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Abstract—Microarray technology allows for the simultane-
ous monitoring of thousands of genes expressions per sample.
Unfortunately, the classification of these samples into distinct
classes is often difficult as the number of genes (features) greatly
exceeds the number of samples. Consequently, there is a need to
investigate new, robust machine learning techniques capable of
accurately classifying microarray data. In this paper, we present
a coevolutionary learning classifier system based on feature
set partitioning to classify gene expression data. A distributed
implementation, which leverages Cloud computing technologies,
is used to address the inherent computational costs of our model.
The development and execution of this application was done
using the Aneka middleware on the public Cloud (Amazon
EC2) infrastructure. Experiments conducted using gene expres-
sion profiles demonstrates that the proposed implementation
outperforms other well-known classifiers in terms of accuracy.
Preliminary analysis into the impact of different Cloud setups
on the performance of the classifier are also reported.

I. INTRODUCTION

Gene expression technology using DNA microarrays, allows
for the monitoring of the expression levels of thousands
of genes at once. As such, they provide important insights
into, and further our understanding of, biological processes.
Consequently, they are key tools used in medical diagnosis,
treatment and drug design [21].

The classification of gene expression data samples into
distinct classes is a challenging task. The dimensionality of
typical gene expression data sets ranges from several thou-
sands to over ten thousands genes. However, only small sample
sizes are typically available for analysis. [22]. “ The curse
of dimensionality” is the common issue in microarray gene
expression data sets which may jeopardize the generalization
ability of most machine learning approaches.

Learning classifier systems [12] are a widely used ma-
chine learning technique for classification problems. They
generate a population of condition-action rules. The eXtended
Classifier system (XCS) [20], a Michigan-style model, has
been successfully tested on a variety of test case and real
world applications. However, the effectiveness of XCS when
confronted with high dimensional data sets (such as microarray
gene expression data sets) has not been explored in detail. XCS

like most other machine learning techniques, is vulnerable to
the curse of dimensionality.

Cloud Computing [8] presents a cost effective approach for
quickly harnessing the compute power required to carry out
classification tasks without having a large distributed infras-
tructure in-house. It provides a wide collection of services that
cover the entire computing stack from the hardware level to the
software level, on a pay as you go basis. Users can elastically
scale up and down their computing infrastructure and leverage
the Cloud to conduct large scale experiments and use these
facilities only for the time needed.

In this paper, we will describe a distributed implementation
of the XCS classifier system – Cloud-CoXCS – and discuss
how the system can be used to classify gene expression
datasets on Public Clouds. Part of this paper has been pre-
sented in [17]. The contribution of the paper is twofold. Firstly,
we investigate how our model can improve the accuracy of
the classification for gene expression datasets. Secondly, we
discuss the advantages of leveraging the Cloud, in particular
the Amazon EC2 infrastructure, for computation by comparing
different setups of testbed for our experiments.

The structure of the paper is as follows: Section 2 provides
background information on the problem of classifying gene
expression datasets, and a brief overview of Cloud Com-
puting technologies. Section 3 describes Cloud-CoXCS and
the components that characterize it. Section 4 describes the
experiments conducted to evaluate the performance of Cloud-
CoXCS and a discussion of the results obtained on two real
datasets with different Cloud setups. Section 5 presents a brief
overview of the related works and conclusions follow.

II. BACKGROUND AND RELATED WORK

The reference context of this work is the field of multi-
population learning classifier system. In this section we will
briefly review the background context and the more relevant
work to the Cloud-CoXCS.

Ritcher et al. [15] investigate the performance gain of
decomposing the problem space in different sub tasks and
assigning them to different XCS instances. In a similar study,
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a multi-population parallel XCS for classification of elec-
troencephalographic signals was introduced by Skinner et al.
[16]. The specific focus of that study was to investigate the
effectiveness of migration strategies between sub-populations
mapped to ring topologies.

Zhu and Guan [23] took the decomposition approach to the
extreme. In the proposed coevolutionary model, individuals in
isolated sub-populations encode if–then rules for each feature
in the data set and are used to classify the partially masked
training data corresponding to the feature in focus.

