The system
1400 further includes a user interface adapter 1419 that con-
nects a keyboard 1415, mouse 1417, speaker 1424, micro-
phone 1422, and/or other user interface devices such as a
touch screen device (not shown) to the bus 1412 to gather user
input. Additionally, a communication adapter 1420 opera-
tively connects the bus 1412 to a data processing network
1425, which operatively connects to the cloud data center 1,
and a display adapter 1421 connects the bus 1412 to a display
device 1423 which may be embodied as an output device such
as a monitor, printer, receiver, transmitter, or transceiver, for
example.

[0306] Dynamic consolidation of Virtual Machines (VMs)
is an efficient method for improving the utilization of physical
resources and reducing energy consumption in Cloud data
centers. Determining when it is best to reallocate VMs from
an overloaded host is an aspect of dynamic VM consolidation
that directly influences the resource utilization and QoS deliv-
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ered by the system required for meeting the SLAs. The influ-
ence on the QoS is explained by the fact that server overloads
cause resource shortages and performance degradation of
applications. Previous solutions to the problem of host over-
load detection are generally heuristic-based, or rely on statis-
tical analysis of historical data. The limitations of these
approaches are that they lead to sub-optimal results and do not
allow explicit specification of a QoS goal. The embodiments
herein provide a novel approach that for any known stationary
workload and a given state configuration optimally solves the
problem of host overload detection by maximizing the mean
inter-migration time under the specified QoS goal based on a
Markov chain model. The embodiments herein heuristically
adapt the algorithm to handle unknown non-stationary work-
loads using the Multisize Sliding Window workload estima-
tion technique. Through simulations with real-world work-
load traces from more than a thousand PlanetLab VMs, it is
demonstrated that the embodiments herein outperform the
best benchmark algorithm and provides approximately 88%
of the performance of the optimal offline algorithm.

[0307] The embodiments herein provide a system architec-
ture and implementation of OpenStack Neat (a computer
program product) acting as a framework for dynamic VM
consolidation in OpenStack Clouds. OpenStack Neat can be
configured to use custom VM consolidation algorithms, and
transparently integrates with existing OpenStack deploy-
ments without the necessity in modifying their configuration.
In addition, to foster and encourage further research efforts in
the area of dynamic VM consolidation, the embodiments
herein propose a benchmark suite for evaluating and compar-
ing dynamic VM consolidation algorithms. The proposed
benchmark suite comprises OpenStack Neat as the base soft-
ware (computer program product) framework, a set of real-
world workload traces, performance metrics, and evaluation
methodology. As an application of the proposed benchmark
suite, an experimental evaluation of OpenStack Neat and
several dynamic VM consolidation algorithms on a Cloud
data center testbed are conducted, which shows significant
benefits of dynamic VM consolidation resulting in up to 33%
energy savings.

[0308] The foregoing description of the specific embodi-
ments will so fully reveal the general nature of the embodi-
ments herein that others can, by applying current knowledge,
readily modify and/or adapt for various applications such
specific embodiments without departing from the generic
concept, and, therefore, such adaptations and modifications
should and are intended to be comprehended within the
meaning and range of equivalents of the disclosed embodi-
ments. It is to be understood that the phraseology or termi-
nology employed herein is for the purpose of description and
not of limitation. Therefore, while the embodiments herein
have been described in terms of preferred embodiments,
those skilled in the art will recognize that the embodiments
herein can be practiced with modification within the spiritand
scope of the appended claims.

REFERENCES

[0309] [1] M. Andreolini, S. Casolari, and M. Colajanni.
Models and framework for supporting runtime decisions in
web-based systems. ACM Transactions on the Web
(TWEB), 2(3):17:1-17:43, 2008.

[0310] [2] Anton Beloglazov. Scripts for setting up and
analyzing results of experiments using OpenStack Neat.
(accessed on 26 Nov. 2012).

Feb. 5, 2015

[0311] [3] Anton Beloglazov and Rajkumar Buyya. Opti-
mal online deterministic algorithms and adaptive heuris-
tics for energy and performance efficient dynamic consoli-
dation of virtual machines in Cloud data centers.
Concurrency and Computation: Practice and Experience
(CCPE), 24(13):1397-1420, 2012.

