
Optimal Geospatial Query Placement

in Cloud

Jaydeep Das, Sourav Kanti Addya, Soumya K. Ghosh, and Rajkumar Buyya

Abstract Computing resources requirements are increasing with the massive gen-

eration of geospatial queries. These queries extract information from a large volume

of spatial data. Placement of geospatial queries in virtual machines with minimum

resource and energy wastage is a big challenge. Getting query results from mobile

locations within a specific time duration is also a major concern. In this work, a

bi-objective optimization problem has been formulated to minimize the energy con-

sumption of cloud servers and service processing time. To solve the problem, a crow

search based bio-inspired heuristic has been proposed. The proposed algorithm has

been compared with traditional First Fit and Best Fit algorithms through simulation,

and the obtained results are significantly better than the traditional techniques.

Keywords Geospatial query · Cloud computing · Energy efficiency · Query

placement · Optimization

J. Das (B)

Advanced Technology Development Centre, Indian Institute of Technology Kharagpur,

Kharagpur, West Bengal 721302, India

e-mail: jaydeep@iitkgp.ac.in

S. K. Addya · S. K. Ghosh

Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur,

Kharagpur, West Bengal 721302, India

e-mail: souravkaddya@cse.iitkgp.ac.in

S. K. Ghosh

e-mail: skg@cse.iitkgp.ac.in

R. Buyya

School of Computing and Information Systems, University of Melbourne,

Melbourne, VIC 3010, Australia

e-mail: rbuyya@unimelb.edu.au

© Springer Nature Singapore Pte Ltd. 2021

D. Mishra et al. (eds.), Intelligent and Cloud Computing,

Smart Innovation, Systems and Technologies 194,

https://doi.org/10.1007/978-981-15-5971-6_37

335



336 J. Das et al.

1 Introduction

Geospatial Query (GQ) processing is essential in the applications of geographical

information systems (GIS), multimedia information systems (MIS), location-based

services (LBS), etc. In GQ, the location is an essential attribute. To access GIS data,

a user can generate GQ from their mobile devices either from a static location or

mobile location. In the best case, if the query resolved in a nearby cloud data center

(DC), which leads to less communication cost and propagation delay. These metrics

will not change for GQs, which are accessed from a static location. Whereas GQs are

coming from mobile location users, metrics will change very frequently. GQs extract

information from a large volume of spatial data [1]. Therefore, the distribution of

GQs in dynamic cloud DCs is challenging [2]. Cloud computing offers a shared pool

of huge resources like CPU core, RAM, storage, bandwidth, etc. Virtualization made

physical resources available to the user by offering an illusion of a dedicated system.

This technique creates multiple virtual machines (VMs) with different configurations

of CPU cores, RAM, storage, bandwidth, etc. As per users requirement, the cloud

service provider (CSP) offers them required VMs.

GQ load distribution means shifting of GQs to the heavy load VMs to low load

VMs. Make a stable cloud environment with equal GQ distribution. While shifting

the GQ, keep in mind that the query should be resolved within its timespan and

the energy consumption will be minimum. In the literature, very fewer number of

works published in GQ placement in the cloud. Lee et al. [3] proposed a spatial

indexing technique that works over HBase for big geospatial data. They considered

containedIn, intersects, within Distance types of GQ and used GeoLife and SFTaxi

Trajectories data points for experiments. In [4], Bai et al. proposed an indexing

technique over HBase distributed database using kNN and window query processing

algorithms to process huge data objects. A learning technique to resolve GQ in the

cloud is discussed in [5]. Akdogan et al. [6] proposed the Voronoi diagram for the

efficient processingof a varied rangeofGQs.The authors havedeployedMapReduce-

based approach to resolve the reverse nearest neighbor (RNN), maximum reverse

nearest neighbor (MaxRNN), and k-nearest neighbor (kNN) queries. GQ resolution

on the cloud using geospatial service chains has been discussed in [7].