A. Classification for Gene Data Expressions

Gene-expression profiling using DNA microarrays can an-
alyze multiple gene markers simultaneously. Consequently, it
is widely used for cancer prediction.

Recently, there have been a number of investigations for
class discovery of gene expression data sets using machine
learning techniques: Decision Tree [4], [11], Support Vec-
tor Machines (SVM) [5], [13] and k-Nearest Neighbor (k-
NN) [3].

B. XCS overview

The eXtended Classifier system (XCS) [20] is the most
successful learning classifier systems based on an accuracy
model. XCS maintains a population of classifiers and each
classifier consist of a condition-action-prediction rule, which
maps input features to the output signal (or class).

A ternary representation of the form 0,1,# (where # is don’t
care) for the condition and 0,1 for the action can be used.
In addition, real encoding can also be used to accurately
describe the environment states. Input, in the form of data
instances (a vector of features or genes), is passed to the XCS.
A match set [M ] is created consisting of rules (classifiers)
that can be “triggered” by the given data instance. A covering
operator is used to create new matching classifiers when [M ] is
empty. A prediction array is calculated for [M ] that contains
an estimation of the corresponding rewards for each of the
possible actions. Based on the values in the prediction array,
an action, a (the output signal), is selected. In response to a,
the reinforcement mechanism is invoked and the prediction, p,
prediction error, ϵ, accuracy, k, and fitness, F , of the classifier
are updated [6] (see Figure 1).

Fig. 1. XCS learning scenario for learning a binary row values.

Fig. 2. Cloud Computing Architecture.

C. Cloud Computing

Cloud Computing is a broad term that describes how IT
resources and software services are delivered to end users.
Even though there is no widely accepted definition, a Cloud
can be defined as a type of parallel and distributed system
consisting of a collection of interconnected and virtualized
computers that are dynamically provisioned and presented as
one or more unified computing resources based on service-
level agreement [8].

Figure 2, gives a layered architecture of the Cloud Comput-
ing. The lowest layer is characterized by the physical resources
on top of which the infrastructure is deployed. These can
be clusters, datacenters, and spare desktop machines. This
level provides the horse power of the Cloud. The physical
infrastructure is managed by the core middleware layer whose
objectives are to provide an appropriate run time environment
for applications and the maximum utilization of the physical
resources. In order to provide advanced services, such as ap-
plication isolation, quality of service, and sandboxing, the core
middleware can rely on virtualization technologies. Together
with the physical infrastructure the core middleware represents
the platform on top of which the applications are deployed in
the Cloud. This provides environments and tools simplifying
the development and the deployment of applications in the
Cloud: web 2.0 interfaces, command line tools, libraries, and
programming languages. The user level middleware constitutes
the access point of applications to the Cloud.

The commercial offerings for Cloud Computing are het-
erogeneous and address different customer needs. Among
the major players in the field we can mention Google Ap-
pEngine, Microsoft Azure and Amazon EC2 and S3. Google
AppEngine, and Microsoft Azure are integrated solutions
providing both a computing infrastructure and a platform for
developing applications.

The Cloud Computing model introduces several benefits
for applications and enterprises: applications can dynamically
acquire more resource to host their services in order to
handle peak workloads and release when the load decreases.
Enterprises do not have to plan for the peak capacity anymore,
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but they can provision additional resources on demand and
for the time needed. Moreover, reduced administration and
maintenance costs are implied by moving the IT infrastructure
to the Cloud. On the other hand, the Cloud model introduces
new challenges for what concerns the location of the infor-
mation and the policies that are applied to maintain their
confidentiality.

III. CLOUD-COXCS

Cloud-CoXCS, is a machine learning classification sys-
tem which divide the the searching space into multiple sub
searching spaces and assign an independent XCS to each one.
Cloud-CoXCS benefits from running parallel XCSs on the
Cloud infrastructure to speed up the learning process. Cloud-
CoXCS is composed of three components: CoXCS, Aneka, and
Offspring. In the remainder of the section, a brief overview of
all these three components will be provided.

