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Abstract Real-time geospatial applications are ever-increasing with modern Infor-
mation and Communication Technology. Latency and Quality of Service-aware
these applications are required to process at the edge of the networks, not at the
central cloud servers. Edge and fog nodes of the networks are capable enough
for caching the frequently accessed small volume geospatial data, processing with
lightweight tools and libraries. Finally, display the image of the processed geospatial
data at the edge devices according to the user’s Point of Interest. Several kinds
of research are going on edge and fog computing, especially in the geospatial
aspects. Health monitoring, weather prediction, emergency communication, disaster
management, disease expansion are examples of geospatial real-time applications.
In this chapter, we have investigated the existing work in the edge and fog computing
with the geospatial paradigm. We propose a taxonomy on related works. At the end
of this chapter, we discuss the limitations and future direction of the geospatial edge
and fog computing.
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1 Introduction

With the proliferation usage of smartphone and IoT devices, generating, accessing,
and analyzing geospatial data becomes a regular activity. To access and analyze
these geospatial data, computing and processing resources are required [1]. The
provision of resources is varied based on applications. For the large computation,
a huge infrastructure is needed for processing a large amount of geospatial data.
In such cases, the central cloud computing infrastructure is the only solution. IoT
devices have not enough capacity to do so [2]. However, for the small amount
of geospatial data processing, analyzing, and decision making, edge, and fog
computing is a promising technology [3].

A pictorial view of the cloud, fog, and edge computing with geospatial appli-
cations is presented in Fig. 1. Cloud is the core layer where high-end computing
servers and databases are present. Users receive virtualized computing instances

Fig. 1 Geospatial cloud-fog-edge computing layers
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with different configurations for their geospatial applications. Moreover, Cloud is
present multi-hop distance from geospatial applications.

In fog computing layer, the computation is done in any of the fog nodes i.e.,
switches, routers, gateways, access points, base stations [4]. These fog nodes are
present in between the edge devices, i.e., mobile phone, laptop, tab, and the central
cloud server. These fog nodes are capable to compute and analyze the small amount
of geospatial data. After processing and analysis of the geospatial data, these fog
nodes generate a quick decision to the edge devices. Fog computing is effective in
terms of service delay, energy efficiency, network congestion, etc.

Edge computing layer is constructed by the inter-connectivity among nearby
edge devices like mobile phones. As edge computing is very near to the edge
devices, it facilitates high network bandwidth, ultra-low latency, and real-time
response [5, 6] to the geospatial applications like sending alert to the fire station,
change the color of traffic signal lights and its timespan, sending a message to the
medical person about his/her patient’s condition, spread awareness to the fisherman
before the tsunami, make attentive to the workers of the gas station about the leakage
of methane gas from pipeline [7].

Edge and fog computing (EFC), enriches the computing paradigm for real-time
geospatial applications like health monitoring [8–10] systems, sort-term weather
prediction, disaster recovery [11, 12], crop diseases monitoring [13]. In all these
cases, a quick decision has to be taken depending upon the analysis of captured
geospatial data by edge nodes [14]. The response time is a major concern in all of the
above situations. Fast decisions can be obtained from a geospatial EFC system than a
central geospatial cloud system. Geospatial fog computing helps in the computation
of geospatial data, analyzing the data. Return results or alert to the users within a
stipulated time duration by the edge nodes. A layered architecture has been proposed
in [15]. EFC system has an inner, middle, and outer edge layer. Different edge and
fog devices are present in these three layers.

In summary, motivations move towards the Edge-Fog than cloud-centric comput-
ing paradigm are low latency or response-time, less network bandwidth utilization,
uninterrupted service due to minimum distance from edge devices, resource-
constraint at the individual edge devices affects cloud performance, and security
of the edge devices is not controllable by cloud from distance [16].

In this chapter, we present a taxonomy based on a survey of Geospatial based
Edge-Fog computing. There are many surveys exist in edge and fog computing
domain [2, 17–37], but none of them address geospatial aspects. In Sect. 2, we
have discussed the geospatial related researches in Cloud, Cloudlet, Mist computing
environment. A taxonomy on existing research work in geospatial edge and fog
computing has been structured in Sects. 3 and 4 makes a summary of these works
in a tabular form for better understanding. Section 5 expresses the limitations in the
geospatial edge-fog computing domain. Future scopes of geospatial edge and fog
computing is explored in Sect. 6. The conclusion of this chapter has been done in
the last section.
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2 Existing Computing Paradigms

In this section, we focus on ongoing researches on cloud computing, cloudlet, mist
computing with geospatial features.

