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Abstract. Due to the increasing use of Cloud computing services and
the amount of energy used by data centers, there is a growing interest
in reducing energy consumption and carbon footprint of data centers.
Cloud data centers use virtualization technology to host multiple vir-
tual machines (VMs) on a single physical server. By applying efficient
VM placement algorithms, Cloud providers are able to enhance energy
efficiency and reduce carbon footprint. Previous works have focused on
reducing the energy used within a single or multiple data centers without
considering their energy sources and Power Usage Effectiveness (PUE).
In contrast, this paper proposes a novel VM placement algorithm to
increase the environmental sustainability by taking into account dis-
tributed data centers with different carbon footprint rates and PUEs.
Simulation results show that the proposed algorithm reduces the CO2
emission and power consumption, while it maintains the same level of
quality of service compared to other competitive algorithms.

Keywords: Cloud computing, Data center, Energy efficiency, Carbon
footprint, Virtual machine placement.

1 Introduction

The information and communication technology industry (ICT) consumes an
increasing amount of energy and most of it is consumed by data centers [8]. A
major consequence of this amount of energy consumption by data centers is a
significant increase in ecosystem carbon level. According to Gartner, the ICT
industry produces 2% of global COy emission, which places it on par with the
aviation industry [22]. Therefore, reducing even a small fraction of the energy
consumption in ICT, results in considerable savings in financial and carbon
emission of the ecosystem.

Cloud computing offers a wide range of services and applications to its users.
Three main services that Clouds provide are infrastructure, platform, and soft-
ware as a service. Infrastructure as a service (IaaS) allows users to run their ap-
plications in form of virtual machines (VMs) on a shared infrastructure. Cloud
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data centers take advantage of virtualization technology [7] to share a physi-
cal server’s resources among multiple VMs. Each VM has its own characteristics
and depending on the resource usage, it consumes energy and leaves carbon foot-
print. By the arrival of each VM request, the Cloud manager selects the physical
resource to instantiate the request. VM placement in Cloud computing system
is a complex task and if cannot be done effectively, it leads to high energy usage
and high carbon footprint.

Thus, wisely taking into account parameters that affect VM placement and
physical server selection result in less energy consumption and less carbon foot-
print. Distributed Cloud data centers, alongside with bringing high availability
and disaster recovery, provide the opportunity to have different energy sources.
Carbon footprint rate of energy sources is an important parameter, since data cen-
ters use electricity driven by these sources to run VMs. By having different energy
sources in different data center sites or within a data center site, Cloud providers
should increase the use of more clean and off-grid renewable energies [24]. Power
usage effectiveness (PUE) is coined by the Green Grid consortium [14] and in-
dicates the energy efficiency of a data center. PUE is a ratio of total power con-
sumed by the data center to its power consumed by IT devices. Providers can
consider PUE as a parameter to perform VM placement among different data cen-
ter sites. Proportional power is another parameter that can be taken into account
for VM placement. Server proportional power has a cubic relation with CPU fre-
quency [17]. Therefore, considering the increase in CPU frequency, which is related
to increase in CPU utilization upon new request arrival, will have a great impact
on the amount of energy consumption in data centers.

This paper proposes a VM placement algorithm by considering distributed
Cloud data centers with the objective of minimizing carbon footprint. Our pro-
posed Cloud computing system, Energy and Carbon-Efficient (ECE) Cloud ar-
chitecture, benefits from distributed Cloud data centers with different carbon
footprint rates, PUE value, and different physical servers’ proportional power.
ECE Cloud architecture places VM requests in the best suited data center site
and physical server. The main contributions of this paper are: an Energy and
Carbon-Efficient Cloud architecture, based on distributed Cloud data centers;
an efficient VM placement algorithm that integrates energy efficiency and car-
bon footprint parameters; a comprehensive comparison on carbon footprint and
power consumption for different VM placement algorithms with respect to qual-
ity of service (number of rejected VMs).

