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a b s t r a c t

The use of High Performance Computing (HPC) in commercial and consumer IT applications is becoming
popular. HPC users need the ability to gain rapid and scalable access to high-end computing capabilities.
Cloud computing promises to deliver such a computing infrastructure using data centers so that HPC
users can access applications and data from a Cloud anywhere in the world on demand and pay based
on what they use. However, the growing demand drastically increases the energy consumption of data
centers, which has become a critical issue. High energy consumption not only translates to high energy
cost which will reduce the profit margin of Cloud providers, but also high carbon emissions which
are not environmentally sustainable. Hence, there is an urgent need for energy-efficient solutions that
can address the high increase in the energy consumption from the perspective of not only the Cloud
provider, but also from the environment. To address this issue, we propose near-optimal scheduling
policies that exploit heterogeneity across multiple data centers for a Cloud provider. We consider a
number of energy efficiency factors (such as energy cost, carbon emission rate, workload, and CPU power
efficiency) which change across different data centers depending on their location, architectural design,
and management system. Our carbon/energy based scheduling policies are able to achieve on average up
to 25% of energy savings in comparison to profit based scheduling policies leading to higher profit and
less carbon emissions.

© 2010 Elsevier Inc. All rights reserved.
1. Introduction

During the last few years, the use of High Performance Com-
puting (HPC) infrastructure to run business and consumer based
IT applications has increased rapidly. This is evident from the re-
cent Top500 supercomputer applications where many supercom-
puters are now used for industrial HPC applications, including 9.2%
of them are used for Finance and 6.2% for Logistic services [58].
Thus, it is desirable for IT industries to have access to a flexi-
ble HPC infrastructure which is available on demand with mini-
mum investment. Cloud computing [10] promises to deliver such
reliable services through next-generation data centers built on
virtualized compute and storage technologies. Users are able to ac-
cess applications and data from a ‘‘Cloud’’ anywhere in the world
on demand and pay based on what they use. Hence, Cloud com-
puting is a highly scalable and cost-effective infrastructure for
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running HPC applications which requires ever-increasing compu-
tational resources.

However, Clouds are essentially data centers that require high
energy1 usage to maintain operation [5]. Today, a typical data
center with 1000 racks need 10MWof power to operate [50]. High
energy usage is undesirable since it results in high energy cost.
For a data center, the energy cost is a significant component of
its operating and up-front costs [50]. Therefore, Cloud providers
want to increase their profit or Return on Investment (ROI) by
reducing their energy cost. Many Cloud providers are thus building
different data centers and deploying them in many geographical
locations so as not only to expose their Cloud services to business
and consumer applications, e.g. Amazon [1], but also to reduce
energy cost, e.g. Google [40].

In April 2007, Gartner estimated that the Information and Com-
munication Technologies (ICT) industry generates about 2% of the
total global CO2

2 emissions, which is equal to the aviation indus-
try [30]. As governments impose carbon emissions limits on the ICT

1 Energy and electricity is used interchangeably.
2 CO2 and carbon is used interchangeably.
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Fig. 1. Computer power consumption index.
Source: [32].

industry like in the automobile industry [18,21], Cloud providers
must reduce energyusage tomeet thepermissible restrictions [15].
Thus, Cloud providers must ensure that data centers are utilized
in a carbon-efficient manner to meet scaling demand. Otherwise,
building more data centers without any carbon consideration is
not viable since it is not environmentally sustainable and will ul-
timately violate the imposed carbon emissions limits. This will
in turn affect the future widespread adoption of Cloud comput-
ing, especially for the HPC community which demands scalable
infrastructure to be delivered by Cloud providers. Companies like
Alpiron [2] already offer software for cost-efficient server man-
agement and promise to reduce energy cost by analyzing, via ad-
vanced algorithms,which server to shutdownor turn on during the
runtime.

Motivated by this practice, this paper enhances the idea of
cost-effectivemanagement by taking both the aspects of economic
(profit) and environmental (carbon emissions) sustainability into
account. In particular, we aim to examine how a Cloud provider
can achieve optimal energy sustainability of running HPC work-
loads across its entire Cloud infrastructure by harnessing the het-
erogeneity of multiple data centers geographically distributed in
different locations worldwide.

The analysis of previous work shows that little investigation
has been done for both economic and environmental sustainabil-
ity to achieve energy efficiency on a global scale as in Cloud com-
puting. First, previous work has generally studied how to reduce
energy usage from the perspective of reducing cost, but not how
to improve the profit while reducing the carbon emissions which
is also significantly impacting the Cloud providers [25]. Second,
most previous work has focused on achieving energy efficiency at
a single data center location, but not acrossmultiple data center lo-
cations. However, Cloud providers such as Amazon EC2 [1] typi-
cally hasmultiple data centers distributedworldwide. As shown in
Fig. 1, the energy efficiency of an individual data center in different
locations changes dynamically at various times depending on a
number of factors such as energy cost, carbon emission rate, work-
load, CPU power efficiency, cooling system, and environmental
temperature. Thus, these different contributing factors can be con-
sidered to exploit the heterogeneity across multiple data centers
for improving the overall energy efficiency of the Cloud provider.
Third, previous work has mainly proposed energy saving policies
that are application-specific [26,28], processor-specific [52,17],
and/or server-specific [60,38]. But, these policies are only appli-
cable or most effective for the specific models that they are spe-
cially designed for. Hence, we propose some simple, yet effective
generic energy-efficient scheduling policies that can be extended
to any application, processor, and servermodels so that they can be
readily deployed in existing data centers with minimum changes.
Our generic scheduling policies within a data center can also easily
complement any of these application-specific, processor-specific,
and/or server-specific energy saving policies that are already in
place within existing data centers or servers.

Hence, the key contributions of this paper are:

(1) A novel mathematical model for energy efficiency based on
various contributing factors such as energy cost, carbon emis-
sion rate, HPC workload, and CPU power efficiency;

(2) Near-optimal energy-efficient scheduling policies which not
only minimize the carbon emission and maximize the profit of
the Cloud provider, but also can be readily implemented with-
out much infrastructure changes such as the relocation of ex-
isting data centers;

(3) Energy efficiency analysis of our proposed policies (in terms
of carbon emissions and profit) through extensive simulations
using real HPC workload traces, and data center carbon emis-
sion rates and energy costs to demonstrate the importance of
considering various contributing factors;

(4) Analysis of lower/upper bounds of the optimization problem;
and

(5) Exploiting local minima in Dynamic Voltage Scaling (DVS) to
further reduce the energy consumption of HPC applications
within a data center.

This paper is organized as follows. Section 2 discusses related
work. Section 3 defines the Cloud computing scenario and the
problem description. In Section 4, different policies for allocating
applications to data centers efficiently are described. Section 5 ex-
plains the evaluation methodology and simulation setup, followed
by the analysis of the performance results in Section 6. Section 7
presents the conclusion and future work.

2. Related work

Table 1 gives an overview of previous work which addresses
any of the five aspects considered by this paper. To the best of
our knowledge, except our work, there is no previous work which
collectively addresses all five aspects.

Most previous work addresses energy-efficient computing for
servers [5]. Butmost of them focuses on reducing energy consump-
tion in data centers for web workloads [60,12]. Thus, they assume
that energy is an increasing function of CPU frequency since web
workloads have the same execution time per request. However,
HPC workloads have different execution time depending on spe-
cific application requirements. Hence, the energy–CPU-frequency
relationship of a HPC workload is significantly different from that
of awebworkload as discussed in Section 4.2. Therefore, in this pa-
per, we define a generalized power model and adopt a more gen-
eral strategy to scale up or down the CPU frequency.

Some previous work examine how energy can be saved for ex-
ecuting HPC applications. Bradley et al. [6] proposed algorithms to
minimize the power utilization by usingworkload history and pre-
dicting future workload within acceptable reliability. Lawson and
Smirni [39] proposed an energy saving scheme that dynamically
adjusts the number of CPUs in a cluster to operate in ‘‘sleep’’ mode
when the utilization is low. Tesauro et al. [57] presented an appli-
cation of batch reinforcement learning combined with nonlinear
function approximation to optimize multiple aspects of data cen-
ter behavior such as performance, power, and availability.