On the other hand, many algorithms are proposed for load balancing in the cloud.

Load balancing is a key factor for GQ placement in cloud servers. Kumar and Sharma

[8] proposed an algorithm that is based on a proactive prediction based approach. It

predicts future loads based on the past load history and distributed the loads from

heavy load VMs to underloaded VMs. Calheiros et al. [9] proposed a workload

prediction using the ARIMA model, which helps to get feedback from previous

workloads and update the model accordingly. It helps to assign VMs dynamically

and maintain the user QoS by reducing the rejection rate and response time. Garg

et al. [10] proposed a mechanism to dynamic cloud resource allocation by assigning

maximum workload to a DC as per SLA. To maximize the utilization of the cloud

DC, they integrated noninteractive and transactional applications. It also reduces the

penalty due to less SLA violation as a maximum number of the applications are run

in DCs. [11] proposed a framework which schedules tasks decreasing overall energy



Optimal Geospatial Query Placement in Cloud 337

of cloud data center. Geospatial query resolution is done using cloudlets in [12], and

using fog computing in [13].

From the above literature survey, it is observed that most of the works are done

separately for GQ processing and load distribution in the cloud environment. These

two scenarios have been merged. In this work, GQs are not only resolved in the

user-specified time span but also minimize the overall power consumption of the

cloud environment due to an efficient GQ load balancing algorithm among the VMs.

In this paper, it is assumed that the scheduling of GQs is highly heterogeneous. This

work focus on the minimization of GQ resolving time span and energy consumption.

The key contributions of this paper are:

• Optimal GQ load distribution with minimal timespan and energy consumption.

• Minimize the service time of the GQ.

The rest of the paper is organized as follows. Categories of the geospatial queries

and modeling of processing those queries in the cloud platform are explained in

Sect. 2. In Sect. 3, the problem-solution approach using crow search heuristic has

been discussed. Performance analysis of the proposed scheme is presented in Sect. 4.

Conclusion and future scope of the work are drawn in the last section.

2 System Model

Users generate the GQs through the user interface of web-enabled electronic gadgets,

i.e., mobile, laptop, computer, etc. It will be submitted to the Cloud broker. The cloud

broker will map the GQ with the existing query types. It is also needed to identify

the requirements of geospatial data and geospatial services. There are three types of

servers, i.e., Processing Server, Data Server, and Map Server available in the DC.

The data server keeps geospatial data. The processing server processes the geospatial

data. The map server helps to generate the map on processed geospatial data. After

identification, the broker assigns a VM to execute GQ. When the execution is over,

it generates the GQ results (GQR), which projected to the user interface. A pictorial

view of the system model has shown in Fig. 1.

Assignment of appropriate VM to a GQ is a key feature to distribute the GQ

load. Before the assignment of GQ, it is needed to know GQ types, which helps to

select VM’s specifications during VM to server mapping. The types of GQs [1] are

mentioned below.

• Filter Query—This type of query[14] filters a particular geometry which presents

in another geometry.

• Within Distance—It measures whether one geometry or object is present within

a particular euclidean distance of another geometry or not.

• Nearest Neighbor (NN)—It measures whether geometries is the nearest neighbor

of a particular geometry or not.



338 J. Das et al.

User 1

User 2

User n

.
.
.
 

GQ

GQR

VM 1

VM 2

VM n

.
.
.
 

Map Servers

Data Servers

Processing Servers

G
Q

 1

G
Q

 2

G
Q

 3

G
Q

 m

.
.
.
 

G
Q

 1

G
Q

 2

G
Q

 3

G
Q

 n

.
.
.
 

G
Q

 1

G
Q

 2

G
Q

 3

G
Q

 p

.
.
.
 

GQ

GQR

GQ

GQR

Fig. 1 Geospatial query processing model in cloud

• Geospatial Join Query—It compares one layer of geometry with the layers of

the other geometries. Geospatial index type (that is, R-tree or Quadtree) must be

the same on the geometry column of all the tables involved in the join operation.