2.1 Geospatial Cloud Computing

Currently, there are many computing strategies are available. Cloud computing [38]
is the core of all these computing, where a large number of servers, databases are
available. While huge computing is required for a geospatial application, then cloud
is the only option for processing it. As the cloud servers reside multi-hop distance
from the geospatial application nodes, it increases the overall communication delay
which is sometimes critical for real-time geospatial applications like methane gas
leakage monitoring, fire alarming, health monitoring [10]. The characteristics of the
Cloud-GIS has been mentioned in [39], which are the extensible geospatial version
of the cloud characteristics. These are—(i) elasticity of geospatial resources, (ii)
on-demand geospatial services, (iii) measurable and pay-as-you-go for geospatial
resources, i.e. geospatial data, geospatial tools, (iv) accessing diversity, (v) trans-
parency, (vi) service based geospatial applications, and (vii) hardware and resource
extendable. The geospatial based Infrastructure as a Service (IaaS), Platform as a
Service (PaaS) and Software as a Service (SaaS) are discussed in [40]. Along with
these geospatial Data as a Service (DaaS) is also a major concern. Some geospatial
services on the cloud are also mentioned in [41]. OGC compliant geospatial service
orchestrations in the cloud have been done in [42] for geospatial query resolution.
Cloud-based GIS architecture models have been discussed in [43–45]. Geospatial
data indexing [46, 47] is performed for better data management in the cloud.
Geospatial data interpolation [40, 48] is performed in the cloud for determining the
missing geospatial data in the public dataset. Geospatial data mining [49, 50] and
data processing [51–53] are performed for the getting results of the geospatial data
query [54–56]. All these geospatial data mechanisms have been done for getting the
results from the geospatial applications running over the cloud computing platform.

2.2 Geospatial Cloudlet

Cloudlet is introduced to improve the latency of the cloud by caching the copies of
data while users access the mobile applications [57]. It brings the performance of
the cloud closer to mobile users. Cloudlets are computationally less powerful than
the central cloud system [58]. Mobile phone, Laptop, an Access point can be used as
a cloudlet. If many cloudlets are connected with each other, then the single point of
failure can be avoided. Cloudlet supports mobility. The mobile device offloads the
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codes to the cloudlet and the code is migrated to another nearby cloudlet. While the
mobile device reaches under the coverage of the second cloudlet, it starts getting the
executed results from the second cloudlet [59]. Location-based service discovery is
done by the distributed cloudlets [60] and it generates less traffic in the network than
a cloud-based approach. Geospatial query resolution using a cloudlet is performed
in [61]. This approach reduces delay and power consumption than remote cloud
access for geospatial data analysis.

2.3 Geospatial Mist Computing

According to [62], Mist computing is a computing layer between fog and cloudlets.
Sensor and actuator devices are involved in the processing of data, which pushed
the computing towards the edge node of the network [63] where edge devices
are present. This reduces the communication latency within edge devices in
milliseconds. Mist computing enhances the self-awareness among the edge devices
in such a way that edge devices perform their operations with unstable Internet
connections [15]. A Mist-GIS framework has been developed for clustering and
overlying the geospatial data of the Ganga river basin [64] and malaria disease
spread in the state of Maharastra, India [65].

2.4 Discussion

The changes of different parameters like distance from applications, computational
capacity, cost, energy savings, real-time responses, etc. with respect to computing
paradigms are represented in Fig. 2. However, communication delay, computational
capacity, the infrastructural cost is more in a cloud environment than the other
computing paradigms. Moreover, energy efficiency, closeness to the applications,
and real-time response are promising in the edge, fog, and mist computing.
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3 Taxonomy

We have represented a taxonomy on geospatial Edge-Fog computing in Fig. 3.
This taxonomy is based on the existing works in the geospatial domain where the
computation has been done in Edge and Fog computing environment. We have
categories the works into four parts. These are-

• Geospatial Computing: We focus on service and resource management in edge-
fog environments. Resource management is sub-categories in power, delay, cost,
and geospatial data management. Whereas, service management is broken into
four parts, i.e., network, application, geospatial data service, and quality of
service management.