But these solutions target to save energy within a single server
or a single data center (with many servers) in a single location.
Since our generic scheduling policy improves the energy efficiency
across data centers in multiple locations with different carbon
emission rates, it can be used in conjunction with these solutions
to utilize any energy efficiency already implemented in a single
location.
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Table 1
Comparison of related work.

CO2 emission/energy
consumption

HPC workload
characteristic

Multiple data
centers

Energy cost aware
scheduling

Market-oriented schedulers

Our work X X X X X
Bradley et al. [6] X X
Lawson and
Smirni [39]

X X

Tesauro [57] X X
Orgerie et al. [45] X X X
Patel et al. [47] X
Chase et al. [11] X X
Burge et al. [9] X X X
There are some studies on energy efficiency in Grids, which
comprise resource sites in multiple locations similar to our scope.
Orgerie et al. [45] proposed a prediction algorithm to reduce power
consumption in large-scale computational grids such as Grid5000
by aggregating the workload and turning off unused CPUs. Hence,
they do not consider using DVS to save power for CPUs. Patel
et al. [47] proposed allocating Grid workload on a global scale
based on the energy efficiency at different data centers. But, their
focus is on reducing temperature, and thus do not examine how
energy consumption can be reduced by exploiting different power
efficiency of CPUs, energy costs, and carbon emission rates across
data centers. In addition, they do not focus on any particular
workload characteristics, whereas we focus on HPC workload.

Not much previous work studies the energy sustainability issue
from an economic cost perspective. To address energy usage,
Chase et al. [11] adopted an economic approach to manage
shared server resources in which services ‘‘bid’’ for resources as
a function of delivered performance. Burge et al. [9] scheduled
tasks to heterogeneous machines and made admission decisions
based on the energy costs of each machine to maximize the
profit in a single data center. But, both of them do not study
the critical relationship between carbon emissions (environmental
sustainability) and profit (economic sustainability) for the energy
sustainability issue, and how they can affect each other. On the
other hand, we examine how carbon emissions can be reduced for
executing HPC applications with negligible effect on the profit of
the Cloud provider.

3. Meta-scheduling model

3.1. System model

Our system model is based on the Cloud computing environ-
ment, whereby Cloud users are able to tap the computational
power offered by the Cloud providers to execute their HPC appli-
cations. The Cloudmeta-scheduler acts as an interface to the Cloud
infrastructure and schedules applications on the behalf of users
as shown in Fig. 2. It interprets and analyzes the service require-
ments of a submitted application and decides whether to accept or
reject the application based on the availability of CPUs. Its objec-
tive is to schedule applications such that the carbon emissions can
be reduced and the profit can be increased for the Cloud provider,
while the Quality of Service (QoS) requirements of the applica-
tions are met. As data centers are located in different geographi-
cal regions, they have different carbon emission rates and energy
costs depending on regional constraints. Each data center is re-
sponsible for updating this information to the meta-scheduler for
energy-efficient scheduling. The two participating parties, Cloud
users and Cloud providers, are discussed below with their objec-
tives and constraints:
(1) Cloud users: The Cloud users need to run HPC applications/

workloads which are compute-intensive with low data trans-
fer requirements, and thus require parallel anddistributed pro-
cessing to significantly reduce their execution time. The users
Fig. 2. Cloud meta-scheduling protocol.

submit parallel non-moldable applications with their QoS and
processing requirements to the Cloud meta-scheduler. Each
application must be executed within an individual data cen-
ter and does not have preemptive priority. The reason for this
requirement is that the synchronization among various tasks
of parallel applications can be affected by communication de-
lays when applications are executed across multiple data cen-
ters. Furthermore, since the main aim of this paper is to design
high-level application-independent meta-scheduling policies,
we do not want to consider the fine-grained details of HPC
workload (such as considering the impact of communication
and synchronization, and their overlappingwith computation),
which are more applicable at the local scheduler level. The ob-
jective of the user is to have his application completed by the
specified deadline. Deadlines are hard, i.e. the user will ben-
efit from the HPC resources only if the application completes
before its deadline [49].

To facilitate the comparison of various policies described in
this work, the estimated execution time of an application is as-
sumed to be known by the user at the time of submission [24].
This can be derived based on user-supplied information, ex-
perimental data, application profiling or benchmarking, and
other techniques. Existing performance prediction techniques
(based on analytical modeling [44], empirical [4] and histor-
ical data [55,37,53]) can also be applied to estimate the exe-
cution time of parallel applications. However, in reality, it is
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Fig. 3. Free time slots.

not always possible to estimate the execution time of an ap-
plication accurately. But, in Cloud computing where users pay
based on actual resource usage, a user will have to pay more
than expected if the execution time of his application has been
under-estimated. Thus, a user must still be given the privilege
of whether to accept or change any automatically derived es-
timate before submission.

(2) Cloud providers: A Cloud provider has multiple data centers
distributed across theworld. For example, Amazon [1] has data
centers in many cities across Asia, Europe, and United States.
Each data center has a local scheduler that manages the execu-
tion of incoming applications. The Cloudmeta-scheduler inter-
acts with these local schedulers for application execution. Each
local scheduler periodically supplies information about avail-
able time slots (ts, te, n) to the meta-scheduler, where ts and te
are the start time and end time of the slot respectively and n is
the number of CPUs available for the slot. Within a data center,
the free time slots are obtained based on the approach used by
Singh et al. [54]. The CPU availability at particular times in the
future is maintained by the local scheduler. The free time slot
information is generated until a given time horizon, thus cre-
ating windows of availability or free time slots; the end time
of a free time slot is either the end time of a job in the waiting
queue or the planning horizon. The time horizon is set to ∞,
thus all the free time slot information is disclosed to the meta-
scheduler. An example is given in Fig. 3, where S1, S2, . . . , S5
are free time slots. The Cloud Provider also supplies execution
price and I/O data transfer cost to the meta-scheduler.
To facilitate energy-efficient computing, each local scheduler

also supplies information about the carbon emission rate, Coeffi-
cient of Performance (COP), electricity price, CPUpower–frequency
relationship, Million Instructions Per Second (MIPS) rating of CPUs
at the maximum frequency, and CPU operating frequency range
of the data center. The MIPS rating is used to indicate the over-
all performance of a CPU. All CPUs within a data center are homo-
geneous, but CPUs can be heterogeneous across data centers. The
carbon emission rates are calculated based on the fuel type used in
electric power generation. These are published regularly by various
government agencies such as US Energy Information Administra-
tion (EIA). COP of the data center’s cooling system is defined as the
amount of cooling delivered per unit of electrical power consumed.
COP can be measured by monitoring the energy consumption by
various components of the cooling system [46]. Various parame-
ters of CPUs at the data center can be derived experimentally [29].

3.2. Data center energy model

The major contributors for the total energy usage in a data
center are IT equipment (which consists of servers, storage
devices, and network equipment) and cooling systems [19]. Other
systems such as lighting are not considered due to their negligible
contribution to the total energy usage.

Within a data center, the total energy usage of a server depends
on its CPUs, memory, disks, fans, and other components [22].
However, for simplicity, we only compute the energy usage of a
server based on its CPUs due to two reasons. First, as pointed out by
Fan et al. [22], the energy usage of the server varies depending on
the type of workload executed. Since we only consider compute-
intensive HPC applications and the CPUs use the largest proportion
of energy in a server, it is sufficient in our case to only model CPU
energy usage. Second, the aim of this paper is to examine how a
meta-scheduler can achieve energy efficiency on a global scale by
exploiting the heterogeneity across multiple data centers. Hence
wedonot focus in detail on how to save energy usage locallywithin
a data center, whereby energy can potentially be saved through
other components in the server, such as memory and disks. But,
our proposed meta-scheduling policies can easily compliment any
other solutions that focus on saving energy within a data center in
this regard.

