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Abstract—Cloud computing efficiency greatly depends on the
efficiency of the virtual machines (VMs) placement strategy used.
However, VM placement has remained one of the major challenging
issues in cloud computing mainly because of the heterogeneity
in both virtual and physical machines (PMs), the multidimen-
sionality of the resources, and the increasing scale of the cloud
data centers (CDCs). An inefficiency in VM placement strategy
has a significant influence on the quality of service provided, the
amount of energy consumed, and the running costs of the CDCs. To
address these issues, in this article, we propose a greedy randomized
VM placement (GRVMP) algorithm in a large-scale CDC with
heterogeneous and multidimensional resources. GRVMP inspires
the “power of two choices” model and places VMs on the more
power-efficient PMs to jointly optimize CDC energy usage and
resource utilization. The performance of GRVMP is evaluated
using synthetic and real-world production scenarios (Amazon EC2)
with several performance matrices. The results of the experiment
confirm that GRVMP jointly optimizes power usage and the overall
wastage of resource utilization. The results also show that GRVMP
significantly outperforms the baseline schemes in terms of the
performance metrics used.

Index Terms—Cloud computing, cloud data center (CDC),
energy and power consumption, greedy randomized algorithm,
resource wastage, virtual machine placement (VMP).

I. INTRODUCTION

MODERN cloud data centers (CDCs) [1] hosting cloud
computing are very large with large numbers of physical

machines (PMs) that are provided to clients as virtual machines
(VMs). VMs allow a high level of flexibility in terms of CDC
resources management and facilitate the execution of workloads
elastically [2] as well as hardware consolidation for maximiz-
ing energy efficiency [3]. Moreover, VMs are indispensable
in achieving load balancing and fault-tolerance [4] as well as
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simplifying the sharing of CDC resources among end users
efficiently [5].

Although virtualization provides significant benefits in run-
ning CDCs, an efficient virtual machine placement (VMP) strat-
egy is required in order to realize fully the many benefits that
virtualization provides [6]. A VMP strategy assigns a set of VMs
to the most suitable PMs. A VM placement is typically required
when new requests for VMs arrive and when the currently
running VMs need to be relocated to another PMs. An efficient
VM placement strategy maximizes the quality of service offered
to end users, minimizes wastage of resource utilization and
overall operation costs, reduce network traffic, and substantially
reduce CDC consumption of power [7].

As VMP is a critical task in efficiently utilizing CDC re-
sources, it has attracted considerable attention in commercial and
the academia [8]–[10]. In fact, VMP is an NP-hard optimization
problem [4] for which there are practically no optimal solutions,
even for small-scale CDCs. Therefore, many suboptimal solu-
tions have been proposed to address the VM placement problem.
Metaheuristic algorithms [11]–[13] usually provide reasonable
solutions, but they suffer from high execution time and require
parameter tuning. Heuristic algorithms [3], [14], [15] usually
have reasonable execution time; however, the quality of their
solutions is challenging. Therefore, an efficient solution to the
VM placement problem is still an active research topic.

This article addresses the VM placement problem for a hetero-
geneous, large-scale CDCs. VMP is one of the main challenging
CDC problems that has persisted and even exacerbated with
the increasing scale of the modern data centers [16]. Even
though many solutions to the VM placement problem have been
proposed, existing solutions do not consider significant factors
arising from the multidimensionality of resources, scale of the
modern data centers, and heterogeneity of both VMs and PMs.
To this end, we propose an efficient greedy randomized VMP
(GRVMP) algorithm with the aim of minimizing the consump-
tion of power and wastage of resource utilization. To achieve
these goals, we inspire the “power of two choices” model [17]
and combine it with the first fit (FF) greedy heuristic [18].
The proposed approach minimizes the CDC consumption of
power by placing VMs on the more power-efficient PMs and
maximizing the utilization of the resources. It also reduces the
wastages of the resources by balancing the different resources
on the activated PMs. In each step, unlike the FF, our approach
selects d random choices among the list of VMs and selects
the VM that leads to the least resource wastage on the current
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PM. We conduct an extensive simulation to compare GRVMP
with the existing algorithms. The results demonstrate that our
algorithm makes a significant improvement in reducing power
consumption and resource wastage. Our main contributions are
summarized as follows.

1) We formulate the VMP problem as a mixed-integer linear
programming (MILP) with the objectives of optimizing
consumption of power and resource wastage of a CDC.

2) We propose an efficient greedy randomized algorithm,
called GRVMP, to solve the VMP problem.

3) We evaluate GRVMP through extensive experiments on
both synthetic and Amazon EC2 instances. The results
show that GRVMP significantly outperforms the baseline
VMP schemes.

The rest of this article is organized as follows. Related works
are presented in Section II. Section III highlights the system
architecture and problem formulation. The proposed GRVMP is
discussed in Section IV. Experimental evaluation of GRVMP
and analysis of the results and limitations of our work are
discussed in Sections V and VI, respectively. Finally, Section VII
provides conclusion and highlights planned future works.