• Geospatial Data: The geospatial data which used for the applications running on
the Edge-Fog computing are mentioned.

• Geospatial Analysis Procedures: The methods or procedures applied to the
geospatial data, which help to identify the emergency or severity of the situations
through the geospatial applications.

• Geospatial Applications: Different types of geospatial applications which run on
the edge and fog computing environment.

In the following subsections (Sects. 3.1–3.4), we elaborate existing related works
that fall into the four categories mentioned above.

3.1 Geospatial Computing

In this section, we discuss about the overall edge and fog computing management.
It includes resource management, and service management.

3.1.1 Resource Management

Resource provisioning has been done depending upon the power, delay, cost by the
edge, and fog nodes. Also, keep in mind about the amount of geospatial data can be
processed and stored by the edge or fog nodes [19].

PowerManagement Edge and Fog computing paradigm are introduced to efficient
power management of the overall network system. In [3, 66–68], the processing of
geospatial data is done at the edge and fog devices of local region. Data processing
at local devices reduces the data transfer to the remote cloud server. This leads to
low power consumption in the overall system.

Delay Management Delay in communication or in service is crucial for applica-
tions. Sometimes, an application loses its relevancy due to the delay. This is one
of the major concerns that introduce Edge and Fog computing instead of Cloud
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Fig. 3 Taxonomy of geospatial edge-fog computing
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computing. In [66], geospatial queries are resolved within nearby Fog devices if
concern data is available that fog devices. Otherwise, fog devices communicate
to the cloud server for processing. They achieved 47–83% improvement in delay
than the only-cloud environment. The shortest path within the critical zone has been
determined in case of emergency situation [68] within nearby fog devices. They
come by 9–11% better in average delay than the cloud platform. In time-critical
applications [67], achieve improvement in delay on user devices as the processing
of information done in nearby fog devices.

Cost Management The cost management includes infrastructure deployment cost,
networking, or communication cost, and application execution cost [24]. Data
offloading cost, process migration cost are also considered for this category.

Geospatial Data Management GIS applications are running based on geospatial
data. These data are large in volume [69]. Only pre-processing of data can be done
in edge and fog nodes because the infrastructure like memory, processor, storage
capacity is small. Pre-processed data forward to the cloud for further processing.
Sometimes, frequency used data are only cached in the edge and fog nodes, which
helps to reply quickly to the user query. Various methods for matching geospatial
vector data are mention in [70].

3.1.2 Service Management

We discuss network management, application management, geospatial data service
management, and quality of service(QoS) management as overall service manage-
ment of the Edge-Fog computing environment.

Network Management Networks are managed in the EFC paradigm through
congestion control, seamless connectivity, and network virtualization. Congestion
in the network can be avoided by minimizing the communication with the cloud
server from the EFC network. Geospatial application requests are coming from
any edge devices, and its resolution performed nearby edge or fog nodes. It
leads to minimizing network traffic. Seamless connectivity helps to connect edge
devices with cloud or fog servers without any latency. Seamless connectivity is
possible with handover technology in future vehicular networks [71, 72]. Network
virtualization has been done by the software-defined network (SDN). Network
function virtualization (NVF) helps to virtualize the traditional network functions.
SDN based work in fog computing done in [73, 74].

Application Management Real-time geospatial applications are road traffic mon-
itoring, weather prediction, a spatial query against any point of interest (POI),
emergency health monitoring. In all these cases, a cluster of reliable edge-fog
nodes, low latency, and dedicated computing resources are required. Augmented
reality (AR), real-time video streaming, content caching technique, bigdata analysis
discussed in [75]. Using offloading technique [76], one nearby edge/fog nodes
can forward computational tasks to its adjacent edge/fog node which has better
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computing resources. Scaling is another aspect that helps to run the application
smoothly. Always the processing of geospatial data amounts is not the same. When
it increases, the computation power needs to increase. This leads to a challenge for
edge/fog nodes. In the case of scalability, cloud is still a promising technology.