The reminder of the paper is organised as follows. In Section [2 the related
work is discussed. Section B] presents the proposed Cloud architecture with its
components, VM placement algorithm, and formulates the objective. The per-
formance evaluation results and the experimental environment are presented in
Section [l Section [B] concludes the paper and presents future works.

2 Related Work

There is a growing body of literature that aims to reduce the amount of carbon
dioxide of Cloud services in data centers. Most of the works in this area focus
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on reducing the energy consumption in a single data center or considering the
data center hardware aspects [6] [5]. Well-known technologies that data centers
benefit from by applying virtualization technology [7] are VMs migration [15] and
consolidation [23]. The main problem with migration and consolidation is that
they are complex and, due to the need for resuming and suspending VMs cause
overhead to the system [10]. Moreover, these technologies act reactive whereas
applying preventive technologies are more efficient.

As idle servers consume almost half of the power when they are in the peak
power state [4], work by Lin et al. [I8] uses a dynamic right-sizing on-line algo-
rithm to predict the number of active servers that are needed for the arriving
workload to the data center. Based on their experiments, dynamic right-sizing
can achieve significant energy savings in the data center, but it requires servers
to have different power levels and be able to transit to different states. A similar
work done by Lefevre et al. [16] proposes Green Open Cloud (GOC) architec-
ture, with advance resource reservation for users to improve the prediction of
the arrival requests.

The above mentioned technologies are adopted within a data center and in-
tend to reduce the energy consumption, whilst they do not particularly consider
carbon emission. Reducing data center energy consumption does not necessar-
ily lead to reduce in carbon footprint. Works by Aksanli et al. [3] and Goiri
et al. [12] consider the availability of both non-polluting (green) and pollut-
ing (brown) energy sources in a single data center. They use prediction-based
scheduling algorithms to increase usage of green energy sources.

Liu et al. [I9] consider reducing the carbon footprint of data centers by con-
sidering multiple data center sites. They proposed an algorithm to efficiently
use the renewable energies, such as wind and solar, in different places. This
algorithm uses the idea of geographic diversity of data center sites and unpre-
dictability of renewable energies to find the optimal percentage of wind/solar
energies in order to reduce the brown energy consumption. Garg et al. [I1] also
consider reducing carbon footprint of Cloud data center sites. They proposed
a novel carbon-aware green Cloud architecture, which uses two directories for
Cloud providers to register their offered services.

Our work is different from the previous works, since we address the problem
of increase in carbon footprint of the Cloud data centers by performing efficient
VM placement. Our proposed method accommodates VM requests by consider-
ing distributed data center sites of a Cloud provider, with various energy sources
and carbon footprint rates. Moreover, we consider data centers’ PUE, physical
servers’ proportional power usage, and user VM requests of different types. Fi-
nally, we present an energy and carbon-efficient algorithm that uses two level
decision making for VM placement.

3 System Model

In this section, Energy and Carbon-Efficient (ECE) Cloud architecture is de-
scribed. This architecture assures system quality of service, while minimizing
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the Cloud carbon footprint by applying an energy and carbon-efficient heuristic
for VM placement.

3.1 ECE Cloud Architecture

The proposed architecture is represented in Figure[Il The system consists of the
following components and symbols used in this paper are presented in Table [I}

Table 1. Description of Symbols

[Symbol [Description [[Symbol [Description |
d Number of Data Center Sites P Proportional Power
Number of Clusters at each P, Server Power Consumption in Idle
¢ Data Center fized State
h Number of Hosts at each Cluster || Py Server Power  Consumption at
Frequency f
of Data  Center/Cluster Carbon f CPU Operating Frequency at
Footprint Rate “ Utilization u
CF Cloud Total Carbon Footprint type Virtual Machine Instance Type
ht Virtual Machine Holding Time core, pu SEE Cores and Total Processing
ram,storage [RAM and Storage bw Network Bandwidth

