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Abstract 

 
Grid computing has emerged as a viable method 

for solving computational and data intensive 

problems, applicable over various domains from 

business computing to scientific research. 

However, grid environments are largely 

heterogeneous, distributed and dynamic, 

increasing the complexities involved in developing 

grid applications. Several software constructs 

have been developed to provide programming 

environments that hide these complexities, 

simplifying grid application development. In this 

paper, we present the Grid Thread Programming 

Environment (GTPE) for the Gridbus Broker [1], 

a software grid resource broker developed at the 

GRIDS Lab, University of Melbourne. GTPE is 

implemented in pure Java and consists of a thread 

library that interacts with the Gridbus broker to 

provide transparent access to grid services. As 

such, GTPE provides a finer level of application 

control while freeing the developer from the 

complexities introduced by grid resource 

management. This paper describes architecture, 

overall design, implementation and performance 

evaluation of the grid thread programming 

environment. 

 

1. INTRODUCTION 

 
Grid applications are the next-generation network 

applications for solving the world’s computational 

and data-intensive intensive problems and support 

integrated and secure use of a variety of shared and 

distributed resources such as high-performance 

computers, workstations, data repositories, 

instruments, and even sensors. However, the 

heterogeneous and dynamic nature of the grid 

requires that grid applications not only be high 

performing but also robust and fault-tolerant. 

Designing and implementing applications that 

possess such features from the ground up is often 

difficult. As such, several middleware 

programming environments have been developed 

to provide grid management services, with the aim 

to reducing the complexities involved with grid 

application development. One such programming 

environment is provided by the Gridbus Broker [1] 

through an extensive Java Application 

Programming Interface (API).  

The Gridbus Broker, developed at the GRIDS 

Lab at the University of Melbourne, is a software 

component that permits access heterogeneous 

resources transparently, providing services such as 

resource discovery, secure access, scheduling, 

monitoring, and job submission [3]. Although 

application development using the Gridbus 

Broker’s object-orientated API is straightforward, 

there exist certain drawbacks when working 

directly with the API. The coarse-grain nature of 

jobs, the units of work assigned to a grid node, 

requires them to be implemented as separate 

executable binaries and copied over to the nodes 

for execution. Programmers using the Gridbus API 

are often required to develop two programs; one to 

interact with the Gridbus broker and another that 

performs the actual computational work. The 

application interfacing to the Gridbus broker is 

required to specify low-level constructs such as 

copy, execute commands and program arguments. 

While the task of specifying these parameters is 

not difficult, it may be tedious for applications 

utilizing a large number of different job programs 

and detracts focus from the original problem task. 

Additionally, since the grid is a heterogeneous 

environment, it may be necessary to provide 

different recompilations of the job programs 

(unless they are in Java bytecode) or develop 

conversion plug-ins.  

We argue that for certain applications it is more 

intuitive to be able to think of the computations as 

functions or threads that could be “executed” from 

within the application. Using a thread library 

would allow programmers to develop a self-

contained grid application, distributing threads for 
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execution instead of programs. This frees the 

programmer from having to specify application-

descriptors or lower-level commands. Threads also 

afford the programmer an additional amount of 

flexibility as it is possible to work with thread 

level objects using methods not possible with 

external job programs.  

This paper presents the Grid Thread 

Programming Environment (GTPE), a 

programming environment implemented in Java 

utilizing the Gridbus Broker API. GTPE further 

abstracts the task of grid application development, 

automating grid management while providing a 

finer level of logical program control. In the 

following section, we describe the design and 

architecture of the GTPE system. Section 3 

discusses the GTPE implementation, with an 

emphasis on the services provided. This is 

followed by a section on performance testing 

utilizing a sample application developed using 

GTPE. This paper concludes with known 

limitations of the current system and 

considerations for future work. 