[0312] [4] Anton Beloglazov, Rajkumar Buyya, Young
Choon Lee, and Albert Zomaya. A taxonomy and survey of
energy-efficient data centers and Cloud computing sys-
tems. Advances in Computers, M. Zelkowitz (ed.), 82:47-
111, 2011.

[0313] [5] Anton Beloglazov, Sareh Fotuhi Piraghaj,
Mohammed Alrokayan, and Rajkumar Buyya. Deploying
OpenStack on CentOS using the KVM hypervisor and
GlusterFS distributed file system. Technical report,
CLOUDS-TR-2012-3, CLOUDS Laboratory, The Univer-
sity of Melbourne, Australia, 2012.

[0314] [6] L. Benini, A. Bogliolo, G. A Paleologo, and G.
De Micheli. Policy optimization for dynamic power man-
agement. /[EEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 18(6):813-833, 1999.

[0315] [7] N. Bobroff, A. Kochut, and K. Beaty. Dynamic
placement of virtual machines for managing SLA viola-
tions. In Proceedings of the 10th IFIP/IEEE International
Symposium on Integrated Network Management (IM),
pages 119-128, 2007.

[0316] [8] G. Bolch. Queueing networks and Markov
chains: modeling and performance evaluation with com-
puter science applications. Wiley-Blackwell, 2006.

[0317] [9] Canonical Ltd. Ubuntu 12.04 (Precise Pangolin)
Cloud images. (accessed on 22 Nov. 2012).

[0318] [10] E. Y Chung, L. Benini, A. Bogliolo, Y. H Lu,
and G. De Micheli. Dynamic power management for non-
stationary servicerequests. IEEE Transactions on Comput-
ers, 51(11):1345-1361, 2002.

[0319] [11]X.Fan, W. D. Weber, and L. A. Barroso. Power
provisioning for a warehouse-sized computer. In Proceed-
ings of the 34th Annual International Symposium on Com-
puter Architecture (ISCA), pages 13-23, 2007.

[0320] [12] E. Feller, L. Rilling, and C. Morin. Snooze: A
scalable and autonomic virtual machine management
framework for private Clouds. In Proceedings of the 12th
IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (CCGrid), pages 482-489, 2012.

[0321] [13] E. Feller, C. Rohr, D. Margery, and C. Morin.
Energy management in IaaS Clouds: A holistic approach.
In Proceedings of the Sth IEEE International Conference
on Cloud Computing (IEEE CLOUD), pages 204-212,
2012.

[0322] [14] Gartner, Inc. Gartner estimates ICT industry
accounts for 2 percent of global CO2 emissions, 2007.
(accessed on 17 Jan. 2013).

[0323] [15] Daniel Gmach, Jerry Rolia, Ludmila Cherka-
sova, Guillaume Belrose, Tom Turicchi, and Alfons
Kemper. An integrated approach to resource pool manage-
ment: Policies, efficiency and quality metrics. In Proceed-
ings of the 38th IEEE International Conference on
Dependable Systems and Networks (DSN), pages 326-335,
2008.

[0324] [16] Daniel Gmach, Jerry Rolia, Ludmila Cherka-
sova, and Alfons Kemper. Resource pool management:
Reactive versus proactive or let’s be friends. Computer
Networks, 53(17):2905-2922, 2009.



US 2015/0039764 Al

[0325] [17] Brian Guenter, Navendu Jain, and Charles Wil-
liams. Managing cost, performance, and reliability
tradeoffs for energy-aware server provisioning. In Pro-
ceedings of the 30st Annual IEEE International Confer-
ence on Computer Communications (INFOCOM), pages
1332-1340, 2011.

[0326] [18] F. Hermenier, X. Lorca, J. M. Menaud, G.
Muller, and J. Lawall. Entropy: A consolidation manager
for clusters. In Proceedings of the ACM SIGPLAN/SI-
GOPS International Conference on Virtual Execution
Environments (VEE), pages 41-50, 2009.

[0327] [19] Gueyoung Jung, Matti A. Hiltunen, Kaustubh
R. Joshi, Richard D. Schlichting, and Calton Pu. Mistral:
Dynamically managing power, performance, and adapta-
tion cost in Cloud infrastructures. In Proceedings of the
30th International Conference on Distributed Computing
Systems (ICDCS), pages 62-73, 2010.