II. RELATED WORK

VM placement strategy is an active research topic and the
survey papers in [2], [7], and[19] present the background and the
state-of-the-art VM placement strategies. In [20], an algorithm
based on simulated annealing for minimizing the consumption
of power is proposed. Wang et al. [21] introduced an improved
particle swarm optimization (PSO) based strategy to reduce
the consumption of energy. They improve the PSO through
redefining its parameters and operators, plus designing a new
2-D encoding scheme and adopting an energy-aware local fitness
first strategy to update the position of particles. Al-Moalmi
et al. [22] use the gray wolf optimization method to reduce the
consumption of power by optimizing the actively used number
of PMs. An approach to select energy-efficient PMs for hosting
VMs, which is based on an ant colony system (ACS), is discussed
in [13]. The main goal of the aforementioned approaches is to
reduce the consumption of energy mainly by reducing the num-
ber of actively used PMs. However, they ignore the reduction of
the resource wastage.

An ACS-based approach to place VMs on PMs with the aim
of reducing both the consumption of power and the wastage of
resource is proposed in [23]. Similar to this work, Liu et al. [24]
proposed an ACS strategy with a local search mechanism to
ensure the fast convergence of the ACS. In [12], Zheng et al.
formulate the VM consolidated placement as a biobjective prob-
lem, and propose a biogeography-based optimization technique
to minimize the consumption of power and the wastage of re-
sources. Recently, Parvizi and Rezvani [25] formulate the VMP
problem as a nonlinear convex optimization and present the
nondominated sorting genetic algorithm to reduce consumption
of power, wastage of resources, and the number of PMs in active
state. Also, Abohamama and Hamouda [26] propose a hybrid
algorithm based on improved genetic algorithm and multidi-
mensional resource-aware best fit strategy to minimize energy
consumption by reducing the number of PMs in active state and

minimize resource wastage by balancing the usage of the multi-
dimensional resources. Although, these works take into account
resource wastage, in addition to power consumption, the power
efficiency of PMs has been ignored. Metaheuristic algorithms
usually provide reasonable solutions for many optimization
problems. Their execution time, however, is not competitive [6],
which is an issue for cloud data center networks (CDCN).

Li et al. [27] introduce a multidimensional space partition
model to characterize the resource usage state of PMs and use
EAGLE algorithm to minimize the consumption of energy by
reducing the number of PMs in active state and balancing their
multidimensional resource utilization. Gupta and Amgoth [28]
present a new VMP algorithm based on the devised resource
usage factor model to improve the resource usage of PMs. Their
simulation results reveal that the approach can jointly minimize
the consumption of power and the wastage of resources in the
Infrastructure as a Service (IaaS) cloud. Yao et al. [29] propose
an approach, which is based on weighted PageRank, to reduce
the number of PMs used as well as the resource utilization. Wei
et al. [6] formulate the VMP problem as MILP to minimize
energy consumption. Then, they propose a branch-and-bound-
based algorithm and three heuristic algorithms, inspired by
the best fit decreasing (BFD) algorithm to address the VMP.
Although heuristic algorithms provide low execution time, the
quality of their solution usually is a challenging task. Thus,
providing an algorithm with both low execution time and high
efficiency for the VMP problem in a multidimensional, hetero-
geneous, and large-scale CDCN is a challenging task. Table I
summarizes the literature compared to our method and high-
lights their limitations.

III. SYSTEM ARCHITECTURE AND PROBLEM FORMULATION

This section presents our considered framework and formal-
izes the VM placement problem.

A. System Architecture

The main building blocks of the considered CDCN are shown
in Fig. 1. The three-tier architecture is composed of a set of
VMs, m hypervisors, m PMs, different set of switches, and
management entities. The PMs are capable of hosting multiple
VMs. A Hypervisor manages a set of VMs in a PM. Moreover,
the PMs are grouped in Pods. A Pod is composed of multiple
top-of-rack (ToR) switches that can connect to each server that
is located in a rack. In each Pod, multiple ToR switches can
connect to multiple aggregation switches (see the second layered
aggregation switches marked by blue circles). Additionally, each
aggregation switch connects with multiple switches at the core
tier, which is located in the CDCN core component (upper part
of the figure). We use a fat-tree topology to capture the connec-
tion between the network switches and describe the managing
strategy that is applied in the proposed architecture [30]. A
centralized network manager located in cloud network (see the
upper left part of the figure) manages the allocation manager and
the CDCN topology and the networking devices. The allocation
manager performs the VM placement to fairly distribute the VMs
over the PMs and ensure that a VM receives the required amount
of CPU and memory from the PM hypervisor.
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TABLE I
COMPARISON OF RELATED WORKS

Fig. 1. CDCN architecture. ToR:= top-of-rack switch, PM:= physical machine, VM:= virtual machine, GRVMP:= greedy randomize VM placement algorithm,
and {a, b, c} are random numbers.