The power consumption of a CPU can be reduced by lowering
its supply voltage using DVS. DVS is an efficient way to manage
dynamic power dissipation during computation. The power
consumption model of CPUs which are generally composed of
CMOS circuits is given by: P = αV 2f + IleakV + Pshort , where P
is the power dissipation, V is the supply voltage, f is the clock
frequency, Ileak is the leakage current, and Pshort is the short circuit
power dissipated during the voltage switching process [8,48]. The
first term constitutes the dynamic power of the CPU and the second
term constitutes the static power. Pshort is generally negligible in
comparison to other terms.

Since the voltage can be expressed as a linear function of fre-
quency in the CMOS logic, the power consumption Pi of a CPU in a
data center i is approximated by the following function (similar to
previous work [60,12]): Pi = βi+αif 3, where βi is the static power
consumed by the CPU, αi is the proportionality constant, and f is
the frequency at which the CPU is operating. We use this cubic re-
lationship between the operating frequency and power consump-
tion since this paper focuses on compute-intensive workload and
to the best of our knowledge, the cubic relationship is the most
commonly used metric for CPU power in previous work [60,12].
We also consider that a CPU of data center i can adjust its frequency
from a minimum of f min

i to a maximum of f max
i discretely. The fre-

quency levels supported by a CPU typically varies for different CPU
architecture. For instance, Intel Pentium M 1.6 GHz CPU supports
6 V from 0.956 V to 1.484 V.

The energy cost of the cooling system depends on its COP
[42,56]. COP is an indication for the efficiency of the cooling system,
which is defined as the ratio of the amount of energy consumed by
CPUs to the energy consumed by the cooling system. However, COP
is not constant and varies with the cooling air temperature. We
assume that COP will remain constant during a scheduling cycle
and data centers will update the meta-scheduler whenever COP
changes. Thus, the total energy consumed by the cooling system
in a data center i is given by:

Eh
i =

Ec
i

COPi
(1)

where Ec
i is the total energy consumed by CPUs and Eh

i is the total
energy consumed by cooling devices.

The total energy consumed by data center i can then be approx-
imated by:

Etotal
i = Ec

i + Eh
i =


1 +

1
COPi


Ec
i =


COPi + 1
COPi


Ec
i .

Therefore, the data center efficiency (DCiE) [59] is given as:

DCiE =
COP

COP + 1
.

3.3. Relation between execution time and CPU frequency

Since we use DVS to scale up/down the CPU frequency, the
execution time of an application can significantly vary according
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Table 2
Parameters of a data center i.

Parameter Notation

Carbon emission rate (kg/kW h) rCO2
i

Average COP COPi
Electricity price ($/kW h) pei
Data transfer price ($/GB) for upload/download pDTi
CPU power Pi = βi+αif 3

CPU frequency range [f min
i , f max

i ]
Time slots (start time, end time, number of CPUs) (ts ,te ,n)

to the CPU frequency. However, the decrease in execution time
due to the increase in CPU frequency depends on whether the
application is CPU bound or not. For example, if the performance
of an application is completely dependent on the CPU frequency,
then its execution timewill be inversely proportional to the change
in CPU frequency. Thus, the execution time of an application is
modeled according to the definition proposed by Hsu et al. [34]:

T (f ) = T (f max) ×


γ cpu


f max

f
− 1


+ 1


(2)

where T (f ) is the execution time of the application at CPU
frequency f , T (f max) is the execution time of the application at the
maximum CPU frequency f max, and γ cpu is the CPU boundness of
the application.

If the value of γ cpu decreases, the CPU boundness of the appli-
cation will also decrease, which results in potentially more energy
reduction by using DVS in servers within a data center (see Sec-
tion 4.2). It is however important to note that the CPU boundness
of an application varies based on the CPU architecture, as well as
memory and disks. Like many prior studies [20,28], we still use
this factor to model the CPU usage intensity of an application in
a simple generic manner so as to optimize its energy consumption
accordingly. However, for all our experiments, we have used the
worst case value of γ cpu

= 1 to analyze the performance of our
heuristics.

3.4. Problem description

Let a Cloud provider haveN data centers distributed in different
locations, and J is the number of applications currently executing
on these data centers. All the parameters associated with a data
center i are given in Table 2. A data center i incurs carbon emission
based on its carbon emission rate rCO2

i (kg/kW h). To execute an
application, the Cloud provider has to pay data center i the energy
cost and data transfer cost depending on its electricity price pei
($/kW h) and data transfer price pDTi ($/GB) for upload/download
respectively. The Cloud provider then charges fixed prices to the
user for executing his application based on the CPU execution
price pc ($/CPU/hour) and data transfer price pDTU ($/GB) for the
processing time and upload/download respectively.

A user submits his requirements for an application j in the form
of a tuple (dj, nj, ej1, . . . , ejN , γ

cpu
j , (DT )j), where dj is the deadline

to complete application j, nj is the number of CPUs required for
application execution, eji is the application execution time on the
data center iwhen operating at the maximum CPU frequency, γ cpu

j
is the CPU boundness of the application, and (DT )j is the size of
data to be transferred. For simplicity, we assume that users are
able to specify their processing requirements (nj, eji, and γ

cpu
j ). It

is realistic for a user to specify nj and eji in an utility computing
environment since the user need to pay for usage. For instance,
in Amazon EC2 [1], the user can buy one Compute unit with the
number of processors but on hourly basis. Thus, even if the user’s
application finishes before one hour, the user need to pay for one
complete hour.

In addition, let fij be the initial frequency atwhich CPUs of a data
center i operate while executing application j. Hence executing
application j on data center i results in the following:
(i) Energy consumption of CPUs

Ec
ij = (βi + αi(fij)3) × njeji ×


γ

cpu
j


f max
i

fij
− 1


+ 1


. (3)

(ii) Total energy which consist of the cooling system and CPUs

Eij =
COPi + 1
COPi

× Ec
ij. (4)

(iii) Energy cost

C e
ij = pei × Eij. (5)

(iv) Carbon emission

(CO2E)ij = rCO2
i × Eij. (6)

(v) Execution Profit

(ProfExec)ij = njejipc − C e
ij . (7)

(vi) Data Transfer Profit

(ProfData)ij = (DT )j × (pDTU − pDTi ). (8)

(vii) Profit

(Prof )ij = (ProfExec)ij + (ProfData)ij. (9)

The carbon emission (CO2E)ij (Eq. (6)) incurred by application j
is computed using the carbon emission rate rCO2

i of data center i.
However, this means that (CO2E)ij only reflects the average carbon
emission incurred since rCO2

i is an average rate. We can only use
rCO2
i since the exact amount of carbon emission produced depends
on the type of fuel used to generate the electricity and no detailed
data is available in this regard.

The profit (Prof )ij (Eq. (9)) gained by the Cloud provider
from the execution of an application j on data center i includes
the execution profit (ProfExec)ij and input/output data transfer
profit (ProfData)ij. Studies [27,3] have shown that the ongoing
operational costs (such as energy cost) of data centers greatly
surpass their one-time capital costs (such as hardware and support
infrastructure costs). Hence, when computing the execution profit
(ProfExec)ij, we assume that the CPU execution price pc charged
by the Cloud provider to the user already includes the one-time
capital costs of data centers, so that we only subtract the ongoing
energy cost C e

ij of executing applications from the revenue. The data
transfer profit (ProfData)ij is the difference between the cost paid
by the user to the provider and the cost incurred for transferring
the data to the data center.

The meta-scheduling problem can then be formulated as:

Minimize Carbon Emission =

N−
i

J−
j

xij(CO2E)ij (10)

Maximize Profit =

N−
i

J−
j

xij(Prof )ij. (11)

Subject to:
(a) Response time of application j < dj
(b) f min

i < fij < f max
i

(c)
∑N

i xij ≤ 1
(d)

xij =


1 if application j allocated to data center i
0 otherwise.

The dual objective functions (10) and (11) of the meta-sche-
duling problem are to minimize the carbon emission and maxi-
mize the profit of a Cloud provider. Constraint (a) ensures that the
deadline requirement of an application is met. But it is difficult to
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calculate the exact response time of an application since applica-
tions have different sizes, require multiple CPUs, and have very
dynamic arrival rates [12]. Moreover, this problem maps to the
2-dimensional bin-packing problem which is NP-hard in nature
[41] (see Appendix A for the proof). Hence we propose various
scheduling policies to heuristically approximate the optimum.