Geospatial Data Service Geospatial data are integrated from various sources
through OGC compliant web services [77]. There are five types of web services
available. These are Web Feature Service (WFS), Web Processing Service (WPS),
Web Coverage Service (WCS), Web Map Service (WMS), and Catalogue Service
for Web (CSW). WFS helps to extract the features according to queries. WPS
applies different spatial operations over geospatial data. WMS displays the maps
according to user demands. CSW prepares the registry of the available data sources.

QoS Management Best quality of service is achieved in EFC through energy-
efficient computation, low latency in communication, overall minimal cost, reliable,
and secure connection.

• Energy: In the EFC paradigm, energy is consume minimize through energy-
aware computation offloading, mobility management federation of constrained
devices [35]. In [21], the overall edge computing system will be energy efficient
through edge hardware design, computing architecture, operating system, and
middleware.

• Latency: Computation latency and communication latency are considered for
overall service latency management. Computation latency depends upon the con-
figuration (Processor, RAM) of the edge and fog nodes. Whereas, communication
latency relies on network bandwidth. It can be considered as within edge nodes,
edge node to Fog node, and within fog nodes connectivity.

• Cost: It is the summation of the computational cost, deployment cost, and
networking cost. Network bandwidth is responsible for the networking cost [78].
Whereas, computing devices like processing unit, RAM, virtual machine cost
are considered as computational cost. Deployment of edge-fog nodes and their
communication elements expenses come under the deployment cost.

• Reliability: It is also the main concern while an application is running on
reliable edge or fog nodes. The availability of such computing nodes should be
guaranteed. In [35], mentioned to make a fog service reliable the replication
of required functions is required, but it may not possible due to the limited
computing resources available to the fog devices. So, it is a challenge to make a
service reliable and available which is running in edge and fog devices.

• Security: Heterogeneous and geographically distributed edge and fog nodes have
a major concern about the security. Rogue fog node identification, authentication,
strengthen the network, and data storage security are ways to constitute a security
in the edge-fog environment [79]. There are various security attacks, like Man-
in-the-middle, Distributed Denial-of-Service (DDoS), ripple effects, Injection
attacks [33, 80] can be done through unauthorized access of user [81, 82].
Before deployment of any geospatial applications in the EFC system, the four
basic security requirements, i.e., availability, authenticity, confidentiality, and
data integrity should be verified.
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3.2 Geospatial Data

Geospatial data has its geographic location (latitude/longitude) attached to it. These
data are captured from different types of sensors. It is also captured by the high-
resolution cameras from the satellites. Raster and vector data are primary data
format [83], but in [69] types of geospatial data are extended with Point Cloud data
and Textual data along with prior two categories.

Raster Data It is made up of a grid of pixels and each pixel has an individual value.
All kind of aerial photography and satellite imagery comes into this category. It
includes thematic cartographic maps, topographical maps, orthophotos, time series
of satellite images.

Vector Data It is made up of the point, polyline, polygon. It has a shape
feature, which contains the (x, y) coordinates. The shape contains latitude, polyline
longitude information instead of (x,y) while the representation is done on earth
surface with 2D view.

Point Cloud Data This kind of data helps to visualize the 3D model of the terrain.
Terrestrial Mobile Mapping System (MMS) data [84], LiDAR data are examples of
point cloud data [85].

Textual Data Text data are generated from several applications with location-
tagged [86]. Social media data like Twitter, Facebook data, online blogs are coming
into this category. These help to generate data-driven geospatial semantics.

3.3 Geospatial Analysis Procedures

Geospatial analysis [87, 88] is required for visualization of the geospatial data by
using software and tools. The geospatial analysis methods are described below.

Basic Geospatial Operations Buffer creation, nearest neighbor searching, overlay
analysis are the basic GIS analysis tools. Overlay of the several geospatial layers has
been done based on user queries. It reduces the overload of the computer memory
displaying selected data layers instead of all layers. The clip, Intersect, Union are
the basic overlay tools. Whereas, the buffering technique is used to identify the
affected areas in flood [89], forest fire [90], earthquakes [91], tsunami [92], or
disease outbreak like malaria, dengue fever [93], corona etc.

Geospatial Analytical Methods It includes the clustering of the similar point
patterns, generation of the heat map, analysis of points density. These methods help
to identifying city traffic flow [94], air quality determination [95], monitoring of
greenhouse gas emissions from factories, households, livestock agriculture [96].