A. CoXCS

CoXCS is a coevolutionary learning classifier based on
feature space partitioning [2]. It extends the XCS model by
introducing a coevolutionary approach. Figure 3, provides a
schematic example of how different classifiers learn from the
feature space and interact with each other. The CoXCS ar-
chitecture is based on a collection of independent populations
of classifiers that are trained using different partitions of the
feature space within the training dataset. The model uses a
modified covering operator and crossover operators, which im-
proves the generation of new classifiers during the evolutionary
process. After a fixed number of iterations, selected classifiers
from each of the independent populations are transferred to a
different population, the evolutionary cycle is then repeated.
This process continues until a specific accuracy threshold is
reached.

B. Aneka

Aneka [18] is a platform for developing applications and
deploying them on Clouds. It provides a runtime environment
and a set of APIs that allow developers to build .NET
applications that offload their computation on both public and
private clouds. One of the key features of Aneka is the ability
to support multiple programming models (ways of expressing
the execution logic of applications by using specific abstrac-
tions). This is accomplished by creating a customizable and
extensible service oriented runtime environment represented
by a collection of software containers connected together. By
leveraging this architecture, advanced services including re-
source reservation, persistence, storage management, security,
and performance monitoring have been implemented. On top
of this infrastructure, different programming models can be
plugged to provide support for different scenarios such as
engineering, life science, and business applications.

Figure 4, provides an overall view of the services and the
internal architecture of the Aneka Container. A container is
the building block of Aneka Clouds. It provides a collection
of services that perform all the operations required by the

Fig. 4. Aneka Features Overview.

system: security, scheduling, job execution, and storage. The
container can be deployed on either physical machine or
virtual resources that are dynamically provisioned on demand
by interacting virtual machine managers such as Amazon,
VMWare, and Xen. On top of this architecture, three program-
ming models are supported: independent bag of tasks (Task
Model), distributed threads (Thread Model), and mapreduce
(MapReduce Model). Developers can define their own abstrac-
tion for programming distributed applications with Aneka and
simply configure the services required for the scheduling and
the execution of the units of work.

The setup prepared for Cloud-CoXCS has been configured
with the Task Model for the execution of the classification
jobs. The Task Model provides a very simple set of abstrac-
tions that allows developers to define a sequence of unrelated
tasks that do not have precedence or sequencing constraints.
By using the Task Model it is possible to wrap existing legacy
applications or also implement new tasks with any language
supported by the .NET runtime. In the case of Cloud-CoXCS
the existing CoXCS application has been packaged into a
legacy task and remotely executed.

C. Offspring

Offspring [19] is a software tool that allows scientists and
developers to quickly prototype distributed applications. By
using the APIs provided by Offspring, developers can: i)
define the concept of task that will be remotely executed; ii)
define and implement the logic that coordinates the distributed
execution of tasks; and iii) offload the execution of distributed
applications on different distributed systems. Offspring pro-
vides a simple model based on the independent bag of tasks for
structuring distributed applications. It encapsulates the logic of
creating and coordinating the execution of tasks into strategies.
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Fig. 3. High level overview of feature paritioning policy in the CoXCS model.

Strategies are programmable client-side workflows that de-
velopers can define and plug into the environment. By defining
a strategy, developers can coordinate the execution of exist-
ing legacy applications, as in the case of Cloud-CoXCS, or
implement more sophisticated models by implementing their
own tasks. A strategy is composed of a sequence of phases in
which a collection of tasks is generated. Each of these tasks
are submitted through Offspring and executed remotely. Their
successful completion (or failure) can trigger the generation
of additional tasks within the same phase or move strategy to
the next phase. It is possible to model either simple parameter
sweeping applications or complex dynamic workflows.

In the case of Cloud-CoXCS, a multi-phase strategy has
been implemented. In each phase, a number of parallel
learning tasks are generated. The output of a learning task
is a population of classifiers that have been trained against
a given dataset. Once all the learning tasks complete, an
additional task that applies migration among the population
of classifiers will be submitted. It sets the completion of the
phase once its execution finishes. This process is repeated for a
specified number of iterations decided by the user. Algorithm
1 describes in detail the strategy.

IV. EXPERIMENTS

In order to evaluate the performance of the Cloud-CoXCS,
a set of experiments have been conducted using different gene
expression datasets and Cloud setups.