B. VM Placement Problem Formulation

This section presents the mathematical formulation of the
VMP problem. Table II presents the main notation used in this
article.

1) Physical Machines: Let P = {P1, P2, . . . , Pm} be a set
of m heterogeneous PMs. The capacity of ith PM is repre-
sented as a r-dimension vector Pi = {C1

i , C
2
i , . . . , C

r
i }, where

Ck
i is the kth dimension resource capacity of ith PM, ∀k =
{1, 2, . . . , r}.

2) Virtual Machines: Let V = {V1, V2, . . . , Vn} be a set of
n heterogeneous VMs. The resource requirement of jth VM is
defined as a r-dimension vector Vj = {R1

j , R
2
j , . . . , R

r
j}, where

Rk
j is the kth dimension resource demand of the jth VM, ∀k =
{1, 2, . . . , r}.

3) VMP Problem: VMP is an instance of the multidimen-
sional vector bin packing problem [31]. This problem can be
presented as a mapping function f : V → P in such a way that
some optimization goals and constrained are satisfied. We now
formulate the VMP problem as follows.

Let Xm×n be a binary mapping matrix to represent the
mapping function f between VMs and PMs in which each of its
elements is defined in the following equation:

xij =

{
1 if Vj is placed on Pi

0 otherwise ∀i ∈ P , ∀j ∈ V .
(1)

We use Y n as a binary allocation vector (BAV) to identify the
state of PMs, where each of its element is one when at least one
VM is hosted on the corresponding PM, otherwise that element
would be zero. Hence, we present BAV in the following equation:

yi =

{
1 if

∑n
j=1 xij ≥ 1

0 otherwise ∀i ∈ P .
(2)

To specify the utilization of a Pi’s resources, we define Uk
i as

a normalized utilization vector, which is defined in the following
equation:

Uk
i =

n∑
j=1

xij ×Rk
j

Ck
i

∀i ∈ P , ∀k ∈K. (3)

In this article, it is assumed that the allocation manager knows
the resource requirements of the VMs and the capacity of the
PMs.

Accordingly, the CPU utilization of PM Pi, denoted by Ucpu
i ,

is defined as

Ucpu
i =

n∑
j=1

xij ×Rcpu
j

Ccpu
i

∀i ∈ P (4)

where Rcpu
j and Ccpu

i are, respectively, the CPU demand of VM
Vj and the CPU capacity of PM Pi (in million instructions per
second [MIPS]).
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TABLE II
MAIN NOTATION

We also define Rk
i to be the normalized remaining resource

vector of PM Pi, where its element is obtained as follows:

Rk
i = 1− Uk

i ∀i ∈ P , ∀k ∈K. (5)

In a heterogeneous CDCN, each PM has its own power
consumption profile. Let Pmax

i denotes the maximum power
consumption of PM Pi. Then, we define the power efficiency of
this PM as follows [16]:

Pi =
Ccpu

i

Pmax
i

∀i ∈ P . (6)

Several recent works define various computation models to
derive the energy usage of each PM like [32]–[34]. Here, we
use a linear power model [3], [35], [36] in which the power
consumption of PM Pi is computed as a linear function of its
CPU utilization. So, we have

P power
i =

{
Pmin
i +

(
Pmax
i − Pmin

i

)× Ucpu
i if Ucpu

i > 0

0otherwise ∀i ∈ P

(7)
where Pmin

i is the consumption of power by PM Pi when it is
in idle state.

To determine how a VM placement solution utilizes the
multidimensional resources of a PM, we consider the resource
wastage as well. In literature, the resource wastage formula has
been just presented for 2-D resources [23]. Here, we generalized
the formula such that it could be applicable for r-dimensional
resources. Thus, we use the following equation to calculate the
resource wastage of an r-dimensional PM Pi:

Rw
i =

∑r
k=1 | Rk

i −min(Rk
i ) | +ε∑r

k=1 Uk
i

∀i ∈ P (8)

where min(Rk
i ) indicates the minimum normalized remaining

resource among all dimensions of the PM Pi. Also, ε is a small
positive real number that we set its value equals to 0.0001 [23].

Now, we can model the total power usage and resource
wastage of PMs in a CDCN. The total consumption of power by
PMs is given as

P tot =

m∑
i=1

P power
i

=
m∑
i=1

yi ×
(
Pmin
i +

(
Pmax
i − Pmin

i

)× Ucpu
i

)
. (9)

The total resource wastage of PMs in a CDCN is obtained
based on the following equation:

Rtot =

m∑
i=1

Rw
i =

m∑
i=1

yi ×
∑r

k=1 | Rk
i −min(Rk

i ) | + ε∑r
k=1 Uk

i

.