[0328] [20] Jonathan G. Koomey. Growth in data center
electricity use 2005 to 2010. Technical report, Analytics
Press, 2011.

[0329] [21]S.Kumar, V. Talwar, V. Kumar, P. Ranganathan,
and K. Schwan. vManage: Loosely coupled platform and
virtualization management in data centers. In Proceedings
of the 6th International Conference on Autonomic Com-
puting (ICAC), pages 127-136, 2009.

[0330] [22]S.0.D Luiz, A. Perkusich, and A. M. N. Lima.
Multisize sliding window in workload estimation for
dynamic power management. [EEE Transactions on Com-
puters, 59(12):1625-1639, 2010.

[0331] [23] D. Meisner, B. T. Gold, and T. F. Wenisch.
PowerNap: eliminating server idle power. ACM SIGPLAN
Notices, 44(3):205-216, 2009.

[0332] [24] K. Mills, J. Filliben, and C. Dabrowski. Com-
paring VM-placement algorithms for on-demand Clouds.
In Proceedings of the 3vd IEEE International Conféerence
on Cloud Computing Technology and Science (Cloud-
Com), pages 91-98, 2011.

[0333] [25]R. Nathuji and K. Schwan. VirtualPower: Coor-
dinated power management in virtualized enterprise sys-
tems. ACM SIGOPS Operating Systems Review, 41(6):
265-278, 2007.

[0334] [26] Oracle Corporation. MySQL cluster CGE. (ac-
cessed on 23 Nov. 2012).

[0335] [27] K. S Park and V. S Pai. CoMon: a mostly-
scalable monitoring system for Planetl.ab. ACM SIGOPS
Operating Systems Review, 40(1):65-74, 2006.

[0336] [28] Rackspace, US Inc. Rackspace hosting reports
second quarter 2012 results, 2012. (accessed on 6 Nov.
2012).

[0337] [29] B. Speitkamp and M. Bichler. A mathematical
programming approach for server consolidation problems
in virtualized data centers. [EEE Transactions on Services
Computing (TSC), 3(4):266-278, 2010.

[0338] [30] S. Srikantaiah, A. Kansal, and F. Zhao. Energy
aware consolidation for Cloud computing. In Proceedings
of the 2008 USENIX Workshop on Power Aware Comput-
ing and Systems (HotPower), pages 1-5, 2008.

[0339] [31] A.Verma, G. Dasgupta, T. K Nayak, P. De, and
R. Kothari. Server workload analysis for power minimiza-
tion using consolidation. In Proceedings of the 2009
USENIX Annual Technical Conference, pages 28-28, 2009.

[0340] [32] Akshat Verma, Puneet Ahuja, and Anindya
Neogi. pMapper: power and migration cost aware applica-
tion placement in virtualized systems. In Proceedings of

Feb. 5, 2015

the 9th ACM/IFIP/USENIX International Conference on

Middleware, pages 243-264, 2008.

[0341] [33] VMware Inc. VMware distributed power man-
agement concepts and use. Technical report, 2010.

[0342] [34] Xiaorui Wang and Yefu Wang. Coordinating
power control and performance management for virtual-
ized server clusters. [EEE Transactions on Parallel and
Distributed Systems (TPDS), 22(2):245-259, 2011.

[0343] [35] Chuliang Weng, Minglu Li, Zhigang Wang, and
Xinda Lu. Automatic performance tuning for the virtual-
ized cluster system. In Proceedings of the 29th Interna-
tional Conference on Distributed Computing Systems
(ICDCS), pages 183-190, 2009.

[0344] [36] T. Wood, P. Shenoy, A. Venkataramani, and M.
Yousif. Black-box and gray-box strategies for virtual
machine migration. In Proceedings of the 4th USENIX
Symposium on Networked Systems Design & Implementa-
tion, pages 229-242, 2007.

[0345] [37] M. Yue. A simple proof of the inequality FFD
(L)<11/9 OPT (L)+1, for all 1 for the FFD bin-packing
algorithm. Acta Mathematicae Applicatae Sinica (English
Series), 7(4):321-331, 1991.