A. Datasets

Two datasets were considered in this study: BRCA (Breast
Cancer gene profiles) data set contains BRCA (15 samples)
and Sporadic (7 samples) which each sample is described by

24,481 genes (features) [10], [11], and Prostate that is col-
lected from 21 prostate cancer patients with 12600 genes [11].

B. Methods

1) CoXCS parameters: CoXCS with a hybrid feature en-
coding scheme was implemented and integrated in Aneka and
Offspring frameworks. The parameter settings for our modified
XCS were based on the default XCS settings recommended
in [7]. The parameter values that were different include:
population sizes of 5000; the exploration/exploitation rate was
set to 0.3. The partitioning scheme used was a simply equal
linear division of the feature space. In this study, we have
employed 20 separate partitions (islands) for all data sets. The
migration ratio was set to 10% of the population size. Five
separate migration stages were used, where the number of
iterations between migration episodes was fixed at 100.

2) Cloud setup: The experiments have been carried out via
distributed infrastructure managed by Aneka and deployed on
Amazon EC2 virtual instances. Two different Amazon images
have been used to configure the system: a master image and
a slave image. The master image features an instance of
the Aneka container hosting the scheduling and file staging
services for the Task Model on a Windows Server 2003
operating system, while the slave image hosts a container
configured with the corresponding execution services deployed
on a Red Hat Linux 4.1.2 (kernel: 2.6.1.7) .

The Aneka Cloud deployed for the experiments is composed
by one master node and multiple slave nodes that have been
added to the cloud on demand. Experiments have been done
to compare different cloud setups. In particular two different
image types have been tested to deploy slave instances:
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Algorithm 1 XCSStrategy
Require: p: number of phases (migration stages)

e: number of parallel evaluations (XCS instances)
d: gene expression dataset
failed: list of failed executions
input: list of input populations
output: list of output populations
AvgAUC: average accuracy
MaxAUC: minimu accuracy
MaxAUC: max accuracy
best: best population

1: for i = 0 to p do
2: clear output
3: create e instances of classifiers task cj
4: partition d into e sets and assigns each set to cj
5: if i > 0 then
6: for j = 0 to e do
7: configure cj with population pj in input
8: end for
9: end if

10: submit the list of classifiers to the cloud.
11: for j = 0 to e do
12: if cj.Success then
13: add output population pj to output
14: update AvgAUC, MaxAUC, MinAUC
15: if cj.AUC ̸= MaxAUC then
16: best← pj
17: end if
18: else
19: add cj to failed
20: end if
21: end for
22: if i < p then
23: create mixer task mi that takes as input all the pj stored

in output.
24: submit the mixer task to the cloud
25: collect pj generated and add it to (or replace it into) input
26: end if
27: end for
28: return best

m1.small and c1.medium. For what concerns the master node,
the m1.small image has been used in both cases.

Table I describes the characteristics of the two different
clouds used for the experiments. It can be noticed that
c1.medium instances provide a computational power that is
double compared with the one provided by m1.small and
exposed as a two core machine. The computing power is
expressed in EC2 Compute Units1. In both cases a complete
parallelism at each stage is obtained because Aneka scheduler

1An EC2 Compute Unit is a virtual metric that is used to express the
computational power of an instance. One EC2 Compute Unit (ECU) provides
the equivalent CPU capacity of a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon
processor.

Experiment Image Type Cores EC2 Units Memory Slave Instances Cost/Hour
Exp 1 m1.small 1 2.5 1.7 GB 20 0.10 USD
Exp 2 c1.medium 2 5 1.7 GB 10 0.20 USD

TABLE I
EXPERIMENTS SETUP. VIRTUAL MACHINE CHARACTERISTICS FOR SLAVE

NODES.

dispatches one task per core. Hence c1.medium instances will
receive two tasks to process each time.

3) Validation: Cross-validation is a standard approach
when running experiments for both bioinformatics and ma-
chine learning tasks (2 fold for the BRCA dataset and 4 fold
for the prostate dataset). For each fold, the area under the
ROC curve (AUC) is calculated (this is a well-known machine
learning technique used to compare the accuracy of different
techniques).