 

2. ARCHITECTURE 

 
In this section, we present a high-level overview of 

Grid-Thread Programming Environment that uses 

services provided by the Gridbus Resource Broker 

for deploying threads on global Grids. The GTPE 

is architected with the following primary design 

objectives: 

 

1. Usability and Portability. The 

heterogeneous nature of resources on the grid 

requires that programs running on them be largely 

processor and architecture independent. Hence, a 

grid programming environment should be geared 

towards designing applications that are able to run 

successfully on different machines. 

2. Flexibility. The grid programming 

environment needs to support a large class of grid 

applications and impose as few restrictions as 

possible.  

3. Performance. One of the main 

advantages of working on the grid is the high 

performance that can be obtained by parallel 

execution. A grid programming environment 

should ensure that quality of service is maintained 

in a dynamic environment.  

4. Fault Tolerance. Resources are not 

globally administered in the grid and hence, can 

join and exit the grid at any time. There is also 

exists a non-zero probability that a resource will 

fail during computation. As such, grid 

programming environments have to provide 

mechanisms for detecting changes to the grid 

environment and recovery services.   

5. Security. Grid applications will normally 

be executed on remote servers across multiple 

administrative domains. Security is hence a 

concern and it is necessary to ensure secure access 

to these resources and the protection of 

information during transport of code and data. 

 

To support these design objectives, GTPE was 

implemented in pure Java as a layer on top of the 

Gridbus Broker API. GTPE is responsible for 

thread management and interfacing to the broker 

which provides grid services. Figure 1 illustrates 

an architecture block-diagram of GTPE. GTPE 

consists of two main components, the 

GridApplication class and the GridThread class.  

The GridThread object forms the atomic unit of 

remote, independent work. All user defined grid 

threads derive from the GridThread abstract base 

class. The subclass has to override the start and the 

callback methods. The start method is executed on 

the remote nodes and hence, the computational 

work intended for remote execution should be 

defined in this method. The callback method is 

executed at the local client node once the thread 

has finished executing on the remote node and has 

been transported back. The callback method can 

be used for a variety of functions including the 

aggregation of results and the reporting of thread 

completion to the user.  

The GridApplication object is responsible for 

thread management and providing near-transparent 

access to the grid via the Gridbus broker. The class 

presents a single point of control to the 

programmer. GridThreads are added to a 

GridApplication object for execution on remote 

nodes. The GridApplication object provides 

mechanisms to capture and restore thread states, as 

well as job wrapping and thread monitoring 

services.  

The Gridbus-Thread Programming 

Environment architecture is relatively simple and 

supports the aforementioned design objectives. 

GTPE is implemented in pure Java and as such, 

benefits from its “write-once-run-anywhere” 

model. User derived grid threads are inherently 

portable and able to run on any system which 

provides access to a Java Virtual Machine. 

Performance is supported via dynamic 

scheduling and modern Java compilers, which are 

able to able to generate Java code capable of 

execution speeds comparable to traditional high-

performance languages [4]. Secure access and job 

submission to remote nodes is supported via the  
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Figure 1: Grid Thread Programming Environment (GTPE) Architecture. 

 
Gridbus broker and thread monitoring provides a 

mechanism for detecting thread failures on remote 

nodes. 

 

3. DESIGN AND IMPLEMENTATION 

 
We now present the implementation of GTPE 

layer based on the architecture described in the 

previous section. Figure 2 illustrates the main 

components of GTPE and the methods 

implemented in each class.  

 

3.1. Resource Discovery and Access 

 
The GridApplication class provides the 

addComputeServer method that permits users to 

specify applicable grid resources. Version 2.0 of 

the Gridbus broker (and hence, GTPE) supports 

the following a range of middleware for 

computational resources (Globus v2.4 and v3.2, 

Alchemi v0.8, and Unicore Gateway v41) and data 

resources (SRB v3.x and Globus Replica Catalog) 

[3]. If no resources are specified, a set of servers is 

loaded from the resources.xml file, which specifies 

default resources and their attributes. The Gridbus 

broker manages access to these systems, providing 

secure access via proxies and credentials [3].   