2.1 Service Configuration

Cloud DC receives GQs from end-users. To assign GQs in VMs, it has to meet the

resource requirements such as CPU, memory, etc. The VM assigns to the GQ if it

meets the resource requirements of GQ. The selection of VMs with a number of

GQs will be based on its capacity constraints. If requested VM specification is not

available, then CSP may assign a higher configured VM. A cloud DC is configured

with a large number of servers. VMs are also assigned to the nearby cloud DC of

GQ. The nearby cloud DC should fulfill the resource requirement of GQ. Therefore,

the optimal mapping of VM to the cloud server is important for maintaining the

QoS of GQ services. Scheduling of the GQs is required to place into VMs. After the

completion of GQ scheduling, an algorithm is needed for optimal selection of VM

among all available VMs.

2.2 VM to Cloud Server Mapping

A suitable mapping of GQs to VMs is required while optimizing overall GQ

processing time and power consumption of the system. A geospatial query set



Optimal Geospatial Query Placement in Cloud 339

GQ = {GQ1,GQ2, . . . ,GQ p} consists of ‘p’ number of geospatial queries. A VM

set {vm1, vm2, . . . , vmq} consists of ‘q’ VMs. Each GQ has two dimensional (CPU

and memory) resource requests. A crow matrix is generated for the GQ requests

set. The main focus of the GQ placement (GQP) algorithm is to the continuous

optimization of processing time and power consumption. Next, two parameters are

represented mathematically.

2.2.1 Processing Time Calculation:

The service time of the GQ processing can be defined as follows:

Ts = Tw + Tp (1)

where, Ts is Service Time, Tw is Waiting Time in Queue, and Tp is Processing Time

in VM. The queue discipline, m/m/1 [15], is considered . All GQ requests will be

in a FIFO manner. The arrival rate of GQs is λ and μ will be the service rate. The

steady-state probability of ‘p’ numbers of GQs can be calculated. Thus, the expected

number of GQ request in the queue can be assumed, by which the Tw in the queue

can also be computed. Similarly, the calculation of Ts can be done.

Now, to process large number of GQs, it needs more VMs. Increment of the

number of VMs consumes more energy. If the number of VMs increases, then the

energy consumed will be more. This is an NP-Hard problem. Trade-off between

the number of VMs generation and overall energy consumption has been done. The

relation between processing time in VM (Tp) and energy consumption

Tp ∝ Ec (2)

2.2.2 Power Consumption Calculation:

The total power consumption can be defined as below [15]

pwri = (pwrmax
i − pwrmin

i ) ∗ utzi + pwrmin
i (3)

pwrmax
i and pwrmin

i are the maximum and minimum average power consumed while

maximum and minimum utilization is occurred, respectively. utzi is utilization of

vmi .

2.3 Problem Formulation

In this paper, the GQ placement algorithm is modeled as a bi-objective optimization

problem. The objective is to minimize the energy consumption of cloud servers and



340 J. Das et al.

processing time of GQ. The objective function of the GQP algorithm is mentioned

below

Minimize

n�

c=1

Ec and Minimize

m�

p=1

Tp (4)

Subject to the three constraints are mentioned below

• Assignment constraint: It assures that the GQs are placed in such VMs where

each GQ dimensions are matched with the VM dimensions.

• Capacity constraint: It assures that the total VM requirements of theGQ set should

be less than or equal to the total available VMs.

• Placement constraint: It assures to the assignment of a GQ to only one VM which

meets the resource requirements along with all dimensions.

3 Crow Search Algorithm for Geospatial Query Placement

To solve the aforementioned bi-objective optimization problem, the crow search

algorithm (CSA) [16], has been chosen. CSA is a well-known algorithm that is used

to solve many optimization problems. Unlike genetic algorithm (GA), ant colony

optimization (ACO), particle swarm optimization (PSO), chaotic ant swarm (CAS),

Algorithm 1: Crow search algorithm for GQ placement (GQP).

