
60

Scalable Graph Processing Frameworks: A Taxonomy

and Open Challenges

SAFIOLLAH HEIDARI, The University of Melbourne

YOGESH SIMMHAN, Indian Institute of Science

RODRIGO N. CALHEIROS, The University of Melbourne

RAJKUMAR BUYYA, The University of Melbourne

The world is becoming a more conjunct place and the number of data sources such as social networks, on-
line transactions, web search engines, and mobile devices is increasing even more than had been predicted.
A large percentage of this growing dataset exists in the form of linked data, more generally, graphs, and of
unprecedented sizes. While today’s data from social networks contain hundreds of millions of nodes con-
nected by billions of edges, inter-connected data from globally distributed sensors that forms the Internet
of Things can cause this to grow exponentially larger. Although analyzing these large graphs is critical for
the companies and governments that own them, big data tools designed for text and tuple analysis such as
MapReduce cannot process them efficiently. So, graph distributed processing abstractions and systems are
developed to design iterative graph algorithms and process large graphs with better performance and scal-
ability. These graph frameworks propose novel methods or extend previous methods for processing graph
data. In this article, we propose a taxonomy of graph processing systems and map existing systems to this
classification. This captures the diversity in programming and computation models, runtime aspects of par-
titioning and communication, both for in-memory and distributed frameworks. Our effort helps to highlight
key distinctions in architectural approaches, and identifies gaps for future research in scalable graph systems.

CCS Concepts: • General and reference → Surveys and overviews; • Theory of computation →
Distributed computing models; Design and analysis of algorithms; Distributed algorithms; • Comput-

ing methodologies → Parallel computing methodologies; Distributed computing methodologies; •
Mathematics of computing → Graph algorithms;

Additional Key Words and Phrases: Big data, graph processing, large-scale graphs, parallel processing, dis-
tributed systems

ACM Reference format:

Safiollah Heidari, Yogesh Simmhan, Rodrigo N. Calheiros, and Rajkumar Buyya. 2018. Scalable Graph Pro-
cessing Frameworks: A Taxonomy and Open Challenges. ACM Comput. Surv. 51, 3, Article 60 (June 2018),
53 pages.
https://doi.org/10.1145/3199523

This article was partially supported by the Australian Research Council (ARC) Future Fellowship project.
Authors’ addresses: S. Heidari, R. N. Calheiros, and R. Buyya, The Cloud Computing and Distributed Systems (CLOUDS)
Laboratory, School of Computing and Information Systems, The University of Melbourne, Australia; emails: sheidari@
student.unimelb.edu.au, rodrigo.calheiros@gmail.com, rbuyya@unimelb.edu.au; Y. Simmhan, Department of Computa-
tional and Data Sciences, Indian Institute of Science (IISc), Bangalore, India; email: simmhan@cds.iisc.ac.in.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 ACM 0360-0300/2018/06-ART60 $15.00
https://doi.org/10.1145/3199523

ACM Computing Surveys, Vol. 51, No. 3, Article 60. Publication date: June 2018.

https://doi.org/10.1145/3199523
https://doi.org/10.1145/3199523

60:2 S. Heidari et al.

1 INTRODUCTION

The growing popularity of technologies such as Internet of Things (IoT), mobile devices, smart-
phones, and social networks has led toward the emergence of “big data.” Such applications pro-
duce not just gigabytes or terabytes of data, but soon petabytes of data that need to be actively
processed. Such large volumes of data gathered from billions of connected people and devices
around the world is causing unprecedented challenges in terms of how data can be stored, re-
trieved, and managed; how data security, integrity, availability, and sharing can be ensured; how
massive datasets can be mined; and how they can benefit from new computing paradigms such as
cloud computing for data analysis (Pettey 2011; Dias de Assuncao et al. 2015).

According to the National Research Council of the US National Academies (Committee on the
Analysis on Massive Data 2013), graph processing is among the seven major computational meth-
ods of huge data analysis. Graph computations are used in business analytics, social network ana-
lytics, image processing, hardware design, and deep learning to an increasing extent. Wide-spread
techniques for processing large graphs had, until recently, been limited to shared memory (Hong
et al. 2012; Bader and Madduri 2008) and high-performance computing systems (he Graph 500 List
2010; Karypis and Kumar 1995; Harshvardhan et al. 2013). Although distributed approaches have
been proposed for processing big graphs since 2001 (Huberman 2001), graph processing systems
for commodity clusters and clouds have become particularly popular after Google introduced its
Pregel (Malewicz et al. 2010) vertex-centric graph processing system in 2010. Since then, several
distributed graph processing frameworks with diverse programming models and features have
been proposed to facilitate operations on large graphs. Each of these frameworks has specific
characteristics with its own strengths and weaknesses.

The aim of this article is to provide a taxonomy of scalable graph processing systems and frame-
works. It identifies strengths and weaknesses in the field and proposes future directions. First, it
proposes a comprehensive taxonomy of programming abstractions and runtime features offered
by graph processing systems, and maps the existing systems to this taxonomy. Second, it utilizes
a top-down approach for investigating graph processing frameworks and their components along
with examples to support them. Third, the article identifies gaps in existing systems that need fur-
ther investigation, and discusses these open problems and future research directions in detail. In
summary, this survey gives readers an overarching picture about what graph processing is, what
improvements have been gained through recent frameworks, different programming and runtime
techniques that have been used, and the applications that benefit from them. It emphasizes scal-
able graph processing platforms for shared-memory and distributed processing that fall within
the ambit of big data processing platforms. It also contrasts them against graph frameworks for
supercomputing systems, as evidenced through the Graph500 benchmark.1 On the other hand, ex-
isting works such as McCune et al. (2015) and Doekemeijer and Varbanescu (2014) only focus on
surveying and they have limited focus on key elements of graph processing.

The rest of the article is organized as follows: Section 2 includes a definition of graphs and
graph processing systems, contrasts graph processing from other big data processing methods,
outlines the lifecycle of a typical graph processing system, and gives examples of real graph-based
applications and algorithms. Contemporary graph processing frameworks and architectures are
explained in Section 3, along with distributed coordination and computational models. Section 4
categorizes existing frameworks based on partitioning, communication models, in-memory execu-
tion, fault tolerance, and scheduling. Graph databases are reviewed in Section 5. A taxonomy and
discussion on challenges is also presented for each section. A gap analysis and open challenges,

1Graph 500 benchmark, http://www.graph500.org/.

ACM Computing Surveys, Vol. 51, No. 3, Article 60. Publication date: June 2018.

http://www.graph500.org/

Scalable Graph Processing Frameworks: A Taxonomy and Open Challenges 60:3

Table 1. Graphlike Application and Environments

Application Item (Vertices of the Graph) Connection (Edges of the Graph)
Social network Members Friendships

Computer network Computers Network connectivity
Web content Web pages Hyperlinks

Transportation Cities Roads
Electrical circuit Devices Wires

Commerce Customers, goods Purchase transactions
Factory Machines Production lines

Supply chain Providers Distances
Telecommunication Mobile Phones Phone calls

with a perspective on future directions are discussed in Sections 6 and 7, respectively. Finally, we
conclude the article in Section 8.

2 BACKGROUND

A Graph G= (V, E), consists of a set of vertices, V= {v1, v2, . . . , vn} and a set of edges, E= {e1, e2, . . . ,
em} that indicate pairwise relationships, E = V × V. If (vi, vj) ∈ E, then vi and vj are neighbors
(Sedgewick and Wayne 2011). The edges may be directed or undirected. So, V and E are the two
defining characteristics of a graph, which most graph processing frameworks implement. Frame-
works typically support a single attribute value associated with the vertex and edge (e.g., label,
weight). In addition, some of the platforms also support a set of named and/or typed attributes for
their vertices and edges as part of their data model.

Pairwise relationships between entities play an important role in various types of computa-
tional applications. These relationships that are implied by different connections (edges) between
items (vertices) give rise to domain questions to draw value from the data, such as: Is it possible
to identify transitive relationships between items by following the connections? How many items
are connected to a typical item? What is the shortest distance between these items? Which groups
of items are similar to each other? How important is an item relative to others? Various graphlike
applications and environments are mentioned in Table 1 (Sedgewick and Wayne 2011). As can be
seen in Table 1, many applications process data that naturally fits into a graph data model. Sev-
eral of these applications from social networks, eCommerce, and telecom domains handle large
graph datasets, which need to be processed and mined to draw disparate business intelligence,
ranging from the interests of people about products for targeted advertising to tracing call logs for
cyber-security. Processing large graphs poses some intrinsic challenges due to the nature of graphs
themselves. These characteristics make graph processing ill-suited to existing data-processing ap-
proaches, and usually inhibit efficient parallelism (Pellegrini 2011). According to Lumsdaine et al.
(2007), their properties are noted below:

(1) Data-driven computations: Graph computations are usually entirely data-driven. Graphs
are made up of sets of vertices and edges that dictate the computations performed by every
graph algorithm.

(2) Irregular problems: Graph problems are highly irregular due to the non-uniform edge
degree distribution and topological asymmetry rather than being uniformly predictable
problems, which can be optimally partitioned for concurrent computation.

ACM Computing Surveys, Vol. 51, No. 3, Article 60. Publication date: June 2018.

60:4 S. Heidari et al.

(3) Poor locality: The inherent irregular characteristics of graphs leads to poor locality during
computation, which is in conflict with locality-based optimizations supported by many
existing processors, making it difficult to achieve high performance for graph algorithms.

(4) High data access to computation ratio: A large portion of graph processing is usually ded-
icated to data access in graph algorithms. Therefore, waiting for memory or disk fetches
is the most time-consuming phase relative to the actual computation on a vertex of edge
itself.

To streamline the processing of big data, MapReduce, a distributed programming framework for
processing large datasets with parallel algorithms, was introduced by Google in 2004 (Dean and
Ghemawat 2004). MapReduce has two significant advantages: (1) The programmer has a simple and
familiar interface using Map and Reduce functions, inspired by functional programming concepts
(Hudak 1989) and (2) the application is automatically parallelized when defined using Map and
Reduce methods, without the programmer needing to know how data will be distributed, grouped,
and replicated, and how the tasks are scheduled.

Although MapReduce addresses many deficiencies in traditional parallel and distributed com-
puting approaches, it has several limitations that make it less efficient for processing large graphs
(Cohen 2009; Afrati et al. 2012; Grabowski et al. 2013): (1) MapReduce is limited to a two-phased
computational model that is not naturally suited for graph algorithms that run over many itera-
tions. (2) In common MapReduce implementations, the input graph and its state are not retained
in main memory across even in these two phases, let alone across iterations, and consequently
requires repetitive disk I/O. (3) MapReduce’s tuple-based approach that is unaware of the linked
nature of graph datasets is poorly suited to design many graph applications. (4) Graph operations
using MapReduce have poor I/O efficiency—because of frequent checkpoints on completed tasks
and data replication—which is a bottleneck for many graph algorithms (Lee et al. 2011).

Apache Hadoop (Apache Software Foundation 2011) is a popular open-source implementation
of the MapReduce programming model. Besides flexible batch-processing applications that can be
built using Hadoop, it is also the basis for NoSQL querying platforms such as Pig (Apache Software
Foundation 2008) and Hive (Apache Software Foundation Contributors 2011) to work with large
datasets. In addition, various high-level languages such as SCOPE (Zhou et al. 2012), Sphere (Gu
et al. 2010) and Swazal (Pike et al. 2005) are available for MapReduce-like systems. Platforms like
Apache Spark (Matei Zaharia 2012) have extended the programming model of MapReduce, and
offer incremental batch and in-memory computation with better performance. Further, Hadoop’s
distributed file system storage mechanism (HDFS) as well as a Map-only model of Hadoop is used
as the storage and distributed scheduling mechanism in many graph processing frameworks we
discuss.

While a number of systems such as PEGASUS (Kang et al. 2009) have brought innovative ap-
proaches for processing and mining peta-scale graphs, those systems are based on the MapReduce
model and suffer from the above limitations. As a consequence, iterative graph processing systems
started to emerge in 2010 with Google’s Pregel (Malewicz et al. 2010), a graph processing frame-
work that uses Valiant’s Bulk Synchronous Parallel (BSP) processing model (Valiant 1990) for its
computation. Pregel was the first system that promoted a “think like a vertex” notion for process-
ing large graphs, similar to MapReduce that operates on <key,value> pairs to process large data
volumes. These and other contemporary graph processing systems are discussed further in this
survey.

2.1 Overall Scheme of Graph Processing

In general, a typical graph processing systems execute a graph algorithm over a graph dataset
across different logical phases, as shown in Figure 1.

ACM Computing Surveys, Vol. 51, No. 3, Article 60. Publication date: June 2018.

Scalable Graph Processing Frameworks: A Taxonomy and Open Challenges 60:5

Fig. 1. Graph processing phases.

(1) Read/write input/output datasets: The first step is reading the graph data from a source
dataset, which can be either on disk or in memory. In the last phase, the processed data
should be written back again, either to disk or memory. Graph processing systems typ-
ically do not have a custom persistence layer optimized for reading and writing graph
datasets, and tend to use the standard file system such as HDFS. Hence, they can present
a bottleneck when reading and writing large graph datasets. Many studies even ignore
read/write time when they measure the execution time for evaluation. Instead, they try
to improve other aspects of the systems like efficient in-memory data structures for
computation.

(2) Pre-processing: In some approaches, the graph data will be partitioned before being passed
to the graph processing system to decrease the overall burden and runtime of the system.
The main advantage of this approach is that the programmer does not need to worry
about the complexity of the partitioning and it is a one-time cost that is paid upfront.
Also, partitioning mechanism and computation mechanism can be two different modules
that work independently and thus can be designed and implemented separately. The main
drawback for this approach is that it works well only for static partitioning strategies, not
dynamic partitioning or repartitioning.

(3) Partitioning: In this phase, partitioning will be done dynamically within the graph process-
ing system and not as a separate module. Both partitioning and computation phases can
collaborate to choose the best partitioning method at each step, so, dynamic partitioning
and repartitioning can be implemented in the processing system. Although programming
such a system is more complicated than implementing two independent modules, it pro-
vides more runtime flexibility and can be well suited to support diverse graph algorithms.

(4) Computation: Different graph processing systems have different computation approaches.
This programming model and runtime is at the heart of the whole framework and there
have been many proposals for efficient computation methods to decrease the graph ap-
plication’s runtime. More details about this phase, with a taxonomy on various computa-
tional models, are presented in Section 3.4.

(5) Error handling: This fault-tolerant and failure recovery phase will be applied to the system
either during the computation phase or after the computation phase is completed. There
are various techniques that can be used here, such as check-pointing or restarting ap-
plications. Typically, the time taken for error handling is not considered in experimental
results due to the overheads it causes and some frameworks even avoid considering this
capability. However, given the use of large commodity clusters that are prone to failures
and long-running big data applications, fault tolerance is essential for graph processing
frameworks used in an operational setting.

2.2 Large Graph-Oriented Applications

As noted in Table 1, there are many fields and applications that generate and provide big data in the
form of graphs. With improvements in computer hardware and processing models such as cloud

ACM Computing Surveys, Vol. 51, No. 3, Article 60. Publication date: June 2018.

60:6 S. Heidari et al.

computing and emerging concepts like IoT, an even greater growth in datasets is expected. Here,
we present some typical applications and environments where large graph data are generated and
used.

Social networks. Social networks and applications have grown exceedingly popular during the
past decade and are constantly adding features to make effective use of the data they collect and to
grow their customer network. Social networks are an important source of big graph data, and even
big data in general, with large amounts of data created every day (Commission 2010). People are
sharing their personal activities with their friends and the whole world, talking about their beliefs,
sharing photos and videos, and posting their interests and health information (Cha et al. 2007;
Stelzner 2015). In the year 2014, in each minute, 2,460,000 content posts were shared on Facebook,
3,472 photos were pinned on Pinterest, 72 hours of new videos were uploaded to YouTube, 2,78,000
tweets were shared on Twitter, and 20 million photos were viewed on Flicker. These rates continue
to grow, and form just a part of the whole big data social network landscape (Gunelius 2014).

Social networks are native generators and consumers of graph datasets, with an additional tem-
poral dimension added to them. “Users” form the vertices of a huge social graph while “friend-
ship” connections between them form the edges of the graph. Connections can be probabilistic
and node’s states change over time. Each node or edge can contain different values and infor-
mation about a member’s personal details, his/her interests, friends, groups and people, his/her
followers, the pages that are visited, locations, business information, and so on with many other
meta-data about his/her history of activities. All these form a digital trail for every user that needs
to be processed and analyzed by social network providers.

From the user’s point of view, the network provider needs to suggest relevant pages or commu-
nities for them to follow based on their interests and offer meaningful service offerings (Akbari
et al. 2013; Bagci and Karagoz 2015). The providers themselves benefit from leading users through
targeted advertising to paid services. Although popular, social network sites are still in their in-
fancy as they figure out how to monetize this massive dataset they have access to and make their
business model sustainable. New methods and mechanisms are emerging in the area of analyzing
social network data on distributed systems, clusters and clouds (Leimbach et al. 2014).

Computer networks and the Internet. Every machine in a computer network, including clients,
servers, routers and switches, is a node of a network graph and physical or network connections
between these machines form the edges of the network graph. When various networks from all
over the world are connected together to provide different services, it forms the internet, which is
an extremely large graph (Chen et al. 2005). Computer networks need to be analyzed to discover
whether there might be intruders, resource wasters, low efficiency, dead paths, and also to gain
statistical reports about the states of the network (Ammann et al. 2002). This is particularly the
case as a bulk of the network traffic moves toward rich content such as streaming video and multi-
player gaming. These types of graphs should be processed in real-time as their state changes, and
need a fast response, say to configure switches to allocate bandwidth to traffic, or detect malware
and denial of service attacks. Network delays lead to customer dissatisfaction or worse, outages
can cripple the functioning of modern society.

Smart utilities. Many large graph datasets are owned by public utility and service providers
such as city and rail roads, and power and water grids. Take city road datasets as an example.
Logistics companies need to find the shortest path between cities and streets to decrease their fuel
consumption and ensure timely delivery of their goods, governments need to plan maintenance
and provision emergency services in case of power disruptions or natural disasters, and people
need to find the most convenient means for travel between different locations (Lochert et al. 2005).

ACM Computing Surveys, Vol. 51, No. 3, Article 60. Publication date: June 2018.

Scalable Graph Processing Frameworks: A Taxonomy and Open Challenges 60:7

Table 2. Graph Algorithms Categorization

Traversal
Breadth first search (BFS)
Single source shortest path (SSSP)

Graph Analysis
Diameter
Density
Degree distribution

Components
Connected components
Bridges
Triangle counting

Communities
Max-flow min-cut
K-means, semi clustering

Centrality Measures
PageRank
Degree centrality
Betweenness centrality

Pattern Matching Path/subgraph matching

Graph Anonymization
K-degree anonym
K-neighborhood anonym

Other Operations Structural equivalence, similarity, ranking, and so on

Further, with a wider deployment of IoT and city services getting smarter (Paul 2013), the ability
to monitor and collect real-time information about these physical infrastructure networks will
grow, and graph analytics will be essential for ensuring the smartness of these utilities. In fact, IoT
will be a natural extension and an exponential expansion of the internet. Graph applications can
be used to drive real-time management of power grid operations with back-to-grid intermittent
renewables like solar and wind, pumping operations for water networks, signaling of traffic lights
based on current flow patterns, and even scheduling of public transit on-demand.

There are many other examples such as telecommunication (Marburger and Westfechtel 2010),
web search engines (Page et al. 1998), environmental analysis (Committee on the Analysis on Mas-
sive Data 2013), astronomy (Szalay 2011), mobile computing (Tian et al. 2002), machine learning
(Zha et al. 2009), and so on where large graph data is required to be processed and, as we mentioned
before, traditional approaches are not suitable.

2.3 Algorithms in Graph Processing Studies and Experiments

We discuss algorithms that are commonly used in most large graph processing studies and ex-
periments. These algorithms are not essentially graph-designed algorithms in terms of the level
of parallelism but they have been used for experiments in papers. So, the categorization pre-
sented in the table below provides a hint for researchers. However, several works have been done
on designing parallel versions of these algorithms to fit them into the graph processing domain
(Leiserson and Schardl 2010; Maleki et al. 2016). Table 2 shows the taxonomy of algorithms ac-
cording to Dominguez-Sal et al. (2010), which is used in a number of works:

(1) Graph traversal algorithms: These algorithms travel through all the vertices in a graph
according to a specific procedure to check or update the vertices’ values (Sedgewick and
Wayne 2011). Among the most common algorithms in this type are breadth-first-search
(BFS) and depth-first-search (Kozen 1992). Both of these algorithms traverse the graph
tree to find a particular node, or visit every node in a specific order. Single-source shortest
path (SSSP) is used to find the shortest path between a particular node and any arbitrary

ACM Computing Surveys, Vol. 51, No. 3, Article 60. Publication date: June 2018.

60:8 S. Heidari et al.

node of the graph that might be based on the minimum cost or weight (Roy 2014). Dijk-
stra’s algorithm and the Bellman-Ford algorithm are popular algorithms in this category
(Bannister and Eppstein 2012; Dijkstra 1959).

(2) Graph analysis algorithms: These algorithms peruse the topology of the graph to specify
graph objects and analyze its complexity. These graph statistics and topological measures
are extensively used in protein interplay analysis and social network analysis (Britton
et al. 2006; Lau 2012).

(3) Components: Connected component algorithms find subgraphs in which a path exists be-
tween any two nodes in the subgraph and none are connected to nodes in other subgraphs
(Hirschberg et al. 1979). So, each vertex only belongs to one connected component of the
graph. Weakly connected components (WCCs) work on undirected graphs, while strongly
connected components are relevant to directed graphs. Another component identification
problem is counting triangles.

(4) Communities: A community is a set of vertices in which each vertex in the community
is closer to other vertices of the same community than any other vertices of the graph.
Various topological and attribute measures can be used to define the closeness and quality
of communities, and k-means clustering and semi-clustering are popular algorithms in this
category (Jain 2008; Boykov and Kolmogorov 2004).

(5) Centrality measures: The aim of these algorithms is to give an approximate indication of
the importance of a vertex in its community according to how well it is connected to the
network. The most used algorithm of this type is PageRank (Page et al. 1998), an algorithm
that is used by Google search engine to rank websites. Betweenness centrality is another
common metric (Madduri et al. 2009).

(6) Pattern matching: These algorithms are used to recognize the presence of input patterns
in the graph, which can be an exact or approximate recognition (Sun et al. 2012).

(7) Graph anonymization: These algorithms are used to create a new graph based on an orig-
inal graph where the latter emulates specific topological or attribute properties of the
original one. This prevents any possible intruders to re-identify the network (Wu et al.
2010).

(8) Other operations: There are also other algorithms, such as random walk algorithms, where
we choose a vertex randomly from neighbors of a vertex to start or continue the process
from there and try to converge in a probabilistic point (Fouss et al. 2007).

In another categorization used by Han et al. (2013) and Kang et al. (2011), algorithms have been
categorized based on the types of graph queries that result in two classes of algorithms (other types
of query classification can be found in Sarwat et al. (2013) and Jamadagni and Simmhan (2016)):

(1) Global queries: These queries need to traverse the whole graph. So, algorithms such as
diameter estimation, PageRank, connected components, random walk with restart (RWR),
degree distribution, and the like are in this group.

(2) Targeted queries: These queries only need to access part of the graph, not all the graph.
Kang et al. (2011) have formulated seven types of queries including neighborhood (1-step
and n-step), induced subgraph, egonet (1-step and n-step), k-core, and cross-edges.

Although there are many algorithms that can be implemented on a graph processing system,
there are some challenges that these algorithms face. First, according to Lumsdaine et al. (2007),
many graph systems have limited memory that can be exclusively allocated to the processing al-
gorithm, in addition to other processes and threads that simultaneously use and access the mem-
ory. Graph algorithms, in particular, those that operate in a shared-memory system, can exceed

ACM Computing Surveys, Vol. 51, No. 3, Article 60. Publication date: June 2018.