Cloud Users: Cloud Users send their VM requests based on predefined re-
quirements to the Cloud provider. Virtual machine types and configurations
are inspired by Amazon Elastic Compute Cloud (EC2) [I]. The expected re-
quirements for each VM are specified by its predefined configurations in terms
of required number of cores, processing unit of each core, storage, RAM, and
network bandwidth. In addition, holding time of a VM depends on the appli-
cation runs on that VM. We consider two types of applications in this paper:
bag-of-tasks and web-requests. Every requested VM by users has the following
requirements: (ht, type), where each type consists of the following components:
{cores, pu, ram, storage, bw}. Cloud computing system load at time t, according
to the running VMs, is represented as:

d c h
load = Z Z Z V(G 5k yt) -

i=1 j=1k=1

Cloud Provider: A Cloud provider has several geographically distributed data
center sites. Each data center is composed of several clusters with various hetero-
geneous physical servers. Physical servers are characterised by CPU cores, CPU
processing unit, amount of RAM, storage, and network bandwidth. In addition
to the physical servers configuration, each data center has its own energy-related
parameters, shown by PUE and proportional power. Moreover, each data center
can have one or more energy sources with different carbon footprint rates.

ECE Cloud Information Service: Each data center site registers its charac-
teristics in the ECE Cloud information service (ECE-CIS) and they keep their
information updated. This information includes available physical resources and
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Fig. 1. Energy and Carbon-Efficient (ECE) Cloud Architecture

energy related parameters; such as data center PUE, energy source(s), carbon
footprint rate, and physical servers’ current utilization and power consumption.
Cloud broker uses this information to perform ECE VM placement in Cloud
computing environment.

ECE Cloud Broker: ECE Cloud Broker is the Cloud provider’s interface with
Cloud users. It receives user requests and schedules them based on their prede-
fined requirements. Despite users request scheduling, broker should also ensure
energy efficient data centers with minimum carbon footprint for Cloud providers.

Resources on the Cloud provider are physical servers in the clusters within
each data center. The broker receives the current status of data centers’ phys-
ical resources and their energy information from ECE-CIS, and based on this
information, assigns the VM to a physical server in a data center site. Based
on [25], in today’s Internet and core networks design, average number of hops a
packet passes from source to destination is between 12-14 hops. Therefore, we
can have data center site selection without considering network distance; espe-
cially for sites that are located in a region, such as different states in USA, as
we considered in this paper.

3.2 Placement Decision

As stated before, the broker makes the placement decision based on the data
centers’ power usage effectiveness (PUE), energy sources carbon footprint rate,
and proportional power.

The PUE indicates the energy efficiency of a data center and is a metric to
compare different data center designs in terms of electricity consumption. Data
center’s PUE is calculated as:
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PUE, — Datacenter;Total PowerConsumption

Datacenter; IT Devices PowerConsumption’

where the total power consumption is sum of power drawn by cooling, lightening,
and IT equipment. PUE is a value larger than 1 (PUE > 1). PUE of 1.0 means
100% of the data center’s electricity goes to the IT part and is ideal for any data
center, but is unattainable pragmatically. In other words, the smaller the PUE,
the more energy eflficient the data center.

Data center proportional power is the next important metric in physical server
selection. According to the experiments by Lien et al. [I7] server’s power con-
sumption depends on the system base power and the CPU frequency, and the
CPU frequency itself depends on the CPU utilization. The data center propor-
tional power, also known as dynamic power, is calculated as: P = Pyjgeq+Ppx fo.
The power consumption for a VM on physical server k in cluster j of data center
i at time ¢ is modeled as: P(vm; j i 1))

According to the above mentioned metrics the objective is to minimize to-
tal carbon footprint of the Cloud provider, CF, for time interval [0, T], and is
computed as follows:

d c h

CF =YY (PUE; x Y (cfj x Y _(Plum(jry) x ht))),

t=1 i=1 j=1 k=1

subject to following constraints:

d c h d c h
core core pu pu
DD D vmay ShostiGy, YYD vmpy S host{ o,
i=1 j=1 k=1 i=1 j=1 k=1
d c h d c h
ram ram storage storage
DD emy <host(iTy, DY N UM gy < hosti gy -
i=1 j=1 k=1 i=1 j=1 k=1

The above mentioned constraints ensure that allocated resources to the VMs on
a physical server do not exceed the total capacity of the server.