[0346] [38] Q. Zheng and B. Veeravalli. Utilization-based
pricing for power management and profit optimization in
data centers. Journal of Parallel and Distributed Comput-
ing (JPDC), 72(1):27-34, 2011.

[0347] [39] W. Zheng, R. Bianchini, G. J. Janakiraman, J.
R. Santos, and Y. Turner. JustRunit: Experiment-based
management of virtualized data centers. In Proceedings of
the 2009 USENIX Annual Technical Conference, pages
18-33, 2009.

[0348] [40] X. Zhu, D. Young, B. J Watson, Z. Wang, J.
Rolia, S. Singhal, B. McKee, C. Hyser, et al. 1000 Islands:
Integrated capacity and workload management for the next
generation data center. In Proceedings of the 5th Interna-
tional Conference on Autonomic Computing (ICAC), pages
172-181, 2008.

What is claimed is:

1. A method of improving a utilization of physical
resources and reducing energy consumption in a cloud data
center, said method comprising:

providing a plurality of virtual machines in said cloud data

center;

periodically reallocating resources of said plurality of vir-

tual machines according to a current resource demand of

said plurality of virtual machines in order to minimize a

number of active physical servers required to handle a

workload of the physical servers, wherein said reallo-

cating comprises:

determining when a physical server is considered to be
overloaded so that some of the virtual machines are
migrated from the overloaded physical server to other
physical servers in order to meet a quality of service
requirement;

determining when a physical server is considered to be
underloaded so that the virtual machines of said
physical server are migrated to other physical servers,
wherein said physical server is switched to a lower
power mode;

selecting particular virtual machines to migrate from
said overloaded physical server; and

allocating the selected virtual machines for migration to
other active or re-activated physical servers;
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maximizing a mean inter-migration time between virtual
machine migrations under said quality of service
requirement based on a Markov chain model; and

using a multisize sliding window workload estimation pro-
cess for a non-stationary workload to maximize said
mean inter-migration time.

2. The method of claim 1, wherein said Markov chain
model allows a derivation of a randomized control policy that
optimally maximizes said mean inter-migration time between
virtual machine migrations under an explicitly specified qual-
ity of service requirement for any known stationary workload
and a given state configuration in an online setting.

3. The method of claim 1, further comprising:

only maximizing an activity time of said overloaded physi-

cal server; and

only maximizing an activity time of an underloaded physi-

cal server.

4. The method of claim 1, wherein a workload of a physical
server comprises a central processing unit utilization created
over a period of time by a set of virtual machines allocated to
said physical server, and wherein said workload is stationary.

5. The method of claim 4, wherein said non-stationary
workload is approximated as a sequence of stationary work-
loads that are enabled one after another.

6. The method of claim 1, further comprising:

submitting a virtual machine provisioning request through

a cloud user interface;

processing said request and instantiating required virtual

machines;

collecting data on resource utilization of virtual machines

instantiated on a compute host;

passing said data to a local consolidation manager that

invokes physical server overload detection, physical
server underload detection, a virtual machine selection
process;

passing outcomes generated by said local consolidation

manager to a global consolidation manager;

invoking a virtual machine placement process to determine

a new placement of a virtual machine required to be
migrated;

initiating virtual machine migrations as determined by said

virtual machine placement process;

migrating said virtual machines as instructed by said global

consolidation manager; and

upon completion of the required migrations, said global

consolidation manager switching said physical servers
from and to a lower power mode, wherein said lower
power mode comprises a sleep mode.

7. The method of claim 1, wherein said quality of service
requirement is specified in terms of a workload independent
quality of service metric.

8. The method of claim 1, wherein overload detection
occurs using an offline process.

9. A non-transitory program storage device readable by
computer, tangibly embodying a program of instructions
executable by said computer to perform a method of improv-
ing a utilization of physical resources and reducing energy
consumption in a cloud data center, said method comprising:

providing a plurality of virtual machines in said cloud data

center;

periodically reallocating resources of said plurality of vir-

tual machines according to a current resource demand of
said plurality of virtual machines in order to minimize a

Feb. 5, 2015

number of active physical servers required to handle a

workload of the physical servers, wherein said reallo-

cating comprises:

determining when a physical server is considered to be
overloaded so that some of the virtual machines are
migrated from the overloaded physical server to other
physical servers in order to meet a quality of service
requirement;

determining when a physical server is considered to be
underloaded so that the virtual machines of said
physical server are migrated to other physical servers,
wherein said physical server is switched to a lower
power mode;

selecting particular virtual machines to migrate from
said overloaded physical server; and

allocating the selected virtual machines for migration to
other active or re-activated physical servers;

maximizing a mean inter-migration time between virtual
machine migrations under said quality of service
requirement based on a Markov chain model; and
using a multisize sliding window workload estimation pro-

cess for a non-stationary workload to maximize said

mean inter-migration time.