 

3.2. Thread Object State Capture and Job 

Wrapping  

 
To capture objects into a form which can be 

distributed, GTPE utilizes Java serialization. The 

GridThread base class implements the 

java.io.Serializable interface and two static 

methods, serializeMe (to write the thread object to 

a state file) and loadMe (to load an object from a 

serialized state file)
1
. As such, all derived  

                                                 
1

 Future work involves permitting serializeMe and 

loadMe member functions to be overridden in subclasses. 

This would allow developers to specify more optimized 

serialization methods.   
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Figure 2: UML Diagram of the GTPE Main Components. 

 
subclasses are serializable by default. Serialization 

is automated by the GridApplication class and is 

transparent to the user application. A Java 

ArrayList, threads, to utilized store and manage 

the GridThreads. When a thread is added to the 

ArrayList, it is immediately serialized to a state 

file with a unique filename. This state file is 

grouped together with the user derived GridThread 

class file (obtained using Java class inspection), 

and the GridThread class file and wrapped into a 

Gridbus broker job along with the appropriate low-

level copy and execute commands. The job object 

is then added to the Gridbus broker for scheduling 

and submission to a suitable grid node.  

 

3.3. Thread Scheduling 
 

The Gridbus broker utilizes the concept of a 

computational economy [5] and version 2.0 

provides five different scheduling types; cost-

optimized, time-optimized, cost-and-time-

optimized, cost-and-data-optimized and time-and-

data-optimized [3]. It is possible to set the 

scheduling algorithm used via the setScheduler 

method providing the application developer with 

the flexibility of selecting the most optimal 

scheduling approach for the task. If no scheduler is 

specified, the GridApplication defaults to using the 

cost-optimized approach.  

 

 

 

 

3.5. Thread Execution and Monitoring 

 
Thread scheduling, distribution, execution and 

monitoring is started by calling the 

GridApplication.start method. The start method 

can only be called once per session to prevent the 

spawning of multiple resource brokers. At the 

remote node, the main function in the GridThread 

base class detects the appropriate user defined 

subclass and instantiates the appropriate thread 

object via Java reflection. The loadMe method is 

called to restore the thread’s serialized state and 

the thread’s start method is invoked. When the 

start method returns, the thread’s state is serialized 

to a file on disk via the serializeMe method and 

transported back to the local node.  

To provide thread monitoring services, the 

GridApplication class implements the 

Gridbus.broker.event.JobListener interface. Each 

GridThread has an associated status variable which 

stores one of four possible execution states; 

notsubmmited, running, finished or failed. The 

default status is the notsubmmited state and 

remains unchanged while it is waiting for transport. 

When the thread has been submitted to the remote 

node, its status variable is updated to running. If a 

thread successfully completes, its state in the 

threads ArrayList is updated by de-serializing the 

finished thread state file, its status is set to finished 

and the thread’s callback method is called. If a 

thread fails during execution, an error report is 

generated and its status is changed to failed.   
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3.6. Additional Functionality 

 
GTPE provides additional functionality to 

minimize the effort necessary to work with grid 

threads. A barrier function is implemented 

allowing users to synchronize threads and the 

getThreads method is available for retrieving 

threads that have been added to the threads array. 

These methods are especially useful when 

aggregating results or performing some final 

analysis which requires all threads to have 

completed execution. Hence, unlike regular broker 

jobs, it is possible to work with updated threads 

after execution on a remote node. Additionally, the 

stop method is provided to terminate the 

scheduling and distribution of threads.  