4. Meta-scheduling policies

The meta-scheduler periodically assigns applications to data
centers at a fixed time interval called the scheduling cycle. This en-
ables the meta-scheduler to potentially make a better selection
choice of applications whenmapping from a larger pool of applica-
tions to the data centers, as compared to during each submission
of an application. In each scheduling cycle, themeta-scheduler col-
lects the information from both data centers and users.

In general, a meta-scheduling policy consists of two phases:
(1) mapping phase, in which the meta-scheduler first maps an
application to a data center; and (2) scheduling phase, in which
the scheduling of applications is done within the data center,
where the required time slots is chosen to execute the application.
Depending on the objective of Cloud providerwhether tominimize
carbon emission or maximize profit, we have designed various
mapping policies which are discussed in the subsequent section.
To further reduce the energy consumption within the data center,
we have designed a DVS based scheduling policy for the local
scheduler of a data center.

4.1. Mapping phase (across many data centers)

We have designed the following meta-scheduling policies to
map applications to data centers depending on the objective of the
Cloud provider:

4.1.1. Minimizing carbon emission
The following policies optimize the global carbon emission of

all data centers while keeping the number of deadline misses low.

• Greedy Minimum Carbon Emission (GMCE): Since the aim is
to minimize the carbon emission across all the data centers, we
want the most number of applications to be executed on data
centers with the least carbon emission. Hence applications are
sorted by their deadline (earliest first) to reduce the deadline
misses, while data centers are sorted by their carbon emission
(lowest first), which is computed as: rCO2

i ×
COPi+1
COPi

× (βi +

αi(f max
i )3). Each application is then mapped to a data center in

this ordering.
• Minimum-Carbon-Emission–Minimum-Carbon-Emission

(MCE–MCE):MCE–MCE is based on the Min–Min heuristic [35]
which has performed very well in previous studies of differ-
ent environments [7]. The meta-scheduler first finds the ‘‘best’’
data center for all applications that are considered. Then among
these application–data center pairs, the meta-scheduler selects
the ‘‘best’’ pair tomap first. Since the aim is tominimize the car-
bon emission, the ‘‘best’’ pair has theminimumcarbon emission
(CO2E)ij, i.e. minimum fitness value of executing application j
on data center i. MCE–MCE has the following steps:
Step 1: For each application in the list of applications to be

mapped, find the data center of which the carbon
emission is the minimum, i.e. minimum (CO2E)ij (the
first MCE), among all data centers which can complete
the application by its deadline. If there is no data center
where the application can be completed by its deadline,
the application is removed from the list of applications
to be mapped.
Step 2: Among all the application–data center pairs found in
Step 1, find the pair that results in the minimum
carbon emission, i.e. minimum (CO2E)ij (the second
MCE). Then, map the application to the data center, and
remove it from the list of applications to be mapped.

Step 3: Update the available time slots from data centers.
Step 4: Do Step 1 to 3 again until all applications are mapped.

4.1.2. Maximizing profit
The following policies optimize the global profit of all data

centers while keeping the number of deadline misses low.

• Greedy Maximum Profit (GMP): Since the aim is to maximize
the profit across all the data centers, we want the most number
of applications to be executed on data centers with the least
energy cost. Hence applications are sorted by their deadline
(earliest first) to reduce the deadline misses, while data centers
are sorted by their energy cost (lowest first), which is computed
as: pei ×

COPi+1
COPi

× (βi + αi(f max
i )3). Each application is then

mapped to a data center in this ordering.
• Maximum-Profit–Maximum-Profit (MP–MP): MP–MP works

in the same way as MCE–MCE. However, since the aim is to
maximize the profit, the ‘‘best’’ pair has the maximum profit
(Prof )ij, i.e. maximum fitness value of executing application j
on data center i. Hence the steps of MP–MP are the same as
MCE–MCE, except the following differences:
Step 1: For each application in the list of applications to be

mapped, find the data center of which the profit is the
maximum, i.e. maximum (Prof )ij (the first MP), among
all data centers which can complete the application by
its deadline.

Step 2: Among all the application–data center pairs found in
Step 1, find the pair that results in the maximum profit,
i.e. maximum (Prof )ij (the second MP).

4.1.3. Minimizing carbon emission and maximizing profit (MCE–MP)
MCE–MP works in the same way as MCE–MCE. But, since the

aim is tominimize the total carbon emissionwhilemaximizing the
total profit across all the data centers, MCE–MP handles the trade-
off between carbon emission and profit which may be conflicting.
Hence the steps of MCE–MP are the same as MCE–MCE, except the
following differences:

Step 1: For each application in the list of applications to be
mapped, find the data center of which the carbon emission
is the minimum, i.e. minimum (CO2E)ij (the first MCE),
among all data centerswhich can complete the application
by its deadline.

Step 2: Among all the application–data center pairs found in
Step 1, find the pair that results in the maximum profit,
i.e. maximum (Prof )ij (the second MP).

One more mapping policy can be designed to minimize carbon
emission and maximize profit simultaneously by reversing the
above two steps. This policy is named as MP–MCE (Maximizing
Profit and Minimizing Carbon Emission).

4.2. Scheduling phase (within a data center)

The energy consumption and carbon emission are further
reduced within a data center by using DVS at the CPU level to
save energy by scaling down the CPU frequency. Thus, before the
meta-scheduler assigns an application to a data center, it decides
the time slot in which the application should be executed and
the frequency at which the CPU should operate to save energy.
But, since a lower CPU frequency can increase the number of
applications rejected due to the deadline misses, the scheduling of
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applications within the data center can be of two types: (1) CPUs
run at the maximum frequency (i.e. without DVS) or (2) CPUs run
at various frequencies using DVS (i.e. with DVS). It is important to
adjust DVS appropriately in order to reduce the number of deadline
misses and energy consumption simultaneously.

The meta-scheduler will first try to operate the CPU at a fre-
quency in the range [f min

i , f max
i ] nearest to the optimal CPU fre-

quency f opti = 3


βi
2αi

for γ cpu
= 1 (see Appendix B for the analysis

of exploiting local minima in DVS). Since the CPU frequency of
data center i can only operate in the interval [f min

i , f max
i ], we define

f opti = f min
i if f opti < f min

i , and f opti = f max
i if f opti > f max

i .
If the deadline of an application will be violated, the meta-

schedulerwill scale up theCPU frequency to the next level and then
try again to find the free time slots to execute the application. If the
meta-scheduler fails to schedule the application on the data center
as no free time slot is available, then the application is forwarded
to the next data center for scheduling (the ordering of data centers
depends on various policies as described in Section 4.1).

4.3. Lower bound and upper bound

Due to the NP hardness of the meta-scheduling problem
described in Section 3.4, it is difficult to find the optimal profit
and carbon emission in polynomial time. Thus, to estimate the
performance of our scheduling algorithms, we present a lower
bound for the carbon emission and an upper bound for the profit
of the Cloud provider respectively. Both bounds are derived based
on the principle that we can get the minimum carbon emission or
the maximum profit when most of the applications are executed
on the most ‘‘efficient’’ data center and also at the optimal CPU
frequency. For carbon emission minimization, the most ‘‘efficient’’
data center incurs the minimum carbon emission for executing
applications, while for profit maximization, the most ‘‘efficient’’
data center results in the minimum energy cost.

For the sole purpose of deriving the lower and upper bounds,
we relax three constraints of our system model so as to map
the maximal number of applications to the most ‘‘efficient’’ data
center. First, we relax the constraint that when an application is
executed at themaximum CPU frequency, it will result in themax-
imum energy consumption. Instead, we assume that even though
all applications are executed at the maximum CPU frequency, the
actual energy consumed by them for calculating their carbon emis-
sion still remains at the optimal CPU frequency using DVS. Second,
although the applications considered in the systemmodel are par-
allel applications with fixed CPU requirements, we relax this con-
straint to applications that are moldable in the required number of
CPUs. Thus, the runtime of applicationswill decrease linearlywhen
it is scheduled on a larger number of CPUs. This in turn increases
the number of applications that can be allocated to the most ‘‘ef-
ficient’’ data center with the minimum energy possible. Third, the
applications in the systemmodel are arriving dynamically inmany
different scheduling cycles, but for deriving the bounds, all appli-
cations are considered in only one scheduling cycle and mapped
to data centers. This forms the best ideal bound scenario, where
all the incoming applications are known in advance. Hence the ac-
tual dynamic scenario definitely has worse performance than that
of the ideal bound scenario.