Network Analysis This type of geospatial analysis is based on graph analysis,
where the connection between edges and nodes are defined. Transportation prob-
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lems can be solved by finding the shortest path between two cities connected by a
road network, or rail network, or a combination of both networks. This shortest-path
generation helps in healthcare facility [97], tourism facility [98]. Human movement
pattern identification after analyzing the trajectories in the road network has been
done in [99, 100].

Geometric Measurement Distance and proximity between one point to another
point is the basic geometric measurement which is vastly used in the GIS appli-
cations. This measurement helps in tourism facility recommendations [101] like
nearby hotels, restaurants, visiting places, ATM. It also helps to find nearby hospi-
tals, medical shops in heath-care applications [67, 102]. In disaster management,
transfer the victims to the nearby shelters, or reach to the victims with relief
[103, 104].

Data Mining A large number of geo-tagged data generate from sensor nodes,
drone images, mobile devices, crowdsourcing, etc. Data mining is a technique to
generate information after analyzing such unstructured geospatial data. It helps to
identify human movement pattern [100], urban growth over a time period [105],
smarter traffic light control during time zones [106], wildlife monitoring [107].

Geo-statistics Spatial interpolation is a geo-statistics technique [108] to analyse
the surface. This technique estimates the value of an unknown point with the knowl-
edge of nearby known point’s value. Kriging [109], Inverse Distance Weighting
(IDW), Regression are well known geospatial interpolation techniques. Using these
techniques, many geospatial related work like malaria-prone zone identification
[110], heavy metal, i.e. zinc, soil contamination [111], recognize area of irrigation
water [112] for agriculture had been done.

3.4 Geospatial Applications

Here, we have discussed some geospatial applications which are run on the edge-fog
environment or run on the cloud environment with the support of EFC.

Disaster Monitoring Disaster prediction data are stored in telephone central
offices (TCOs). These data are important for disaster monitoring. To prevent data
loss, a data distribution technique among nearby edge devices has been proposed
in [11]. They have used Japan Tsunami prediction data. In [113], identify the
missing people in the disaster recognizing by face. To save the energy and network
bandwidth only significant facial images are sent to the cloud server. Identifying
the disaster-prone area after analyzing geospatial videos and satellite images in fog-
cloud environment [12].

Transportation Monitoring A traffic management system [114] is developed
where RSU and vehicles (both parked and moving) act as fog nodes according to the
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queueing theory. They scheduled traffic flow among fog nodes and tried to minimize
the response time to make it real-time traffic management.

A mobility pattern of moving agents predicted after applying a machine learning
algorithm on spatio-temporal mobility data [67, 115]. It helps to predict the
next location of the moving agents, which added advantage for Time-Critical
Applications.

A prediction model [94] is generated after analyzing of Bing Maps traffic jam
information, and manage traffic flow in the Chicago city.

A smart traffic lighting system is proposed in [106], which is to optimize the
management process. The lighting time changes according to the traffic conditions
of the roads. It reduces human errors in signaling.

Health and Diseases Monitoring Indoor, outdoor patient’s continuous health
monitoring is necessary. Mukherjee et al. [116] proposed a cloud-Fog based solution
for health monitoring with mobility data of patients while he/she is an outdoor
location. Any small health data analysis has been done by fog devices, but any
critical data analysis and mobility data analysis has been done in the cloud server.

A heart disease identifying, HealthFog [117], architecture has been developed
with deep learning technology. They used FogBus for real-time data analysis by
integrating the IoT-Edge-Cloud environment with delay and energy efficiency.
Malaria [65, 110], dengue fever [93] prone zone identification with geospatial map
and taking action accordingly are some aspects in this category.

Tourism Monitoring Geo-tagged Flickr images are mining to detect the accurate
tourist destination in [118]. RHadoop platform helps to organize such big spatial
tourism data in the Cloud platform. A mobile-based tourist recommendation system
has been developed in [101]. A tourist guide application for Cyprus is discussed in
[98].

Agriculture Monitoring Vatsavai et al. [119] synthetically generates images of
crop fields. With the anomaly detection, feature extraction, and unsupervised
technique, they identified the Weeds and crop diseases. Omran et al. [112] proposed
an irrigation water quality evaluation method for agriculture in the Darb El-Arbaein
area. They classified water quality depending on the salinity of the water. The
computed index value determines the quality of the water. High index (above 70)
is good for irrigation, where the lower index (below 40) is bad for irrigation. A
livestock agriculture analysis has been done by [96]. They analyze the dataset of
biodiversity, climate, water, land, people, farms, and animals using the cloud server.