 

4. GTPE PERFORMANCE 

EVALUATION 

 
To evaluate the performance characteristics of 

applications utilizing GTPE, we created a sample 

application, PrimeFinder, which computes the 

number of primes smaller than a supplied 

parameter N utilizing T number of threads. For our 

purposes, PrimeFinder was not heavily optimized 

and distributes work among threads in the 

following naïve fashion: For a given N and T, the 

thread Ti (where i = 2, 3…, T) performs a 

primality test all numbers in the set: 

 

{2i – 1+ 2jT for j = 0, 1, 2, 3…, k where (2i - 1 + 

2kT) ≤ N}. 

 

For example, for N = 10 and T = 2, thread T0 

evaluates {1, 5, 9} and T1 evaluates {3, 7}. Figure 

3 shows the basic algorithm of the PrimeFinder 

sample application
2
.  

Our test bed consisted of two resources, 

belle.cs.mu.oz.au and manjra.cs.mu.oz.au, both 

based in the GRIDS laboratory, at the Department 

of Computer Science and Software Engineering, 

University of Melbourne. Table 1 lists the 

configuration of both resources.  

We then evaluated the performance of the grid-

enabled sample application by recording and 

comparing the execution times for varying values 

of N and T. Note that if T is one, then GridThreads 

are not utilized and the algorithm is run locally on 

                                                 
2
 We acknowledge that the number 2 is always skipped 

when using this algorithm. However, since we are only 

interested in the total count of primes smaller than N, we 

take into account this special case by evaluating 1 as 

prime.  

a single resource (belle.cs.mu.oz.au).  Table 2 

below lists the performance results obtained from 

our tests and Figure 3 graphs our results for the 

PrimeFinder with T = 1, 2, 4, 8 and 14. Our results 

show that for values of N larger than 50 million, a 

performance increase of approximately 300 to 360 

percent (as compared to the non-threaded 

performance results) when utilizing 8 or more 

GridThreads.  

 

 

 
int startPoint = 2*threadID – 1;  

int stopPoint = N; 

int step = 2*numberOfThreads; 
 
public void start() { 

total = 0;   

 for (int i=startPoint; 

i<=stopPoint; i=i+step){ 

  if (isPrime(i)) total++; 

 } 

} 

 

public boolean isPrime(int N) { 

 int max = (int) Math.sqrt(N); 

 for (int div = 2; div <= max; 

div++) { 

  if (N % div ==0)  

   return false; 

 } 

 return true; 

} 

 

 
Figure 3: Basic algorithm of the PrimeFinder 

sample application 

 
We also observe that the performance gains 

obtained from utilizing a larger number of threads 

is non-linear and in certain cases, detrimental. This 

result is can be explained by the fact that 

increasing the number of threads also increases the 

overhead associated with thread transport and 

management. Hence, there exists an optimal 

number of threads for each input N, after which 

the addition of more threads would only serve to 

decrease overall performance. We expect this 

result to be applicable across all applications 

developed with GTPE.  

 

5. RELATED WORK 

 
There has been a significant amount of research 

devoted to building grid programming 

environments. Similar work involving Java 

distributed threads include a thread extension [6] 

to KaRMI [7] and JavaParty [8]. KaRMI is an 

optimized implementation of Java’s Remote 
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Method Invocation (RMI) and serialization. RMI 

provides communication across distributed virtual 

machines, allowing Java applications to reference 

and access remotely exported objects. JavaParty 

provides remote objects to Java by declaration, 

simplifying multi-threaded cluster programming in 

Java. Other projects which use a middleware 

library to implement distributed computing in Java 

include Ibis [9], FarGo [10], JavaSymphony [11] 

and J-Orchestra [12]. A grid-enabled message 

passing variant utilizing Java is G-JavaMPI [13]. 