Scalable Graph Processing Frameworks: A Taxonomy and Open Challenges 60:9

Fig. 2. Graph processing architectures. Fig. 3. Master-workers architec-

ture.

available physical memory for large graphs processed on single machines (Murphy and Kogge
2007). Recent graph processing systems address this by using a distributed computing paradigm.
In addition, utilizing external memory algorithms is another approach to reach out of memory
(core) to have access to more space. Second, the level of granularity in an algorithm can influence
the level of parallelism it can exploit, especially those with linear runtime. So, a more fine-grained
level of parallelism results in better scaling of such algorithms (Hendrickson and Berry 2008).
Third, algorithms should deal with diverse workloads and need to reassign tasks to processors
when the visited nodes in a graph algorithm have spatial locality in the global memory. Finally,
graph processing systems and algorithms should deal with the additional degree of parallelism
exposed by submitting multiple concurrent queries when working on a large graph, or algorithms
that operate over dynamic graphs. However, most of the systems that we review operate one graph
algorithm or query over a single (large) graph.

3 GRAPH PROGRAMMING MODELS

We present different dimensions of graph programming and computation models, and classify and
analyze prominent literature on graph frameworks based on these categories. A comprehensive
list of graph processing systems based on this taxonomy is tabulated in Table 3.

3.1 Graph Processing System Architectures

Graph processing systems can be categorized into three types of architecture models as depicted
in Figure 2.

3.1.1 Distributed Architecture. A distributed system includes several processing units (host) and
each host has access to only its own private memory. Each partition of the graph is typically as-
signed to one host to be processed while the hosts interact with each other by explicit or implicit
message passing (Strandmark and Kahl 2011). Such systems are meant to weakly scale by sup-
porting larger graphs as more hosts are added to the system. From a cloud computing point of
view, these map to an infrastructure as a service (Buyya et al. 2009) architecture, where the hosts
are virtual machines (VMs). Distributed graph processing systems utilize master-slaves (workers)
architecture, as shown in Figure 3, where there is one master that is responsible for managing the
whole system, assigning partitions to workers, managing fault-tolerance, coordinating the opera-
tions of the workers, and so on; and there are multiple workers that are responsible for performing
computation on the partitions.

Although the programmer has to adapt their algorithms and applications to suit the abstrac-
tions provided by the distributed graph processing systems, such systems ease the scaling of the
applications on distributed environments, without the challenges of races and deadlocks that
are associated with distributed computing (Coulouris et al. 2012). In contrast, shared-memory

ACM Computing Surveys, Vol. 51, No. 3, Article 60. Publication date: June 2018.

60:10 S. Heidari et al.

frameworks that have been developed for single machines are easier to program but are limited
by their ability to hold only parts of large graphs in memory (Shun and Blelloch 2013).

Google Pregel is a distributed vertex-centric framework that uses a master-worker architec-
ture on multiple hosts of a cluster. GraphLab, developed in Carnegie Mellon University and later
supported by GraphLab Inc., was developed for single machine processing (Low et al. 2010), but
evolved into a distributed one (Low et al. 2012). There are other Pregel-like systems such as GPS
(Salihoglu and Widom 2013), Mizan (Khayyat et al. 2013), and GoFFish (Simmhan et al. 2014), and
non-Pregel-like systems such as Presto (Venkataraman et al. 2013), Trinity (Shao et al. 2013), and
Surfer (Chen et al. 2010), which have been developed as distributed graph processing systems.
Even frameworks such as GraphX (Xin et al. 2013) are built on top of a Spark distributed dataflow
system. All of these systems use multi-node clusters or cloud VMs for their execution environ-
ment. However, as of yet, none of these exploit the elasticity property of clouds, and rather treat
captive VMs as a commodity cluster.

Besides the aforementioned graph frameworks, there are several graph processing libraries de-
veloped for high performance computing clusters. Boost graph library (BGL) (Siek et al. 2002) is a
generic graph processing library that provides generic interfaces to the graph’s structure and com-
mon operations, but hides the details of its implementation. This allows graph algorithms using
BGL to have interoperable implementations on shared-memory and parallel computing platforms.
Graph500 (he Graph 500 List 2010) is a graph processing benchmark by which various metrics
of supercomputers such as communication performance, memory size for graph storage, and the
performance of random access to memory are measured. It contrasts with Top5002 which is de-
signed for compute-intensive applications. Although there have been many other attempts for
providing parallel graph frameworks for high performance computing including several libraries
such as MPI (El-Rewini and Abd-El-Barr 2005), PVM (Geist et al. 1994), BLAS (Lawson et al. 1979),
JUNG (O’Madadhain et al. 2003), and LEAD (Mehlhorn and Näher 1995), none of them provide the
required flexibility for a general-purpose graph processing platform (Gregor and Lumsdaine 2005).

3.1.2 Shared-Memory Architecture. Prior to the recent growth in distributed graph processing
systems, there have been several works on processing large scale graphs on a single machine. A
single machine consists of one processing unit (host), which can have one or more CPU cores, and
physical memory that ranges from a few to hundreds of gigabytes that is shared across all the cores.

In 2012, Microsoft researchers conducted a study (Rowstron et al. 2012) on whether using
Hadoop on a cluster for analyzing big data is the right approach for data analytics. They con-
cluded that for many data processing tasks, a single machine with large memory is more efficient
than using clusters. They also investigated the cost aspect of using a single machine in big data
processing and mentioned that “. . . for workers that are processing multi gigabytes rather than
terabytes+ scale, a big memory server may well provide better performance per dollar than a
cluster” (Lorica 2013).

Shared memory frameworks are inherently limited in the amount of memory and CPU cores
present in that single machine (Doekemeijer and Varbanescu 2014). The main challenge is that
single hosts often have limited physical memory whereas processing large, real-world graphs can
require a significant amount of memory to retain them fully in memory for many graph applica-
tions, or keeping and managing a subset of the graph out-of-memory. Novel techniques to address
this limitation have been proposed.

In Strata Startup Showcase 2013, SiSense, which is a business intelligence solutions provider
company, won the audience award with a software system called Prism that can exploit a terabyte

2Top500. n.d. Home Page. Retrieved June 25, 2016, from https://www.top500.org.

ACM Computing Surveys, Vol. 51, No. 3, Article 60. Publication date: June 2018.

https://www.top500.org

Scalable Graph Processing Frameworks: A Taxonomy and Open Challenges 60:11

of data on a single machine with only 8GB of RAM (Lorica 2014). It relies on disk for storage,
transfers data to memory when needed, and benefits from L1/L2/L3 caches of the CPU. It utilizes
a column store and an interface that allows scalability to a hundred terabytes. Among major IT
companies, for instance, Twitter uses Cassovary3, an open-source graph processing system that
has been developed to handle graphs that fit in the memory of a single machine. It has been claimed
that Cassovary is a viable system for “most practical graphs” because of using a space efficient
data structure. WTF (who to follow) (Gupta et al. 2013) is a recommendation algorithm that is
used by Twitter to suggest users with common interests and connections that is implemented on
Cassovary.

GraphChi (Kyrola et al. 2012) is a vertex-centric graph processing framework that proposes a
parallel sliding window (PSW) method for leveraging external memory (disk) and is suited for
sparse graphs. PSW needs a small number of sequential disk-block transmissions, letting it per-
form well on both SSD (solid state drive) and HDD (hard disk drive). Besides, GraphChi can process
an ongoing in-flow of graph updates while performing advanced graph mining algorithms simul-
taneously, like Kineograph (Cheng et al. 2012). GraphChi uses space-efficient data structures such
as a degree file that is created at the end of processing to save in-degree or out-degree for each
vertex as a flat array. It also uses dynamic selective scheduling that lets update function and graph
amendments to enlist vertices to be updated. It was extended later as a graph management system
called GraphChi-DB (Kyrola and Guestrin 2014) and tried to address some of these challenges.

Many other graph processing systems have been developed based on single machines. Signal/
Collect (Stutz et al. 2010), for example, is a vertex-centric framework made to improve the semantic
web computational performance. In this model, signals will be sent along edges where they will
be collected in vertices. The advantage of this model is that it provides flexibility for synchronous,
asynchronous, and prioritized execution. Other systems such as RASP (Yoneki et al. 2014) and
X-stream (Roy et al. 2013), which provide an edge-centric framework, FlashGraph (Zheng et al.
2015), Galois (Nguyen et al. 2013), TOTEM (Gharaibeh et al. 2013), BPP (Najeebullah et al. 2014b),
and others also make processing graphs possible on single machines using various computational
models and processing systems.

Graph processing on a single machine would be easier to program and execute than on dis-
tributed systems if the entire graph fits within the local resources on that machine. This is because
of efficient communication, simpler debugging, and easier execution management on a single ma-
chine. But this limits their scalability beyond a certain graph size. New approaches for processing
graphs on single machines are targeting flash and SSDs (Yamato 2015; Koo et al. 2015) whose
speeds are matching main memory and offer advantages for graph processing (Zheng et al. 2015;
Nilakant et al. 2014; Yoneki et al. 2014).

3.1.3 Heterogeneous Architecture. In a heterogeneous environment, not every processing unit
is equally powerful (Guo et al. 2015). This may be a single machine and additional on-board accel-
erators and specialized devices, or it can also consist of distributed, non-homogeneous systems.
Because of this, we considered them as a separate group in this taxonomy. For example, processing
systems such as RASP (Yoneki et al. 2014) and FlashGraph (Zheng et al. 2015) have tried to optimize
the storage part of the system by using SSD, which is much faster and more reliable than tradi-
tional hard drives (Geier 2015). Many graph processing systems have proposed utilizing graphic
processing units (GPU) alongside CPU for computation (Zhang et al. 2015). Medusa (Zhong and
He 2013a), for instance, was developed to make processing graphs using GPUs easier. Medusa is
a programming framework that enables users to write C/C++ APIs to promote the capabilities

3Twitter. 2012. Cassovary: A Big Graph-Processing Library. Retrieved July 24, 2015, from https://blog.twitter.com/2012/
cassovary-big-graph-processing-library.

ACM Computing Surveys, Vol. 51, No. 3, Article 60. Publication date: June 2018.

https://blog.twitter.com/2012/cassovary-big-graph-processing-library

60:12 S. Heidari et al.

Fig. 4. Taxonomy of programming models used by graph processing frameworks.

of GPUs to execute the APIs in parallel. Its extended version also can be run on multiple GPUs
within a single machine. Gharaibeh et al. (2013) developed a system called TOTEM that assigns
the low-degree vertices to the GPU and operates high-degree vertices processing on the CPU. On
the other hand, systems like CuSha (Khorasani et al. 2014) compute the entire graph on GPU. An-
other possibility is to exploit non-uniform VM sizes on Clouds for a distributed, heterogeneous
architecture, which has been less explored.

Recently some research works have started exploring the use of field-programmable gate arrays
(FPGAs). FPGA is an integrated circuit made of matrix of configurable logic blocks and their pro-
grammable connections that can be configured by the user after being manufactured. GraphGen
(Nurvitadhi et al. 2014) is a generic vertex-centric FPGA-based graph processing framework. It has
been designed to get vertex-centric specifications and create FPGA implementations for targeted
platforms. The problem with GraphGen is that it keeps the entire graph inside the on-board DRAM
that limits the scalability of the system remarkably. FPGP (Dai et al. 2016) is another framework
that enables interval-shared vertex-centric processing on FPGA. FPGP has also been used to ana-
lyze the performance bottleneck of other processing frameworks on FPGA. Although it has been
shown that FPGP does not perform as good as CPU-based single server frameworks, it shows the
mechanism of FPGA-based generic graph processing systems well. Overall, FPGA is still a new re-
search area in graph processing context compared to CPU and GPU based systems, but it is getting
more attention (Engelhardt and So 2016; Ma et al. 2017).

3.2 Graph Processing Frameworks

Graph processing frameworks enable graphs to be processed on different infrastructures such as
clusters and clouds. Here, we restrict ourselves to distributed memory systems that are designed
for commodity, rather than high-performance computing or supercomputing clusters. The pro-
gramming abstraction for each framework is designed either based on a graph topology element,
such as vertices and edges, or other alternative approaches. Figure 4 depicts the taxonomy of graph
processing frameworks according to main characteristics of the graph and other alternatives. We
discuss these further below.

3.2.1 Vertex-Centric (Edge-Cut) Frameworks. Vertex-centric programming is the most mature
distributed graph processing abstraction and several frameworks have been implemented using
this concept (Doekemeijer and Varbanescu 2014). A vertex-centric system partitions the graph
based on its vertices, and distributes the vertices across different partitions, either by hashing
them without regard to their connectivity (Malewicz et al. 2010; Apache Software Foundation
2012) or by trying to reduce the edge cuts across partitions (Salihoglu and Widom 2013). Edges

ACM Computing Surveys, Vol. 51, No. 3, Article 60. Publication date: June 2018.

Scalable Graph Processing Frameworks: A Taxonomy and Open Challenges 60:13

Fig. 5. Graph element-based approaches for graph processing frameworks.

that connect vertices lying in two different partitions either form remote edges that are shared by
both partitions or owned by the partition with the source vertex.

In the vertex-centric programming abstraction introduced by Google’s Pregel (Malewicz et al.
2010), computation centers around a single vertex—its state and its outgoing edges—and inter-
actions between vertices are through explicit messages passing between them. This gives a fine-
grained degree of vertex-level data parallelism that can be exploited for concurrent execution.
Pregel’s execution follows a BSP model, where vertex computation and inter-vertex messaging
are interleaved, and the application iteratively progresses along barrier-synchronized supersteps.
The Pregel API allows developers to focus on the vertex-centric graph algorithms while abstract-
ing away communication and coordination details to the runtime. In Pregel, the domain of a
vertex’s user-defined compute function is restricted to the vertex and its outgoing edges, while
LFGraph (Hoque and Gupta 2013) considers incoming edges to be restricted. Figure 5(b) shows
vertex-centric processing approach for a sample graph shown in Figure 5(a).

A vertex-centric model makes programming of graph processing intuitive and easy, similar to
the advantages of Map-Reduce for tuple-centric programming. Parallelization is done automati-
cally, and race conditions on distributed execution are avoided. Primitives like combiners and ag-
gregators are available for application-level message optimizations and global state exchange. The
model also allows for graph mutations, where the structure of the graph can be changed as part
of the execution (useful, e.g., when iteratively coarsening the graph for partitioning, clustering, or
coloring).

However, Pregel has several shortcomings: (1) While the vertex-centric model exposes paral-
lelism at the level of individual vertices, which can be computed in negligible time, massive graphs
can impose coordination overheads on this degree of parallelization that may outweigh the ben-
efits (Tian et al. 2013); (2) the number of barrier-synchronized supersteps taken for traversal al-
gorithm can be proportional to the diameter of the graph with the number of message exchanges
required between partitions also being high, proportional to the number of edges (Simmhan et al.
2014); (3) mapping shared memory graph algorithms to this model is not trivial and requires new
vertex-centric algorithms to be developed (Simmhan et al. 2014); and (4) using a vertex-centric
programming model without regard to the graph partitioning and data layout on disk can lead to
punitive I/O initialization and runtime performance (Simmhan et al. 2014). These shortcomings
have been addressed in some other vertex-centric frameworks such as GoFFish (Simmhan et al.
2014) and GPS (Salihoglu and Widom 2013).

Apache Giraph (Apache Software Foundation 2012), is a popular open-source implementation of
Pregel. Giraph uses Map-only Hadoop jobs to schedule and coordinate the vertex-centric workers
and uses HDFS for storing and accessing graph datasets. It is developed in Java and has a large com-
munity of developers and users such as Facebook (Jackson 2013; Salihoglu et al. 2015). Giraph has
a faster input loading time compared to Pregel because of using byte array for graph storage. On
the other hand, this method is not efficient for graph mutations, which lead to decentralized edges
when removing an edge. Giraph inherits the benefits and deficiencies of the Pregel vertex-centric

ACM Computing Surveys, Vol. 51, No. 3, Article 60. Publication date: June 2018.

60:14 S. Heidari et al.

programming model. Its performance and scalability is algorithm and graph dependent, and works
very fast, e.g., on stationary algorithms like PageRank but not as fast on traversal algorithms like
single source shortest path (SSSP) (Roy 2014) and WCCs (Salihoglu and Widom 2014), particularly
for graphs with a large diameter. However, the ease of use of this framework and the community
support has made it a popular platform over which to develop other Pregel-like systems with
feature enhancements to the vertex-centric concept.

Other distributed platforms like Apache Hama and GraphX also offer a vertex-centric program-
ming model, with features comparable to Giraph. GraphX, developed on top of Apache Spark,
determines transformation on graphs where every operating action produces a new graph. This
framework uses a programming abstraction called Resilient Distributed Graph (RDG) interface,
which builds upon Spark’s in-memory storage abstraction—Resilient Distributed Datasets (RDD).
The graph in GraphX includes the directed adjacency structure along with user defined attributes
connected to each node and edge, and both are encoded as RDGs. Using RDG, the implementation
of frameworks such as Pregel and PowerGraph on Spark needs less efforts.

Pregelix (Bu et al. 2014) is a vertex-centric framework that tries to model Pregel as an iterative
dataflow on top of the Hyracks (Borkar et al. 2011) parallel dataflow engine. Pregelix has been
developed to address three main challenges in distributed Pregel-like systems: (1) Many Pregel-
like systems have limitations to support out-of-core vertex-storage; (2) existing Pregel-like systems
have specific strategies and implementations for communication, node storage, message delivery,
and so on. Therefore, a user cannot choose between different implementation strategies based on
what is better for a particular algorithm, dataset or cluster. Pregelix improves physical flexibility
and scalability of the processing system to address this challenge; and, finally, (3) Pregelix tries to
leverage current data-parallel platforms to streamline the implementation of Pregel-like systems.

3.2.2 Edge-Centric (Vertex-Cut) Frameworks. In edge-centric frameworks, edges are the pri-
mary unit of computation and partitioning, and vertices that are attached to edges lying in dif-
ferent partitions are replicated and shared between those partitions. It means that each edge of
the graph will be assigned to one partition, but each vertex might exist in more than one partition.
Figure 5(c) depicts this approach. While edge-based partitioning is more costly, this model shows
better graph processing performance compared to vertex centric approaches (Rahimian et al. 2014).
However, programming an edge-centric system is more difficult than vertex-centric systems (Yuan
et al. 2014). It is also important to create edge-balanced partitions in this method to load balance
the computation across workers, just as vertex balancing is important for vertex-centric frame-
works. Decreasing the vertex cuts has been investigated in some research (Feige et al. 2005; Beseri
Sevim et al. 2012; Liu et al. 2006).

Catalyurek and Aykanat (1996) and Devine et al. (2006) have suggested a vertex-cut method
for distributed graph placement in hyper graph partitioning, where the edge-centric problem can
be solved by converting each edge into a vertex and vice versa. The motivation for developing
vertex-cut frameworks is that systems such as Pregel and GraphLab (Low et al. 2010) are effective
for flat graphs but have shortcomings with graphs that follow a power law edge degree distribution
due to low quality partitioning and vertices with high edge degrees. Real-world graphs such as
social networks are such power-law graphs where a small set of vertices have high edge degrees
that connect to a large part of the graph, e.g., celebrities in social networks. Partitioning and rep-
resenting power-law graphs in a distributed environment is also difficult (Leskovec et al. 2008;
Abou-Rjeili and Karypis 2006).

X-Stream (Roy et al. 2013) is a well-known edge-centric system that processes out-of-core and
in-memory graphs using a gather-scatter approach (Section 3.4). It bases this approach on the
intuition that storage media such as SSDs, main memory, and magnetic disk perform significantly

ACM Computing Surveys, Vol. 51, No. 3, Article 60. Publication date: June 2018.

Scalable Graph Processing Frameworks: A Taxonomy and Open Challenges 60:15

better with a sequential access to data than random access. The authors have implemented different
algorithms on their system and observe that many of them can work on edge-centric mode. It can
even return results from unsorted edge lists. However, it causes overheads when new edges are
added to the graph. X-Stream is not suitable for very large graphs that do not fit onto the SSD,
it wastes a remarkable amount of bandwidth for certain algorithms, and, finally, X-Stream is not
suitable for graphs and algorithms that require many iterations (Yuan et al. 2014).

Chaos (Roy et al. 2015) is another edge-centric framework that is created based on X-Stream’s
streaming model. It introduces a scalable distributed framework that can be scaled from secondary
storage to several hosts on a cluster. Unlike some other graph processing systems, Chaos does
not strive to attain locality and load balance and claims that network bandwidth in a small cluster
surpasses storage bandwidth. Instead, it is designed to partition the graph for sequential access
on storage. So, it spreads data uniformly at random on the cluster’s machines, which are not
necessarily sorted edge-lists. Chaos also utilizes a gather-apply-scatter (GAS) computation model
(Section 3.4) by which the edge-centric characteristic of its model is proven by iterating over
edges and getting updated in the gather and scatter stages.

3.2.3 Component-Centric Frameworks. Component-centric approaches have been recently in-
troduced, where components are collections of vertices and or edges that are coarser than a single
vertex or edge. Tian et al. (2013) from IBM introduced “think like a graph” instead of “think like
a vertex” (Tian et al. 2013) abstraction after observing shortcomings in vertex-centric and edge-
centric methods of graph processing. In their partition-centric view, they divide the whole graph
into partitions and assign those partitions to machines for being processed. A partition, which is a
collection of vertices and edges in the graph, forms the unit of computing. Figure 5(d) shows this
approach. Giraph++, based on Apache Giraph (Apache Software Foundation 2012), implements this
model and uses this coarse-grained parallelism. In contrast to a vertex-centric model that hides par-
titioning and component connectivity details from users, Giraph++ exposes the partition’s struc-
ture to the users to allow optimizations. So, the performance of the system depends on the parti-
tioning strategy that is used and how effectively users exploit the access to the coarse components
in their execution. On the other hand, communication within a partition is by direct memory ac-
cess, which is faster than passing messages between each single vertex in a vertex-centric model.
This results in fewer network messages passing and lower time of execution per iteration (super-
step), with a reduction in the number of iterations needed for convergence. It also benefits from
local asynchrony in the computation, which means that vertices in the same partition can exchange
their state and perform consequent computations to the extent possible in the same iteration.

Simmhan et al. developed GoFFish (Simmhan et al. 2014), which has a subgraph-centric com-
putation model to merge both the scalability and flexibility of the vertex-centric programming
approach with the extensibility of shared-memory subgraph computation. A subgraph (WCC) is
the unit of computation. A partition may contain one or more subgraphs, whereas each subgraph
only belongs to one partition of the graph. Vertices in the same subgraph have a local path between
each other, so existent shared memory graph algorithms can directly be exerted to each subgraph.
This gives a programming and algorithm design advantage over partition-centric frameworks like
Giraph++ that offer no guarantee on connectivity between vertices in a partition, while retaining
the advantages of fewer iterations and shared-memory access of those frameworks. Subgraphs, or
vertices that span subgraphs, communicate by passing messages, similar to a vertex-centric model.

GoFFish consists of two major components: (1) a distributed graph oriented file system, GoFS,
which partitions, stores, and provides access to graph datasets in a cluster across hosts, and (2) a
subgraph-centric programming framework, Gopher, which executes applications designed using
the subgraph-centric abstraction using the Floe (Simmhan and Kumbhare 2013) dataflow engine on

ACM Computing Surveys, Vol. 51, No. 3, Article 60. Publication date: June 2018.

60:16 S. Heidari et al.

top of GoFS. However, subgraph-centric programming algorithms are vulnerable to imbalances in
the number of subgraphs per iteration as well as non-uniformity in their sizes. The time complexity
per iteration also can be larger since it often runs the single machine graph algorithm on each
subgraph, even as it often takes much fewer iterations. The benefits are also more pronounced
for graphs with large diameter, where algorithms tend to be several times faster than a vertex-
centric equivalent, rather than small-diameter power-law graphs. GoFFish supports applications
that operate on single property-graphs as well as on time-series graphs (Simmhan et al. 2014).