It is important to note that the bounds of carbon emission
and profit obtained with these three assumptions are unreachable
loose bounds of the systemmodel. This is because data centers will
be executing the maximum possible workload with 100% utiliza-
tion of their CPUs, while the least possible energy consumption is
still considered for the purpose of comparison.

Let TWL be the total workload scheduled, TCE be the total
carbon emission, and TP be the total profit. The lower bound for
the carbon emission is derived through the following steps:
Step 1: Applications are sorted by their deadline (earliest first) to
reduce the deadline misses, while data centers are sorted
by their carbon emission (lowest first), which is computed
as: rCO2

i ×
COPi+1
COPi

× (βi + αi(f max
i )3). Each application is

then mapped to a data center in this ordering.
Step 2: For each application j, search for a data center i, starting

from the most ‘‘efficient’’ one, where the application j can
be scheduled without missing its deadline when running
at the maximum CPU frequency.

Step 3: If a data center i is not found, then application j will be
removed from the list of potential applications. Go to Step
2 to schedule other applications.

Step 4: If a data center i is found, application j is assigned to it and
molded such that there is no fragmentation in the schedule
of data center i for executing applications.

Step 5: TWL+ = nj × eji
Step 6: TCE+ = rCO2

i ×
COPi+1
COPi

× (Power consumption of the
CPU at optimal CPU frequency) ×nj× (Execution time of
application j at optimal CPU frequency)

Step 7: TP+ = (1 − (pei ×
COPi+1
COPi

× (Power consumption of the
CPU at optimal CPU frequency)))×nj× (Execution time of
application j at optimal CPU frequency).

Step 8: Repeat from Step 2 until all applications are scheduled.
TCE
TWL will be the lower bound of the average carbon emission due

to the execution of all applications across multiple data centers of
the Cloud provider.

To derive the upper bound for the profit, the steps remain the
same, except the following differences:

• In Step 1, data centers are sorted by their energy cost (lowest
first), which is computed as: pei ×

COPi+1
COPi

× (βi + αi(f max
i )3).

•
TP
TWL will be the upper bound of the average profit.

5. Performance evaluation

Configuration of applications: We use workload traces from
Feitelson’s ParallelWorkload Archive (PWA) [23] tomodel the HPC
workload. Since this paper focuses on studying the requirements of
Cloud users with HPC applications, the PWA meets our objective
by providing workload traces that reflect the characteristics of real
parallel applications. Our experiments utilize the first week of the
LLNL Thunder trace (January 2007 to June 2007). The LLNL Thunder
trace from the Lawrence Livermore National Laboratory (LLNL) in
USA is chosendue to its highest resource utilization of 87.6% among
available traces to ideally model a heavy workload scenario. From
this trace, we obtain the submit time, requested number of CPUs,
and actual runtime of applications. We set the CPU boundness of
all workload as 1 (i.e. γ cpu

= 1) to examine theworst case scenario
of CPU energy usage. We use a methodology proposed by Irwin
et al. [36] to synthetically assign deadlines through two classes
namely Low Urgency (LU) and High Urgency (HU).

An application j in the LU class has a high ratio of deadlinej/
runtimej so that its deadline is definitely longer than its required
runtime. Conversely, an application j in the HU class has a deadline
of low ratio. Values are normally distributed within each of the
high and low deadline parameters. The ratio of the deadline
parameter’s high-value mean and low-value mean is thus known
as the high:low ratio. In our experiments, the deadline high:low
ratio is 3, while the low-value deadline mean and variance is 4 and
2 respectively. In other words, LU applications have a high-value
deadline mean of 12, which is 3 times longer than HU applications
with a low-value deadline mean of 4. The arrival sequence of
applications from the HU and LU classes is randomly distributed.
Configuration of data centers:Wemodel 8 data centers with dif-
ferent configurations as listed in Table 3. Carbon emission rates
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Table 3
Characteristics of data centers.

Location Carbon emission Electricity CPU power factors CPU frequency level Number
ratea (kg/kW h) priceb ($/kW h) β α f max

i f opti of CPUs

New York, USA 0.389 0.15 65 7.5 1.8 1.630324 2050
Pennsylvania, USA 0.574 0.09 75 5 1.8 1.8 2600
California, USA 0.275 0.13 60 60 2.4 0.793701 650
Ohio, USA 0.817 0.09 75 5.2 2.4 1.93201 540
North Carolina, USA 0.563 0.07 90 4.5 3.0 2.154435 600
Texas, USA 0.664 0.1 105 6.5 3.0 2.00639 350
France 0.083 0.17 90 4.0 3.2 2.240702 200
Australia 0.924 0.11 105 4.4 3.2 2.285084 250
a Carbon emission rates are derived from a US Department of Energy (DOE) document (Appendix F-Electricity Emission Factors 2007) [14].
b Electricity prices are average commercial prices till 2007 based on a US Energy Information Administration (EIA) report [16].
and electricity prices at various data center locations are averages
over the entire region and derived from the data published by US
Department of Energy [14] and Energy Information Administra-
tion [16].

We derived the power related parameter, from a recent work
presented by Wang and Lu [60] who also focus on the similar
problem of considering the energy consumption of heterogeneous
CPUs. They used the experimental data from the work by Rusu
et al. [51], ‘Desktop CPU Power Survey’ by Silent PC Review [13],
and ‘CPU Performance Charts’ by Tom Hardware [33] to estimate
various server parameters. The CPU Performance Charts [33] pro-
vides the comprehensive comparison of AMD and Intel processors
using more than 20 benchmarks such as audio and video encod-
ing tools andmultitasking applications. Similar empirical datawith
experimental details are given in Desktop CPU Power Survey [13]
for power and energy efficiency of various Intel and AMD proces-
sors, such as Athlon 64 3000+ and Pentium 4 630, at idle and full
load power. Thus, the power parameters (i.e. CPU power factors
and frequency level) of the CPUs at different data centers are de-
rived based on these experimental data [60]. The values of α and β
are set such that the ratio of static power and dynamic power can
cover a wide variety of CPUs.

Current commercial CPUs only support discrete frequency
levels, such as the Intel Pentium M 1.6 GHz CPU which supports
6V levels.We consider discrete CPU frequencieswith 5 levels in the
range [f min

i , f max
i ]. For the lowest frequency f min

i , we use the same
value used by Wang and Lu [60], i.e. f min

i is 37.5% of f max
i .

To increase the utilization of data centers and reduce the frag-
mentation in the scheduling of parallel applications, the local
scheduler at each data center uses Conservative Backfilling with
advance reservation support as proposed by Mu’alem and Feitel-
son [43]. The meta-scheduler schedules applications periodically
at each scheduling cycle of 50 s, which is to ensure that the meta-
scheduler can receive at least one application in every scheduling
cycle.

The COP (power usage efficiency) value of data centers is ran-
domly generated using a uniform distribution between [0.6, 3.5]
as indicated in the study conducted by Greenberg et al. [32]. To
avoid the energy cost of a data center exceeding the revenue gen-
erated by the Cloud provider, the CPU execution price charged by
the provider to the user is fixed at $0.40 /CPU/h which is approxi-
mately twice of the maximum energy cost at a data center.
Performance metrics: We observe the performance from both
user and provider perspectives. From the provider perspective,
four metrics are necessary to compare the policies: average
energy consumption, average carbon emission, profit gained, and
workload executed. The average energy consumption compares the
amount of energy saved by using different scheduling algorithms,
whereas the average carbon emission compares its corresponding
environmental impact. Since minimizing the carbon emission can
affect a Cloud provider economically by decreasing its profit, we
have considered the profit gained as another metric to compare
different algorithms. It is important to know the effect of various
meta-scheduling policies on energy consumption, since higher
energy consumption is likely to generate more carbon emission
for worse environmental impact and incur more energy cost for
operating data centers.