(10)
4) Overall Problem Formulation: Our main goal is to solve

the VMP problem with the aim of reducing the total power usage
and wastage of the resources simultaneously. We formulate the
VMP problem as a biobjective problem as follows:

min
(
P tot + Rtot

)
(11)

subject to

Service constraint:
m∑
i=1

xij = 1 ∀j ∈ V (12)

Resource constraint:
n∑

j=1

xij ×Rk
i ≤ Ck

i ∀i ∈ P , ∀k ∈K

(13)

under binary control (decision) variables: xij ∈ {0, 1}, yi ∈
{0, 1}: i ∈ P ∀j ∈ V .

Constraint (12) ensures that each VM can be assigned to only
one PM. Constraint (13) guarantees that the resource demands
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of all the VMs hosted on any PM should not exceed its corre-
sponding resource capacity.

Indeed, having m PMs and n VMs, there exist mn solutions
for mapping the VMs to the PMs. In a large-scale CDCN, m and
n usually are in the scale of thousands [37], [38], which make
developing efficient VM placement algorithm a challenging
task. In the following section, we address this challenge and
propose a greedy randomized algorithm that can find an efficient
real-time solution, even for very large scale ms and ns.

Theorem 1: VMP is in the class of NP-hard problems.
Proof: We consider a simplified case of the VMP where

the amount of resources for each PM denote by R̃k
j is

preliminary assigned. Hence, minimizing P̃ tot will only
rely on yi and it is equal to min[(

∑m
i=1 R̃w

i =
∑m

i=1 yi ×∑r
k=1|R̃k

i −min(R̃k
i )|+ε

∑r
k=1 Uk

i

), ε]. The VMP problem can be simplified
as

min
(

Rtot + P̃ tot
)

(14)

subject to
m∑
i=1

xij = 1 ∀j ∈ V (15)

n∑
j=1

xij × R̃k
i ≤ Ck

i ∀i ∈ P , ∀k ∈K (16)

under same control variable. This problem is like an already
known generalized assignment problem (GAP) [39]. GAP prob-
lem tries to minimize the assignment costs of tasks to the agents
under the consumed resource constraint by the tasks while we
have limited agents. Similarly, in the VMP problem, the tasks are
the VMs, and the agents are the PMs. Additionally, each VM has
some limited resource demands that need to cover per assigned
PM, by considering the maximum capability of each PM. Hence,
in the updated problem, we aim to find the appropriatexij , which
indicates the associated VMs to PMs. Since the GAP problem
is NP-hard [39], and it includes the similarity-mapped VMP
problem, we can conclude that the VMP is also NP-hard. �

IV. GRVMP ALGORITHM

In this section, we describe the proposed GRVMP in detail.
We first describe our GRVMP (see Section IV-A). Then, we
provide an illustrative example (see Section IV-B). Finally, we
detail the time and space complexity of the GRVMP algorithm
(see Section IV-C).

A. Proposed Greedy Algorithm

The proposed GRVMP is a greedy randomized approach
for VMP that jointly minimizes the power consumption and
resource wastage in a CDCN. To minimize the power con-
sumption, GRVMP takes into account two main strategies. First,
we order power-efficient PMs in descending manner. Formally
speaking, we list the more power-efficient PMs as the highest
priorities for the placement process. This strategy imposes the
least increase in the energy consumption of a CDCN. Second,
we need to decrease the number of active PMs as much as we
can. This can be done by minimizing the resource wastage of

Algorithm 1: GRVMP Algorithm.
Input: P , V
Output: Placement of VMs on PMs
1: Sort PMs in P in descending order of power

efficiency through (6);
2: while V �= ∅do
3: S = {1, 2, . . . ,min(|V |, d)};
4: Select S VMs from list V , randomly, uniformly;
5: for each Pi ∈ Pdo
6: MIN ←∞;
7: for each Vi ∈ S do
8: if (Rk

j > Ck
j ∀k ∈K) then

9: CalculateRw
ij , i∈P , j∈V through

(17);
10: if Rw

ij < MIN ∀i ∈ P , j ∈ V then
11: MIN ← Rw

ij ;
12: index← j;
13: end if
14: end if
15: if MIN �=∞then

At least one VM can be
hosted on Pi

16: Ck
i ← Ck

i −Rk
index, ∀i ∈ P , k ∈K;

17: V = V /Vindex;
delete Vindex from V

18: break
go to the next sampling Vi

19: else
20: continue

go to the next PM Pi

21: end if
22: end for
23: end for
24: end while
25: return Placement V on P

each activated PM. We also reduce the PM resource wastage by
maximizing the resource utilization of a PM.

To achieve the aforementioned aims, we first sort the list P
based on their power efficiency in descending order. Then, we
get the idea from the “power of two choices” model and for each
step, the algorithm samples d VMs uniformly at random from
the list V . After that, the P is searched and the first PM that
has enough resources to assign at least one of the d VMs will
be chosen (this process is according to the FF strategy). If more
than one VM can be hosted on the chosen PM, the VM with the
minimum resource wastage is placed on that PM.