3.2.4 Other Graph Frameworks. In addition to the aforementioned programming abstractions,
other alternatives have been developed as well. Several data-centric models offer a declarative
dataflow interface to users to access and process data without needing to explicitly define com-
munication mechanisms. For example, MapReduce provides a dataflow programming model that
is popular for processing bulk on-disk data, but not for in-memory computations across multiple
iterations, and applications do not have online access to the intermediate states. Piccolo (Power
and Li 2010), was developed at New York University as a data-centric programming method for
writing parallel in-memory applications in several machines. It uses a key-value interface with a
user-defined accumulator function that automatically combines concurrent updates on the same
key. Like many other dataflow models such as Pig, Hive, Dryad (Isard et al. 2007; Yu et al. 2008),
Flume Java (Chambers et al. 2010), and Swazal, developers in Piccolo operate at a higher level of
dataflow programming abstraction but need to know the framework and system behavior well
to leverage its scalability for different applications. For example, the programmer has to a priori
specify the number of partitions while creating a table. Further, these are tuple-oriented data flow
models rather than graph specific ones.

Yuan et al. (2014) introduces PathGraph, which aims to leverage memory and disk locality on
both out-of-core and in-memory graphs using a path-centric approach. Their path-centric abstrac-
tion utilizes a set of tree-based partitions to model the graph and benefits from a path-centric
computation instead of a vertex or edge centric computation. It means that the graph will be par-
titioned into paths including two forward and reverse edge traversal trees for each partition. It
applies iterative computation per traversal tree partition in parallel, and then merges partitions by
examining border vertices. Two functions, gather and scatter (Section 3.4), are used to traverse each
tree by a user-defined algorithm. In addition to the computation tier, PathGraph has a path-centric
storage tier to better the local accessibility for the computation. The storage structure is based on a
tree partition and uses vertex-based indexing for tree-based edge chunks. The system outperforms
the vertex-centric GraphChi (Kyrola et al. 2012) and edge-centric X-Stream frameworks.

Frameworks such as Blogel (Yan et al. 2014) adopt blocks as units of computation. Blogel intro-
duces the concept of “think like a block” rather than “think like a vertex” and argues that existing
systems do not address three main characteristics of real-world graph including (1) skewed degree
distribution, (2) large diameter, and (3) high density. Considering these characteristics, the basic
idea in Blogel is to put a high degree vertex with all its neighbors in one block and assign the
whole block to one host. It also uses three computing modes (B, V, VB-mode), depending on the
algorithm, along with two different partitioners (graph Voronoi diagram (GVD) partitioner and 2D
partitioner).

3.3 Distributed Coordination

Figure 6 shows various distributed coordination in existing graph processing systems.

3.3.1 Synchronous. When a graph algorithm executes synchronously, it means that concur-
rent workers process their share of the work iteratively, over a sequence of globally coordinated
and well-defined iterations. Synchronization may be applied to vertex-centric, edge-centric, and

ACM Computing Surveys, Vol. 51, No. 3, Article 60. Publication date: June 2018.

Scalable Graph Processing Frameworks: A Taxonomy and Open Challenges 60:17

Fig. 6. Distributed coordination.

component-centric models, and both on distributed and single machine systems. For example,
Pregel-like systems call their barrier synchronized iterations a superstep, and workers coordinate
their computation and communication phases in each superstep—everyone completes a superstep
before starting the next. Initially, the master assigns partitions to the workers in the first itera-
tion; the workers update their set of vertices based on the assigned partitions and wait for a global
barrier, which tells them all workers are ready with their partition (Malewicz et al. 2010). Subse-
quent supersteps indicate actual computation based on the application logic. Updated vertices in
each partition send messages to (typically) vertices in neighboring partitions between iterations.
Within an iteration, vertices can only access information about their local vertex’s state and mes-
sages received from the previous iteration. Such a synchronized execution is possible even in a
shared-memory system, across workers (threads, processes) on a single server.

These regular intervening periods make the system appropriate for algorithms where sizeable
computation and communication can take place within each iteration since there is an overhead
associated with the coordination. The bulk messaging at iteration boundaries can utilize the band-
width efficiently if there is heavy communication between partitions (Ediger and Bader 2013; Xie
et al. 2015). It is easy to program, debug, and deploy such systems, without concerns of distributed
race conditions and deadlocks. Another advantage of synchronous processing is that the outcome
of each superstep is known immediately and provides real-time response of incremental applica-
tion progress and easier error recovery in case of superstep boundaries. Synchronous execution is
also suitable for balanced workloads that are computed symmetrically, with all workers having ad-
equate work, so that the overhead of the global barrier and idle time for faster workers waiting for
slower workers to synchronize is reduced (Xie et al. 2015). These advantages make synchronous
execution very popular such that several graph-processing systems like Pregel, GPS, Kineograph,
Mizan, GasCL (Che 2014), and Medusa (Zhong and He 2013a) use this model. Some like GoFFish
(Simmhan et al. 2015) have two levels of such synchronized supersteps, an outer loop over different
graphs in the context of time-series graphs, and an inner loop as supersteps over a single graph
from the outer loop.

A synchronous execution model has some disadvantages as well that should be considered while
designing or choosing a processing system for graphs. First, this model is not suitable for unbal-
anced workloads in which computation converges asymmetrically (Suri and Vassilvitskii 2011).
Likewise, if the distributed machines are not homogenous, the performance of the hardware may
also cause some partitions to operate slowly. In such cases, it is possible to have stragglers when all
partitions have been computed on workers except one slower worker which has not finished and
hence delays all workers in the superstep. So, the runtime in this model is completely dependent
on the slowest machine in each iteration (Salihoglu and Widom 2013). Some of these shortcom-
ings have been identified and addressed through elastic load balancing of partitions across workers
(Dindokar and Simmhan 2016). Another drawback is that the intermediate processing updates be-
tween supersteps, in the form of messages or state, has to be retained in memory and this causes
additional memory pressure (Redekopp et al. 2013). A third disadvantage is that a synchronous
execution model is ill-suited for applications and algorithms that need coordination between ad-
jacent vertices (Doekemeijer and Varbanescu 2014). For example, in a graph coloring algorithm in

ACM Computing Surveys, Vol. 51, No. 3, Article 60. Publication date: June 2018.

60:18 S. Heidari et al.

which vertices try to choose a different color from their neighbors, two adjacent vertices might
pick conflicting colors frequently (Gonzalez et al. 2012; Tasci and Demirbas 2013) and the algorithm
will converge slowly. Lastly, based on the drawbacks mentioned above, the cost for the systems
that use synchronous model of execution is higher because the throughput must always remain
high and running time would be longer (Zhang et al. 2014).

3.3.2 Asynchronous. An asynchronous execution model does not have any global barrier and
a subsequent phase of execution will be started on a worker immediately after its current iter-
ation finishes its computation (Xie et al. 2015). Hence, some of the challenges of load balancing
and long tail computation in the synchronous model are addressed by asynchronous computa-
tion, where workers do not have to wait for the slowest worker to start their subsequent iteration.
This approach is useful when the workload is imbalanced and convergence can occur faster than
synchronous approach. Therefore, we can say that an asynchronous model is the preferred model
when computation across workers is heavily skewed and there is little communication that can
benefit from bulk operations (Xie et al. 2015). In other words, this model is preferable for CPU-
based algorithms while synchronous model would perform much better on I/O-bound algorithms.
Another advantage for this model is that it can use dynamic scheduling to implement prioritized
computation to execute more units of computation before others, to obtain better performance
(Zhang et al. 2012). Normally, asynchronous execution provides more flexibility than synchronous
execution by utilizing dynamic workloads, which makes it outperform synchronous methods in
many cases; however, the exact comparison between these two models depends on various prop-
erties of the input graph, platforms that the system has been deployed on, execution stages, and
applications (Xie et al. 2015). Finally, using asynchronous approach provides a non-blocking pro-
cess because resources could be free and become available for the next iteration, whereas in a
synchronous approach, they are blocked until the global barrier declares the end of superstep,
which leads to a competition for resources at the beginning of next superstep.

As before, there are disadvantages to this model as well. The key disadvantage is that program-
ming asynchronous processing systems is more difficult than synchronous systems. The program-
mer should deal with irregular communication intervals, unpredictable response time, complex
error handling, and more complicated scheduling issues. For example, for error recovery in such a
system, many factors have to be considered: which machine has faced a fault, in which iteration of
a particular worker the error happened, which resources caused the errors, should new resources
be allocated to the computation or it should only be rearranged, and so on. This also results in
more complex debugging and deployment, and careful programming to avoid deadlocks. In case
of a pull-based communication model (Section 4.2), which is usually implemented in an asynchro-
nous manner, many redundant communications may happen because there are several intertwined
reads and writes while adjacent vertices values do not change (Han et al. 2014; Zhang et al. 2012).
On the other hand, regardless of these drawbacks, many single machine systems have preferred
an asynchronous execution approach since the shared memory makes it easier to asynchronously
use the latest data without waiting for a barrier.

3.3.3 Hybrid. There are many systems that use only synchronous execution mode; for example,
Pregel, GoldenOrb (Cao 2011), GBASE (Kang et al. 2011), Chronos (Han et al. 2014), and GraphX
(Xin et al. 2013), while many other systems utilize an asynchronous mode like GiraphX (Tasci
and Demirbas 2013), GraphHP (Chen et al. 2014), Ligra (Shun and Blelloch 2013), RASP (Yoneki
et al. 2014), and GraphChi. But recently a new approach called hybrid execution model has been
implemented in a few systems that tries to take advantage of both asynchronous and synchronous
approaches or incorporate them with new additional solutions. Such graph processing systems
have been developed to improve system performance by overcoming the shortcomings of existing

ACM Computing Surveys, Vol. 51, No. 3, Article 60. Publication date: June 2018.

Scalable Graph Processing Frameworks: A Taxonomy and Open Challenges 60:19

methods, and use both synchronous and asynchronous models of coordination to benefit from
their relative strengths.

GRACE (Wang et al. 2013), for instance, is a single machine framework that combines synchro-
nous programming with asynchronous execution features. It actually separates execution policies
from application logic. In an asynchronous execution, a processing sequence of vertices can be
intelligently ordered by dynamic scheduling to remarkably speed up the convergence of compu-
tation. GRACE uses the BSP computational model and message passing communication model as
two primary paradigms of a synchronous model. It helps GRACE to improve its automatic scala-
bility by applying prioritized execution of vertices and receiving messages selectively outside of
the last iteration. Various workloads like topic-sensitive PageRank, social community detection,
and image restoration have been used in GRACE and it shows comparable running time to other
asynchronous systems such as GraphLab with even better scalability.

Another hybrid approach distinguishes between local vertices that are within a partition and
remote vertices connecting across partitions. These types of systems exploit both local asynchro-
nous computation when they still need global barrier for synchronization of remote vertices values
(Chen et al. 2014). In the local computation phase, messages will be passed very fast across local
vertices using shared memory. In the next phase (synchronous phase), remote nodes (boundary
nodes) that are connected by edges across the partitions, will be updated by exchanging messages.
In fact, component-centric frameworks such as Giraph++ and GoFFish allow users to exploit this.
Others like Giraph Unchained (Han and Daudjee 2015) also allow incremental forward progress
within a future superstep based on partial messages that are received, even before the previous
superstep completes. These straddle synchronous and asynchronous models.

Apart from these methods, a novel approach has been introduced by Xie et al. (2015) in the Pow-
erSwitch system, which sequentially switches between synchronous and asynchronous execution
mode, according to a heuristic prediction. This is because some properties of the processing might
change as it progresses. For example, processing SSSP algorithm begins with just a few vertices ac-
tive, which means that few messages are passed; this is suitable for an asynchronous model. But as
the process goes further, the number of vertices involved in the computation will increase, which
means that the number of messages passing among them increase as well, and this is suitable for
a synchronous execution model. PowerSwitch can effectively predict the proper heuristic for each
step and it can switch between the two modes if required.

3.4 Computational Models

Performing computation is at the heart of a graph processing system where data (vertex or edge)
will be processed and updated. Computational models that are used in existing graph processing
systems can be divided into two major groups: (1) two-phase models, and (2) three-phase mod-
els. Figure 7 shows the classification of these two models with examples from each group. The
computational model of some systems is a combination of these methods with other approaches.

3.4.1 Two-Phase Computational Models. There are usually two functions that are applied on
data (vertices or edges) in a two-phase computation model. Signal-collect approach is the first two-
phase programming model for large scale graph processing on the semantic web within a system
with the same name (signal/collect) (Stutz et al. 2010). Computation in the vertices are completed
by collecting the signals that are coming from edges and performing some processing on them
using the vertex’s state and then sending (signaling) their adjacent vertices in the compute graph.
Signal/collect has been implemented for working with both synchronous and asynchronous exe-
cution models. In both models, some parameters should be set to determine when the computation
should be stopped: signal_threshold and collect_threshold parameters in which a minimum level of

ACM Computing Surveys, Vol. 51, No. 3, Article 60. Publication date: June 2018.

60:20 S. Heidari et al.

Fig. 7. Classification of computational models in graph processing systems.

“importance” will be set for the execution, and a num_iterations parameter, which is the number
of iterations in synchronous mode, and num_ops, that is, the number of executed operations in
asynchronous mode. All these parameters should be set by the user.

Pin-and-slide was first introduced by TurboGraph (Han et al. 2013) for parallel execution of large
datasets on a single machine. A pin-and-slide mechanism consists of a graph dataset, a buffer pool,
and two different threads, as explained in Section 3.1, callback threads, and execution threads.
When the buffer manager is being sent an asynchronous input/output by a callback thread, it
sends the demand to the FlashSSD via the operating system, after which the control of execution
goes back to the calling thread immediately. The main goal in this system is to reach all related
adjacency lists efficiently. To achieve this goal, first, the pages that contain these adjacency lists
should be identified. The most important challenge here is pinning large adjacency (LA) pages,
which means that a number of smaller adjacency pages must be unpinned first, then the LA page
can be pinned. To overcome this challenge, LA pages will be pinned when all related LA pages
for a big vicinity list are completely loaded to maximize the buffer exploiting. When execution
threads or callback threads terminated the processing of a page, this page will be unpinned and an
asynchronous input/output demand will be sent to the FlashSSD by the execution thread. As soon
as the processing has been completed, the execution window can be slid by the size of the pinned
pages in the buffer (Han et al. 2013).

Nguyen et al. (2013) have used another two-phase approach called push/pull (PP) styles. The
value of an active vertex will be pushed (flowed) from that vertex to its neighbors, which is more
like scatter phase. The pull style occurs when the data from an active vertex’s neighbors flow into
that vertex, which is more like a gather phase. In an algorithm like SSSP, the push-style is applied
to the active vertex neighbors by updating the destination label of the siding nodes of the active
vertex by doing a relaxation with them; and the pull-style function updates the destination label
of the active vertex by doing relaxation with all neighbors of that node. The pull mode also needs
less synchronization because there is just one writer for each active vertex. KineoGraph (Cheng
et al. 2012) is another system that uses this model for computation.

3.4.2 Three-Phase Computational Models. BSP is a parallel programming and also the most rep-
resentative model in this category that has been used in several graph processing systems (Valiant
1990; Malewicz et al. 2010; Salihoglu and Widom 2013; Vaquero et al. 2013; Khayyat et al. 2013). To
deal with the scalability challenges of parallelizing tasks across a number of workers, BSP, which
utilizes an MPI, was developed. In BSP, as a vertex-centric computational model, each node is able
to have two modes of “active” or “inactive.” The computation comprises a series of supersteps that
come with a synchronization hurdle between them. So, in each superstep: (1) the node that is in-
volved in computation obtains its adjacent nodes’ updated values from the last superstep (except

ACM Computing Surveys, Vol. 51, No. 3, Article 60. Publication date: June 2018.

Scalable Graph Processing Frameworks: A Taxonomy and Open Challenges 60:21

the first superstep), (2) then the node will be updated based on the obtained values, and (3) the
node forwards its updated value to its neighbors that will be available for them in the next itera-
tion. In each iteration, a vertex may choose to vote to halt, in case it does not receive any messages
from its neighbors or it has reached a locally stable state. That means it will not participate in the
processing anymore until it receives new messages that convert its state from inactive to active.
So, in each iteration, only active vertices will be computed. If there is no active vertex in the graph,
then the computation is finished.

Some research has modified the BSP model and introduced new models. For example, temporally
iterative BSP (TI-BSP) (Simmhan et al. 2015) is a computational model for time-series graphs on a
subgraph-centric model such as GoFFish. It has used BSP as a building block to support the design
pattern. TI-BSP is a series of BSP loops (nested supersteps) in which each outer loop, as a timestep,
runs on one graph instance in time. Supersteps using a subgraph programming model form the
inner loop that operates over a single instance. As a result, the design pattern will be decided based
on the order of timestep execution and the messages between them.

There is another BSP model that stands for BiShard Parallel, and has been introduced by the
single machine based system, BPP (Najeebullah et al. 2014b), to empower full CPU parallelism
for graph processing. This model also has three phases that include (1) loading a sub-graph of
the large graph from disk, (2) performing compute operations on the sub-graph and updating the
values of edges and vertices, and (3) writing back the modified values on disk. BiShard Parallel
performs under an asynchronous execution model and needs more disk space compared to one
shard mechanism that was used in GraphChi, because two copies of each edge are managed in
this model.

GAS is another three-phase computational model that was introduced by PowerGraph. The
data about the adjacent nodes and edges is obtained and collected using a general summation
over all adjacent vertices and edges of a vertex in the gather phase. The apply operation should be
defined by the user and must be both associative and commutative, and can vary from a numeric
summation to the aggregation of data across all adjacent edges and vertices. The results from
gather phase are used to update the central vertice values in the apply phase. Finally, the recent
data of the central vertex is used to renew the values on neighboring edges in the scatter phase.
The critical challenge in this model is that graph parallel abstractions should be able to perform
computations with high fan-in and high fan-out where both of them are specified by gather/scatter
phases. GAS model is used to develop a runtime system mapping in parallel on GPUs as a graph
application called GasCL (Che 2014). This model is like the one that has been used in systems such
as Pregel and GraphLab, but in a different way.

GraphChi uses a different computation model called PSW. PSW is an asynchronous computation
model that can efficiently process the graph with changeable edge value from disk, with a few
number of non-consecutive disk access. PSW performs three phases for processing a graph as
follows: it loads a subset of the graph from disk, then applies update operation on vertices and
edges, and, eventually, the new updated values will be written on disk. The number of “reads”
from disk is exactly equal to the number of “writes” to the disk in this model.

The comparison between two-phase and three-phase models shows that the two-phase model is
generally used in frameworks with single machine architectures. Since these systems usually use
asynchronous coordination, using the two-phase approach is more efficient as they do not need to
wait for the synchronization barrier. On the other hand, three-phase approach is mostly used by
distributed frameworks because one or two phases of the model will be affected after the global
barrier. Therefore, hosts on such distributed systems have to wait for each other. However, very
few distributed frameworks such as GraphLab (Low et al. 2012) and Trinity (Shao et al. 2013) tried
to use three-phase computation mode while utilizing asynchronous coordination.

ACM Computing Surveys, Vol. 51, No. 3, Article 60. Publication date: June 2018.

60:22 S. Heidari et al.

4 RUNTIME ASPECTS OF GRAPH FRAMEWORKS

4.1 Partitioning

Graph partitioning is a method in which graph data is divided into smaller parts with specific
properties (Buluç et al. 2016). For example, in a k-way partitioning, the graph is partitioned into
K smaller parts of equal size while minimizing the edge cuts between partitions. This is an NP-
complete problem (Andreev and Racke 2004). Graph partitioning is a fundamental research prob-
lem and several reviews have been done on different methods and perspectives of graph partition-
ing (Buluç et al. 2016; Bader et al. 2013). In a graph processing system, partitioning is applied on
the large graph to assign each smaller partition to a worker to be computed. The most important
challenge in this context is, “How do we partition the graph to achieve better cuts while taking load
balancing and simplicity of computation into consideration?”

Many novel heuristics have been proposed for partitioning large graphs. METIS (Karypis and
Kumar 1995), for instance, is a popular tool that uses multi-level partitioning. It is able to per-
form high quality partitioning that decreases the overall communication (edge cuts) and reduce
imbalances across partitions. However, METIS is computational costly and high random access
needs make it unsuitable for large graphs. ParMETIS is a parallel MPI-based version of METIS that
mitigates some of these performance limitations.

There are distributed partitioning algorithms, some of which have been implemented on top of
graph processing frameworks as well. Spinner (Martella et al. 2015), for instance, runs on top of
Giraph and utilizes an iterative node migration approach using a label propagation algorithm to
deal with scalability and changing partitions. It allows Spinner to scale to billion-vertex graphs
by avoiding costly synchronization among vertices. Blogel implements a GVD partitioner using
a vertex-centric computing method by operating as a multi-source BFS. It partitions the vertices
into blocks using multi-source BFS over linear workloads.

Some graph processing systems create additional topological constructs on top of the parti-
tioned graph. In GoFFish, which is a subgraph-centric framework, each partition may have more
than one subgraph (WCC), and these subgraphs by definition cannot have an edge between them.
So GoFFish has a post-processing stage once the graph is partitioned, in which it identifies all
subgraphs within a partition that form the unit of processing during the programming model’s
execution.

In general, two partition creation strategies can help to improve the runtime performance during
distributed graph processing: (1) creating more partitions than workers and allocate more than one
partition to each worker and (2) allocating one partition per worker, yet using multiple workers
on each processing host (Salihoglu and Widom 2013). We next discuss alternative perspectives
toward partitioning to support graph processing systems, also shown in Figure 8.

4.1.1 Static Partitioning vs. Dynamic Partitioning. Several graph processing frameworks utilize
static partitioning, which means that they consider the graph and the processing environment
to stay unchanged (Schloegel et al. 2001). These systems assume that the I/O bandwidth, latency,
processing units, and the graph itself are constant and predictable. So, this method of one-time
a priori graph partitioning is easy to program and load balancing can be easily achieved, if the
assumptions hold and the problem domain does not change (Elsner 2002).

On the other hand, dynamic repartitioning assumes that runtime behavior of an algorithm, the
processing environment, and even the graph itself can be variable. They try to repartition the
current state of the graph according to the system and algorithm behavior at a given point in
time, and assign them to the available workers. This approach has been used for graph databases
and a number of graph processing systems (Salihoglu and Widom 2013; Nicoara et al. 2015). Dy-
namic repartitioning can be applied in-flight when, for instance, workers are waiting for a straggler

ACM Computing Surveys, Vol. 51, No. 3, Article 60. Publication date: June 2018.

Scalable Graph Processing Frameworks: A Taxonomy and Open Challenges 60:23

Fig. 8. Partitioning views in graph processing systems.

worker to finish. In this situation, the vertices that have been assigned to the slowest worker can
be repartitioned and reassigned to other idle workers to be computed faster and also balances the
workload to reduce overall runtime. This does need support for dynamic migration by the graph
framework (Salihoglu and Widom 2013). Another reason to use dynamic repartitioning is when
the number of active vertices in the graph change due to mutations or when the algorithm is non-
stationary, causing vertices to become inactive, and it is suitable for iterative programming models
such as Pregel (Xu et al. 2014).

According to GPS (Salihoglu and Widom 2013), three major questions should be answered in
a dynamic repartitioning process: (1) Which nodes should be reallocated? (2) When and how to
transfer the reallocated nodes to their new workers? (3) How to place the reallocated nodes? These
decisions can impose a heavy cost and affect the overall runtime. Some researchers have also
shown that dynamic repartitioning does not offer significant performance improvements except
under particular conditions. For example, the vertices in a PageRank algorithm are always active,
which makes dynamic repartitioning moot due to predictable and stationary load through the
entire application’s lifetime (Lu et al. 2014). But despite these concerns, systems such as GPS,
xDGP (Vaquero et al. 2013), Mizan and XPregel (Thien Bao and Suzumura 2013) have incorporated
dynamic repartitioning and migrate the vertices synchronously across the workers, along with
their incoming messages.