Input: GQs from different users

Result: Assign GQs in appropriate VM

Evaluate the position of the GQs.

Initialize the memory of the GQs.

while i ter < i termax do

Generation of a new assignment of GQs in set GQS  .

for i = 1 to n do
Randomly select a VM vm j that gqi follows.

Define the awareness probability AP.

if r j ≥ APiter
j

then

Check the availability of the resources at VM vm j .

Update the position of gqi in an array GQS .

else
Generate a random VM vmk with resources.

Update the position of gqi in the array GQS .

end

end

if F L < 1 then

Set GQS  = GQS .

else
Perform ‘x’ random shuffles

Update GQS  .

end

if f (GQS  ) is better than f (GQS) then

Set GQS = GQS  .

end

end



Optimal Geospatial Query Placement in Cloud 341

CSAalsomakes use of a populationof seekers to explore the search space. InCSA, the

number of adjustable parameters is less (flight length (FL), and awareness probability

(AP)) compare to the other optimization algorithms. As adjustable parameters are

very difficult to manage. GQP is such an optimization problem where CSA can

be used to find its optimal solutions. For GQ placement, GQs are considered as

crows, and the best VM for GQ placement is equivalent to an optimal food source.

A suitable VM selection is needed as all VMs are uniformly eligible for placing the

GQs. As crows search for optimal food sources, similarly, the GQs are searching

for appropriate VM for processing. The proposed crow search based algorithm for

geospatial query placement into VM is described in Algorithm 1.

4 Performance Evaluation

All experiments are performed in CloudSim 4.0 simulator. The considered number of

hosts 100 and each host has 16 processing elements. The number of VMs is varying

from 100 to 500, and five types of VMs are considered. These are Micro VM(1 Core,

1 GB RAM), Small VM(1 Core, 2 GB RAM), Medium VM(2 Core, 2 GB RAM),

Large VM(2 Core, 8 GB RAM), and xLarge VM(1 Core, 1 GB RAM). The number

of cloudlets (here GQs) is considered within the range of 200−1200. The value of

random shuffle is 20, and i termax is 1000 for keeping the less complexity of the

algorithm.

GQs are processed on a first-come, first-serve basis. The number of GQs against

processing time graph has been displayed in Fig. 2. Also, the comparison has been

done among GQP algorithm with existing Best Fit (BF), First Fit (FF), and Random

allocation algorithms in the context of the number of used VM with respect to the

number of geospatial queries which are depicted in Fig. 3. It has been observed that

Fig. 2 Processing time

versus number of geospatial

queries



342 J. Das et al.

Fig. 3 VMs used by number

of GQs for different

placement strategies

Fig. 4 Variation of power

consumption with the

number of GQs for different

placement strategies

the number of used VMs are increased with the increment of the number of GQs. The

number of VMs are used in GQP is lesser than the other three existing algorithms.

In FF, first GQ is placed in the first VM. Next GQ will check whether it will fit in the

first VM or not. If not, then it moves to the later VM. This moves toward nonoptimal

solutions. In the case of FF, the algorithm checks all the VMs capacity and then

decides where to move the GQs. This is also moved toward nonoptimal solutions.

Figure 4 shows the overall power consumption against the different types of GQs

placement strategies. As less number of VMs are used for resolving GQs in the GQP

algorithm, this leads to the minimal power consumption in GQP compared to the

other three algorithms.



Optimal Geospatial Query Placement in Cloud 343

5 Conclusions and Future Work

The processing of GQ from a mobile location in the cloud server is a challenging

task. Mainly, GIS data resides in the spatial database in huge volumes. To process

a large number of GQ leads to high propagation delay and response time. Also, it

causes higher energy consumption in cloud servers. In this work, an optimization

problem formulated and solved it using crow search based heuristic. The obtained

results are significantly outperforming than traditional FF and BF. An extension of

this work, GQ processing in a multi-cloud environment will be done.