Algorithm 1 presents the pseudocode of the proposed
GRVMP. In this algorithm, we first sort out the available PMs
based on their power efficiency in decreasing order using (6) (see
line #1). It is worth mentioning that we ignore the underutilized
and overutilized PMs and we do not list them inP . The algorithm
executes the outer big loop (see lines 2–24) to assign all VMs to
the most suitable PMs. To this end, we first select S set of VMs
using the statement we list in line #3. In other words, we give a
uniformly and randomly selected min(|V |, d) VMs as a sample
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Fig. 2. Illustrative example (the total capacity of P1 = (6000 [MIPS], 8192 [MB]). A/B:= PM A after placing VM B; Å/B:= VM B cannot place on PM A.

to assign them to the available PMs (see line #4). Then, from the
beginning of the listP , we check all PMs until we find a PM that
can host at least one of the sampled VMs, which is presented
in S (see lines #5–#23). Among the sampled VMs, we select
the one that has the minimum value of the resource wastage on
Pi (see lines #5–#14). Then, we place the corresponding VM
on the PM and then remove it (i.e., Vindex) from the list V and
update the resource of Pi (see lines #15–#18). However, if none
of the sampled VMs can be hosted on Pi, the algorithm goes to
the next PM (lines #19 and #20). In fact, GRVMP assigns the
most suitable VM to each PM. The resource wastage of Pi when
Vj is placed on it can be calculated as follows:

Rw
ij =

∑r
k=1 |Rk

ij −min(Rk
ij)|+ ε∑r

k=1 U
k
ij

, i ∈ P , j ∈ V (17)

where Uk
ij and Rk

ij are the normalized utilization and the nor-
malized remaining resource of PMPi across kth dimension after
placing VM Vj on it, respectively.

B. Illustrative Example

We now illustrate how the proposed GRVMP algorithm works
with an example. For an illustration purpose, we assume re-
sources across two main dimensions, namely CPU and RAM,
(i.e., r = 2). Also, we set the number of samples equal to three
(i.e., d = 3). Let us consider a PM P1 with the total capacity
P1 = (6000 [MIPS], 8192 [MB]) where a VM V1 with the
demand V1 = (4000 [MIPS], 4096 [MB]) is already hosted
on it. Let us suppose that three VMs are randomly sampled
for placement such that V2 = (2000 [MIPS], 4096 [MB]), V3

= (4000 [MIPS], 2048 [MB]), and V4 = (2000 [MIPS], 1024
[MB]). It is clear that V3 cannot be hosted on P1, whereas V2

and V4 have the potential of assigning to this PM. Hence, the
proposed algorithm calculates the resource wastage for these two
VMs, whereRw

12=0.143 andRw
14 = 0.455. Then, VM V2 places

on PM P1, because its resource wastage value is the smallest.
Fig. 2 presents the case presented in this example.

C. Time Complexity

We now analyze the time complexity of the proposed GRVMP
algorithm as presented in Algorithm 1. In line #1, we sort the m

TABLE III
CHARACTERISTICS OF PMS

MP:= Max Power

PMs, which require O(m logm), where m is the size of the set
of PM, P . The rest of the algorithm includes three nested loops.
In the first loop, external while loop (lines 2–24), we require
to place a set of n VMs on the PMs. In the second loop (lines
5–23), in the worst case, the algorithm needs to examine all the
m PMs. In the final loop (lines 7–22), the algorithm requires to
check at most d VMs and calculate Rw

ij for them. Hence, these
three loops requireO(n×m× d). Thus, the time complexity of
GRVMP algorithm is equivalent to O(n×m× d+m logm).
It is worth mentioning that d is a constant value, where d << n.

V. PERFORMANCE EVALUATION

This section presents an exhaustive experiment and validates
GRVMP against the cutting-edge methods. It consists of the
simulation setup, simulation metrics, and describe our compared
algorithms. Finally, it provides results for both synthetic and
Amazon EC2 scenarios.

A. Simulation Setup

We consider the CDCN consists of different number of
heterogeneous PMs having 2-D resource capacities: CPU and
memory. The capacity of CPU and memory of each PM is
randomly generated from the range [4000–10 000] [MIPS] and
[4096–16 384] [MB], respectively. Also, the maximum power
consumption of a PM is generated randomly in [100–300] [W].
For the minimum power consumption of the PM, it first takes
a random value in [0.6–0.7] and then it is multiplied in the
maximum power consumption of that PM. This implies that
the power consumption of an activated but idle PM is equal
to 60%–70% of its full utilization state [40]. We present the
characteristics of PMs in Table III. The source code of our article
is available in [41].