3.3 Energy and Carbon-Efficient (ECE) Heuristic for VM
Placement

By the arrival of each VM request the broker has (d x ¢ x h) different VM
placement options. The VM placement problem can be seen as a bin-packing
problem with different bin sizes (physical servers). Therefore, we propose the
Energy and Carbon-Efficient (ECE) VM placement algorithm (Algorithm [I),
which is a derivation of the best-fit heuristic to place the VMs in the data cen-
ter, cluster, and host with the minimum carbon footprint, PUE, and minimum
increase in physical server’s power consumption.
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Algorithm 1. Energy and Carbon-Efficient (ECE) VM Placement Algorithm

Input: datacenerList, clusterList, hostList
Output: destination
while vm Request do
Get data centers’ Information from ECE-CIS;
foreach datacenter in datacenterList do

L Add clusterList into aggregateCluster List;

foreach cluster in aggregateClusterList do

foreach host in hostList do

P < Get current host DynamicPower;

P> + Calculate hostDynamicPower after initiating the vm;
10 AP +— P, — Pi;

1
2
3
4
5 Sort aggregateCluster List in an ascending order of (PUE X cf);
6
7
8
9

11 Sort hostList in an ascending order of AP;

12 foreach host in hostList do

13 if host is suitable for vm then

14 destination + (datacenter, cluster, host);
15 L return destination;

16 destination < null; //rejection of request;

17 return destination;

The broker receives a VM request and selects the best physical server for
the VM. Its objective is to minimize the data centers’ carbon footprint and ac-
cordingly power consumption. Therefore, ECE placement algorithm gets data
centers’ resources and energy status from ECE-CIS, upon the arrival of a new
VM request (Line 2). According to the received information, ECE adds the clus-
ters of all the data centers into an aggregated cluster list (Lines 3-4), and sorts
the new list based on the minimum (PUEFE x c¢f) (Line 5). By receiving the data
centers and clusters status, ECE calculates the amount of power consumption
that will be added to each host after initiating the new VM (Lines 8-10). Af-
terwards, ECE sorts the hosts list based on the estimated AP (Line 11), and if
the host has enough resources for the VM (Line 13), it submits the VM to the
selected data center, cluster, and host.

In order to show the time complexity of Algorithm [I we consider v VM
requests. Line 3-4 take O(d), and the sort function at Line 5 can be done in
O(dclog(dc)). Lines 7-9 need O(h) time, and the sort function for hosts at Line 11
needs O(hlog(h)) to be done. Lines 12-15 take O(h), in the worst case. Thus, the
total running time of the algorithm is O(v(d+ dclog(de) 4+ de(h+ hlog(h) + h))).
Since there are small number of data center sites and clusters (dc) for a Cloud
provider, the complexity of this algorithm is dominated by the number of VM
requests and hosts sort function. The total time complexity of the algorithm is
O(vdchlog(h))).
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4 Performance Evaluation

We use the CloudSim toolkit [9] to evaluate the Cloud computing virtualized
environment. We have extended CloudSim to enable energy and carbon-efficient
VM placement simulations. Apart from being aware of data center’s PUE, carbon
footprint rate, and dynamic power, the extended package has the ability to
simulate dynamic VM requests with different instance types.

In order to evaluate the proposed algorithm, we modeled an IaaS provider
with 4 data center sites, and each site with 90 heterogeneous physical servers.
Each data center has a unique PUE value and 2 clusters with different carbon
footprint rates. Table Plshows data centers’ PUE value and carbon footprint rate
for different group of clusters. The PUE value is based on the work by Green-
berg et al. [13], and is in the range [1.56, 2.1]. Data centers’ carbon footprint
rates, the last column of Table 2] are extracted based on the information from
US Department of Energy, Appendix F, Electricity Emission Factors [2]. In this
simulation, we use 5 different physical servers whose characteristics are given in
Table Bl According to the linear relationship between CPU utilization and fre-
quency, and the cubic relation between CPU frequency and system proportional
power, the following is the power models for the platforms:

CPU Frequency(in GHz): {f(u) : (1.4,1.57,1.74,1.91, 2.08, 2.25,2.42, 2.6, 2.77,2.94,3.11) }
Power Modell(in Watt): {P; : (60, 63, 66.8, 71.3, 76.8, 83.2,90.7, 100, 111.5, 125.4, 140.7) }
Power Model2(in Watt): {P; : (41.6,46.7, 52.3, 57.9, 65.4, 73, 80.7, 89.5, 99.6, 105, 113) }

VM characteristics are inspired by Amazon EC2 instance types given in Table
[ The physical resources to the VMs are allocated based on the VM resource
requirements and all the VMs are considered to perform at the maximum uti-
lization during their lifetime. The VM type and the number of VMs requested
by users depend on the user type (bag-of-tasks or web-requests), and are based
on the related probabilities. The VM type related probability is shown in the
last column of Table @l and is derived from the work by Mills et al. [21].

In order to generate the workload, we need VM requests arrival rate and
holding time. The Lublin-Feitelson [20] workload model is employed to generate
the bag-of-tasks VM requests. We take benefit of Lublin to set arrival request
parameters, including simulation duration, number of requests, requests arrival
time, and request holding time. We consider each generated request in Lublin as a
VM request. In order to generate VMs with longer holding time, we increased the
first parameter of the Gamma distribution and left other Lublin parameters with
their default value. To generate the web-requests, we use the same arrival time
model of bag-of-tasks requests, and for the holding time we use a hyper gamma
distribution with expectation value 73 and variance 165. For both workloads, we
omit 5% of created requests at the start (warm-up period) and end (cool-down
period) of the simulation to get a steady environment. We apply 240-hour long
workload with different number of requests. Finally, for the purpose of accuracy,
each experiment is repeated 30 times and the mean is reported for measured
values for experimental results.
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Table 2. Data Centers Characteristics

Data Center Site ‘PUE Carbon Footprint Rate

(Tons/MWh)
DC1 -Oregan, USA 1.56 0.124, 0.147
DC2 -California, USA|[1.7 0.350, 0.658
DC3 -Virginia, USA [1.9 0.466, 0.782
DC4 -Dallas, USA 2.1 0.678, 0.730

Table 3. Platform Types Characteristics

Platform [Number Core Memory|Storage Networ'k . Power
Type of Cores Speed (GB) (GB) Bandwidth | Bits Model
(GHz) (Mbps)
Platforml |2 2 16 2000 1000 B32 [PowerModell
Platform?2 |4 4 32 6000 1000 B64 [PowerModell
Platform3 (8 4 32 7000 2000 B64 [PowerModel2
Platform4 |8 8 64 7000 4000 B64 [PowerModel2
Platform5 (8 16 128 9000 4000 B64 [PowerModel2
4.1 Results

We use the described workload data to compare the proposed VM placement
algorithm with respect to carbon and power efficiency with four competing algo-
rithms. The first algorithm is a version of ECE, that its data center and cluster
selection is same as ECE, and uses first-fit bin-packing for host selection. We
refer to this algorithm as Carbon-Efficient First-Fit (CE-FF). The other group
of algorithms are three bin-packing heuristics that use first-fit heuristic for data
center/cluster selection, without considering carbon footprint parameters. First-
Fit Power-Efficient (FF-PE) uses power-efficient policy for host selection (same
as ECE host selection). First-Fit Most-Full First (FF-MF) selects the physi-
cal server with least available resources. Finally, the last algorithm uses first-fit
heuristic for data center, cluster, and host selection (FF-FF).