4.1.2 Edge-Cut Partitioning vs. Vertex-Cut Partitioning. Vertex-centric (edge-cut) frameworks
partition the graph by assigning vertices to partitions and cutting some edges across partitions
in the process, while minimizing the number of such crossing edges. This is a common and well-
supported partitioning approach. On the other hand, edge-centric (vertex-cut) frameworks parti-
tion the graph by cutting vertices and assigning edges to each partition. This approach minimizes
the number of crossing vertices, which is useful for many real-world graphs that have a power-law
degree distribution to balance edges across the partitions well (Gonzalez et al. 2012; Abou-Rjeili
and Karypis 2006). As was shown in Figure 10, vertices shared by edges belonging to different
partitions would be cut and replicated across all the partition. One copy of the vertex is considered
as the master and other copies are ghosts or mirrors. When updated, each ghost vertex sends its
locally updated value to the master, and the master vertex applies updates from all ghost vertices
to itself and sends the globally updated value back to the ghost vertices. We can see that many
messages need to be passed across the network to maintain the cut vertices up to date.

To avoid this, PowerGraph does partitioning based on high-degree vertices of the graph and
many systems have adopted such edge-centric partitioning (Kim and Candan 2012; Rahimian et al.
2014; Xin et al. 2013; Jain et al. 2013). There are also a number of additional optimizations that
have been done (Rahimian et al. 2014; Kim and Candan 2012). Authors in Feige et al. (2008) and
Bourse et al. (2014) have investigated several edge-centric (vertex-cut) approaches with vertex-
centric (edge-cut) approaches and found that in many cases the former outperforms the latter. The

ACM Computing Surveys, Vol. 51, No. 3, Article 60. Publication date: June 2018.

60:24 S. Heidari et al.

reason is that because the degree distribution is skewed, balancing the number of vertices in each
partition does not guarantee workload balance; therefore, for natural graphs (that have power-law
degree distribution), vertex-cut partitioning approach can obtain better workload balance. They
also conclude that for any edge-cut, a vertex-cut can be constructed directly which needs strictly
less storage and communication.

4.1.3 Pre-Processing vs. Streaming. As seen in Section 2.1, there might be a pre-processing phase
before the computation or the main processing starts. In the pre-processing approach, the large
graph, which is present on disk, will be partitioned before entering the system. Single-machine
frameworks such as GraphChi (Kyrola et al. 2012), TurboGraph (Han et al. 2013), BPP (Najeebullah
et al. 2014b), and CuSha (Khorasani et al. 2014) use this method because they do not have enough
memory to keep all the processing states in the single system. So, they partition the graph before
starting the processing to help cope with large graphs. It also limits the partitioning operation,
which can be costly, to a single time. Distributed frameworks like GoFFish do partitioning and
subgraph identification in such a pre-processing phase for the same reason.

In streaming partitioning, the graph is partitioned once or as it is loaded into the graph pro-
cessing system. The graph data enters the system sequentially, say a vertex and its adjacency list
at a time, and the vertex is mapped to a partition on the fly. In this model, the order in which
the vertices enter the system is important as each placement depends on the previous placements
(Stanton and Kliot 2012). Streaming can also benefit from a pre-processing model of partitioning,
where specific vertex or edge ordering has been performed. Random partitioning, round-robin, and
range algorithms are the three most common algorithms for steaming whereas linear determinis-
tic greedy (LDG) (Stanton and Kliot 2012) and FENNEL (Tsourakakis et al. 2014) are two greedy
heuristics that improve the performance and quality of such online partitioning.

4.1.4 Multi-Level Partitioning. Some graph processing frameworks have proposed multi-level
approaches for partitioning the graph. In this method, there will be more than one strategy for
partitioning that may even be applied to the graph in different times. GridGraph (Zhu et al. 2015),
for example, is a single-server block-based framework that uses a two-level hierarchical method
to partition a given graph. First, it partitions the graph once at a pre-processing phase in which it
divides the graph into 1D-partitioned vertex and 2D-partitioned edge chunks, respectively. Then,
at the runtime, it uses a dual sliding windows approach to partition the graph by streaming the
edges and applying updates on vertices, which guarantees the locality and improves I/O.

GraphMap (Lee et al. 2015) is a distributed framework that also uses a two-level partitioning
mechanism to improve the locality and workload balancing. In the global level, GraphMap utilizes
a hash method to partition the graph and assign the partition blocks to the workers and, in the local
level, it applies range partitioning to each block partitions of a worker. It has also been designed
to use other partitioning techniques such as METIS and ParMETIS both on-disk and in-memory.

Using multi-level partitioning has two edges. It can worsen the performance of the system by
prolonging the execution time and unnecessary computations, or it can improve the performance
particularly when it is applied as a layered mechanism. For example, apply one partitioning tech-
nique to the entire graph and at the same time perform another technique on the partitions on
workers, which can be designed asynchronously.

4.2 Communication Models

Graph processing systems use different approaches to communicate among their vertices, edges,
and partitions. In this section, we discuss these methods as shown in Figure 9 and enumerate the
advantages and disadvantages of each method.

ACM Computing Surveys, Vol. 51, No. 3, Article 60. Publication date: June 2018.

Scalable Graph Processing Frameworks: A Taxonomy and Open Challenges 60:25

Fig. 9. Communication models in graph processing systems.

4.2.1 Message Passing. Many distributed graph programming models offer explicit or implicit
communication between their entities. In the message passing technique, communication is carried
out by sending messages explicitly from one entity to another in the graph. The entity can be a
vertex, edge or a component in a local or remote partition (Malewicz et al. 2010). Message passing is
performed in many graph processing systems using communication libraries. For example, Pregel
allows developers to pass messages from a vertex in the graph to another by calling an API. As part
of the BSP execution model, messages sent in one iteration are received by the destination vertex
in the subsequent iteration using bulk messaging. The receiving vertex updates its state based
on incoming messages and sends its modified state to one or more of its neighbors by sending
additional messages. Each source vertex maintains a list of its adjacent vertex IDs or outgoing
edges IDs. Further, vertices also have queues where incoming messages from its neighbors and
outgoing messages to its neighbors are stored between superstep boundaries.

A message passing model of communication is used by many graph processing frameworks
and architectures, including vertex-centric, edge-centric, and component-centric frameworks. Pro-
gramming using synchronous message passing is also intuitive and the complexity is limited to
an API to send a message to a destination entity, which is a familiar model for many program-
mers (Hudak 1989). Although message passing is common in the frameworks with synchronous
model of execution, it can be used in asynchronous execution models as well. Asynchronous mes-
sage passing method is used extensively between vertices in the same partition or subgraph where
they do not need to wait for other vertices to send their message in-bulk. Vertices and subgraphs
can communicate asynchronously while communication between partitions can be synchronous.
However, the asynchronous model of message passing brings more complexity to the program-
ming paradigm because it requires more resources for storing and rebroadcasting data in a system
where its components do not execute concurrently (Gehani 1990). On the other hand, buffer man-
agement is an important issue that should be considered by message passing implementation.
Issues like: How many buffers should each worker have? What should be the size of each buffer?
When should a buffer block a sender? And what if the buffer is full but there are new messages
coming? This model also has overhead because of the number of message replicas that exist in the
network.

The Message Passing Interface (MPI) (El-Rewini and Abd-El-Barr 2005) is a common protocol
used in graph processing systems, and is used by systems such as Pregel, GraphLab, Piccolo, and
Mizan. Portability and velocity are two significant advantages of using MPI, where creating over-
head is its most noticeable disadvantage. Communication can be done by passing actual messages
between servers or by serialization. For Java-based systems like Giraph and Hama, protocols such
as Thrift (Apache Software Foundation 2008) and ActiveMQ (Apache Software Foundation 2007)
can be used for message passing. They utilize remote procedure call (RPC) to communicate seam-
lessly without the need to change the messages structures. Also protocols such as Avro (Apache
Software Foundation 2012), and Protocol Buffer (Google 2008) can be used for serialization by
which the data will be serialized to be able to be sent between different platforms.

Systems also propose optimizations on top of these standard messaging libraries to reduce the
communication overhead and minimize the runtime of the algorithm by reducing the number and

ACM Computing Surveys, Vol. 51, No. 3, Article 60. Publication date: June 2018.

60:26 S. Heidari et al.

Fig. 10. Shared memory model with ghost (mirror) vertices.

size of messages that are passed. For example, GasCL has considered two different message buffer-
ing strategies: first, messages from the same source are stored together, second, messages for the
same destination are stored together. The second approach is more common and when a mes-
sage is dispatched from the origin, it is instantly put down to the right target node. It also uses a
reverse edge index to store the message, which utilizes array offset to facilitate message combin-
ing. Giraph++ (Tian et al. 2013) introduces two types of messages in its hybrid model. “Internal
messages” that are messages sent from a vertex within a partition to another vertex within the
same partition, and “external messages” that are messages sent from the vertices of one partition
to another partition. It provides two incoming message buffers for each vertex inside a partition
as well: inboxin for internal messages and inboxout for external messages. In GPS (Salihoglu and
Widom 2013), instead of sending multiple copies of the same message to multiple vertices in an-
other partition, the system only sends one message to the remote partition and then, in the remote
partition, the message will be copied to the vertices that need to receive it. This can dramatically
reduce the network traffic.

4.2.2 Shared Memory. Using shared memory for communication is well suited for frameworks
running on a single server, but can also be used for distributed systems in place of explicit message
passing. In this model, the memory location can be simultaneously accessed by multiple process-
ing modules, including both read and write to that location. Contrary to message passing, the
shared memory method avoids extra memory copying and intermediate buffering. As single ma-
chine frameworks have limited memory and CPU resources, this shared-memory model that is
often natively supported by the operating systems is preferred (Nitzberg and Lo 1991). Locks or
semaphores are usually used in this model to prevent race conditions because concurrent tasks can
read and write to the same memory (Low et al. 2012; Chen et al. 2008). To maintain memory consis-
tency, shared memory machines provide mechanisms for invoking the appropriate job (sequential
consistency) or reordering a collection of jobs to be executed consecutively (relaxed consistency).

In distributed systems, it is also possible to have a distributed shared memory, where changes to
memory locations are internally transferred using messages between different machines. From the
programmer’s points of view, they only perform memory accesses and the development is easier
as explicit messages need not be passed. The concept of data “ownership” is lacking as well since
anyone can write to that location. On the other hand, data locality cannot be controlled easily, and
if many remote workers access a particular memory location, it puts pressure on the processor
and memory holding that location and can also lead to higher bus traffic and cache misses.

Virtual shared memory can be realized by using ghost vertices or mirrors, which are the copies
of distant adjacent vertices (Low et al. 2010). One machine keeps the main vertex and another
machine works on copies of this vertex. Main vertex and ghost copies are shown in Figure 10. By
keeping the mirror copies immutable during the computation with distributed write locking or an
accumulator, the consistency is maintained (Low et al. 2012; Power and Li 2010). Both GraphLab

ACM Computing Surveys, Vol. 51, No. 3, Article 60. Publication date: June 2018.

Scalable Graph Processing Frameworks: A Taxonomy and Open Challenges 60:27

and PowerGraph use this approach for communication. In particular, this is suitable for edge-
centric frameworks because vertices should be cut in these frameworks and the partitioning is
done based on edge-grouping. So, vertices can be easily cut (Figure 10). Trinity (Shao et al. 2013) is
another memory-based graph processing system (Section 4.3) that uses ghost vertices for commu-
nication. The Trinity specification language (TSL) maps the data storage and graph model together.
The parallel boost graph library is a parallel graph processing library also uses ghost nodes but
with message passing mechanism (Siek et al. 2002).

4.2.3 Push/Pull Styles. A PP model is used with active messages. Active messages are those
that carry both data and the operator that should be applied on them (Han et al. 2014; Zhang et al.
2012). This model is utilized by Beamer et al. (2012), direction optimization in BFS. The reason
behind using this model is that the synchronization and communication in large-scale data is very
expensive due to the poor-locality and irregular patterns of communication in graphs. To reduce
the random communication and memory access on either shared-memory or distributed imple-
mentations, Beamer incorporates the conventional top-down BFS with a new bottom-up method. In
the push style, the information flows (is pushed) from an active vertex to its adjacent vertices and
in the pull style, the information flows (is pulled) from the neighbors of an active vertex to that ac-
tive vertex. This kind of communication is using the PP computation model that was discussed in
Section 3.4.1. In terms of consistency, the pull style is naturally consistent because the active vertex
would be updated in this phase, but the push style needs to use locks for every neighbor’s update.
Active messages are sent asynchronously in this model and they will be executed when they are
received by the destination vertex. The sending and receiving messages are even combined in a
framework such as GRE (Yan et al. 2013) and it does not need to save intermediate states anymore.
This mechanism can help in enhancing efficiency of algorithms such as PageRank (Gharaibeh et al.
2013; Shun and Blelloch 2013). It has been used by frameworks such as Ligra (Shun and Blelloch
2013) and Gemini (Zhu et al. 2016) on shared memory and distributed processing, respectively. A
detailed analysis of PP approach has been provided in Besta et al. (2017), investigating the impacts
of both PP mechanisms individually and also together on various graph algorithms and program-
ming models. They have illustrated that a PP dichotomy approach can avoid extreme amount of
locks in pushing and more memory access in pulling.

4.3 Storage View

Memory has become less of a problem these days as computing service providers such as Amazon
are starting to provide machines with terabytes of memory. However, as described in Sharma et al.
(2016), social networks such as Facebook and Twitter not only have graph of users but also graphs
of connections between users, their likes, their locations, their posts and shares, photos, and so
on that are heterogeneous. As a result, to store all these large graphs and datasets, a single server
cannot provide enough space. Hence, many investigations have been done to process graphs on
both single server and distributed environments such as clouds. Figure 11 shows various storage
views in current graph processing systems.

4.3.1 Disk Based. According to a storage view of execution models, two common approaches
can be used: (1) disk-based approach and (2) memory-based approach. A disk-based execution
fetches the graph data from physical disks, not just when loading the graph initially but also ac-
tively writes and reads parts of the graph state to/from disk during the execution. The advantages
of using a disk-based approach is that it is cheaper to add disk capacity rather than memory, some
large graphs do not fit in distributed memory either, and one can persist the partial state of exe-
cution in the middle of the processing to enable recovery from faults (Chockler et al. 2009). Disk
management is also easy, so many graph processing systems use this approach (Table 3).

ACM Computing Surveys, Vol. 51, No. 3, Article 60. Publication date: June 2018.

60:28 S. Heidari et al.

Fig. 11. Storage view.

On the other hand, the computation that is performed by graph algorithms is data-driven (Lums-
daine et al. 2007) and they need many random data accesses, and hard disks are still slow and
inefficient compared to main memory. One of the challenging issues for disk-based graph process-
ing is how to make disk access more efficient. BPP (BiShard Parallel Processor) (Najeebullah et al.
2014a), for example, provides a disk-based engine for processing large graphs on a single server. A
novel storage structure called BiShard (BS) has been introduced, which divides the graph into sub-
graphs containing equal number of edges, and stores the in-edges and out-edges independently.
This technique decreases the number of non-sequential I/O considerably and has two advantages
compared to the single-shard storage mechanism that is presented by GraphChi. First, by storing
in-edges and out-edges separately, access to each of them becomes independent and the system
does not need to read the whole shard for every subset of vertices. Second, each edge has two
copies in BS (one in each direction), which eliminates race condition among vertices to access
their edges. Furthermore, BPP uses a novel asynchronous vertex-centric parallel processing model
that leverages BS to provide full CPU parallelism for graph processing.

Other frameworks such as Giraph also support out-of-core execution using disk. When a graph
is too big to fit into main memory (like small clusters) or a certain algorithm creates very large
message sets (many messages or large ones) these frameworks can spill the excess messages or
partitions to disk, later to be incrementally loaded and computed from disk. In addition, some
frameworks such as FlashGraph (Zheng et al. 2015) and PrefEdge (Nilakant et al. 2014) use SSD
instead of HDD to make data transmission and computation faster for out-of-core computation.

4.3.2 Memory Based. In the memory-based approach, the graph and its states are exclusively
stored in memory during runtime for storing and processing the big data. For example, Giraph
runs the whole computation in memory and reaches the disk for checkpointing and I/O, and Blo-
gel keeps all neighbors of a typical high-degree vertex in the same block to be processed by in-
memory algorithms and avoid message passing. The most important benefit of this approach is
that using RAM or cache for processing is much faster than disk-based approach since the CPU
can access memory much quicker than disk (Mittal and Vetter 2015). However, memory is much
more expensive than spinning disks and this becomes challenging when we consider larger graphs.
So, memory-based systems must be efficient in retaining only relevant data in memory and in a
compact form. Memory-based models also have less scalability than disk-based models, especially
in a single machine system.

In GoFFish, the framework only loads a subset of properties for a given property graph from disk
into distributed memory based on those attributes that are used by the algorithm, in addition to the
complete topology of the graph that is always loaded (Jamadagni and Simmhan 2016). This limits
the memory footprint of the graph application during runtime. Many memory-based systems also
use columnar representation since this offers a compact representation of data. Zhong and He
(2013b) have indicated that GPU acceleration cannot reach considerable speedup if the data has
to be loaded from disk because of the I/O costs that are themselves comparable to the total query
runtime.

ACM Computing Surveys, Vol. 51, No. 3, Article 60. Publication date: June 2018.

Scalable Graph Processing Frameworks: A Taxonomy and Open Challenges 60:29

Fig. 12. Fault-tolerance in graph processing systems.

Microsoft’s Trinity (Shao et al. 2013) is a distributed graph processing engine over a memory
cloud. It is supporting both online query processing, which requires low latency (finding a path
between users in a social network), and offline query processing, which requires high through-
put (PageRank). Trinity uses TSL for communication that supports both synchronous and asyn-
chronous modes. It stores objects as blobs of bytes that are economical and compact, with no
serialization and deserialization burden. As a storage infrastructure, it structures the memory of
numerous hosts to a distributed memory address space, which is universally addressable for main-
taining huge graphs. Trinity has three main components, including (1) slave that stores graph data
and computes on them, (2) client that acts as a user interface between Trinity and the user that
communicates with Trinity proxies and slaves through the APIs provided by Trinity library, and
(3) proxy, that is an optional component for handling messages as a middle tier between clients
and slaves. These components, along with other features like user-defined communication pro-
tocol, graph schema, and computation models through TSL, enable Trinity to process the graph
efficiently on memory cloud.

4.4 Fault Tolerance

Fault tolerance enables a system to continue performing properly even if some of its components
face failures (Elena 2013). Since graph processing systems are created from distributed and com-
modity components, it is possible that components confront failures, which in turn will affect the
execution and correctness of the applications. To improve the reliability and robustness of these
systems, several techniques have been developed to support error handling and fault tolerance
of the graph framework. Figure 12 shows the techniques that are used in many graph processing
systems.

Error handling in a graph processing system, as with other systems, has two main phases:
(1) failure detection, in which the system discovers the error, and (2) fault recovery, in which the sys-
tem tries to resolve the problem and resume the operation. Numerous research has been done on
various fault-tolerance techniques on parallel and distributed systems (Kavila et al. 2013; Treaster
2005; Elnozahy et al. 2002). In Treaster (2005), for example, two types of components in an appli-
cation, called central components and parallel components, are investigated, where both mostly
use rollback and replication methods for fault recovery. On the other hand, some graph processing
systems do not support any error handling because it increases the complexity of the system, and
the overheads can strongly affect the execution time.

Most graph processing systems use checkpointing and rollback mechanisms (Egwutuoha et al.
2013) for failure recovery, such as Pregel and Pregel-like systems like Giraph. Pregelix (Bu et al.
2014), for instance, checkpoints states to HDFS at any superstep boundary that is selected by the
user. The checkpointing applies to vertices and messages at the end of each superstep and ensures
that the user does not need to know anything about the failure. Whenever a host or disk failure
occurs, the unsuccessful machine will be added to a blacklist. For recovery, Pregelix reloads the
state of the latest checkpoint to a set of “failure-free” workers that is periodically updated.

ACM Computing Surveys, Vol. 51, No. 3, Article 60. Publication date: June 2018.

60:30 S. Heidari et al.

Piccolo (Power and Li 2010) uses a global checkpoint-restore method to recover from failures by
providing synchronous and asynchronous checkpointing APIs. Synchronous checkpoints are suit-
able for iterative algorithms such as PageRank where the state in different iterations are decoupled
by global barriers and it is adequate to checkpoint the state every few iterations. But asynchro-
nous checkpoint is used to save the state of long running algorithms, such as distributed crawler,
periodically. Piccolo also utilizes Chandy-Lamport (CL) distributed snapshot algorithm (Chandy
and Lamport 1985) for checkpointing. Once a failure is detected in a worker, the master will re-
set the status of all other machines and recover the operation from the latest finished universal
checkpoint. The interior status of the master will not be checkpointed in Piccolo.

PowerGraph is another system that uses snapshots of the data-graph for fault-tolerance. The
synchronous engine in PowerGraph creates the snapshot at the end of each superstep and before
the start of the next superstep while the asynchronous engine suspends the execution of the system
to create the snapshot. Many of these systems provide task rescheduling after the recovery phase.
Some systems such as Pregel, Piccolo, and GraphLab benefit from rollback, which allows them
to continue the computation from the point that failure happened while, in a number of systems,
fault recovery is not completely provided and they need to restart the processing from scratch (Han
et al. 2014; Krepska et al. 2011; Plimpton and Devine 2011). All these mechanisms are post-active
fault tolerance approaches, which means they handle the failure after it has happened.

Trinity (Shao et al. 2013) uses message logging and replication for pro-active fault-tolerance,
where the failure will be considered before scheduling and releasing a job for execution. Trinity
utilizes heartbeat messages to proactively detect failures in machines. In addition, machines that
unsuccessfully try to access the address-space in other machines also report the inaccessible ma-
chine to the master and await for the addressing table to be updated before retrying the memory
access. Meanwhile, in the recovery phase, the master reloads the data in the failed machine to
another machine, updates the addressing table, and distributes it. Trinity provides checkpointing
after every few iterations for synchronous BSP-based computations and provides “periodic inter-
ruption” mechanisms to generate snapshots in asynchronous computations. The buffered logging
approach that is suggested in RAMCloud (Ousterhout et al. 2010) has been used in Trinity to
recover from failures in online queries while, for read-only enquiries, it only restarts the faulty
machine and loads the data again from the steady disk storage. GraphX (Xin et al. 2013) uses
lineage-based fault tolerance that assumes its RDDs cannot be updated but only created afresh.
It has a very light overhead compared to the systems that use checkpointing as well as arbitrary
dataset replication. So, it attains fault-tolerance without explicit checkpoint recovery while retain-
ing in-memory performance of (Zaharia et al. 2012).

4.5 Scheduling

Scheduling techniques help assign and manage jobs on the system resources (Pinedo 2012). This is
particularly useful in parallel and distributed multitasking systems in which several computations
have to be done on a limited number of resources. In graph processing systems with large scale
graphs having billions of vertices and edges, the vertex or edge (depending on the programming
model) will need to be scheduled for computation on a processing host. Typically, collections of
vertices or edges are grouped into a coarser unit for scheduling, such as a partition or a subgraph,
and it is the coarse unit that is actually scheduled on a CPU core. Within a processor, there may
be multiple threads that execute individual vertices or edges in partition, leveraging, say, vertex
level parallelism in a vertex-centric model.

According to Doekemeijer and Varbanescu (2014), three different types of scheduling methods
have been used for graph processing, in general, which is shown in Figure 13.

ACM Computing Surveys, Vol. 51, No. 3, Article 60. Publication date: June 2018.

Scalable Graph Processing Frameworks: A Taxonomy and Open Challenges 60:31

Fig. 13. Graph-processing scheduling methods.