Focusing on VMs, we consider different numbers of hetero-
geneous VMs with CPU and memory requirements. Here, we
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TABLE IV
CONFIGURATIONS FOR SYNTHETIC VMS

TABLE V
CONFIGURATIONS FOR AMAZON EC2 VMS

take into account two different scenarios: 1) synthetic VMs and
2) Amazon EC2 VMs. In the first scenario, each VM requires
one CPU core with 500, 1000, 2000, or 4000 [MIPS], and 512,
1024, 2048, or 4096 [MB] of RAM (see Table IV). In the second
scenario, we consider four different configurations of Amazon
EC2 instances including micro, small, medium, and large types,
where Table V demonstrates their configurations.

To conduct experimental evaluation, all simulations are coded
in C++ environment. In order to have high confidence results, we
executed 30 runs for each experiment and reported their average,
maximum, and minimum value. We vary the number of VMs
from 128 to 4096, where the number of PMs is fixed to 2000.
Next, we fix the number of VMs to 1024 and vary the number
of PMs from 500 to 4000. All experimental simulations were
carried out on a PC with Intel Core Duo 2.00 GHz processor,
2.00 GB RAM, and Windows 7 operating system.

B. Simulation Metrics

We use five metrics, which are 1) the number of active PMs, 2)
average CPU utilization, 3) average memory utilization, 4) total
resource wastage, and 5) total power consumption to evaluate
the performance of the GRVMP algorithm. These metrics are
also used in [28]. Hence, we have the following.

1) Number of active PMs: We use this metric to show that
how many PMs are required to host all VMs. This metric
not only impacts on the energy consumption of a CDCN
but it can impact on the operational and management costs.

2) Average CPU and memory utilization: These two met-
rics represent the efficiency of VMP algorithm in terms
of resource utilization of activated PMs. High CPU and
memory utilization of PMs in a CDCN, results in more
efficient use of resources provided by cloud providers.
Average CPU and memory utilization of a CDCN with z
(∀z, z ≤ m) where z is the number of active PMs can be
calculated by (18) and (19), respectively

Cavg
z =

1

z

n∑
i=1

yi ×
⎛
⎝ n∑

j=1

xij ·Rcpu
j

Ccpu
i

⎞
⎠ , z ∈ P (18)

Mavg
z =

1

z

n∑
i=1

yi ×
⎛
⎝ n∑

j=1

xij ·Rmem
j

Cmem
i

⎞
⎠ , z ∈ P . (19)

3) Total resource wastage: This metric not only focuses on
the maximization of resource utilization but determines
the load balancing among different resources of each
activated PM. The value of this metric for a CDCN is
obtained using (10).

4) Total power consumption: This metric is a key metric and
mainly depends on the power efficiency of the activated
PMs and their resource utilization along different dimen-
sions. Equation (9) is defined to measure this important
metric.

C. Compared Algorithms

We compare the performance of GRVMP algorithm against
the following heuristic algorithms.

1) First fit decreasing (FFD) [18], [42]: This is a commonly
used benchmark for evaluating the efficiency of VMP
algorithms. First, we sort VMs in decreasing order based
on their CPU demand and then for each VM, it searches
the PM list from the beginning until to find a PM with
adequate resource capacity.

2) BFD [42]: Similar to FFD, this strategy sorts VMs de-
creasingly according to their CPU requirement. Then, each
VM is hosted on a PM that has enough resources and leave
the least CPU resource.

3) Random first fit (RFF): This is a simple randomized strat-
egy where it randomly selects VMs one by one from the
VM list. Then it assigns each selected VM to the first
available PM from PM list.

4) Modified best fit decreasing (MBFD) [3]: MBFD sorts
VMs in decreasing order of their CPU demand and then
selects a PM with the least increase in power consumption
among all the available PMs to host the target VM.

5) MaxMin [14]: Similar to FFD, BFD, and MBFD, the
MaxMin algorithm first decreasingly sorts VMs according
to their CPU demands, then from the beginning of the VM
list it attempts to host as many as possible VMs into the
current activated PM and host as many as possible VMs
from the end of VM list. When the current activated PM
has not enough resources anymore, a new PM is activated.

D. Results

In this part, we provide the results for two aforementioned
scenarios: synthetics (see Section V-D1) and Amazon EC2 real
emulation test bed (see Section V-D2).

1) Synthetic Scenario: To specify our choice of d, we eval-
uate GRVMP’s performance. To this end, we conducted an
experiment in which the number of PMs and VMs are set to
2000 and 1024, respectively. Here, we report the results for three
of the most important metrics and the average value of runs.
As Table VI indicates, having only two choices significantly
improves the performance of the proposed algorithm. Compared
to the case where there is only one choice, the number of
activated PMs is reduced by around 5%. Also, the total resources
wastage and power consumption is improved by 25% and 7%,
respectively. It is important to note that while a few choices
dramatically improve performance, excessive amount of them
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Fig. 3. Simulation results for 2000 PMs where (a) z:= number of active PMs, (b) Cavg
z := average CPU utilization, (c) Mavg

z := average memory utilization,
(d) Rtot:= total resource wastage, (e) P tot:= total resource wastage for various number of VMs, and (f) runtime.