From the user perspective, we observe the performance of
varying: (1) urgency class and (2) arrival rate of applications. For
the urgency class, we use various percentages (0%, 20%, 40%, 60%,
80%, and 100%) of HU applications. For instance, if the percentage
of HU applications is 20%, then the percentage of LU applications
is the remaining 80%. For the arrival rate, we use various factors
(10 (low), 100 (medium), 1000 (high), and 10000 (very high)) of
submit time from the trace. For example, a factor of 10 means an
application with a submit time of 10 s from the trace now has a
simulated submit time of 1 s. Hence, a higher factor represents
higher workload by shortening the submit time of applications.
Experimental scenarios: To comprehensively evaluate the perfor-
mance of our algorithms, we examine various experimental sce-
narios that are classified as:

(a) Evaluation without data transfer cost (Section 6.1): In the
first set of experiments (Section 6.1.1), we evaluate the im-
portance of ourmapping policies which consider global factors
such as carbon emission rate, electricity price and data cen-
ter efficiency. In these experiments, we also evaluate the ef-
fectiveness of exploiting local minima in our local DVS policy
(Sections 6.1.1 and 6.1.2). Then, in the next set of experiments
(Section 6.1.3), we compare the performance of our proposed
algorithms with the lower bound (carbon emission) and the
upper bound (profit).

To evaluate the overall best among the proposed algo-
rithms, we conductmore experiments by varying different fac-
tors which can affect their performance:
• Impact of urgency and arrival rate of applications (Sec-

tion 6.1.4)
• Impact of carbon emission rate (Section 6.1.5)
• Impact of electricity price (Section 6.1.6)
• Impact of data center efficiency (Section 6.1.7).

(b) Evaluation with data transfer cost (Section 6.2): In the last
set of experiments (Section 6.2.1), we examine how the data
transfer cost affect the performance of our algorithms.

6. Analysis of results

This section presents the evaluation of our proposed mapping
scheduling policies based on various metrics such as carbon
emission, and profit. During experimentation, the performance
of MP–MCE policy in terms of carbon emission and profit was
observed to be very similar to GMP with no additional benefits.
Hence, to save space, the results for MP–MCE are not presented
in the paper.
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(a) Carbon emission vs. urgency. (b) Carbon emission vs. arrival rate.

(c) Energy cost vs. urgency. (d) Energy cost vs. arrival rate.

(e) Workload executed vs. urgency. (f) Workload executed vs. arrival rate.

Fig. 4. Effect of mapping policy and DVS.
6.1. Evaluation without data transfer cost

6.1.1. Effect of mapping policy and DVS
As discussed in Section 4, our meta-scheduling policies are de-

signed to save energy at two phases, first at the mapping phase
and then at the scheduling phase. Hence, in this section, we exam-
ine the importance of each phase in saving energy. These exper-
iments also answer the question why we require special energy
saving schemes at two phases.

First, we examine the importance of considering the global fac-
tors at the mapping phase by comparing meta-scheduling poli-
cies without the energy saving feature at the local scheduling
phase, i.e. DVS is not available at the local scheduler. Hence,
we name the without DVS version of the carbon emission based
policy (GMCE) andprofit basedpolicy (GMP) asGMCE-WithoutDVS
and GMP-WithoutDVS respectively. The results in Fig. 4 shows
that the consideration of various global factors cannot only de-
crease the carbon emission, but also decrease the overall energy
consumption. For various urgency of applications (Fig. 4(a)),
GMCE-WithoutDVS can prevent up to 10% carbon emission over
GMP-WithoutDVS. For various arrival rate of applications (Fig. 4(b)),
GMCE-WithoutDVS can produce up to 23% less carbon emission
than GMP-WithoutDVS. The corresponding difference in energy
cost (Fig. 4(c) and (d)) between them is very little (about 0%–6%).
This is becausewith the decrease in energy consumption due to the
execution of HPC workload, both carbon emission and energy cost
will automatically decrease. This trend still remains by comparing
GMCE and GMP, both of which uses DVS at the scheduling phase.
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(a) Energy consumption vs. urgency. (b) Energy consumption vs. arrival rate.

(c) Workload executed vs. urgency. (d) Workload executed vs. arrival rate.

Fig. 5. Exploiting local minima in DVS.
Next, we examine the impact of the scheduling phase on energy
consumption by comparing meta-scheduling policies with DVS
(GMCE and GMP) and without DVS (GMCE-WithoutDVS and GMP-
WithoutDVS). With DVS, the energy cost (Fig. 4(c)) to execute HPC
workload has been reduced on average by 33% when we compare
GMPwith GMP-withoutDVS.With the increase in HU applications,
the gap is increasing andwe can get almost 50% decrease in energy
cost as shown in Fig. 4(c). With the increase in arrival rate, we get
a consistent 25% gain in energy cost by using DVS (Fig. 4(d)). The
carbon emission is also reduced further on average by 13% with
the increase in urgent applications as shown in Fig. 4(a). With the
increase in arrival rate, the HPCworkload executed is decreasing in
the case of policies using DVS as can be observed from Fig. 4(f). This
is because the execution of applications at lower CPU frequency
results in more rejection of urgent applications when the arrival
rate is high. Thus, HPC workload executed in the case of policies
without DVS is almost the same even when the arrival rate is very
high.

Finally, we examine the overall trend of change in carbon emis-
sion, workload and energy cost with respect to the number of ur-
gent applications and job arrival rate. In Fig. 4, with the increase
in the number of urgent applications, the energy cost and carbon
emission is increasing while the amount of workload executed is
decreasing. This is due to more applications being scheduled on
less carbon-efficient sites in order to avoid missing of the dead-
lines. This is also the reason for all four policies to execute de-
creasing workload as the number of HU applications increases.
Due to increase in the number of urgent applications, many ap-
plications missed the deadline, and thus got rejected. Due to cubic
relationship between energy and CPU frequency, the carbon emis-
sion and energy cost is increased more rapidly in comparison to
the workload which is decreasing. With respect to job arrival rate,
the change in the energy cost, carbon emission and workload is
very low. This is because the execution of jobs at lower CPU fre-
quency results in more rejection of urgent jobs when the arrival
rate is high.

6.1.2. Exploiting local minima in DVS
We want to highlight the importance of exploiting local min-

ima in the DVS function while scheduling within a data center.
But, to correctly highlight the difference in DVS performance for
the scheduling phase of the meta-scheduling policy, we need an
independent policy (which is not linked to our proposed polices)
for the mapping phase. Hence, we use EDF–EST, where the appli-
cations are ordered based on Earliest Deadline First (EDF), while
the data centers are ordered based on Earliest Start Time (EST).
We name our proposed DVS as EDF–EST-withOurDVS that ex-
ploits the local minima in the DVS function. Our proposed DVS
is compared to a previously proposed DVS named as EDF–EST-
withPrevDVS, in which the CPU frequency is scaled up linearly be-
tween [f min, f max

] [60,38].
Fig. 5 shows that EDF–EST-withOurDVS has not only outper-

formed EDF–EST-withPrevDVS by saving about 35% of energy, but
also executed about 30% more workload. This is because EDF–EST-
withPrevDVS tries to run applications at the minimum CPU fre-
quency f min whichmay not be the optimal frequency. As discussed
in Appendix B and shown in Fig. B.1, it is clear that an application
executed at f min may not lead to the least energy consumption due
to the presence of local minima. Moreover, executing applications
at a lower frequency results in a lower acceptance of applications
since less CPUs are available. Thus, it is important to exploit such
characteristics when designing the scheduling policy within a data
center.
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(a) Carbon emission. (b) Profit.

Fig. 6. Comparison of lower bound and upper bound.
6.1.3. Comparison of lower bound and upper bound
To evaluate the performance of our algorithms in terms of

carbon emission reduced and profit gained by the Cloud provider,
we compare our algorithms with the theoretically unreachable
bound.