In batch scheduling method, the entire graph would be scheduled for processing across com-
puting resources. This is more beneficial in the bulk iteration model of computing such as Pregel.
There is no priority or precedency in executing the partitions of the graph and they will be pro-
cessed in any arbitrary order (Chen et al. 2012). This model has been used widely in dataflow
frameworks such as Hadoop, Haloop (Bu et al. 2010), and Twister (Ekanayake et al. 2010). There
is always a preferred situation, like a limited number of iterations that are used as a condition for
finishing the process.

Scheduling can be done once at the beginning of the application or redone at the start of each
superstep, e.g., Giraph allows partitions of the graph to be mapped to workers both at the start
of the application and at each superstep, while TOTEM maps partitions to workers at the start of
the application and retains that mapping. Remapping of partitions to workers as the application
is executing also requires the ability to migrate both the graph and its updated state and messages
to different workers. The mapping of vertices and edges to partitions may also change as a result.
For example, Mizan migrates the vertices from busy workers to the one with fewer vertices to load
the balance, and GPS repartitions the graph to distribute the load among idle workers during the
computation.

Another aspect is whether the partitions are mapped to a static set of compute resources or the
resources themselves can be elastic over the execution of the application. For example, Dindokar
and Simmhan (2016) look at mapping partitions to an elastic set of VMs based on the expected
computational complexity of the partition for stationary and non-stationary graph algorithms.

In contrast, in a prioritized scheduling method, jobs will be processed according to a priority
condition that is defined by the user. A system such as Maiter (Zhang et al. 2012) shows that using
this method results in quicker convergence for many graph algorithms. For instance, a defined pri-
oritizing function can schedule jobs based on the number of vertices in each partition. In GoFFish,
the largest subgraphs in a partition are executed first so that the computing of smaller subgraphs
can be interleaved with the message passing from the large subgraph. Prioritized scheduling can
be helpful in processing imbalanced workloads.

Doekemeijer and Varbanescu (2014) believe that incremental scheduling only processes a sub-
division of data like active vertices. This model is used in a number of graph processing systems,
e.g., Stratospher (Alexandrov et al. 2014) and GraphLab (Low et al. 2012), in which the processing
continues until there are active vertices.

5 GRAPH DATABASES

A graph database is one where the data is natively stored as a graph structure that can be queried
upon (Angles and Gutierrez 2008). The data itself is typically a property graph with not just ver-
tices and edges but also name-value properties or labels defined on vertices and edges. Graph
query models support different types of traversal queries such as path, reachability, and closure, in
addition to filter queries over their properties (Jamadagni and Simmhan 2016; Sarwat et al. 2013).
Graph databases contrast with relational databases that store graphs—the latter requires multiple
joins for traversal of graphs rather than having direct references from a vertex to its neighbors

ACM Computing Surveys, Vol. 51, No. 3, Article 60. Publication date: June 2018.

60:32 S. Heidari et al.

Fig. 14. Popularity changes in using databases.2

that allows for faster query processing in graph databases. Graph databases leverage the topologi-
cal properties of graphs, including graph theory and query cost models, in answering the queries.
The queries also provide a high-level declarative interface for processing and accessing the graph
compared to a graph framework that requires users to write a program using their graph pro-
graming abstractions and executes it in batch (Vicknair et al. 2010). Another distinction from the
graph frameworks discussed above is the need for low latency (O(seconds)) execution of hundreds
of queries rather than high throughput analysis of single programs over large graphs. The aim of
this section is not to provide a survey on graph databases, but to emphasize the increasing popu-
larity of graphs and graph databases that provide a broader view of graph usages. For a detailed
survey on graph databases, we refer the readers to works that appeared in ACM Computing Survey
(Angels and Gutierrez 2008) and VLDB Journal (Kaoudi and Manolescu 2015).

Graph datasets are receiving more attention every day and several companies are starting to
utilize graph databases to perform interactive queries to support their business needs. Even tra-
ditional database providers such as Microsoft have added extensions to their products by which
the graph will be natively stored and queried inside the database on Azure SQL DB.4 According to
DB-Engines,5 which is an industry observer, “graph DBMSs are gaining popularity faster than any
other database categories,” which shows remarkable growth in the last few years (Figure 14).

Neo Technology (2015) is a popular graph database designed as an open-source NoSQL data-
base. It supports ACID (Atomicity, Consistency, Isolation, Durability) properties by implementing
a Property Graph Model efficiently down to the storage level. It is useful for single server deploy-
ments to query over medium sized graphs due to using memory caching and compact storage for
the graph. Its implementation in Java also makes it widely usable. Besides the single server model,
it also provides master-worker clustering with cache sharding for enterprise deployment. How-
ever, according to some reports, the scalability of the distributed version is not as good as even
relational databases and it has deadlocks problems such as not being able to handle two concurrent
upserts if they touch the same node6.

4https://blogs.msdn.microsoft.com/sqlcat/2017/04/21/build-a-recommendation-system-with-the-support-for-graph-data-
in-sql-server-2017-and-azure-sql-db.
5DB-Engines Ranking Per Database Model Category (August 5, 2015). Retrieved August 15, 2015, from DB-Engines: http://
db-engines.com/en/ranking_categories.
6https://news.ycombinator.com/item?id=9699102.

ACM Computing Surveys, Vol. 51, No. 3, Article 60. Publication date: June 2018.

https://blogs.msdn.microsoft.com/sqlcat/2017/04/21/build-a-recommendation-system-with-the-support-for-graph-data-in-sql-server-2017-and-azure-sql-db
http://db-engines.com/en/ranking_categories
https://news.ycombinator.com/item?id=9699102

Scalable Graph Processing Frameworks: A Taxonomy and Open Challenges 60:33

OrientDB and Titan are two other well-used graph databases (OrientDB LTD 2015). OrientDB
can save 220,000 records per second on ordinary hardware. It supports multi-master replication and
sharing which give it better scalability. It also provides a security profiling system based on roles
and users in the database. Titan7 is another open-source distributed transactional graph database
that provides linear elasticity and scalability for growing data, data distribution, and replication
for fault-tolerance and performance. It supports ACID and different storage back-ends such as
Apache Hbase (Apache Software Foundation 2015) and Apache Cassandra (Lakshman and Malik
2015). Titan also uses the Gremlin query language (Rodriguez 2009), in which traversal operators
are chained together to form path-oriented expressions to retrieve data from the graph and modify
them.

Twitter has developed its own graph database called FlockDB (Kallen et al. 2012) to store social
graphs such as “who blocks whom” and “who follows whom.” FlockDB is an open-source fault-
tolerant distributed graph database that aims to support online data migration, add/delete/update
operations, complicated sets of arithmetic queries, replication, archive/restore edges, and so on. In
April 2010, the FlockDB cluster had stored more than 13 billion connections (edges) and supported
a peak traffic of 20K writes per second with 100K reads per second (Green 2013). But it appears
that FlockDB is not able to traverse graphs deeply as it is designed to only deal with Twitter’s
single-depth following/follower model and is not implementing the full stack of storage services.8

There is also research on distributed graph databases, though this is an emerging area. Horton+
(Sarwat et al. 2013) from Microsoft offers a graph query language that supports path, closure, and
joint queries over property graphs. It converts the query into a deterministic finite automaton
that is executed over a distributed database using a vertex-centric BSP model based on Giraph.
GoDB (Jamadagni and Simmhan 2016) is another research database that leverages GoFFish to offer
similar query capabilities over property graphs, but with support for scalable indexes and using a
subgraph-centric model of execution that offers a much faster performance relative to Titan and
Horton+. GBASE (Kang et al. 2011) introduces a compressed block encoding graph storage method
that utilizes adjacency matrix representation to store homogeneous regions of graphs. It also uses
a grid-based selection strategy for query optimization to provide quicker answers by minimizing
disk accesses. Quegel (Yan et al. 2016) handles inquiries as “first-class citizens” by which the user
is only required to determine the Pregel-like algorithm for a general inquiry. Then, it sets up the
computing and processing of multiple inbound inquiries on demand.

There are several other open source and commercial graph databases such as HyperGraphDb
(Kobrix Software 2015), AllegroGraph (Franz Inc 2015), InfiniteGraph (Objectivity Inc 2015), Info-
Grid (NetMesh Inc 2015), JCoreDB Graph (Maier et al. 2015), ArangoDB (ArangoDB GmbH 2015),
GraphBase (GraphBase Inc 2015), MapGraph (SYSTAP, LLC 2015; Fu et al. 2014), and Weaver9. All
these projects try to provide modern solutions for storing and retrieving large-scale graph data,
and it seems that this area is a very promising field of research and commercial investment for the
future. Jouili and Vansteenberghe (2013) have compared some of these graph databases.

6 SYSTEM CLASSIFICATION AND GAP ANALYSYS

Table 3 presents the key graph processing systems with their characteristics according to the pro-
posed taxonomy. The notations in the table for each category are as follows:

—Programming model: Vertex-centric (V), edge-centric (E), component-centric (C), path-
centric (P), data-centric (Da), or block-centric (B).

7TITAN Distributed Graph Database. 2015. Home Page. Retrieved August 10, 2015, from http://thinkaurelius.github.io/titan.
8http://stackoverflow.com/questions/2629692/how-does-flockdb-compare-with-neo4j.
9Weaver. 2015. Home Page. Retrieved August 10, 2015, from http://weaver.systems.

ACM Computing Surveys, Vol. 51, No. 3, Article 60. Publication date: June 2018.

http://thinkaurelius.github.io/titan
http://stackoverflow.com/questions/2629692/how-does-flockdb-compare-with-neo4j
http://weaver.systems

60:34 S. Heidari et al.

Table 3. Overview of Existing Graph Processing Frameworks

Year System
Programming

Model Architecture
Computational

Model
Communication

Model Coordination Storage

2009 PEGASUS (Kang et al. 2009) N/A D N/A DF Synch DB

2010 Pregel (Malewics et al. 2010) V D BSP MP Synch DB

2010 Signal/Collect (Stutz et al. 2010) V S Signal/collect MP Both DB

2010 Surfur (Chen et al. 2010) V D Transfer-
combine

MP Synch DB

2010 JPregel (Prakasam and
Chandrasekhar 2010)

V D BSP MP Synch DB

2010 GraphLab (Low et al. 2010) V S N/A SM Asynch DB

2010 Piccolo (Power and Li 2010) Da D Three phases Dataflow Synch DB

2011 GoldenOrb (Cao 2011) V D BSP SM Synch DB

2011 GBase (Kang et al. 2011) E D N/A Dataflow Synch DB

2011 HipG (Krepska et al. 2011) V D BSP SM Both DB

2012 Giraph (Apache Software
Foundation 2012)

V D BSP MP Synch DB

2012 Distributed GraphLab (Low
et al. 2012)

V D GAS SM Both DB

2012 KineoGraph (Cheng et al. 2012) V D Push/pull MP Synch MB

2012 PowerGraph (Gonzalez et al.
2012)

E D GAS SM Both DB

2012 Sedge (Yang et al. 2012) V D BSP MP Synch DB

2012 GraphChi (Kyrola et al. 2012) V S PSW SM Asynch DB

2013 TOTEM (Gharaibeh et al. 2013) V H BSP Both MP and SM Asynch MB

2013 Mizan (Kayyat et al. 2013) V D BSP MP Synch DB

2013 Trinity (Shao et al. 2013) V D TSL SM Asynch MB

2013 Grace (Wang et al. 2013) V S Three phases MP Asynch DB

2013 GPS (Salihoglu and Widom
2013)

V D BSP MP Synch DB

2013 Giraph++ (Tian et al. 2013) C D BSP Both MP and SM Both DB

2013 Naiad (Murray et al. 2013) V D Timely dataflow SM Both MB

2013 PAGE (Shao et al. 2013) V D Partition-aware MP Synch DB

2013 Stratospher (Ewen et al. 2013) V D Push/pull Dataflow Synch DB

2013 TurboGraph (Han et al. 2013) V S Pin-and-slide SM Asynch DB

2013 xDGP (Vaquero et al. 2013) V D BSP MP Synch DB

2013 X-Stream (Roy et al. 2013) E S Scatter-gather MP Synch DB

2013 GiraphX (Tasci and Demirbas
2013)

V D BSP SM Asynch DB

2013 GraphX (Xin et al. 2013) E D GAS Dataflow Synch MB

2013 Galois (Nguyen et al. 2013) V S ADP SM Asynch DB

2013 GRE (Yan et al. 2013) V D Scatter-Combine MP Synch DB

2013 Ligra (Shun and Blelloch 2013) C S Push-pull SM Asynch MB

2013 LFGraph (Hoque and Gupta
2013)

V D N/A SM Synch MB

2013 PowerSwitch (Xie et al. 2015) V D Hybrid SM Both DB

2013 Presto (Venkataraman et al.
2013)

V D N/A Dataflow Synch DB

2013 Medusa (Zhong and He 2013a) V H EMV MP Synch MB

2014 RASP (Yoneki et al. 2014) V S Scatter-gather SM Asynch DB

(Continued)

ACM Computing Surveys, Vol. 51, No. 3, Article 60. Publication date: June 2018.

Scalable Graph Processing Frameworks: A Taxonomy and Open Challenges 60:35

Table 3. Continued

Year System
Programming

Model Architecture
Computational

Model
Communication

Model Coordination Storage

2014 GoFFish (Simmhan et al. 2014) C D Iterative BSP Both MP and SM Synch MB

2014 GasCL (Che 2014) V H GAS MP Synch MB

2014 CuSHa (Khorasani et al. 2014) V H GAS SM Asynch MB

2014 BPP (Najeebullah et al. 2014b) V S BSP SM Asynch DB

2014 Imitator (Wang et al. 2014) V D BSP MP Synch DB

2014 GraphHP (Chen et al. 2014) V D BSP MP Synch DB

2014 PathGraph (Yuan et al. 2014) P S Scatter-gather SM Asynch DB

2014 Seraph (Xue et al. 2014) V D GES MP Synch DB

2014 GraphGen (Nurvitadhi et al.
2014)

V H N/A SM Synch MB

2014 Blogel B D N/A MP Synch MB

2015 Pregelix (Bu et al. 2014) V D Join-operator
based

MP Synch DB

2015 FlashGraph (Zheng et al. 2015) V S BSP Both MP and SM Asynch DB

2015 GraSP (Battaglino et al. 2015) V D N/A MP Synch MB

2015 Chaos (Roy et al. 2015) E D GAS MP Synch DB

2015 GraphMap (Lee et al. 2015) V D BSP MP Synch DB

2015 GridGraph (Zhu et al. 2015) E S Streaming-Apply SM Asynch DB

2015 GraphTwist (Zhou et al. 2015) E S Slice/Cut
pruning

SM Asynch DB

2015 GraphQ (Wang et al. 2015) V S Check/Refine SM Asynch DB

2016 Gunrock (Wang et al. 2015) Da H BSP SM Synch MB

2016 GraphIn (Sengupta et al. 2016) V D I-GAS MP Synch MB

2016 LCC-Graph (Cheng et al. 2016) V D LLC-BSP MP Synch MB

2016 DUALSIM (Kim et al. 2016) V S N/A SM Asynch DB

2016 iGiraph (Heidari et al. 2016) V D BSP MP Synch DB

2017 GraphMP (Sun et al. 2017) V S VSW SM Asynch DB

2017 GraphGen (Xirogiannopoulos
et al. 2017)

V S N/A SM Asynch MB

2017 Mosaic (Maass et al. 2017) V/E S PRA MP Synch DB

—Architecture: Distributed (D), single machine (S), or heterogeneous (H).
—Computational model: Different names are used by different systems
—Communication model: Message passing (MP), shared memory (SM) or dataflow (DF)
—Coordination: Synchronous (Synch), asynchronous (Asynch) or both timing approach

together
—Storage: Disk-based (DB) or memory-based (MB) storage approach
—N/A means that there is no specific name or method mentioned by the article that is de-

scribing the system.

Although, many frameworks have been proposed for processing large-scale graphs, there are
still several gaps that need to be addressed, as highlighted by this table. Among these observations:
(1) Many graph processing systems have been developed based on a vertex-centric program-
ming model because it is the simplest way of partitioning and processing large-scale graphs.
Although edge-centric and component-centric systems are more difficult to implement, it has
been empirically shown that frameworks such as PowerGraph and GoFFish can scale more

ACM Computing Surveys, Vol. 51, No. 3, Article 60. Publication date: June 2018.

60:36 S. Heidari et al.

Fig. 15. Proposed graph processing features’ categorization in this article.

Fig. 16. Graph processing features’ categorization according to application characteristics and computing

platforms.

efficiently than vertex-centric ones. So, those types of systems need to be investigated more.
(2) Disk-based approach is the dominant mechanism that is used by most frameworks. It also
includes the frameworks that support out-of-core computation. Disks are cheap but much slower
than memory. On the other hand, memory is faster than disk but it is more expensive and
memory management makes it more complicated to develop a system based on this approach.
(3) Synchronous programming is popular on distributed systems as they avoid race conditions,
but often require message passing and have longer runtimes due to the coordination. While
asynchronous methods work well on single machine and heterogeneous based frameworks, its
effect on distributed frameworks is less studied.

7 DIFFERENT VIEWPOINTS ON CATEGORIZATION OF GRAPH

PROCESSING SYSTEMS

Graph processing systems can be categorized based on different intuitions. In this article, we have
categorized various features as depicted in Figure 15. We consider both graph programming mod-
els and runtime aspects as two broad aspects of graph processing systems, while each can contain
multiple sets of features to simplify the understanding of graph processing mechanisms. As part
of graph programming models, we explained various system architectures (Section 3.1), current
frameworks and how they look at the processing paradigm (Section 3.2), possible distributed co-
ordination that conveys timing (Section 3.3) and computational models (Section 3.4). On the other
side, runtime aspects discuss partitioning as the heart of the system (Section 4.1), different commu-
nication models (Section 4.2), storage views (Section 4.3), fault tolerance (Section 4.4), and sched-
uling (Section 4.5). This allows readers to obtain a clear insight about each part of the system, the
relationship among various components, and possible improvements.

However, there can be different viewpoints on this. One might separate the features according
to application-related and computing-related aspects of the features (Figure 16). In this viewpoint,
application characteristics refer to the features that are designed based on the graph system it-
self so they might have different implementation accordingly. For example, programming models,
partitioning, computational models, and communication models are specific characteristics of the
system. Computing platform aspects refer to more general features that can vary in different sys-
tems but are not specific characteristics of the system. This view is illustrated in Figure 16.

ACM Computing Surveys, Vol. 51, No. 3, Article 60. Publication date: June 2018.

Scalable Graph Processing Frameworks: A Taxonomy and Open Challenges 60:37

Fig. 17. Data processing approaches.

Another viewpoint (McCune et al. 2015) has classified frameworks based on four major charac-
teristics and called it “four pillars of think like a vertex frameworks”: (1) timing, (2) communication,
(3) execution model, and (4) partitioning. Overall, regardless of various viewpoints about catego-
rizing graph processing features, there are certain characteristics in every system that are usually
considered to be improved in research works.

8 FUTURE DIRECTIONS

Although several works have looked into improving graph processing systems (see Table 3), there
are still a number of issues that are open. For example, not many graph processing frameworks
use dynamic repartitioning, which performs better than simple static partitioning in many cases.
Most of the frameworks use checkpointing for error handling, which can be costly, and other ap-
proaches to fault recovery are not well studied. While many researchers have studied classic graph
algorithms such as PageRank and shortest paths, it is not clear whether these frameworks can
still perform as well for more sophisticated and real-world applications such as machine learning
algorithms.

Besides these, there are several other advances to the programming and data models of large
graphs and the runtime execution of the graph platforms that need to be examined. These are
discussed below.

8.1 Incremental Processing Models

Regardless of the type of framework or algorithms used for processing big graphs, or how large
the graph is, data can be processed in three different ways as shown in Figure 17.

According to the problem domain that a framework wants to present solutions for, each data
processing approach shown above can be considered in the framework. Offline processing (batch
processing) is done where a number of analogous tasks are gathered together to be processed by a
computing system all at once instead of individually. In this method, which is used in many graph
processing frameworks, the whole graph dataset is loaded into the system, processed for an appli-
cation, and the results are returned to the user. The original graph is not changed externally, other
than through modifications by the running application, and this leads to predictable partitioning
and scheduling strategies, which make their design easy.

In online processing, the user can communicate with the system and can make changes to the
graph data stored in the system. Thus, the system will be updated automatically and re-process
the data with new values periodically or based on user-defined events, which is not necessarily
real-time and immediate.

Real-time processing allows the graph to change over time based on incremental updates
that it receives to the graph topology or properties. Processing such dynamic graphs is more
like an event-driven system where sensors may generate a stream of updates about a vertex or
edge that the sensor represents (e.g., road network with traffic cameras or sensors). Real-time
processing requires that the computation should be done immediately after the changes happen
to the data, and the updated results should be returned with very short delays. Sometimes, the

ACM Computing Surveys, Vol. 51, No. 3, Article 60. Publication date: June 2018.

60:38 S. Heidari et al.

operations may be performed on the delta events themselves before they are actually applied to
the graph data. Such requirements are increasingly important in competitive businesses such as
social networks, and in IoT domains. There is limited work in the area of real-time processing
of large dynamic graphs. For example, Twitter uses a graph-based content recommendation
engine called GraphJet (Sharma et al. 2016), which is an in-memory framework that supplements
real-time with batch processing by keeping real-time bipartite interplay graph between tweets and
users.

The temporal dimension can also come through the notion of time-series graphs where different
states of a graph are available, and the application has to operate over both the spatial and temporal
dimension. However, this database is collected a priori and available offline, and distinct from the
changing states of the graph arriving in real-time, e.g., GoFFish operates over time-series graphs
for algorithms such as time-dependent shortest path and tracking meme propagation (Simmhan
et al. 2015).

8.2 Complex Workflows

A workflow is a dependency graph of different tasks that should be done in a specific order to
complete a bigger job. Current graph processing frameworks are based on very simple workflows,
typically singleton workflows with one operation executed in a data-parallel manner. They pick
a dataset and an algorithm and execute the algorithm on the data. They usually try to solve very
simple problems such as finding shortest path or PageRank problem. But, many real world prob-
lems are not as easy as this. For example, in a social network, a typical scenario can be like this: an
algorithm finds all friends and followers of somebody, then finds the common interests between
them using another algorithm, draws a map of his/her communication history, combines all this
information with the information from other people in that city to find the whole trends, and so
on. Such a complicated series of processes cannot be modeled seamlessly based on existing graph
processing systems without manually creating multiple jobs and passing data explicitly between
them through the file system. Although Master-Compute model allows a master task to change
the phase of computation on the workers, this mechanism can be used only to model simple se-
quential operations on a single graph and cannot handle more complex operations with more
than one graph. So, new frameworks are needed to allow the users to perform more complicated
operations.

On the other hand, such complex scenarios also require efficient resource provisioning. That
is, proper scheduling is critical to minimize the monetary costs and execution time on one side,
and improve resource utilization and performance of the system on the other side. Graph tasks
in the workflow may have different processing needs, and may arrive at different intervals, and
with different priorities and profitability metrics. Managing these graph workloads offers novel
challenges as well. Some research issues on this include the following questions:

—How to schedule complex graph workflows to gain minimum cost and maximum resource
utilization?

—What factors influence workflow management in graph processing systems considering
graph algorithms characteristics and features of graph datasets?

—How does workflow management in graph processing frameworks–especially for complex
scenarios—affect the energy consumption of resources?

8.3 Graph Databases

Relational databases have existed since the 1980s, and have grown mature. While they deal well
with structured data tuples stored in tables, their use for storing and querying graph datasets is

ACM Computing Surveys, Vol. 51, No. 3, Article 60. Publication date: June 2018.