Environment Monitoring The presence of excessive Carbon Monoxide (CO) gas
in the air is a cause of environmental pollution. Monitoring of CO level increment
in pollution-prone areas is developed an application of Fog computing [120]. They
used krigging methods to identify the distance among CO emission areas, calculated
and plotted on Google map using lat/lon information. Air quality also have been
checked at low concentration levels in [95] using AirSensEUR.
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Various mineral resources of India are determined after data mining of spatial big
data and displayed resources using overlay analysis in the QGIS tool [121]. They
also have done Ganga river management using mist Computing.

4 Existing Work on Geospatial Edge-Fog Computing: A
Glance

We have summarised the existing geospatial applications on the edge and fog
computing domain in Table 1. Here, we pointed out the existing papers in the first
column. Second column is said about the edge and/or fog nodes used in their work.
Other computing paradigm, devices applied in different works are presented in the
third column. Fourth column describes the used data in works. In the last column,
the geospatial applications had applied in the corresponding research work.

A large number of applications are associated with Geospatial Edge-Fog domain.
Methane gas leakage monitoring [7] has been done with collected sensor data
by wireless sensor network (WSN) and IoT devices. The data are processed in
Raspberry Pi devices and identified the abnormal sensor data from gas leakage
areas. In other work on CO gas level monitoring [120], gas sensor data are collected
through Mikrokontroller ESP 8266, Access point, MiFi, and data analysis has been
done and stored in the Cloud server.

Healthcare applications in EFC has been proposed in [116]. They used health
data of various aged group students using Internet of Health Things (IoHT) and
stored data in Cloud. Raspberry Pi is used for primary health data analysis. Tuli et
al. [117] used patients’ heart data for identifying health disease. They used FogBus
tool for analysis heart data.

Trajectory data collection for various IoT applications has been elaborated in
[122]. They used taxi trajectory data for analysis. The data collection and analysis
have been done through edge nodes and fog servers respectively. Real-time traffic
management has been proposed by Wang et al. [114]. Road side units(RSU) collects
the real-time data of the roads and analysis in nearby cloudlet. The final data are
stored in the Cloud.

Time-critical application [67] and mission-critical application [68] has been
proposed in EFC domain. Mobility data is analysed to predict the location of the
user in a critical time. So that the facility can be provided to the user easily. They
used mobile devices for tracking the user location and stored in Cloud. On the other
hand, simulated data, and nodes are used for critical mission applications. They used
K* heuristic search algorithm for determining the shortest path to reach the critical
location for the defense sector.

Different types of image data are analysed in EFC for several applications like
disaster situational awareness [12], nanosatellite constellations [123], metropolitan
intelligent surveillance [124]. Satellite image data are used for first two applications.



Table 1 Existing work in geospatial edge-fog computing

Work Edge/fog nodes
Associated
computing Considered data Applications

Klein et al. [7] Raspberry Pi WSN, IoT Sensor data Methane gas leaks
monitoring

Nugroho et al.
[120]

Mikrokontroller
ESP 8266, Access
point, MiFi

Gas sensor,
Cloud server

CO gas sensors
data

CO gas level
monitoring

Mukherjee et al.
[116]

Raspberry Pi Cloud, IoHT Student health
data

Personalized
healthcare

Tuli et al. [117] FogBus Cloud, IoT Heart patient
data

Heart diseases
monitoring

Cao et al. [122] Simulated edge
nodes

Fog server Taxi-trajectory
data

Trajectory data
collection for IoT
applications

Wang et al. [114] RSU Cloud,
Cloudlet

Taxi-trajectory
datasets

Traffic management
system

Ghosh et al. [67] Mobile device Cloud, IoT Mobility data Time-critical
application

Mishra et al. [68] Simulation node WSN, Cloud Simulated data Mission critical
applications

Chemodanov et al.
[12]