Fig. 6 shows how different policies closely perform to the lower
bound of average carbon emission and the upper bound of average
profit. In Fig. 6(a), the difference in average carbon emission for
carbon emission based policies (GMCE, MCE–MCE, and MCE–MP)
and the lower bound is less than about 16% which becomes less
than about 2% in the case of 20% HU applications. On the other
hand, in Fig. 6(b), the difference in average profit for profit based
policies (GMP andMP–MP) and the upper bound is less than about
2% which becomes less than about 1% in the case of 40% of HU
applications. Hence, in summary, our carbon emission based and
profit based policies perform within about 16% and 2% of the
optimal carbon emission and profit respectively.

In Fig. 6(a) and (b), with the increase in HU applications, the
difference between the lower/upper bounds and various policies
is increasing. This is due to the increase in looseness of the bounds
with the increase in HU applications. To avoid deadline misses
with a higher number of HU applications, our proposed policies
schedule more applications at higher CPU frequency which results
in higher energy consumption. This in turn leads to an increase
in the carbon emission and decrease in the profit. Whereas, for
computing the lower/upper bounds, we only consider energy
consumption at the optimal CPU frequency. Thus, the effect of
urgency on the bounds is not as considerable as in our policies.
This explains why our policies are closer to the bounds for a lower
number of HU applications.

6.1.4. Impact of urgency and arrival rate of applications
Fig. 7 shows how the urgency and arrival rate of applications

affects the performance of carbon emission based policies (GMCE,
MCE–MCE, and MCE–MP) and profit based policies (GMP and
MP–MP). The metrics of total carbon emission and total profit are
used since the Cloud provider needs to know the collective loss in
carbon emission and gain in profit across all data centers.

When the number of HU applications increases, the total profit
of all policies (Fig. 7(c)) decreases almost linearly by about 45%
from 0% to 100% HU applications. Similarly, there is also a drop in
total carbon emission (Fig. 7(a)). This fall in total carbon emission
and total profit is due to the lower acceptance of applications
as observed in Fig. 7(e). In Fig. 7(a), the decrease in total carbon
emission for profit based policies (GMP and MP–MP) is much
more than that of carbon emission based policies (MCE–MP, GMCE,
and MCE–MCE). This is because carbon emission based policies
schedule applications on more carbon-efficient data centers.
Likewise, the increase in arrival rate also affects the total carbon
emission (Fig. 7(b)) and total profit (Fig. 7(d)). Asmore applications
are submitted, less applications can be accepted (Fig. 7(f)) since it
is harder to satisfy their deadline requirement when workload is
high.

6.1.5. Impact of carbon emission rate
To examine the impact of carbon emission rate in different

locations on our policies, we vary the carbon emission rate, while
keeping all other factors such as electricity price as the same.
Using normal distribution with mean = 0.2, random values
are generated for the following three classes of carbon emission
rate across all data centers as: (A) Low variation (low) with
standard deviation = 0.05, (B) Medium variation (medium) with
standard deviation = 0.2, and (C) High variation (high) with
standard deviation = 0.4. All experiments are conducted at
medium job arrival rate with 40% of HU applications.

The performance of all policies is similar for all three cases
of carbon emission rate. For example, in Fig. 8(a), the carbon
emission of profit based policies (GMP and MP–MP) is always
higher than carbon emission based policies (GMCE, MCE–MCE,
and MCE–MP). Similarly, for profit (Fig. 8(b)), all profit based
policies perform better than all carbon emission based policies.
For instance, in Fig. 8(a), the difference in carbon emission of
MCE–MCE and MP–MP is about 12% for low variation, which
increases to 33% for high variation. On the other hand, in Fig. 8(b),
the corresponding decrease in profit is almost negligible and is
less than 1% for both the low and high variation case. Moreover,
by comparing MCE–MCE and MP–MP in Fig. 8(c), the amount of
workload executed by MCE–MCE is slightly higher than MP–MP.
Thus, for the case of high variation in carbon emission rate,
Cloud providers can use carbon emission based policies such as
MCE–MCE to considerably reduce carbon emission with almost
negligible impact on their profit. For minimizing carbon emission,
MCE–MCE is preferred over GMCE since the latter leads to lower
profit due to the scheduling of more applications on data centers
with higher electricity price.

6.1.6. Impact of electricity price
To investigate the impact of electricity price in different loca-

tions on our policies, we vary the electricity price, while keeping all
other factors such as carbon emission rate as the same. Using nor-
mal distribution with mean = 0.1, random values are generated
for the following three classes of electricity price across all data
centers as: (A) Low variation (low)with standard deviation = 0.01,
(B) Medium variation (medium) with standard deviation = 0.02,
and (C) High variation (high) with standard deviation = 0.05. All
experiments are conducted at medium job arrival rate with 40% of
HU applications.
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(a) Carbon emission vs. urgency. (b) Carbon emission vs. arrival rate.

(c) Profit vs. urgency. (d) Profit vs. arrival rate.

(e) Workload executed vs. urgency. (f) Workload executed vs. arrival rate.

Fig. 7. Impact of urgency and arrival rate of applications.
The variation in electricity price affects the performance of
profit based policies (GMP and MP–MP) in terms of carbon
emission (Fig. 9(a)) andworkload executed (Fig. 9(c)), while carbon
emission based policies (GMCE, MCE–MCE and MCE–MP) are not
affected. But, the profit of all policies decreasemore as the variation
of electricity price increases (Fig. 9(b)) due to the subtraction of
energy cost from profit. For high variation in electricity price, there
is not much difference (about 1.4%) in carbon emission between
MP–MP and MCE–MCE (Fig. 9(a)). Hence, Cloud providers can use
MP–MP which gives slightly better average profit than carbon
emission based policies (GMCE, MCE–MCE and MCE–MP). On the
other hand, for cases when the variation in electricity price is not
high, providers can use carbon emission based policies such as
MCE–MCE andMCE–MP to reduce about 5%–7% of carbon emission
by sacrificing less than 0.5% of profit.
6.1.7. Impact of data center efficiency
To study the impact of data center efficiency in different loca-

tions on our policies, we vary the datacenterefficiency =
COP

COP+1 ,
while keeping all other factors such as carbon emission rate as
the same. Using normal distribution with mean = 0.4, random
values are generated for the following three classes of data cen-
ter efficiency across all data centers as: (A) Low variation (low)
with standard deviation = 0.05, (B) Medium variation (medium)
with standard deviation = 0.12, and (C) High variation (high)
with standard deviation = 0.2. All experiments are conducted at
medium job arrival rate with 40% of HU applications.

Fig. 10(a) shows carbon emission based policies (GMCE, MCE–
MCE and MCE–MP) achieve the lowest carbon emission with
almost equal values. MCE–MCE performs better than MCE–MP by
schedulingmore HPCworkload (Fig. 10(c)) while achieving similar
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(a) Carbon emission. (b) Profit.

(c) Workload executed.

Fig. 8. Impact of carbon emission rate.
(a) Carbon emission. (b) Profit.

(c) Workload executed.

Fig. 9. Impact of electricity price.
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(a) Carbon emission. (b) Profit.

(c) Workload executed.

Fig. 10. Impact of data center efficiency.
profit (Fig. 10(b)). But when the variation in data center efficiency
is high, GMCE can execute much higher workload (Fig. 10(c)) than
MCE–MCE and MCE–MP while achieving only slightly less profit
than profit based policies (GMP and MP–MP) (Fig. 10(b)). Thus,
Cloud providers can use GMCE to decrease the carbon emissions
across their data centers without significant profit loss.