Scalable Graph Processing Frameworks: A Taxonomy and Open Challenges 60:39

limited. As discussed in Section 5, graph databases, while not a novel concept, are still in their
early stages when considering large property and semantic graphs. It is because relationships in
a graph database are much stronger than those hypostatized at runtime in a relational database
since they are being treated as high priority entities (Robinson et al. 2015). Relational databases
are much slower than graph databases for connected data, hence using graph databases is recom-
mended for highly connected environments and applications such as social networks, IoT, business
transactions, and web searching.

Despite the usefulness of graph databases in the aforementioned environments, they are not as
mature as relational databases, particularly in terms of tools for data mining purposes on massive
graph data on distributed systems. Therefore, future directions for research include the following
questions:

—What are the canonical query models for static and dynamic graphs? What is the equivalent
of a relational algebra for graph databases?

—What are supporting graph queries in combination with graph kernel algorithms, e.g., find
all websites hosted in Australia (property) whose PageRank (algorithm output) is greater
than X.

—What are the cost models to be developed for efficient execution of graph queries on dis-
tributed environments?

—How to improve the ability to sustain low-latency processing of large numbers of transac-
tional graph queries on distributed and elastic systems like cloud.

—How can analysis be performed across data stored in traditional relational databases and
graph databases seamlessly and effectively?

—How do we manage distributed data and indexes in graph databases that have data con-
stantly changing or streaming in?

8.4 Cloud Features and Cost Models

The cloud computing paradigm has modified hardware, software, and data centers’ implementa-
tion and design. It offers new economical and technological solutions such as utilizing distributed
computing, pay-as-you-go pricing models, and resource elasticity. Cloud computing offers com-
puting as a utility in which users can have access to different services according to their needs
without heed to where the services are hosted or how they are delivered.

Computing as a service is the infrastructure service most relevant to graph processing. While
the scalability offered by VMs has been used for graph processing, these are treated as yet another
distributed resource by graph processing frameworks rather than considering their ability to elas-
tically scale or consider their costs. There is limited work on this regard. iGiraph has started to
consider cost optimization on clouds (Heidari et al. 2016). It classifies the graph algorithms into
convergent and non-convergent algorithms and utilizes a dynamic repartitioning algorithm, which
reduces the number of VMs for the graphs that are shrinking during the operation to decline the
price. It also performs better on non-convergent applications compared to the famous Giraph.

Dindokar et al. (2016) have proposed an approach to model the computational behavior of non-
stationary graph algorithms using a meta-graph model for subgraph-centric programming model.
The meta-graph model is able to offer predictions on the subgraphs that will be active in different
supersteps, and this is used to schedule subgraphs to VMs in different supersteps, including elas-
tically scaling the VMs in and out (Dindokar and Simmhan 2016). Their strategies show a pricing
reduction by half for large graphs like Orkut and for costly graph algorithms like betweenness cen-
trality, with minimal increase in the runtime relative to static over-provisioning of VMs. Elasticity
has also been examined in Pundir et al. (2016), where it uses two partitioning mechanisms called

ACM Computing Surveys, Vol. 51, No. 3, Article 60. Publication date: June 2018.

60:40 S. Heidari et al.

contiguous vertex repartitioning and ring-based vertex repartitioning to (1) scale in/out without
interfering graph computation, (2) decrease the network overhead after scaling, and (3) keep the
load balanced by reducing stragglers across servers.

Cloud providers have different cost models for their VM resources, typically, on-demand VMs
that you pay for based on the minutes or hours used, and spot VMs that have dynamic pricing
based on demand-supply, and are pre-emptible when the demand out-strips supply. Spot VMs are
much cheaper than on-demand VMs and their use can also be explored for large graph applications,
while addressing the faults that can occur due to out of bid event when prices spike. While this
has been examined for applications like MapReduce (Chohan et al. 2010), there is no work in this
regard yet for graph processing.

A service-level agreement (SLA) (Patel et al. 2009) is a contract between a service provider and a
service user to define the service features, the time for delivering the service, the steps that should
be taken in the case of service crashes, service domain, prices, and so on. Using SLAs, both user and
provider can ensure that the service is delivered exactly based on what had been agreed upon and
penalties can be applied in case of commitment violation. Quality of a service (QoS) (Ardagna et al.
2014) provides a level of performance, availability, and reliability offered by software, platform, and
infrastructure that the service is hosted on them. If we consider graph processing as a service, then
the quality of this service should be in an acceptable level from both provider and customer points
of views. According to the aforementioned SLA and QoS definitions, and taking graph processing
characteristics into consideration, some research directions can be defined as follows:

—Which parameters have the most impact on the performance of a graph processing service
and quality of that?

—What factors should be considered for selecting an appropriate graph processing service
among other analogous services?

—How SLA-based resource provisioning and scheduling mechanisms for managing graph
processing systems and services can be?

8.5 Network Optimizations

The network communication and messaging aspects are less studied in current graph process-
ing frameworks. The factors such as network latency, network bandwidth, network traffic, and
topology can affect the runtime performance of the system. The problem also becomes more com-
plicated when it comes to the cloud environments. Most existing distributed graph frameworks
have been developed for integrated clusters in which resource management and communication
is more predictable. But in a cloud-based framework, the network performance can be variable
and VM placement not in the control of users. Hence it becomes essential to consider network
factors. Unlike earlier works that considered the role of the network as trivial in graph processing
(Ousterhout et al. 2015), particularly for the graphs that can fit into the memory of a single ma-
chine, most recent experiments showed that the network plays a major role in the performance
of a graph processing system, whether the graph can fit in the memory of a single machine or it
is processed on a distributed system (McSherry and Schwarzkopf 2015). For example, allocating
larger or denser partitions to the machines with higher bandwidth on one side and reducing the
network traffic by decreasing the number of messages transferred between machines on the other
hand can enhance the efficiency of the system (Chen et al. 2010).

8.6 Graph Compression

According to Shun and Blelloch (2013), processing large graphs on share memory can be remark-
ably quicker than processing in a distributed memory environment. Although the amount of data

ACM Computing Surveys, Vol. 51, No. 3, Article 60. Publication date: June 2018.

Scalable Graph Processing Frameworks: A Taxonomy and Open Challenges 60:41

created in the form of a graph is growing every day, the capacity of available memory is also in-
creasing, which enables very large graph datasets to be fit into the memory of a single machine.
However, improving the space utilization and execution time of graph algorithms has become
crucial. This leads toward compressing graphs to use the memory efficiently.

Graph compression is a technique that has been investigated in the past in frameworks such
as WebGraph (Boldi and Vigna 2004) that could store web-based graphs using graph compres-
sion algorithms such as referentiation, intervalization, and the like in a limited memory. By the
emergence of graph processing frameworks, some systems started proposing similar mechanisms
to process large-scale graphs. Ligra+ (Shun et al. 2015), for example, is a shared memory graph
processing system that is developed based on Ligra to reduce memory usage. Using methods intro-
duced in Blandford et al. (2003), Blandford et al. (2004), and Kourtis et al. (2010), Ligra+ combines
encoding (compression) and decoding techniques, utilizing byte codes and nibble codes to repre-
sent data. Vertices are being parallelized in encoding where the edge list of each vertex will be
compressed by coding the differences between source and target vertices of sequential edges. This
framework uses two separate methods for decoding out-edge and in-edge lists. Compression on
single machines has been implemented on a number of frameworks (Maass et al. 2017; Sun et al.
2017).

Compression techniques have been used for both single machine and multi-computing frame-
works. Liakos et al. (2016) proposed a compression mechanism to optimize memory usage on
distributed frameworks. Their solution, which has been developed based on Pregel paradigm in-
cludes (1) considering out-edges of each vertex as a row in the graph neighboring matrix for the
compression to efficiently represent the space, (2) quick mining the graph without decompression,
and (3) considering memory limitation to operate on graph algorithms. GBASE (Kang et al. 2011)
is another distributed framework that utilizes graph compression. To store the graph efficiently,
GBASE uses block compression by creating multiple regions that contain adjacency matrices.

Apart from various compression techniques that have been implemented on graph processing
frameworks, there are some issues that make this topic promising for further research:

—Although compression helps in reducing memory utilization, encoding and decoding data
are time-consuming and current solutions have made limited improvement in execution
time of the operations.

—Some compression techniques might positively influence particular graph algorithms but
not the others. Is there any mechanisms that can be useful for different types of graph algo-
rithms? How about switching between different techniques based on the graph application
that is being used?

—How do compression mechanisms affect the bandwidth and other computing resources in
a single server or distributed environment?

8.7 Other Improvements

Since scalable graph processing is still in its infancy, there are many open issues to improve the
performance and features of each component discussed in Section 2.1, and the overall performance
of the system. For example, read and write from/to disk is costly in these systems and usually acts as
a bottleneck. In research such as Zheng et al. (2015) and Nilakant et al. (2014), SSD is used as a faster
storage device compared to traditional HDDs and cheaper compared to main memory. Further,
efficient storage models for graph datasets on disks also need to be explored, e.g., when processing
large graphs, the time to load data from disk to memory can outstrip the time to perform the
analysis. Compact and compressed graph data representation on disk, loading necessary subsets
of the graph on-demand, and support for efficient storage of property graphs are some novel topics

ACM Computing Surveys, Vol. 51, No. 3, Article 60. Publication date: June 2018.

60:42 S. Heidari et al.

to explore. Literature has also examined processing of large graphs on single machines and tries
to keep the whole graph and computation results in memory (Section 3.1.2). They rely on memory
costs dropping and capacities increasing with new technologies like 3D stacked RAM, when single
machines will become viable even for billion-vertex graphs. So there are several aspects of storage
and memory management that can be explored.

In addition to these, other parts of graph processing system pipeline can be improved as well.
These include the following questions:

—What initial partitioning or pre-processing techniques can improve the performance of the
system and speed up the computation process? How can repartitioning improve the effi-
ciency of the system, and can it speed up the computation process?

—How can we better model and predict the behavior of different graph algorithms for graphs
with different characteristics, such as power law, small world, planar, and so on? How are
these affected by the different programming models? Can we use these to determine the
ideal graph processing technique or strategy to be chosen, e.g., synchronous vs. asynchro-
nous algorithms, computation-bound algorithms vs. memory-bound algorithms, denser
datasets vs. less dense datasets and so on.

—Are there any computational mechanisms that uses less memory size or can reduce network
traffic by reducing the number of messages between machines?

—What fault-tolerance techniques can be used other than check-pointing to improve system
reliability and performance?

—What resource provisioning and scheduling algorithms can be used to optimize the pro-
cessing framework, particularly in a competitive environment such as cloud spot-markets?

9 RELATED WORK

In the literature, there are few surveys on graph processing systems. Each work has investigated
the topic from its own perspective and provided limited explanations and comparisons or have
not considered many key aspects. For example, McCune et al. (2015) has studied graph processing
systems from various aspects including timing, communication, execution model, partitioning, and
architecture. Compared to this, we have provided a more comprehensive study and added many
new issues.

We have provided many real-world examples of graph-based applications in detail along with
an overall overview (see Section 2.1). This has been found vital since readers will understand the
future discussions and flow of the article. We also provided a wide categorization and descriptions
of algorithms that have been or can be used in graph processing experiments for various purposes.
Table 4 provides comprehensive comparison between the coverage of our article and existing work
(McCune et al. 2015).

Unlike McCune et al. (2015), which says “TLAV frameworks generally always employ the
master-slave architecture,” we discuss both distributed and single-server architectures as two ma-
jor system architectures in existing graph processing frameworks and do not explain them sepa-
rately. We have also distinguished between programing models and computational models to make
the differences clear. Another issue that has not been investigated in other surveys is in-memory
execution, which is covered here. Indeed, the taxonomy that we have provided for partitioning
and fault tolerance in graph processing systems is more comprehensive compared to other articles
and we have discussed the challenges and the ideas for further improvements.

A comprehensive classification of many graph processing systems, since 2010, is presented in
this article, which includes various characteristics of the systems. Another novel part of our article
is the gap analysis, which is crucial for understanding the shortcomings of current systems and

ACM Computing Surveys, Vol. 51, No. 3, Article 60. Publication date: June 2018.

Scalable Graph Processing Frameworks: A Taxonomy and Open Challenges 60:43

Table 4. Overview of Existing Graph Processing Frameworks

McCune et al. Our Work

Examples of graph-based applications � � (*)

Graph processing overall scheme × �
Algorithms and challenges × �
System architectures � � (*)

Graph processing frameworks � �

Distributed coordination (Timing) � �

Communication models � �
Computational models � �

Distinguish between programming model and computational model × �
Partitioning � � (*)

In-memory execution × �

Fault tolerance � � (*)

Scheduling × �

Graph databases × �

System classification × �

Gap analysis × �

Categorizations in graph processing ecosystem × �

Incremental processing models (future directions) × �

Complex workflows (future directions) × �

Graph databases (future directions) × �

Cloud features and cost models (future directions) × �

Network optimizations (future directions) × �

Graph compression × �

Possible improvements (future directions) × �

* means we offer comprehensive discussion.

provides critical review of the existing systems. Finally, many future directions have been discussed
in the article for the first time compared to all other existing surveys. This section enlightens the
path for possible opportunities for future works and provides ideas for more research and practical
works.

10 SUMMARY AND CONCLUSIONS

Huge quantities of data are being created, analyzed, and used every day in the contemporary
world of internet communications and connected devices. “Big data” is the term used to signify
the challenges posed by this massive data influx. A growing majority of big data is in the form of
“graphs,” which are one of the major computational methods of huge data analysis. Social network
applications and web searches, IoT, knowledge graphs, and deep learning, financial transactions,
and neuroscience are some examples of large-scale graphs that need to be analyzed for various
domains. Several works have investigated the creation of effective systems for processing large-
scale graphs in recent years.

In this article, we have investigated and categorized existing graph processing frameworks and
systems from different perspectives. First, we explained how different parts of a graph processing
system, including read and write from/to disk or memory, pre-processing, partitioning, commu-
nication, computation, and error handling work together to process large-scale graphs. Second,

ACM Computing Surveys, Vol. 51, No. 3, Article 60. Publication date: June 2018.

60:44 S. Heidari et al.

we presented a taxonomy of different abstractions and approaches that are used in existing graph
processing systems within each of these phases. In addition, we described notable frameworks
that have used these techniques, and analyzed their advantages and disadvantages to support our
discussions. We further summarized the features of graph processing frameworks developed since
2009 in Table 3. It gives a comprehensive overview of current systems and enables making com-
parisons between them. Finally, future research directions are discussed, which show that scalable
graph processing is still at a nascent stage and there are many issues that remain unsolved.

ACKNOWLEDGMENTS

We thank Prof. Sartaj Sahni (editor-in-chief), Prof. Azzedine Boukerche (associate editor), and
anonymous reviewers for their constructive comments that helped in improving the article sub-
stantially. We also thank Benjamin Rubinstein and Maria Rodriguez for their suggestions on en-
hancing the article.

REFERENCES

A. Abou-Rjeili and G. Karypis. 2006. Multilevel algorithms for partitioning power-law graphs. In Proceedings of the IEEE

International Parallel and Distributed Processing Symposium (IPDPS’06). IEEE, 124–134.
F. N. Afrati, A. Das Sarma, S. Salihoglu, and J. D. Ullman. 2012. Vision paper: Towards an understanding of the limits of

map-reduce computation. In Proceedings of the Coud Futures 2012 Workshop. Microsoft.
F. Akbari, A. Tajfar, and A. Farhoodi Nejad. 2013. Graph-based friend recommendation in social networks using artificial

bee colony. In Proceedings of the IEEE 11th International Conference on Dependable, Autonomic, and Secure Computing

(DASC’13). IEEE, 464–468.
A. Alexandrov, R. Bergmann, S. Ewen, J.-C. Freytag, F. Hueske, A. Heise, and D. Warneke. 2014. The stratosphere platform

for big data analytics. VLDB J. —Int. J. Large Data Bases 23, 6, 939–964.
Franz Inc. 2015. Home Page. Retrieved August 10, 2015, from http://allegrograph.com.
P. Ammann, D. Wijesekera, and S. Kaushik. 2002. Scalable, graph-based network vulnerability analysis. In Proceedings of

the 9th ACM Conference on Computer and Communications Security (CCS’02). ACM, 217–224.
K. Andreev and H. Racke. 2004. Balanced graph partitioning. In Proceedings of the 16th Annual ACM Symposium on Paral-

lelism in Algorithms and Architectures (SPAA’04). ACM, 120–124.
R. Angles and C. Gutierrez. 2008. Survey of graph database models. ACM Comput. Surv. 40, 1, 1–39.
Apache Software Foundation. 2007. Retrieved May 28, 2016, from http://activemq.apache.org.
Apache Software Foundation. 2012. Retrieved May 28, 2016, from https://avro.apache.org.
Apache Software Foundation. 2012. Home Page. Retrieved April 9, 2018, from http://giraph.apache.org.
Apache Software Foundation. 2015. Home Page. Retrieved August 10, 2015, from http://hbase.apache.org.
Apache Software Foundation Contributors. 2011. Home Page. Retrieved April 9, 2018, from https://hive.apache.org.
Apache Software Foundation. 2008. Home Page. Retrieved April 9, 2018, from https://pig.apache.org.
Apache Software Foundation. 2008. Home Page. Retrieved May 28, 2016, from https://thrift.apache.org.
Apache Software Foundation. 2011. Home Page. Retrieved July 23, 2015, from https://hadoop.apache.org.
ArangoDB GmbH. 2015. Home Page. Retrieved August 10, 2015, from https://www.arangodb.com.
D. Ardagna, G. Casale, M. Ciavotta, J. F. Pérez, and W. Wang. 2014. Quality-of-service in cloud computing: Modeling tech-

niques and their applications. J. Internet Serv. Appl. 5, 11, 1–17.
D. A. Bader and K. Madduri. 2008. SNAP, small-world network analysis and partitioning: An open-source parallel graph

framework for the exploration of large-scale networks. In Proceedings of the IEEE International Symposium on Parallel

and Distributed Processing Systems (IPDPS’08). IEEE, 1–12.
D. A. Bader, H. Meyerhenke, P. Sanders, and D. Wagner. 2013. Graph Partitioning and Graph Clustering. American Mathe-

matical Society, Atlanta, GA.
H. Bagci and P. Karagoz. 2015. Context-aware location recommendation by using a random walk-based approach. Knowl.

Inform. Syst. 47, 2, 241–260.
M. J. Bannister and D. Eppstein. 2012. Randomized speedup of the Bellman-Ford algorithm. In Proceedings of the Conference

on Analytic Algorithmics and Combinatorics (ANALCO’12). Society for Industrial and Applied Mathematics, 41–47.
C. Battaglino, R. Pienta, and R. Vuduc. 2015. GraSP: Distributed streaming graph partitioning. In Proceedings of the 1st High

Performance Graph Mining Workshop (HPGM’15). Sydney, Australia.
S. Beamer, K. Asanovic, and D. Patterson. 2012. Direction-optimizing breadth-first search. In Proceedings of the International

Conference on High Performance Computing, Networking, Storage, and Analysis (SC’12). IEEE, 1–10.

ACM Computing Surveys, Vol. 51, No. 3, Article 60. Publication date: June 2018.

http://allegrograph.com
http://activemq.apache.org
https://avro.apache.org
http://giraph.apache.org
http://hbase.apache.org
https://hive.apache.org
https://pig.apache.org
https://thrift.apache.org
https://hadoop.apache.org
https://www.arangodb.com

Scalable Graph Processing Frameworks: A Taxonomy and Open Challenges 60:45

T. Beseri Sevim, H. Kutucu, and M. Ersen Berberler. 2012. New mathematical model for finding minimum vertex cut set. In
Proceedings of the International Conference on Problems of Cybernetics and Informatics (PCI’12). IEEE, 1–2.

M. Besta, M. Podstawski, L. Groner, E. Solomonik, and T. Hoefler. 2017. To push or to pull: On reducing communication
and synchronization in graph computations. In Proceedings of the 26th International Symposium on High-Performance

Parallel and Distributed Computing (HPDC’17). ACM, 93–104.
D. K. Blandford, G. E. Blelloch, and I. A. Kash. 2003. Compact representations of separable graphs. In Proceedings of the 14th

Annual ACM-SIAM Symposium on Discrete Algorithms. ACM, Baltimore, Maryland, USA.
D. K. Blandford, G. E. Blelloch, and I. A. Kash. 2004. An experimental analysis of a compact graph representation. In

Proceedings of the 6th Workshop on Algorithm Engineering and Experiments (ALENEX’04). SIAM, New Orleans, Louisiana,
USA.

P. Boldi and S. Vigna. 2004. The WebGraph framework I: Compression techniques. In Proceeding of the 13th International

Conference on World Wide Web. ACM, New York, USA.
V. Borkar, M. Carey, R. Grover, N. Onose, and R. Vernica. 2011. Hyracks: A flexible and extensible foundation for data-

intensive computing. In Proceedings of the IEEE 27th International Conference on Data Engineering (ICDE’11). IEEE, 1151–
1162.

F. Bourse, M. Lelarge, and M. Vojnovi. 2014. Balanced graph edge partition. In Proceedings of the 20th ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data Mining (KDD’14). IEEE, 1456–1465.
Y. Boykov and V. Kolmogorov. 2004. An experimental comparison of min-cut/max-flow algorithms for energy minimization

in vision. IEEE Trans. Pattern Anal. Mach. Intell. 26, 9, 1124–1137
T. Britton, M. Deijfen, and A. Martin-Lof. 2006. Generating simple random graphs with prescribed degree distribution. J.

Stat. Phys. 124, 6, 1377–1397.
Y. Bu, V. Borkar, J. Jia, M. J. Carey, and T. Condie. 2014. Pregelix: Big(ger) graph analytics on a dataflow engine. Proc. VLDB

Endow. 8, 2, 161–172.
Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst. 2010. HaLoop: Efficient iterative data processing on large clusters. Proc.

VLDB Endow. 3, 1–2, 285–296.
A. Buluç, H. Meyerhenke, I. Safro, P. Sanders, and C. Schulz. 2016. Recent advances in graph partitioning. In Algorithm

Engineering. Lecture Notes in Computer Science, Vol. 9220. Springer, 117–158.
R. Buyya, C. Yeo, S. Venugopal, J. Broberg, and I. Brandic. 2009. Cloud computing and emerging IT platforms: Vision, hype,

and reality for delivering computing as the 5th utility. Future Generation Comput. Syst. 25, 6, 599–616.
L. Cao. 2011. GoldenOrb. Retrieved July 25, 2015, from https://github.com/jzachr/goldenorb.
U. Catalyurek and C. Aykanat. 1996. Decomposing irregularly sparse matrices for parallel matrix-vector multiplication. In

Proceedings of the 3rd International Workshop on Parallel Algorithms for Irregularly Structured Problems. Springer-Verlag,
75–86.

M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and S. Moon. 2007. I tube, you tube, everybody tubes: Analyzing the world’s
largest user generated content video system. In Proceedings of the 7th ACM SIGCOMM Conference on Internet Measure-

ment (IMC’07). ACM, 1–14.
C. Chambers, A. Raniwala, F. Perry, S. Adams, R. R. Henry, R. Bradshaw, and N. Weizenbaum. 2010. FlumeJava: Easy,

efficient data-parallel pipelines. In Proceedings of the 31st ACM SIGPLAN Conference on Programming Language Design

and Implementation (PLDI’10). ACM, 363–375.
K. Chandy and L. Lamport. 1985. Distributed snapshots: Determining global states of distributed systems. ACM Trans.