References

1. Shekhar, S., Chawla, S.: Spatial Databases: A Tour. Prentice Hall Upper Saddle River, NJ

(2003)

2. Yang, C., Huang, Q.: Spatial Cloud Computing: A Practical Approach. CRC Press (2013)

3. Lee, K., Ganti, R.K., Srivatsa, M., Liu, L.: Efficient spatial query processing for big data.

In: Proceedings of International Conference on Advances in Geographic Information Systems

(ACM SIGSPATIAL), pp. 469–472. ACM (2014)

4. Bai, J.W., Wang, J.Z., Huang, J.L.: Spatial query processing on distributed databases. In:

Advances in Intelligent Systems and Applications, vol. 1, pp. 251–260. Springer, Berlin (2013)

5. Das, J., Dasgupta, A., Ghosh, S.K., Buyya, R.: A learning technique for vm allocation to

resolve geospatial queries. In: Recent Findings in Intelligent Computing Techniques, vol. 1,

pp. 577–584. Springer, Berlin (2019)

6. Akdogan,A.,Demiryurek,U.,Banaei-Kashani, F., Shahabi,C.:Voronoi-based geospatial query

processing with mapreduce. In: Proceedings of International Conference on Cloud Computing

Technology and Science (CloudCom), pp. 9–16. IEEE (2010)

7. Das, J., Dasgupta, A., Ghosh, S.K., Buyya, R.: A geospatial orchestration framework on cloud

for processing user queries. In: Proceedings of International Conference on Cloud Computing

in Emerging Markets (CCEM), pp. 1–8. IEEE (2016)

8. Kumar, M., Sharma, S.: Deadline constrained based dynamic load balancing algorithm with

elasticity in cloud environment. Comput. Electr. Eng. 69, 395–411 (2018)

9. Calheiros, R.N., Masoumi, E., Ranjan, R., Buyya, R.: Workload prediction using arima model

and its impact on cloud applications qos. IEEE Trans. Cloud Comput. 3(4), 449–458 (2015)

10. Garg, S.K., Toosi, A.N., Gopalaiyengar, S.K., Buyya, R.: Sla-based virtual machine manage-

ment for heterogeneous workloads in a cloud datacenter. J. Netw. Comput. Appl. 45, 108–120

(2014)

11. Primas, B., Garraghan, P., McKee, D., Summers, J., Xu, J.: A framework and task alloca-

tion analysis for infrastructure independent energy-efficient scheduling in cloud data centers.

In: Proceedings of International Conference on Cloud Computing Technology and Science

(CloudCom), pp. 178–185. IEEE (2017)

12. Das, J., Mukherjee, A., Ghosh, S.K., Buyya, R.: Geo-cloudlet: time and power efficient geospa-

tial query resolution using cloudlet. In: Proceedings of 11th International Conference on

Advanced Computing (ICoAC), pp. 180–187. IEEE (2019)

13. Das, J., Mukherjee, A., Ghosh, S.K., Buyya, R.: Spatio-fog: a green and timeliness-oriented fog

computing model for geospatial query resolution. Simul. Model. Practice Theory 100, 102043

(2020)

14. Güting, R.H.: An introduction to spatial database systems. VLDB J. Int. J. Very Large Data

Bases 3(4), 357–399 (1994)



344 J. Das et al.

15. Satpathy, A., Addya, S.K., Turuk, A.K., Majhi, B., Sahoo, G.: Crow search based virtual

machine placement strategy in cloud data centers with live migration. Comput. Electr. Eng. 69,

334–350 (2018)

16. Askarzadeh, A.: A novel metaheuristic method for solving constrained engineering optimiza-

tion problems: crow search algorithm. Comput. Struct. 169, 1–12 (2016)