 

Server NameServer NameServer NameServer Name    ConfigurationConfigurationConfigurationConfiguration    Grid MiddlewareGrid MiddlewareGrid MiddlewareGrid Middleware    

belle.cs.mu.oz.au IBM eServer with 4 IA-32 CPUs. Globus v2.4 

manjra.cs.mu.oz.au Linux Cluster with 13 IA-32 CPUs Globus v2.4 

 

Table 1: Testbed resources 

  

 

N (Maximum Search Value) 
Threads 

20000000 30000000 40000000 50000000 60000000 70000000 

1* 97.43 173.45 261.86 359.55 466.62 581.59 

2 87.96 124.24 166.32 229.61 279.61 337.17 

4 67.19 88.99 117.91 146.96 175.01 198.82 

6 74.09 95.63 124.41 153.85 175.35 217.88 

8 74.32 82.60 105.37 120.50 136.45 167.21 

10 88.90 97.28 120.51 136.08 167.21 190.71 

12 74.98 90.08 105.82 134.82 151.39 173.92 

14 92.69 106.69 107.39 116.97 137.90 161.15 

                      *Run locally without using GTPE.  

 

Table 2: PrimeFinder execution time (seconds) with increasing N utilizing varying number of threads. 
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Figure 3: Bar Graph of PrimeFinder execution time (seconds) with increasing N utilizing 1, 2, 4, 8 

and 14 threads.  
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Another approach has been to provide JVMs 

which are inherently aware of distributed resources. 

A Distributed JVM (DJVM) offers a single system 

image view to Java threads and can provide 

parallel execution for regular Java Threads. 

Projects involving DJVMs include JESSICA2 [14], 

cJVM[15], Java/DSM [16]. The main drawback of 

this method is that the DJVM has to be installed on 

every node for it to be effective. Hence, this work 

is more applicable to locally administered clusters.  

Other notable grid programming environments 

include Alchemi [17], The Grid Application 

Toolkit (GAT) [18], GridRPC [2] and Grid 

Superscalar [19]. Alchemi is a Microsoft .NET 

grid computing framework developed at the 

GRIDS lab which provides a thread programming 

environment similar to that provided by GTPE.  

The Grid Application Toolkit (GAT) provides a set 

of coordinated, generic and flexible APIs that can 

be accessed from a variety of programming 

languages. GridRPC is a Remote Procedure Call 

(RPC) model and API providing standard RPC 

services on grids. Grid Superscalar is a relatively 

new programming environment which 

automatically parallelizes a sequential application 

by automatically detecting task concurrency and 

dependencies.     

 

6. CONCLUSIONS AND FUTURE 

WORK 

 
The main objective of implementing GridThreads 

library for Gridbus Broker was to minimize the 

entry barriers associated with grid applications 

development. Implemented as a pure Java layer on 

top of the Gridbus broker API, the GTPE 

programming environment combines the services 

provided by the broker with the flexibility and 

portability of Java threads. This gives developers 

greater application control while avoiding the 

finer-level complexities associated with grid 

resource management.  

Although GTPE is a currently a stable working 

environment, it is very much preliminary work and 

we plan to extend its functionality to provide 

developers with a fully-featured programming 

environment. Our plans for future work on GTPE 

include:  

1. Usability improvements. It may be 

possible to eliminate the GridApplication class, 

integrating its functionality into the GridThread 

class or the Gridbus Broker, thereby simplifying 

the thread model. We also plan to explore the 

possibility of extending the model to include 

thread grouping for delivery to the same resource.  

2. Flexibility improvements. Threads built 

utilizing GTPE currently have to be self contained. 

We plan to augment GTPE to automatically 

discover file dependencies.  

3. Performance improvements. The 

serialization methods used in GTPE could be 

optimized and enhanced to provide better 

performance. As stated in Section 2, we plan to 

allow developers to override the serialization 

methods and provide optimal implementations that 

best fit their applications.  

4. Fault tolerance. GTPE currently does 

not provide much functionality for the recovery or 

resubmission of failed threads.  

5. Additional features. An interesting area 

of work would be to develop an efficient method 

of inter-thread communication both locally and 

globally. This can be perhaps be achieved using 

Java’s RMI or a more efficient implementation, 

such as KaRMI.  
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