Comput. Syst. 3, 1, 63–75.
S. Che. 2014. GasCL: A vertex-centric graph model for GPUs. In Proceedings of the IEEE High Performance Extreme Computing

Conference (HPEC’14). IEEE, 1–6.
G. Chen, Z. Fan, and X. Li. 2005. Modelling the complex Internet topology. In Complex Dynamics in Communication Net-

works. Springer, 213–234.
Q. Chen, S. Bai, Z. Li, Z. Gou, B. Suo, and W. Pan. 2014. GraphHP: A Hybrid Platform for Iterative Graph Processing. Technical

Report. arXIV:1706.07221.
R. Chen, X. Weng, B. He, and M. Yang. 2010. Large graph processing in the cloud. In Proceedings of the ACM SIGMOD

International Conference on Management of Data (SIGMOD’10). ACM, 1123–1126.
R. Chen, X. Weng, B. He, M. Yang, B. Choi, and X. Li. 2012. Improving large graph processing on partitioned graphs in the

cloud. In Proceedings of the 3rd ACM Symposium on Cloud Computing (SoCC’12). ACM, 1–13.
Y. Chen, Y.-H. Lee, W. Wong, and D. Guo. 2008. A race condition graph for concurrent program behavior. In Proceedings

of the 3rd International Conference on Intelligent System and Knowledge Engineering (ISKE’08). IEEE, Los Alamitos, CA,
662–667.

R. Cheng, J. Hong, A. Kyrola, Y. Miao, X. Weng, M. Wu, and E. Chen. 2012. Kineograph: Taking the pulse of a fast-changing
and connected world. In Proceedings of the 7th ACM European Conference on Computer Systems (EuroSys’12). ACM,
85–98.

ACM Computing Surveys, Vol. 51, No. 3, Article 60. Publication date: June 2018.

https://github.com/jzachr/goldenorb

60:46 S. Heidari et al.

G. Chockler, R. Guerraoui, I. Keidar, and M. Vukolic. 2009. Reliable distributed storage. Computer 42, 4, 60–67.
N. Chohan, C. Castillo, M. Spreitzer, M. Steinder, A. Tantawi, and C. Krintz. 2010. See Spot run: Using spot instances for

mapreduce workflows. In Proceedings of the 2nd USENIX Workshop on Hot Topics inCloud Computing (HotCloud’10).
USENIX, 1–7.

J. Cohen. 2009. Graph twiddling in a MapReduce world. Comput. Sci. Eng. 11, 4, 29–41.
T. E. Commission. 2010. Social Networks Overview: Current Trends and Research Challenges. Information Society and Media,

Publications Office of the European Union, Luxembourg.
G. Coulouris, J. Dollimore, T. Kindberg, and G. Blair. 2012. Distributed Systems Concepts and Design (5th ed.). Addison-

Wesley, Boston, MA
Committee on the Analysis of Massive Data, Committee on Applied and Theoretical Statistics, Board on Mathematical

Sciences and Their Applications, Division on Engineering and Physical Sciences and National Research Council. 2013.
Frontiers in Massive Data Analysis. National Academies Press, Washington, DC.

G. Dai, Y. Chi, Y. Wang, and H. Yang. 2016. FPGP: Graph processing framework on FPGA a case study of breadth-first
search. In Proceedings of the ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA’16). ACM,
105–110.

J. Dean and S. Ghemawat. 2004. MapReduce: Simplified data processing on large clusters. In Proceedings of the 6th Sympo-

sium on Operating Systems Design and Implementation (OSDI’04). ACM, 107–113.
K. D. Devine, E. G. Boman, R. T. Heaphy, R. H. Bisseling, and U. V. Catalyurek. 2006. Parallel hypergraph partitioning for

scientific computing. In Proceedings of the 20th International Conference on Parallel and Distributed Processing (IPDPS’06).
IEEE, 1–10.

M. N. Dias de Assuncao, R. Calheiros, S. A. S. Bianchi, M. Netto, and R. Buyya. 2015. Big data computing and clouds: Trends
and future directions. J. Parallel Distrib. Syst. 79–80, 3–15.

E. W. Dijkstra. 1959. A note on two problems in connexion with graphs. Numer. Math. 1, 1, 269–271.
R. Dindokar and Y. Simmhan. 2016. Elastic partition placement for non-stationary graph algorithms. In Proceedings of the

16th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing (CCGrid’16). IEEE, 90–93.
R. Dindokar, N. Choudhury, and Y. Simmhan. 2016. A meta-graph approach to analyze subgraph-centric distributed pro-

gramming models. In Proceedings of the IEEE International Conference on Big Data. IEEE, 37–47.
N. Doekemeijer and A. Varbanescu. 2014. A Survey of Parallel Graph Processing Frameworks. Technical Report. Delft Uni-

versity of Technology, Delft, Netherlands.
D. Dominguez-Sal, N. Martinez-Bazan, V. Muntes-Mulero, P. Baleta, and O. Lluis Larriba-Pey. 2010. A discussion on the

design of graph database benchmarks. In Proceedings of the 2nd TPC Technology Conference (TPCTC’10). Springer-Verlag
Berlin, 25–40.

D. Ediger and D. A. Bader. 2013. Investigating graph algorithms in the BSP model on the cray XMT. In Proceedings of the

27th IEEE International Parallel and Distributed Processing Symposium (IPDPS’13). IEEE, 1638–1645.
I. P. Egwutuoha, D. Levy, B. Selic, and S. Chen. 2013. A survey of fault tolerance mechanisms and checkpoint/restart

implementations for high performance computing systems. J. Supercomput. 65, 3, 1302–1326.
J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, and S. H. Bae. 2010. Twister: A runtime for iterative MapReduce. In Proceedings

of the 19th ACM International Symposium on High Performance Distributed Computing (HPDC’10). ACM, 810–818.
D. Elena. 2013. Fault-Tolerant Design. Springer-Verlag, New York, NY.
E. Elnozahy, L. Alvist, Y.-M. Wang, and D. B. Johnson. 2002. A survey of rollback-recovery protocols in message-passing

systems. ACM Comput. Surv. 34, 3, 375–408.
H. El-Rewini and M. Abd-El-Barr. 2005. Message passing interface (MPI). In Advanced Computer Architecture and Parallel

Processing. Wiley, 205–234.
U. Elsner. 2002. Static and Dynamic Graph Partitioning. A Comparative Study of Existing Algorithms. Logos Verlag, Berlin,

Germany.
N. Engelhardt and H. K. So. 2016. Vertex-centric graph-processing on FPGA. In Proceedings of the IEEE 24th Annual Inter-

national Symposium on Field-Programmable Custom Computing Machines (FCCM’16). IEEE, 92–92.
S. Ewen, S. Schelter, K. Tzoumas, D. Warneke, and V. Markl. 2013. Iterative parallel data processing with stratosphere: An

inside look. In Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD’13). ACM,
1053–1056.

U. Feige, M. Hajiaghayi, and J. R. Lee. 2005. Improved approximation algorithms for minimum-weight vertex separators.
In Proceedings of the 37 Annual ACM Symposium on Theory of Computing (STOC’05). ACM, 563–572.

U. Feige, M. Hajiaghayi, and J. R. Lee. 2008. Improved approximation algorithms for minimum weight vertex separators.
SIAM J. Comput. 38, 2, 629–657.

F. Fouss, Pirotte, J.-M. Renders, and M. Saerens. 2007. Random-walk computation of similarities between nodes of a graph
with application to collaborative recommendation. IEEE Trans. Knowl. Data Eng. 19, 3, 355–369.

ACM Computing Surveys, Vol. 51, No. 3, Article 60. Publication date: June 2018.

Scalable Graph Processing Frameworks: A Taxonomy and Open Challenges 60:47

Z. Fu, M. Personick, and B. Thompson. 2014. MapGraph: A high level API for fast development of high performance graph
analytics on GPUs. In Proceedings of the Workshop on Graph Data Management Experiences and Systems (GRADES’14).
ACM, 1–6.

N. Gehani. 1990. Message passing in concurrent C: Synchronous versus asynchronous. Softw: Pract. Exp. 20, 6, 571–592.
F. Geier. 2015. The Differences Between SSD and HDD Technology Regarding Forensic Investigations. Linnaeus University,

Småland, Sweden.
A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. S. Sunderam. 1994. PVM: A Parallel Virtual Machine. MIT

Press, Cambridge, MA.
A. Gharaibeh, L. Beltrão Costa, E. Santos-Neto, and M. Ripeanu. 2013. On graphs, GPUs, and blind dating: A workload

to processor matchmaking quest. In Proceedings of the IEEE 27th International Symposium on Parallel and Distributed

Processing (IPDPS’13). IEEE, 851–862.
A. Gharaibeh, T. Reza, E. Santos-Neto, L. Beltrao Costa, S. Sallinen, and M. Ripeanu. 2013. Efficient large-scale graph pro-

cessing on hybrid CPU and GPU systems. arXiv:1312.3018.
Google. 2008. Retrieved May 28, 2016, from https://github.com/google/protobuf.
J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. 2012. PowerGraph: Distributed graph-parallel computation on

natural graphs. In Proceedings of the 10th USENIX Conference on Operating Systems Design and Implementation (OSDI’12).
USENIX, 17–30.

M. Grabowski, J. Hidders, and J. Sroka. 2013. Representing mapreduce optimisations in the nested relational calculus. In
Proceedings of the 29th British National Conference on Databases. Springer-Verlag Berlin, 175–188.

he Graph 500 List. 2010. Home Page. Retrieved March 25, 2016, from http://www.graph500.org.
GraphBase Inc. 2015. Home Page. Retrieved August 10, 2015, from http://graphbase.net.
C. Green. 2013. An Introduction to Graph Databases. Retrieved July 28, 2015, from http://www.information-age.com/

technology/information-management/123457275/an-introduction-to-graph-databases.
D. Gregor and A. Lumsdaine. 2005. The parallel BGL: A generic library for distributed graph computations. In Proceedings

of the Conference on Parallel Object-Oriented Scientific Computing (POOSC’05). Glasgow, UK, 1–18.
Marko A. Rodriguez. 2009. Aurelius. Retrieved August 22, 2016, from http://s3.thinkaurelius.com/docs/titan/0.5.4/gremlin.

html.
Y. Gu, L. Lu, R. Grossman, and A. Yoo. 2010. Processing massive sized graphs using sector/sphere. In Proceedings of the 2010

IEEE Workshop on Many-Task Computing on Grids and Supercomputers (MTAGS’10). IEEE, 1–10.
S. Gunelius. 2014, July 12. The Data Explosion in 2014 Minute by Minute—Infographic. Retrieved July 25, 2015, from http:

//aci.info/2014/07/12/the-data-explosion-in-2014-minute-by-minute-infographic.
Y. Guo, A. Varbanescu, A. Iosup, and D. Epema. 2015. An empirical performance evaluation of GPU-enabled graph-

processing systems. In Proceedings of the 15th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing

(CCGrid’15). IEEE, 423–432.
P. Gupta, A. Goel, J. Lin, A. Sharma, D. Wang, and R. Zadeh. 2013. WTF: The who to follow service at Twitter. In Proceedings

of the 22nd International Conference on World Wide Web (WWW’13). ACM, 505–514.
M. Han and K. Daudjee. 2015. Giraph unchained: Barrierless asynchronous parallel execution in Pregel-like graph process-

ing systems. Proc. LDB Endow. 8, 9, 950–961.
W. Han, Y. Miao, K. Li, M. Wu, F. Yang, L. Zhou, and E. Chen. 2014. Chronos: A graph engine for temporal graph analysis. In

Proceedings of the Ninth European Conference on Computer Systems (EuroSys’14), ACM, Amsterdam, Netherland, 1–14.
W.-S. Han, S. Lee, K. Park, J.-H. Lee, M.-S. Kim, J. Kim, and H. Yu. 2013. TurboGraph: A fast parallel graph engine handling

billion-scale graphs in a single PC. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (KDD’13). ACM, Chicago, IL, 77–85.
A. Harshvardhan Fidel, N. M. Amato, and L. Rauchwerger. 2013. The STAPL parallel graph library. In Proceedings of the 25th

International Workshop on Languages and Compilers for Parallel Computing (LCPC’12). Tokyo, Japan, Springer, Berlin,
46–60.

S. Heidari, R. N. Calheiros, and R. Buyya. 2016. iGiraph: A cost-efficient framework for processing large-scale graphs
on public clouds. In Proceedings of the 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

(CCGrid’16). IEEE, Cartagena, Colombia, 301–310.
B. Hendrickson and J. W. Berry. 2008. Graph analysis with high-performance computing. Comput. Sci. Eng. 10, 2 (2008),

14–19.
D. S. Hirschberg, A. K. Chandra, and D. V. Sarwate. 1979. Computing connected components on parallel computers. Com-

mun. ACM 22, 8, 461–464.
S. Hong, H. Chafi, E. Sedlar, and K. Olukotun. 2012. Green-marl: A DSL for easy and efficient graph analysis. In Proceed-

ings of the 17th International Conference on Architectural Support for Programming Languages and Operating Systems

(ASPLOS’12). ACM, London, UK, 349–362.

ACM Computing Surveys, Vol. 51, No. 3, Article 60. Publication date: June 2018.

https://github.com/google/protobuf
http://www.graph500.org
http://graphbase.net
http://www.information-age.com/technology/information-management/123457275/an-introduction-to-graph-databases
http://s3.thinkaurelius.com/docs/titan/0.5.4/gremlin.html
http://aci.info/2014/07/12/the-data-explosion-in-2014-minute-by-minute-infographic

60:48 S. Heidari et al.

I. Hoque and I. Gupta. 2013. LFGraph: Simple and fast distributed graph analytics. In Proceedings of the First ACM SIGOPS

Conference on Timely Results in Operating Systems (TRIOS’13). ACM, Farmington, Pennsylvania, 1–17.
B. A. Huberman. 2001. The Laws of the Web: Patterns in the Ecology of Information. MIT Press, Cambridge.
P. Hudak. 1989. Conception, evolution, and application of functional programming languages. ACM Comput. Surv. 21, 3,

359–411.
M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. 2007. Dryad: Distributed data-parallel programs from sequential

building blocks. In Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference on Computer Systems (59–72).
ACM Lisboa, Portugal, 59–72.

J. Jackson. 2013. Facebook’s Graph Search puts Apache Giraph on the map. Retrieved July 25, 2015 from PCWorld:
http://www.pcworld.com/article/2046680/facebooks-graph-search-puts-apache-giraph-on-the-map.html.

A. K. Jain. 2008. Data clustering: 50 years beyond k-means. Patt. Recognit. Lett. (5211); 651–666, Springer, Berlin.
N. Jain, G. Liao, and T. L. Willke. 2013. Graphbuilder: Scalable graph ETL framework. In Proceedings of the First International

Workshop on Graph Data Management Experiences and Systems (GRADES’13). ACM, New York, NY, 1–6.
N. Jamadagni and Y. Simmhan. 2016. GoDB: From Batch Processing to Distributed Querying over Property Graphs. In

Proceedings of the 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid’16). IEEE
Cartagena, Colombia, 281–290.

S. Jouili and V. Vansteenberghe. 2013. An empirical comparison of graph databases. In Proceedings of the International

Conference on Social Computing (SocialCom’13) . IEEE, Alexandria, VA, 708–715.
U. Kang, H. Tong, J. Sun, C. Y. Lin, and C. Faloutsos. 2011. GBASE: A scalable and general graph management system. In

Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’11). ACM,
San Diego, California, 1091–1099.

U. Kang, C. E. Tsourakakis, and C. Faloutsos. 2009. PEGASUS: A peta-scale graph mining system - implementation and
observations. In Proceedings of the 2009 Ninth IEEE International Conference on Data Mining (ICDM’09). IEEE, Miami, FL,
229–238.

Z. Kaoudi and I. Manolescu. 2015. RDF in the Cloud: A survey. VLDB J. 24, 1, 67–91.
G. Karypis and V. Kumar. 1995. Multilevel graph partitioning schemes. In Proceedings of the International Conference on

Parallel Processing (ICPP’95). Raleigh, NC, 1–12.
S. D. Kavila, G. P. Raju, S. C. Satapathy, A. Machiraju, G. Kinnera, and K. Rasly. 2013. A survey on fault management tech-

niques in distributed computing. In Proceedings of the 2nd International Conference on Frontiers of Intelligent Computing:

Theory and Applications (FICTA’13). Bhubaneswar, Odisha, India. Springer, Berlin, 593–602.
Z. Khayyat, K. Awara, A. Alonazi, H. Jamjoo, D. Williams, and P. Kalnis. 2013. Mizan: A system for dynamic load balancing

in large-scale graph processing. In Proceedings of the 8th ACM European Conference on Computer Systems (EuroSys’13).
ACM, Prague, Czech Republic, 169–182.

F. Khorasani, K. Vora, R. Gupta, and L. N. Bhuyan. 2014. CuSha: Vertex-centric graph processing on GPUs. In Proceedings of

the 23rd International Symposium on High-Performance Parallel and Distributed Computing (HPDC’14). ACM, Vancouver,
BC, Canada, 239–252.

H. Kim, J. Lee, S. S. Bhowmick, W. Han, J. Lee, S. Ko, and M. Jarrah. 2016. DUALSIM: Parallel subgraph enumeration
in a massive graph on a single machine. In Proceedings of the 2016 International Conference on Management of Data

(SIGMOD’16). ACM, San Francisco, California, 1231–1245.
M. Kim and K. Candan. 2012. SBV-Cut: Vertex-cut based graph partitioning using structural balance vertices. Data Knowl.

Eng. 72, 285–303.
Kobrix Software. 2015. Retrieved August 10, 2015 from http://www.hypergraphdb.org/index.
S. Koo, S. Kwon, S. Kim, and T.-S. Chung. 2015. Dual RAID technique for ensuring high reliability and performance in SSD.

In Proceedings of The IEEE/ACIS 14th International Conference on Computer and Information Science (ICIS’15). Las Vegas,
NV, IEEE, 1–6.

K. Kourtis, G. Goumas, and N. Koziris. 2010. Exploiting compression opportunities to improve SpMxV performance on
shared memory systems. ACM Transactions on Architecture and Code Optimization 7, 3 (2010).

D. C. Kozen. 1992. The Design and Analysis of Algorithms. Springer, New York, pp. 19–24.
E. Krepska, T. Kielmann, W. Fokkink, and H. Bal. 2011. HipG: Parallel processing of large-scale graphs. ACM SIGOPS Oper.

Syst. Rev. 45, 2, 3–13.
A. Kyrola and C. Guestrin. 2014. GraphChi-DB: Simple Design for a Scalable Graph Database System—on Just a PC. CoRR

abs/1403.0701.
A. Kyrola, G. Blelloch, and C. Guestrin. 2012. GraphChi: Large-scale graph computation on just a PC. In Proceedings of

the 10th USENIX Conference on Operating Systems Design and Implementation (OSDI’12). USENIX, Hallywood, CA, USA,
31–46.

Avinash Lakshman and Prashant Malik. 2015. Retrieved August 10, 2015, from http://cassandra.apache.org.

ACM Computing Surveys, Vol. 51, No. 3, Article 60. Publication date: June 2018.

http://www.pcworld.com/article/2046680/facebooks-graph-search-puts-apache-giraph-on-the-map.html
http://www.hypergraphdb.org/index
http://cassandra.apache.org

Scalable Graph Processing Frameworks: A Taxonomy and Open Challenges 60:49

C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. 1979. Basic linear algebra subprograms for fortran. ACM Trans.

Math. Softw. 5, 3, 308–323.
H. K. Lau. 2012. Error detection in swarm robotics: A focus on adaptivity to dynamic environments, Ph.D. thesis, University

of York.
K. H. Lee, Y.-J. Lee, H. Choi, Y. Chung, and B. Moon. 2011. Parallel data processing with mapreduce: A survey. ACM SIGMOD

Rec. 40, 4, 11–20.
K. Lee, L. Liu, K. Schwan, C. Pu, Q. Zhang, Y. Zhou, E. Yigitoglu, and P. Yuan. 2015. Scaling iterative graph computations

with graphmap, In Proceedings of the International Conference for High Performance Computing, Networking, Storage and

Analysis (SC’15). ACM, Austin, Texas, 1–12.
T. Leimbach, D. Hallinan, D. Bachlechner, A. Weber, M. Jaglo, L. Hennen, and G. Hunt. 2014. Potential and Impacts of

Cloud Computing Services and Social Network Websites. European Parliamentary Research Service. Brussels: Science and
Technology Options Assessment (STOA).

C. Leiserson and T. B. Schardl. 2010. A work-efficient parallel breadth-first search algorithm (or how to cope with the
non-determinism of reducers). In Proceedings of the 22nd Annual ACM Symposium on Parallelism in Algorithms and

Architectures (SPAA’10). ACM, Thira, Greece, 303–314.
J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney. 2008. Community Structure in Large Networks: Natural Cluster

Sizes and the Absence of Large Well-Defined Clusters. Pittsburgh, PA. arXiv:0810.1355 (cs.DS).
P. Liakos, K. Papakonstantinopoulou, and A. Delis. 2016. Memory-optimized distributed graph processing through novel

compression techniques. In Proceedings of the 25th ACM International on Conference on Information and Knowledge

Management (CIKM’16). ACM, Indianapolis, Indiana, 1–6.
X. Liu, L. Xiao, A. Kreling, and Y. Liu. 2006. Optimizing overlay topology by reducing cut vertices. In Proceedings of the

International Workshop on Network and Operating Systems Support for Digital Audio and Video (NOSSDAV’06). ACM,
Newport, Rhode Island, 1–6.

C. Lochert, M. Mauve, H. Füßler, and H. Hartenstein. 2005. Geographic routing in city scenarios. ACM SIGMOBILE—Mob.

Comput. Commun. Rev. 9, 1, 69–72.
B. Lorica. 2013. Single server systems can tackle big data. Retrieved July 25, 2015 from O’Reilly Radar: http://radar.oreilly.

com/2013/04/single-server-systems-can-tackle-big-data.html.
B. Lorica. 2014. One year later: Some single server systems that can tackle big data. In Big Data Now (29–30). Sebastopol,

CA: O’Reilly Media Inc.
Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. Hellerstein. 2010. GraphLab: A new framework for parallel

machine learning. In Proceedings of the 26th Conference on Uncertainty in Artificial Intelligence (UAI’10). AUAI, Catalina
Island, 340–349.

Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M. Hellerstein. 2012. Distributed graphlab: A framework for
machine learning and data mining in the cloud. Proc. VLDB Endow. 5, 8, 716–727.

Y. Lu, J. Cheng, D. Yan, and H. Wu. 2014. Large-scale distributed graph computing systems: An experimental evaluation.
Proc. VLDB Endow. 8, 3, 281–292.

A. Lumsdaine, D. Gregor, B. Hendrickson, and J. Berry. 2007. Challenges in parallel graph processing. Parallel Proc. Lett.

17, 1, 5–20.
X. Ma, D. Zhang, and D. Chiou. 2017. FPGA-accelerated transactional execution of graph workloads. In Proceedings of the

ACM/SIGDA International Symposium on Field-Programmable Gate Array (FPGA’17). ACM, 227–236.
S. Maass, C. Min, S. Kashyap, W. Kang, M. Kumar, and T. Kim. 2017. Mosaic: Processing a trillion-edge graph on a single

machine. In Proceedings of the 12th European Conference on Computer Systems (EuroSys’17). ACM, 527–543.
K. Madduri, D. Ediger, K. Jiang, D. A. Bader, and D. Chavarría- Miranda. 2009. A faster parallel algorithm and efficient

multithreaded implementations for evaluating betweenness centrality on massive datasets. In Proceedings of the IEEE

International Symposium on Parallel and Distributed Processing (IPDPS’09). IEEE, 1–8.
D. Maier, A. Fiedler, E. Weigelt, and C. Maier. 2015. Retrieved August 10, 2015 from https://sites.google.com/site/jcoredb.
S. Maleki, D. Nguyen, A. Lenharth, M. Garzarán, D. Padua, K. Pingali. 2016. DSMR: A parallel algorithm for single-source

shortest path problem. In Proceedings of the 2016 International Conference on Supercomputing (ICS’16). ACM, 1–2.
G. Malewicz, M. H. J. C. Austern, A. Bik, J. C. Dehnert, I. Horn, N. Leiser, and G. Czajkowski. 2010. Pregel: A system for

large-scale. In Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data. ACM, 135–146.
A. Marburger and B. Westfechtel. 2010. Graph-based structural analysis for telecommunication systems. In Graph Trans-

formations and Model-Driven Engineering, G. Engels, C. Lewerentz, W. Schafer, A. Schurr, and B. Westfechtel (Eds.).
Springer, Berlin, Germany, 363–392.