6.2. Evaluation with data transfer cost

6.2.1. Impact of data transfer cost
The data transfer cost of the Cloud provider varies across

different data centers. Thus, to study the impact of data transfer
cost on our policies, we vary the data transfer cost while keeping
all other factors such as carbon emission rate and electricity price
as the same. Since this paper focuses on compute-intensive parallel
applications with low data transfer requirements, the maximum
data transfer size of an application is set to only 10 TB. For
this set of experiments, the Cloud provider charges the user a
fixed price of $0.17 /GB for data transfer up to 10 TB, which is
derived from Amazon EC2 [1]. Since, the workload traces used
for the experiments does not contain any information on input
or output data, thus the data transferred during execution is
randomly generated during simulation. The data transfer size of an
application is varied between [0, 10]TBusinguniformdistribution.
The data transfer cost that the Cloud provider has to incur is
varied between $[0, 0.17] using normal distribution with mean =

0.4 ∗ 0.17. Random values are generated for the following three
classes of data transfer cost across all data centers as: (A) Low
variation (low) with standard deviation = 0.05, (B) Medium
variation (medium) with standard deviation = 0.12, and (C) High
variation (high)with standard deviation = 0.2. All experiments are
conducted at medium job arrival rate with 40% of HU applications.

Fig. 11 shows how the average carbon emission and profit will
be affecteddue to data transfer cost in comparison to the casewhen
data transfer cost is not considered (as indicated by WithoutDT).
The relative performance of all policies has remained almost the
same evenwith data transfer cost. For instance, in Fig. 11(a) and (c),
MP–MP results in the maximum average carbon emission, while
MCE–MCE results in theminimumcarbon emission. This is because
of the compute-intensive workload, whereby the impact of data
transfer cost is negligible in comparison to the execution cost.
There is only a slight increase in the average profit (Fig. 11(b))
due to the additional profit gained by the Cloud provider from the
transfer of data.

7. Concluding remarks and future directions

The usage of energy has become a major concern since the
price of electricity has increased dramatically. Especially, Cloud
providers need a high amount of electricity to run and maintain
their computational resources in order to provide the best service
level for the customer. Although this importance has been em-
phasized in a lot of research literature, the combined approach of
analyzing the profit and energy sustainability in the resource allo-
cation process has not been taken into consideration.

The goal of this paper is to outline how managing resource al-
location across multiple locations can have an impact on the en-
ergy cost of a provider. The overall meta-scheduling problem is
described as an optimization problem with dual objective func-
tions. Due to its NP-hard characteristic, several heuristic policies
are proposed and compared. The policies are compared with each
other for different scenarios and alsowith the derived lower/upper
bounds. In some cases, the policies performed very well with only
almost 1% away from the upper bound of profit. By introducingDVS
and hence lowering the supply voltage of CPUs, the energy cost
for executing HPC workloads can be reduced by 33% on average.
Applications will run on CPUs with a lower frequency than ex-
pected, but they still meet the required deadlines. The limitation
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(a) Carbon emission. (b) Profit.

(c) Workload executed.

Fig. 11. Impact of data transfer cost.
Table 4
Summary of heuristics with comparison results.

Meta-
scheduling
policy

Description Time
Complexity

Overall performance

HU Jobs Arrival rate Carbon
emission rate

Data center
efficiency

Energy cost

GMCE Greedy (Carbon Emission) O(NJ) Bad Bad Bad Best (high) Bad
MCE–MCE Two-phase Greedy (Carbon Emission) O(NJ2) Good

(low)
Good (low) Best (high) Okay (low) Good (low)

GMP Greedy (Profit) O(NJ) Okay
(high)

Okay (high) Bad (low) Bad (high) Bad

MP–MP Two-phase Greedy (Profit) O(NJ2) Good
(high)

Bad (Carbon Emission),
Best (Profit)

Good (low) Best (low) Good (high)

MCE–MP Two-phase Greedy (Carbon Emission
and Profit)

O(NJ2) Best (low) Good (high) Okay Okay Best (low)
of carbon emission can be forced by governments to comply with
certain threshold values [15]. In such cases, Cloud providers can fo-
cus on reducing carbon emission in addition to minimizing energy
consumption.

We identified that policies like MCE–MCE can help provider
to reduce their emission while almost maintaining their profit. If
the provider faces a volatile electricity price, the MP–MP policy
will lead to a better outcome. Depending on the environmental
and economic constraints, Cloud providers can selectively choose
different policies to efficiently allocate their resources to meet
customers’ requests. The characteristics and performance of
each meta-scheduling policy are summarized in Table 4, where
‘‘low’’ and ‘‘high’’ represent the scenario for which the overall
performance of the policy is given. For instance, GMCE performs
the best when the variation in data center efficiency is high,
while MCE–MP performs the best when the variation in energy
cost is low or when there is a low number of HU applications.
We observed that the impact of data transfer cost is minimal
for the compute-intensive applications that we have considered.
However, our model has explicitly considered the data transfer
cost and thus can be used for data-intensive applications as
well.

In future, we will like to extend our model to consider the
aspect of turning servers on and off, which can further reduce
energy consumption. This requires a more technical analysis of
the delay and power consumption for suspending servers, as well
as the effect on the reliability of computing devices. We will also
want to extend our policies for virtualized environments, where it
can be easier to consolidate many applications on fewer physical
servers. In addition, we can consider the energy (and potentially
latency) overhead of moving data sets between the data centers, in
particular for data-intensive HPC applications. This overhead can
be quite significant depending on the size of the data set and the
activity of the workloads.
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Appendix A. Proof of 2-dimensional bin-packing problem

Definition 1. Let L = (x1, . . . , xji, . . . , xn) be a given list of n items
with a value of xji ∈ (0, 1], and B = b1, . . . , bm be a finite sequence
of m bins each of unit capacity. The 2-dimensional bin-packing
problem is to assign each xji into a unique bin, with the sum of
numbers in each bj ∈ B not exceeding one, such that the total
number of used bins is a minimum (denoted by L∗) [31].

Proposition 1. The optimization problem described in Eqs. (10) and
(11) is an NP-hard problem.

Proof. This proposition can be easily proven by reducing the prob-
lem to the (2-dimensional) bin-packing problem [31], which is a
well-knownNP-hard problem. The number of binsm is equal to the
availableN data centers. The dimensions of an application j consist
of two parameters dj and eji. However, eji depends on the frequency
of the CPUs of data center i. By defining a transformation function
ρ : R × R → R, we can transform eji to ej. This restriction only
considers data centers with the same frequency for all CPUs. Con-
sequently, f (dj, ej) = xji and by Definition 1, it is a 2-dimensional
bin-packing problem defined by the deadline and runtime of an
application. �

Appendix B. Analysis of exploiting local minima in DVS

Section 3.4 shows that the energy consumption of a CPU
depends on the frequency of the CPU at which an application
will be executed. Hence the objective is to obtain an optimal CPU
frequency so that the energy consumption of the CPU can be
minimized while completing the application within its deadline.
From the plot of energy consumption in Fig. B.1, we can observe
the existence of the local minima where the energy consumption
will be the minimum. In order to identify this local minima, we
differentiate the energy consumption of an application j on a CPU
at a data center iwith respect to the operating CPU frequency fij as:

Ec
ij = (βi + αi(fij)3) × njeji ×


γ

cpu
j


f max
i

fij
− 1


+ 1


(B.1)

∂(Ec
ij)

∂ fij
= njeji ×


(βi + αi(fij)3)f max

i γ
cpu
j

(fij)2

+ 3αi(fij)2

1 +


−1 +

f max
i

fij


γ

cpu
j

  . (B.2)

For local minima,

∂(Ec
ij)

∂ fij
= 0 (B.3)

βi + αi(fij)3
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f max
i γ

cpu
j

(fij)2
+ 3αi(fij)2
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1 +


−1 +

f max
i

fij
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Fig. B.1. Energy consumption vs. CPU frequency.

Since we can clearly see that the local minima exists in Fig. B.1,
at least one root of the above polynomial will exist in the range
[0, ∞]. When γ

cpu
j = 1, the above equation will reduce to:

−βi

(fij)2
+ 2αifij = 0. (B.5)

Many previous work [20,28] have chosen a fixed γ
cpu
j value to

compute the energy usage of CPUs. Likewise, in this paper, we
assume a fixed γ

cpu
j = 1 to understand the worst case scenario

of CPU energy usage. We can then pre-compute the local minima
(with static variables such as CPU power efficiency) before starting
the meta-scheduling algorithm.
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