TABLE VI
BEHAVIOR OF THE GRVMP FOR THE DIFFERENT VALUE OF PARAMETER d

UNDER Synthetic Workload

z:= Number of active PMs, Rtot:= Total resource wastage, and P tot:= Total power
consumption.

does not have a significant impact. The reason is that the larger
number of available choices makes it possible for the first PMs
in the PM list to host VMs with their desirable configuration
while not leaving VMs with desirable configuration for other
PMs. This leads to more PMs being activated, and thus to more
power consumption.

Experiment 1: PMs are fixed to 2000 where the number of
VMs varies.

In this experiment, we fix the number of PMs to be 2000
(i.e., m=2000) and vary the number of VMs. Fig. 3 shows the
superiority of the proposed GRVMP over existing algorithms
almost in all aspects. Specially, Fig. 3(a) presents the number
of active servers by varying the number of running VMs. It
indicates that our GRVMP outperforms other algorithms in
terms of the number of PMs needed to host VMs. In this figure,
we can understand that MBFD and RFF, and then FFD and
MaxMin use fewer number of PMs, respectively. BFD shows
the worst performance among the others. This is because of
its strategy to select PMs for assigning VMs, where it selects
PMs with the lowest CPU resource capacity, which leads to the
need for a large number of PMs. For this test, the percentage

improvement of our GRVMP over the second-best results is
about 12%–23%. Fig. 3(b) and (c) shows average CPU and
memory utilization among the tested algorithms, respectively.
From these two figures, we can conclude four points. First and
the most important one is that our GRVMP is the only algorithm
that provides high resource utilization in a load-balancing man-
ner for both CPU and memory resources. Second, although BFD
offers high CPU utilization, its memory utilization is extremely
low (worst of all the compared algorithms). Third, the average
CPU utilization in all algorithms is higher than the average
memory utilization. This is due to the fact that the considered
PMs provide higher memory than CPU. Fourth, both of our
GRVMP and MBFD have the same behavior. Hence, when the
number of VMs increases, the average CPU utilization slightly
increases, whereas the average memory utilization value some-
what decreases. To justify this phenomenon, we should mention
that both GRVMP and MBFD host VMs on the PMs with almost
higher CPU resources. Thus by increasing the number of VMs,
the possibility of hosting VMs with high CPU requirements on
PMs with high CPU capacity increases. Focusing on Fig. 3(d),
we illustrate the total resource wastage of the considered CDCN.
The figure depicts that the total resource wastage of the proposed
GRVMP is significantly less than the others. This significant su-
periority is mainly because of our strategy for placing randomly
selected VMs on PMs [see (17)]. After the proposed algorithm,
RFF works better. This is due to fact that FFD, BFD, MBFD,
and MaxMin algorithms only take into account CPU resource
utilization while random selection of VMs helps RFF to have
less resource wastage. Here, BFD has the worst performance.
Fig. 3(e) shows results for the total power consumption. MBFD
is our main competitor in this test. GRVMP exhibits 11%–17%
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Fig. 4. Simulation results for 1024 VMs where (a) z:= number of active PMs, (b) Cavg
z := average CPU utilization, (c) Mavg

z := average memory utilization,
(d) Rtot:= total resource wastage, (e) P tot:= total resource wastage for various number of PMs, and (f) runtime.

improvement in total power consumption compared to MBFD.
The power consumption of FFD, RFF, and MaxMin is almost the
same, whereas BFD consumes the most power. Finally, Fig. 3(f)
illustrates the runtime results of the compared algorithms. As
we can see, all algorithms provide low execution time. However,
the execution time of MBFD and then BFD is higher than the
others for a large number of VMs. RFF, MaxMin, FFD, and
the proposed GRVMP perform very well even when a CDCN
receives a lot of VM requests.

Experiment 2: VMs are fixed to 1024, whereas the number
of PMs varies.

In this scenario, we have an experiment that fixes the number
of VMs to 1024 (i.e.,n=1024) and varies the number of PMs and
tests our method compared to the state-of-the-art methods. Fig. 4
shows the superiority of the proposed GRVMP over existing
algorithms almost in all aspects.

Fig. 4(a)–(e) illustrates the simulation results of the second
experiment. As we can see from these figures, our GRVMP gives
the best results in all cases. From Fig. 4(a), it is clear that the
proposed algorithm uses far fewer PMs than the others. As the
number of PMs increase, the percentage of improvement also
increases. For instance, compared to RFF, our GRVMP reduces
the number of active PMs from 11% to 22%, and compared to
MBFD the amount of improvement is from 14% to 21%. It is
worth mentioning that since GRVMP sorts PMs by their power
efficiency, with more PMs available it has a higher chance to
host VMs on PMs with more computational power. However,
this is opposite for BFD.