Figure 2al illustrates the carbon footprint of ECE in comparison with other
placement algorithms under different number of VM requests. Based on the
experiments, as the number of VMs increases, the system utilization increases
as well to the point that system performs with highest utilization and reaches
to the saturation point. Therefore, increase in system load leads to increase
in the total carbon footprint in data centers. Based on the Figure Bal ECE
in comparison to CE-FF (carbon-efficient) and other heuristics (non carbon-
efficient) reduces carbon footprint with an average of 10% and 45% respectively.
The same behaviour can be seen for the data centers’ power consumption in
Figure Rhl The ECE algorithm has lower power consumption in comparison to
the other algorithms and consumes on average 8% and 20% less power than
CE-FF and other heuristics placement algorithms respectively. Considering the
differences between algorithms behaviour in both figures, we can infer that just
considering power-efficient parameters is not enough to reduce the data centers’
carbon footprint. However, taking into consideration data centers’ energy and
carbon rate parameters, at the same time, leads to significant reduction in terms
of Cloud computing system carbon footprint and consumed power.
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Table 4. VM Types and Simulated User Types; (Bag-of-Task Users (BT) and Web-
Request Users (WR))

Number|Core Memorv |Storagel Network Probability
VM Type of Speed (MB) Y (GB) 8¢ Bandwidth |Bits |and
Cores |(GHz) (Mbps) UserType
M1Small 1 1 1740 160 500 B32 [0.25-BT
Standard 0T WE
Instances MilLarge |2 4 7680 850 500 B64 0.25.-BT
MIXLarge [4 8 15360 1690 1000 B64 [0.08-WR
High Memory ([M2XLarge |2 6.5 17510 420 1000 B64 |0.12-WR
Instances M22XLarge|4 13 35020 850 1000 B64 [0.08-WR
Ingh CPU ClMedium |2 5 1740 320 500 B32 |0.1-BT
nstances
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Fig. 2. Comparison of ECE Algorithm with other VM Placement Algorithms

Table 5. SLA Violation for Different VM Placement Algorithms

VM Placement| SLA Violation Under Different VM Requests

Algorithm [1000 [1200 [1400 [1600 [1800 [2000 |
ECE 0.0% 0.05% 0.4% 2.9% 8.6% 13.0%
CE-FF 0.0% 0.0% 0.3% 0.7% 6.0% 11.4%
FF-PE 0.0% 0.0% 0.3% 2.5% 9.4% 15.3%
FF-MF 0.0% 0.0% 0.2% 2.5% 9.7% 15.3%
FF-FF 0.0% 0.0% 0.1% 2.6% 9.7% 15.3%

Table [B] shows the SLA violation under different system loads for different
VM placement algorithms. It shows that, the SLA violation (number of rejected
VMs) under low system load for ECE is slightly higher than the other algorithms.
However, by increasing system load, ECE will have lower SLA violation. Overall,
all the VM placement algorithms have close values for violation, while ECE
considerably reduces carbon footprint and power consumption.

5 Conclusion and Future Work

In this paper, the problem of VM placement to reduce Cloud computing en-
ergy consumption and carbon footprint is investigated. We used ECE Cloud
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information service (ECE-CIS), as part of next generation Cloud computing en-
vironment. ECE-CIS obtains energy and carbon related information from data
centers and enables the broker to carry out carbon and power-efficient VM place-
ment. We introduced the energy and carbon-efficient (ECE) VM placement al-
gorithm, and compared it with a carbon-efficient algorithm (CE-FF) and three
other heuristic algorithms (FF-PE, FF-MF, FF-FF). We performed the simula-
tions by extending CloudSim and used different VM instance types with different
holding times for the system workload. Based on the experiment results, ECE
can on average save up to 10% and 45% carbon footprint in the ecosystem in
comparison to CE-FF and three other heuristics respectively, while keeping SLA
violation level as the same. Moreover, ECE reduces the power consumption in
data centers by an average of 8% and 20% in comparison to CE-FF and other
three algorithms respectively; which illustrates the importance of considering
data centers’ carbon footprint rate and PUE to reduce Cloud computing carbon
footprint.

In the future, we plan to study the impact of different user applications and
VM holding times on the VM placement policies. Moreover, we want to explore
the effect of inter-data centers network distance and data locality on the Cloud
computing system carbon footprint.
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