Not mentioned Cloud Video and
satellite image
data

Disaster situational
awareness

Denby et al. [123] Jetson TX2 Image sensor Satellite image
data

Nanosatellite
constellations

Dautov et al. [124] Raspberry Pi 3 Cloud CCTV image
data

Metropolitan
intelligent surveillance
system

Barik et al. [121] Raspberry Pi Cloud Mineral
resources data

Mineral resources
information
management

Vatsavai et al. [119] Lenovo
ThinkStation P320
with GPU

Not mentioned Synthetically
generated
image

Weeds and crop
diseases identification

Armstrong et al.
[125]

Clusters of sensors IoT sensors,
Cloud

Safecast data Ionizing radiation risk
detecting

Richardson et al.
[126]

Raspberry Pi-2B,
Pi camera

Single board
computer

Raster data Solar forecasting

Tsubaki et al. [11] Telephone central
offices(TCO)

Not mentioned Japan tsunami
prediction data

Data loss prevention in
natural disasters.

Barik et al. [127] Intel Edison GIS Cloud Global map
data

Different compression
techniques over GIS
data

Das et al. [66] Mobile, Laptop Cloud (GCP) Road network,
rail track, forest
data

Geospatial query
resolution

Higashino et al.
[128]

Cyber physical
systems

IoT, Laser
range scanner

Not mentioned Safety management,
and vehicle speeds
prediction

Liu et al. [113] Edge server Cloud, IoT
device

Face image
data

Missing people search

Liu et al. [129] Performance
oriented edge
computing (POEC)

IoT Not mentioned Multi-scale 3D scenery
processing
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Whereas, CCTV image data is used for the intelligent surveillance application.
Jetson TX2 and image sensors are used for nanosatellite constellations.

Mineral resources data are captured and analysed in Raspberry Pi and Cloud for
providing mineral resources information management [121]. For weeds and crop
disease identification [119], Lenovo ThinkStation P320 with GPU has been used to
process various high definition synthetic crop images. Safecast data processed for
ionizing radiation risk detection [125] and Japan tsunami prediction data analysed
for data loss prevention in natural disasters [11]. Solar forecasting [126] has been
done with the analysis of raster data in Raspberry Pi-2B and single-board computers.
Raster data captured through Pi camera.

Geospatial query processing [66], and different compression techniques [127]
over GIS data are done using EFC. Several geospatial queries are done over road
network, rail track, forest data. Delay and power consumption has been calculated
for different types of geospatial queries. For the compression technique, global map
data has been utilized.

5 Limitations in Geospatial Edge-Fog Computing

Every domain has its limitations. We will discuss here the drawbacks of geospatial
edge-fog computing.

• Geospatial data are large in volume. It is difficult to store and process it in small
computing infrastructure, i.e., EFC. Whereas, the cloud has the advantage of a
large data store.

• Large computation is required for geospatial prediction and analysis. Sometimes
this cannot be fulfilled by EFC.

• Small number of simulation tool, like iFogSim [130, 131], FogBus [132] for EFC
is available.

6 Future Directions

In this section of the chapter, we discuss the future directions of the geospatial
EFC research work. Though many explorations have been done in the edge and
fog computing, very little progress happened with the geospatial domain. Still, we
can think about the following aspects of geospatial Edge-Fog Computing in the
future.

• Investigation of pricing policies is required individually for geospatial data
providers and Edge-Fog computing service providers.

• Geospatial data management in the EFC environment is a challenge. Keeping a
small amount of data within the edge and fog nodes of a distributed manner and
synchronize them.



62 J. Das et al.

• Geospatial application management, EFC resource provisioning, with artificial
intelligence and machine learning technique can be a future trend.

• Every geospatial application, i.e., weather prediction, health-care, crop analysis,
etc. has its own requirements that are different from each other. Application
relevant policies are required for proper management in the EFC environment.

• Automatic orchestration of different geospatial web services to resolve any
geospatial query in the EFC domain can be future aspects.

7 Summary

In this chapter, we have discussed the existing works on the Geospatial Edge-
Fog computing domain in detail. We provide a taxonomy over geospatial EFC
which considered about the different types of geospatial computing management,
geospatial data types, geospatial analysis methods, and geospatial applications. We
provide a brief of geospatial EFC existing work in a tabular form. After that, we
have discussed the limitations of the geospatial EFC. We ended our discussion with
future possibilities of geospatial EFC.
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