10. The program storage device of claim 9, wherein said
Markov chain model allows a derivation of a randomized
control policy that optimally maximizes said mean inter-
migration time between virtual machine migrations under an
explicitly specified quality of service requirement for any
known stationary workload and a given state configuration in
an online setting.

11. The program storage device of claim 9, further com-
prising:

only maximizing an activity time of said overloaded physi-

cal server; and

only maximizing an activity time of an underloaded physi-

cal server.

12. The program storage device of claim 9, wherein a
workload of a physical server comprises a central processing
unit utilization created over a period of time by a set of virtual
machines allocated to said physical server, and wherein said
workload is stationary.

13. The program storage device of claim 12, wherein said
non-stationary workload is approximated as a sequence of
stationary workloads that are enabled one after another.

14. The program storage device of claim 9, further com-
prising:

submitting a virtual machine provisioning request through

a cloud user interface;

processing said request and instantiating required virtual

machines;

collecting data on resource utilization of virtual machines

instantiated on a compute host;

passing said data to a local consolidation manager that

invokes physical server overload detection, physical
server underload detection, a virtual machine selection
process;

passing outcomes generated by said local consolidation

manager to a global consolidation manager;

invoking a virtual machine placement process to determine

a new placement of a virtual machine required to be
migrated;

initiating virtual machine migrations as determined by said

virtual machine placement process;
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migrating said virtual machines as instructed by said global

consolidation manager; and

upon completion of the required migrations, said global

consolidation manager switching said physical servers
from and to a lower power mode, wherein said lower
power mode comprises a sleep mode.

15. The program storage device of claim 9, wherein said
quality of service requirement is specified in terms of a work-
load independent quality of service metric.

16. The program storage device of claim 9, wherein over-
load detection occurs using an offline process.

17. A system for improving a utilization of physical
resources and reducing energy consumption in a cloud data
center, said system comprising:

a plurality of virtual machines in said cloud data center;

computer code means for periodically reallocating

resources of said plurality of virtual machines according
to a current resource demand of said plurality of virtual
machines in order to minimize a number of active physi-
cal servers required to handle a workload of the physical
servers, wherein said reallocating comprises:
determining when a physical server is considered to be
overloaded so that some of the virtual machines are
migrated from the overloaded physical server to other
physical servers in order to meet a quality of service
requirement;
determining when a physical server is considered to be
underloaded so that the virtual machines of said
physical server are migrated to other physical servers,
wherein said physical server is switched to a lower
power mode;

32

Feb. 5, 2015

selecting particular virtual machines to migrate from
said overloaded physical server; and

allocating the selected virtual machines for migration to
other active or re-activated physical servers;

computer code means for maximizing a mean inter-migra-

tion time between virtual machine migrations under said

quality of service requirement based on a Markov chain

model,;

computer code means for using a multisize sliding window

workload estimation process for a non-stationary work-
load to maximize said mean inter-migration time; and

a display unit that displays said maximized said mean

inter-migration time.

18. The system of claim 17, wherein said Markov chain
model allows a derivation of a randomized control policy that
optimally maximizes said mean inter-migration time between
virtual machine migrations under an explicitly specified qual-
ity of service requirement for any known stationary workload
and a given state configuration in an online setting.

19. The system of claim 17, wherein a workload of a
physical server comprises a central processing unit utilization
created over a period of time by a set of virtual machines
allocated to said physical server, wherein said workload is
stationary, and wherein said non-stationary workload is
approximated as a sequence of stationary workloads that are
enabled one after another.

20. The system of claim 17, wherein said quality of service
requirement is specified in terms of a workload independent
quality of service metric, and wherein overload detection
occurs using an offline process.
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