We have also included results generated using other well-
known classifiers. There results were generated using the Weka
package [1].

C. Result and Analysis

Table II lists the accuracy results obtained for each of
the datasets examined. The results obtained using other well-
known classification methods are also listed. For each of the
classifiers, the average AUC value obtained against the test
data has been included. The relative performance of the base-
line XCS and the other classifiers were very similar. The
accuracy performance of the CoXCS was generally better than
other classifiers. However, there is still room for improvement.

Table III, shows the average execution time comparison over
different Cloud setups. The CoXCS execution times recorded
for the Prostate dataset are approximately four times longer
than the execution time for the BRCA dataset. This may be
attributed to the different number of features that characterize
the two gene profiles, giving the approximately equal number
of samples. It is interesting to note, that the setup using the
dual core machines performs slightly worse in the case of
BRCA while it provides a significant drawback in the case of
the Prostate profile. As the number of attributes per partition is
approximately four times larger in the second case, the single
CoXCS task requires more time to complete, and in the case
of a dual core machines, the presence of two learning tasks

Classifier Mode BRCA Prostate

j48 Train 0.92±0.06 1.00
Test 0.35±0.01 0.60±0.10

NBTree Train 1.00 1.00
Test 0.65±0.12 0.46±0.04

Random Forest Train 1.00 1.00
Test 0.51±0.01 0.60±0.09

Logistic Regression Train 1.00 0.50
Test 0.85±0.17 0.50

Naive Bayes Classifier Train 0.99±0.01 1.00
Test 0.90±0.05 0.35±0.04

SVM Train 1.00 1.00
Test 0.53±0.04 0.51±0.07

XCS Train 0.50 0.50
Test 0.50 0.50

Cloud-CoXCS Train 1.00 1.00
Test 0.98±0.02 0.70±0.02

TABLE II
AUC RESULTS. BOLD VALUES INDICATE THE THE CLOUD-COXCS

MODEL WAS SIGNIFICANTLY BETTER WHEN COMPARED TO ALL OF THE
OTHER CLASSIFIERS.
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Setup BRCA Prostate
Fold 0 Fold 1 Fold 2 Fold 3 Fold 0 Fold 1

m1.small 08:26 10:00 10:00 09:00 35:13 40:44
c1.medium 10:42 10:04 15:17 11:42 52:48 53:48

TABLE III
EXPERIMENTS RESULT. EXECUTION TIME (MINUTES).

executing at the same time implies a longer execution time
for both of them. This effect is not noticeable in the case
of the BRCA profile, where the single learning task is very
quick. Since the overall cost of the two setups is the same, it
is possible to conclude that in case of long running computing
intensive tasks, given the same number of cores, it is better to
rely on a setup that uses as many as m1.small instances rather
than half c1.medium instances.

V. CONCLUSIONS

In this paper, we have presented Cloud-CoXCS, a system
for performing gene expression dataset classification on Public
Clouds. Cloud-CoXCS is a system that provides a distributed
implementation of the CoXCS (coevolutionary learning classi-
fier based on feature space partitioning). It relies on the Aneka
Cloud Computing platform and the Offspring environment in
order to harness on demand the computing power offered by
Public Clouds. The Offspring environment provides a mech-
anism to prototype distribution strategies, which coordinate
the logic of the execution and connect them with the selected
distribution middleware.

The experiments performed, using the Amazon Elastic
Compute Cloud (EC2) infrastructure, have demonstrated that
by using Cloud-CoXCS it is possible to obtaining a suitable
Computing Cloud platform for high-dimensional classification
problems.

In order to investigate the advantage of performance on
a cloud characterized by the same number of m1.small in-
stances, and on a cloud of c1.medium instances whose number
was half of the previous one. The experimental results have
demonstrated that in case of computationally intensive tasks,
the execution time plays a critical role in determining the
performance of the cloud. More precisely, for very short tasks
there is no different between the two setups, but for long
running tasks the setup characterized by dual core machines
is less performance.

In future work, we will conduct more detailed experiments
investigating distributed classification based on CoXCS by
considering different Cloud computing resource pools created
using technologies such as Xen and VMWare, and the inte-
gration as being supported by Aneka.
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