C. Martella, D. Logothetis, A. Loukas, and G. Siganos. 2015. Spinner: Scalable graph partitioning in the cloud. In Proceedings

of the IEEE 33rd International Conference on Data Engineering (ICDE’17). IEEE, 1083–1094.
R. R. McCune, T. Weninger, and G. Madey. 2015. Thinking like a vertex: A survey of vertex-centric frameworks for large-

scale distributed graph processing. ACM Comput. Surv. 48, 2, 1–39.

ACM Computing Surveys, Vol. 51, No. 3, Article 60. Publication date: June 2018.

http://radar.oreilly.com/2013/04/single-server-systems-can-tackle-big-data.html
https://sites.google.com/site/jcoredb

60:50 S. Heidari et al.

F. McSherry and M. Schwarzkopf. 2015. The Impact of Fast Networks on Graph Analytics. Retrieved August 28, 2015, from
http://www.frankmcsherry.org/pagerank/distributed/performance/2015/07/08/pagerank.html#fn0.

K. Mehlhorn and S. Näher. 1995. The LEDA platform of combinatorial and geometric computing. Commun. ACM 38, 1,
96–102.

S. Mittal and J. S. Vetter. 2015. A survey of software techniques for using non-volatile memories for storage and main
memory systems. IEEE Trans. Parallel Distribut. Syst. PP, 99, 1–14.

R. C. Murphy and P. M. Kogge. 2007. On the memory access patterns of supercomputer applications: Benchmark selection
and its implications. IEEE Trans. Comput. 56, 7, 937–945.

D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and M. Abadi. 2013. Naiad: A timely dataflow system. In Proceed-

ings of the 24th ACM Symposium on Operating Systems Principles (SOSP’13). ACM, 439–455.
K. Najeebullah, K. Khan, W. Nawaz, and Y.-K. Lee. 2014a. BiShard parallel processor: A disk-based processing engine for

billion-scale graphs. Int. J. Multimed. Ubiquitous Eng. 9, 2, 199–212.
K. Najeebullah, K. Khan, M. Waqas Nawaz, and Y.-K. Lee. 2014b. BPP: Large graph storage for efficient disk based.

arXiv:1401.2327.
Neo Technology. 2015. Home Page. Retrieved August 10, 2015, from http://neo4j.com.
NetMesh Inc. 2015. Retrieved August 10, 2015 from http://infogrid.org/trac.
D. Nguyen, A. Lenharth, and K. Pingali. 2013. A lightweight infrastructure for graph analytics. In Proceedings of the 24th

ACM Symposium on Operating Systems Principles (SOSP’13). ACM, 456–471.
D. Nicoara, S. Kamali, K. Daudjee, and L. Chen. 2015. Hermes: Dynamic Partitioning for Distributed Social Network Graph

Databases. University of Waterloo, Waterloo, Canada.
K. Nilakant, V. Dalibard, A. Roy, and E. Yoneki. 2014. PrefEdge: SSD prefetcher for large-scale graph traversal. In Proceedings

of the International Conference on Systems and Storage (SYSTOR’14). ACM, 1–12.
B. Nitzberg and V. Lo. 1991. Distributed shared memory: A survey of issues and algorithms. Computer 24, 8, 52–60.
E. Nurvitadhi, G. Weisz, Y. Wang, S. Hurkat, M. Nguyen, J. C. Hoe, and C. Guestrin. 2014. GraphGen: An FPGA Framework

for vertex-centric graph computation. In Proceedings of the IEEE 22nd International Symposium on Field-Programmable

Custom Computing Machines (FCCM’14). IEEE, 25–28.
Objectivity Inc. 2015. Retrieved August 10, 2015 from http://www.objectivity.com/products/infinitegraph.
Joshua O’Madadhain, Danyel Fisher, Tom Nelson, Scott White, and Yan-Biao Boey. 2003. Retrieved June 25, 2016 from

http://jung.sourceforge.net.
OrientDB LTD. 2015. OrientDB vs Neo4j. Retrieved August 10, 2015, from http://orientdb.com/orientdb-vs-neo4j.
J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis, J. Leverich, D. Mazières, and R. Stutsman. 2010. The case for RAM-

Clouds: Scalable high-performance storage entirely in DRAM. ACM SIGOPS Oper. Syst. Rev. 43, 4, 92–105.
K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, and B.-G. Chun. 2015. Making sense of performance in data analytics

frameworks. In Proceedings of the 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI’15).
USENIX, 293–307.

L. Page, S. Brin, R. Motwani, and T. Winograd. 1998. The PageRank Citation Ranking: Bringing Order to the Web. Stanford
InfoLab.

P. Patel, A. Ranabahu, and A. Sheth. 2009. Service Level Agreement in Cloud Computing. Kno.e.sis Centre, Wright State
University, Fairborn, Ohio, USA.

A. Paul. 2013. Graph based M2M optimization in an IoT environment. In Proceedings of the 2013 Research in Adaptive and

Convergent Systems (RACS’13). ACM, 45–46.
F. Pellegrini. 2011. Current challenges in parallel graph partitioning. Comptes Rendus Méc. 339 (2–3), 90–95.
C. Pettey. 2011. Gartner Says Solving ‘Big Data’ Challenge Involves More Than Just Managing Volumes of Data. Retrieved

July 21, 2015, from http://www.gartner.com/newsroom/id/1731916.
R. Pike, S. Dorward, R. Griesemer, and S. Quinlan. 2005. Interpreting the data: Parallel analysis with Sawzall. Sci. Progr.—

Dyn. Grids Worldw. Comput. 13, 4, 277–298.
M. L. Pinedo. 2012. Scheduling: Theory, Algorithms, and Systems (4th ed.). Springer-Verlag, New York, NY.
S. J. Plimpton and K. D. Devine. 2011. MapReduce in MPI for large-scale graph algorithms. Parallel Comput. 37, 9, 610–632.
R. Power and J. Li. 2010. Piccolo: Building fast, distributed programs with partitioned tables. In Proceedings of the 9th USENIX

Conference on Operating Systems Design and Implementation (OSDI’10). USENIX, 293–306.
K. Prakasam and M. Chandrasekhar. 2010. JPregel. Retrieved July 24, 2015, from http://kowshik.github.io/JPregel.
M. Pundir, M. Kumar, L. M. Leslie, I. Gupta, and R. H. Campbell. 2016. Supporting on-demand elasticity in distributed. In

Proceedings of the 2016 IEEE International Conference on Cloud Engineering (IC2E’16). IEEE, 12–21.
F. Rahimian, A. H. Payberah, S. Girdzijauskas, and S. Haridi. 2014. Distributed vertex-cut partitioning. In Proceedings of the

14th IFIP International Conference on Distributed Applications and Interoperable Systems. Springer, Berlin, 186–200.
M. Redekopp, Y. Simmhan, and V. K. Prasanna. 2013. Optimizations and analysis of BSP graph processing models on public

clouds. In Proceedings of the 27th International Symposium on Parallel and Distributed Processing (IPDPS’13). IEEE, 203–
214.

ACM Computing Surveys, Vol. 51, No. 3, Article 60. Publication date: June 2018.

http://www.frankmcsherry.org/pagerank/distributed/performance/2015/07/08/pagerank.html#fn0
http://neo4j.com
http://infogrid.org/trac
http://www.objectivity.com/products/infinitegraph
http://jung.sourceforge.net
http://orientdb.com/orientdb-vs-neo4j
http://www.gartner.com/newsroom/id/1731916
http://kowshik.github.io/JPregel

Scalable Graph Processing Frameworks: A Taxonomy and Open Challenges 60:51

I. Robinson, J. Webber, and E. Eifrem. 2015. Graph Databases. O’Reilly, Sebastopol, CA.
A. Rowstron, D. Narayanan, A. Donnelly, G. O’Shea, and A. Douglas. 2012. Nobody ever got fired for using Hadoop on a

cluster. In Proceedings of the 1st International Workshop on Hot Topics in Cloud Data Processing (HotCDP’12). ACM, 1–5.
A. Roy, L. Bindschaedler, J. Malicevic, and W. Zwaenepoel. 2015. Chaos: Scale-out graph processing from secondary storage.

In Proceedings of the 25th Symposium on Operating Systems Principles (SOSP’15). ACM, 410–424.
A. Roy, I. Mihailovic, and W. Zwaenepoel. 2013. X-Stream: Edge-centric graph processing using streaming partitions. In

Proceedings of the 24th ACM Symposium on Operating Systems Principles (SOSP’13). ACM, Farmington, Pennsylvania,
USA, 472–488.

P. Roy. 2014. A new memetic algorithm with GA crossover technique to solve single source shortest path (SSSP) problem.
In Proceedings of the 2014 Annual IEEE India Conference (INDICON’14). IEEE, 1–5.

S. Salihoglu and J. Widom. 2013. GPS: A graph processing system. In Proceedings of the 25th International Conference on

Scientific and Statistical Database Management (SSDBM’13). ACM, 1–12.
S. Salihoglu and J. Widom. 2014. Optimizing graph algorithms on Pregel-like systems. Proc. VLDB Endow. 7, 7, 577–588.
S. Salihoglu, J. Shin, V. Khanna, B. Truong, and J. Widom. 2015. Graft: A debugging tool for Apache Giraph. In Proceedings

of the ACM SIGMOD International Conference on Management of Data (SIGMOD’15). ACM, 1403–1408.
M. Sarwat, S. Elnikety, Y. He, and M. F. Mokbel. 2013. Horton+: A distributed system for processing declarative reachability

queries over partitioned graphs. Proc. VLDB Endow. 5, 14, 1918–1929.
K. Schloegel, G. Karypis, and V. Kumar. 2001. Graph partitioning for high performance scientific simulations. In CRPC

Parallel Computing Handbook. Morgan Kaufmann, San Francisco, CA, 491–541.
R. Sedgewick and K. Wayne. 2011. Algorithms (4th ed.). Addison-Wesley Professional, Upper Saddle River, NJ.
D. Sengupta, N. Sundaram, X. Zhu, T. L. Willke, J. Young, M. Wolf, and K. Schwan. 2016. GraphIn: An online high perfor-

mance incremental graph processing framework. In Proceedings of the 22nd International Conference on Euro-Par 2016:

Parallel Processing. Springer-Verlag, New York, 319–333.
B. Shao, H. Wang, and Y. Li. 2013. Trinity: A distributed graph engine on a memory cloud. In Proceedings of the ACM

SIGMOD International Conference on Management of Data (SIGMOD’13). ACM, 505–516.
Y. Shao, B. Cui, L. Ma, and J. Yao. 2013. PAGE: A partition aware engine for parallel graph computation. In Proceedings of

the 22nd ACM International Conference on Information and Knowledge Management (CIKM’13). ACM, 1–14.
A. Sharma, J. Jiang, P. Bommannavar, B. Larson, and J. Lin. 2016. GraphJet: Real-time content recommendations at Twitter.

Proc. VLDB Endow. 9, 13, 1281–1292.
J. Shun and G. E. Blelloch. 2013. Ligra: A lightweight graph processing framework for shared memory. In Proceedings of

the ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP’13). ACM, 135–146.
J. Siek, L.-Q. Lee, and A. Lumsdaine. 2002. The Boost Graph Library: User Guide and Reference Manual. Addison-Wesley,

Upper Saddle River, NJ.
Y. Simmhan and A. Kumbhare. 2013. Floe: A Dynamic, Continuous Dataflow Framework for Elastic Clouds. Technical Report.

University of Southern California, Los Angeles, CA.
Y. Simmhan, N. Choudhury, C. Wickramaarachchi, and A. Kumbhare. 2015. Distributed programming over time-series

graphs. In Proceedings of the IEEE International Conference on Parallel and Distributed Processing Symposium (IPDPS’15).
IEEE, 809–818.

Y. Simmhan, A. Kumbhare, C. Wickramaarachchi, S. Nagarkar, S. Ravi, C. Raghavendra, and V. Prasanna. 2014. GoFFish:
A sub-graph centric framework for large-scale graph analytics. In Proceedings of the Euro-Par 2014 Parallel Processing

Conference. Springer, Cham, 451–462.
Y. Simmhan, C. Wickramaarachchi, A. Kumbhare, M. Frincu, S. Nagarkar, S. Ravi, and V. Prasanna. 2014. Scalable analytics

over distributed time-series graphs using GoFFish. arXiv:1406.5975.
I. Stanton and G. Kliot. 2012. Streaming graph partitioning for large distributed graphs. In Proceedings of the 18th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’12). ACM, 1222–1230.
M. A. Stelzner. 2015. 2015 Social Media Marketing Industry Report. Social Media Examiner, Poway, CA.
P. Strandmark and F. Kahl. 2011. Parallel and distributed graph cuts by dual decomposition. Comput. Vis. Image Underst.

115, 12, 1721–1732.
P. Stutz, A. Bernstein, and W. Cohen. 2010. Signal/Collect: Graph algorithms for the (Semantic) web. In Proceedings of the

9th International Semantic Web Conference (ISWC’10). Springer-Verlag Berlin, 764–780.
Z. Sun, H. Wang, H. Wang, B. Shao, and L. Jianzhong. 2012. Efficient subgraph matching on billion node graphs. Proc. VLDB

Endow. 5, 9, 788–799.
P. Sun, Y. Wen, T. Nguyen Binh Doung, and X. Xiao. 2017. GraphMP: An efficient semi-external-memory big system on a

single machine. arXiv:1707.02557.
S. Suri and S. Vassilvitskii. 2011. Counting triangles and the curse of the last reducer. In Proceedings of the 20th International

Conference on World Wide Web (WWW’11). ACM, 607–614.
SYSTAP, LLC. 2015. Home Page. Retrieved August 10, 2015, from http://mapgraph.io.

ACM Computing Surveys, Vol. 51, No. 3, Article 60. Publication date: June 2018.

http://mapgraph.io

60:52 S. Heidari et al.

A. S. Szalay. 2011. Extreme data-intensive scientific computing. Comput. Sci. Eng. 13, 6, 34–41.
S. Tasci and M. Demirbas. 2013. Giraphx: Parallel yet serializable large-scale graph processing. In Proceedings of the 19th

International Conference on Parallel Processing (Euro-Par’13). Springer-Verlag Berlin, 458–469.
N. Thien Bao and T. Suzumura. 2013. Towards highly scalable Pregel-based graph processing platform with x10. In Pro-

ceedings of the 22nd International Conference on World Wide Web (WWW’13 Companion). ACM, 501–508.
J. Tian, J. Hahner, C. Becker, I. Stepanov, and K. Rothermel. 2002. Graph-based mobility model for mobile ad hoc network

simulation. In Proceedings of the 35th Annual Simulation Symposium. IEEE, 337–345.
Y. Tian, A. Balmin, S. Andreas Corsten, S. Tatikond, and J. McPherson. 2013. From “Think Like a Vertex” to “Think Like a

Graph.” Proc. VLDB Endow. 7, 3, 193–204.
M. Treaster. 2005. A survey of fault-tolerance and fault-recovery techniques in parallel systems. arXiv:cs/0501002.
C. E. Tsourakakis, C. Gkantsidis, B. Radunovic, and M. Vojnovic. 2014. FENNEL: Streaming graph partitioning for massive

scale graphs. In Proceedings of the 7th ACM International Conference on Web Search and Data Mining (WSDM’14). ACM,
333–342.

N. Kallen, R. Pointer, J. Kalucki and Ed Ceaser. 2012. Twitter/FlockDB. Retrieved July 28, 2015, from https://github.com/
twitter/flockdb#readme.

L. G. Valiant. 1990. A bridging model for parallel computation. Commun. ACM 33, 8, 103–111.
L. M. Vaquero, F. Cuadrado, D. Logothetis, and C. Martella. 2013. xDGP: A dynamic graph processing system with adaptive

partitioning. In Proceedings of the 4th Annual Symposium on Cloud Computing (SOCC’13). ACM, 1–2.
S. Venkataraman, E. Bodzsar, I. Roy, A. AuYoung, and R. S. Schreiber. 2013. Presto: Distributed machine learning and graph

processing with sparse matrices. In Proceedings of the 8th ACM European Conference on Computer Systems (EuroSys’13).
ACM, 197–210.

C. Vicknair, M. Macias, Z. Zhao, X. Nan, Y. Chen, and D. Wilkins. 2010. A comparison of a graph database and a relational
database. In Proceedings of the 48th Annual Southeast Regional Conference (ACM SE’10). ACM, 1–6.

G. Wang, W. Xie, A. Demers, and J. Gehrke. 2013. Asynchronous largescale graph processing made easy. In Proceedings of

the 6th Biennial Conference on Innovative Data Systems Research (CIDR’13). 1–12.
K. Wang and G. Xu. 2015. GraphQ: Graph query processing with abstraction refinement—scalable and programmable

analytics over very large graphs on a single PC. In Proceedings of the 2015 USENIX Annual Technical Conference (ATC’15).
USENIX, 387–401.

P. Wang, K. Zhang, R. Chen, H. Chen, and H. Guan. 2014. Replication-based fault-tolerance for large-scale graph processing.
In Proceedings of the 44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN’14). IEEE,
562–573.

Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. Owens. 2015. Gunrock: A high-performance graph processing library
on the GPU. In Proceedings of the 20th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming

(PPoPP’15). ACM, 1–12.
X. Wu, X. Ying, K. Liu, and L. Chen. 2010. A survey of algorithms for privacy-preservation of graphs and social networks.

In Managing and Mining Graph Data, Advances in Database Systems, vol. 40. Springer, Boston, MA, USA.
C. Xie, R. Chen, H. Guan, B. Zang, and H. Chen. 2015. SYNC or ASYNC: Time to fuse for distributed graph-parallel computa-

tion. In Proceedings of the 20th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP’15).
ACM, 194–204.

R. S. Xin, J. E. Gonzalez, M. J. Franklin, and I. Stoica. 2013. GraphX: A resilient distributed graph system on spark. In
Proceedings of the 1st International Workshop on Graph Data Management Experiences and Systems (GRADES’13). ACM,
1–6.

K. Xirogiannopoulos, V. Srinivas, and A. Deshpande. 2017. GraphGen: Adaptive graph processing using relational databases.
In Proceedings of the 5th International Workshop on Graph Data-Management Experiences and Systems. ACM, 1–7.

N. Xu, L. Chen, and B. Cui. 2014. LogGP: A log-based dynamic graph partitioning method. Proc. VLDB Endow. 7, 14, 1917–
1928.

J. Xue, Z. Yang, Z. Qu, S. Hou, and Y. Dai. 2014. Seraph: An efficient, low-cost system for concurrent graph processing.
In Proceedings of the 23rd International Symposium on High-Performance Parallel and Distributed Computing (HPDC’14).
ACM, 227–238.

Y. Yamato. 2015. Use case study of HDD-SSD hybrid storage, distributed storage and HDD storage on OpenStack. In Pro-

ceedings of the 19th International Database Engineering and Applications Symposium (IDEAS’15). ACM, 228–229.
D. Yan, J. Cheng, Y. Lu, and W. Ng. 2014. Blogel: A block-centric framework for distributed computation on real-world

graphs. Proc. VLDB Endow. 7, 14, 1981–1992.
D. Yan, J. Cheng, M. Ozsu, F. Yang, Y. Lu, J. C. Lui, and W. Ng. 2016. Quegel: A general-purpose query-centric framework

for querying big graphs. Proc. VLDB Endow. 9, 7, 564–575.
J. Yan, G. Tan, and N. Sun. 2013. GRE: A graph runtime engine for large-scale distributed graph-parallel applications.

arXiv:1310.5603.

ACM Computing Surveys, Vol. 51, No. 3, Article 60. Publication date: June 2018.

https://github.com/twitter/flockdb#readme

Scalable Graph Processing Frameworks: A Taxonomy and Open Challenges 60:53

S. Yang, X. Yan, B. Zong, and A. Khan. 2012. Towards effective partition management for large graphs. In Proceedings of the

ACM SIGMOD International Conference on Management of Data (SIGMOD’12). ACM, 517–528.
E. Yoneki, K. Nilakant, V. Dalibard, and A. Roy. 2014. PrefEdge: SSD prefetcher for large-scale graph traversal. In Proceedings

of the International Conference on Systems and Storage (SYSTOR’14). ACM, 1–12.
Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlingsson, P. Kumar Gunda, and J. Currey. 2008. DryadLINQ: A system for general-

purpose distributed data-parallel computing using a high-level language. In Proceedings of the 8th USENIX Conference

on Operating Systems Design and Implementation (OSDI’08). USENIX, 1–14.
P. Yuan, W. Zhang, C. Xie, H. Jin, L. Liu, and K. Lee. 2014. Fast iterative graph computation: A path centric approach. In

Proceedings of the International Conference for High Performance Computing, Networking, Storage, and Analysis (SC’14).
IEEE, 401–412.

Matei Zaharia. 2012. Home Page. Retrieved March 23, 2016, from http://spark.apache.org.
M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, and I. Stoica. 2012. Resilient distributed datasets: A

fault-tolerant abstraction for in-memory cluster computing. In Proceedings of the 9th USENIX Conference on Networked

Systems Design and Implementation (NSDI’12). USENIX, 1–14.
Z.-J. Zha, T. Mei, J. Wang, Z. Wang, and X.-S. Hua. 2009. Graph-based semi-supervised learning with multiple labels. J. Vis.

Commun. Image Represent. 20, 2, 97–103.
T. Zhang, J. Zhang, W. Shu, M.-Y. Wu, and X. Liang. 2015. Efficient graph computation on hybrid CPU and GPU systems.

J. Supercomput. 71, 4, 1563–1586.
Y. Zhang, Q. Gao, L. Gao, and C. Wang. 2012. Accelerate large-scale iterative computation through asynchronous accumu-

lative updates. In Proceedings of the 3rd Workshop on Scientific Cloud Computing Data (ScienceCloud’12). ACM, 13–22.
Y. Zhang, Q. Gao, L. Gao, and C. Wang. 2012. PrIter: A distributed framework for prioritized iterative computations. IEEE

Trans. Parallel Distrib. Syst. 24, 9, 1884–1893.
Y. Zhang, Q. Gao, L. Gao, and C. Wang. 2014. Maiter: An asynchronous graph processing framework for delta-based accu-

mulative iterative computation. IEEE Trans. Parallel Distrib. Syst. 25, 8, 2091–2100.
D. Zheng, D. Mhembere, R. Burns, J. Vogelstein, C. E. Priebe, and A. S. Szalay. 2015. Flashgraph: Processing billion-node

graphs on an array of commodity SSDs. In Proceedings of the 13th USENIX Conference on File and Storage Technologies

(FAST’15). USENIX, 45–58.
J. Zhong and B. He. 2013a. Medusa: Simplified graph processing on GPUs. IEEE Trans. Parallel Distrib. Syst. 25, 6, 1543–1552.
J. Zhong and B. He. 2013b. Towards GPU-accelerated large-scale graph processing in the cloud. In Proceedings of the 5th

International Conference on Cloud Computing Technology and Science (CloudCom’13). IEEE, 9–16.
J. Zhou, N. Bruno, M.-C. Wu, P.-A. Larson, R. Chaiken, and D. Shakib. 2012. SCOPE: Parallel databases meet MapReduce.

VLDB J. —Int. J. Very Large Data Bases 21, 5, 611–636
X. Zhu, W. Han, and W. Chen. 2015. GridGraph: Large-scale graph processing on a single machine using 2-level hierarchical

partitioning. In Proceedings of the 2015 USENIX Annual Technical Conference (ATC’15). USENIX, 375–386.
X. Zhu, W. Chen, W. Zheng, and X. Ma. 2016. Gemini: A computation-centric distributed graph processing system. In

Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI’16). USENIX, 301–
316.

Received February 2017; revised January 2018; accepted March 2018

ACM Computing Surveys, Vol. 51, No. 3, Article 60. Publication date: June 2018.

http://spark.apache.org