Focusing on Fig. 4(b) and (c), GRVMP performs very well
on average CPU and memory utilization. Although almost all
algorithms provide high average CPU utilization, the proposed

TABLE VII
BEHAVIOR OF THE GRVMP FOR THE DIFFERENT VALUE OF PARAMETER d

UNDER Amazon EC2 Workload

z:= Number of active PMs, Rtot:= Total resource wastage, and P tot:= Total power
consumption.

algorithm also gives high memory utilization. By increasing the
number of PMs, our algorithm increases the average memory
utilization, whereas BFD decreases it. That is because the in-
creasing number of PMs makes it more likely to have PMs
with low CPU and high memory capacities; then, BFD selects
such PMs that result in high memory wastage. However, the
strategy used in our algorithm benefits from these diversities.
Focusing on Fig. 4(d), we can obviously see that our GRVMP
dramatically reduces resource wastage. As the number of PMs
increase the reduction degree decreases. This behavior is also
true for MBFD, whereas it is opposite for BFD. This is due to
the randomness of the dataset. Increasing the number of PMs
makes it more possible for our GRVMP and MBFD to select
more suitable PMs for hosting VMs on them, whereas BFD
selects PMs with low CPU and high memory capacities, which
lead to more unbalanced resource utilization. Fig. 4(e) shows
the results for the total power consumption of a CDCN. As we
can observe, our GRVMP performs the best, MBFD gives the
second, FFD, RFF, and MaxMin have almost the same results
and give the third-best results. BFD has the worst rank. GRVMP
reduces the power consumption from 8% to 15% compared with
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TABLE VIII
PERCENTAGE (%) IMPROVEMENT OF OUR GRVMP Algorithm Compared With Literature FOR EXPERIMENT #3 REPORTED IN SECTION V-D2 (z:=

NUMBER OF ACTIVATED PMS, Rtot:= RESOURCE WASTAGE, AND P tot:= POWER CONSUMPTION)

TABLE IX
PERCENTAGE (%) IMPROVEMENT OF OUR GRVMP Algorithm Compared With Literature FOR EXPERIMENT #4 REPORTED IN SECTION V-D2 (z:=

NUMBER OF ACTIVATED PMS, Rtot:= RESOURCE WASTAGE, AND P tot:= POWER CONSUMPTION)

MBFD. Similar to Fig. 4(a) and (d), by increasing the number of
available PMs, our GRVMP considerably consumes less power.
Again, this is because of our strategy for selecting PMs where
we sort PMs based on their power efficiency. Fig. 4(f) shows
that when the number of available PMs is low, our GRVMP
provides very low running time, comparable to RFF, MaxMin,
and FFD. However, as the number of available servers increases
the runtime of GRVMP somewhat increases. This is because of
sorting PMs based on their power efficiency.

2) Amazon EC2 Scenario: In the second scenario, we carry
out an experiment to see how the parameter d impacts the results,
where we set the number of PMs and VMs to 2000 and 1024,
respectively. Table VII shows the results. Here, we can observe
that d = 4 gives the best results. So, we set d = 4 throughout
all tests done for Amazon EC2 scenarios. It is worth mentioning
that for this scenario, the behavior of the algorithms in terms of
the average CPU and memory utilization almost is similar to the
synthetic scenario. Hence, they are not listed.

Experiment 3: PMs are fixed to 2000, whereas the number
of VMs varies.

In this scenario, we run the experiment for 2000 PMs (i.e.,
m=2000) and vary the number of VMs and compare our method
to the state-of-the-art methods.

Table VIII demonstrates the improvement of GRVMP over
the others with regard to the number of activated PMs, total
resource wastage, and total power consumption. Focusing on the
number of activated PMs, the improvement of GRVMP is over
15% for all the compared algorithms and achieves up to 51%.
Focusing on the resource wastage, GRVMP enhancement rate is
drastically where it is between 60% and 89%. The improvement
in power consumption is above 33% compared to FFD, BFD,
RFF, and MaxMin where the best improvement reaches 75%.
GRVMP shows 16%–18% improvements in total power saving
when compared to MBFD. We should mention an important
point here. Although the improvement of our GRVMP is sig-
nificant, however, it is clear from Table VIII that as the number
of VMs increases, the percentage of improvement decreases.

We have dealt with this issue in depth and found that when
the number of VMs grows, GRVMP has to select some less
power-efficient PMs. It means PMs with less CPU capacity and
higher power consumption. Let us remind that our GRVMP sorts
PMs based on their power efficiency. However, when the number
of VMs is low, the proposed algorithm has the opportunity to host
them on the more power-efficient PMs. It is worth mentioning
that the runtime behavior of the algorithms is similar to Fig. 3(f);
so we do not report it.

Experiment 4: VMs are fixed to 1024, whereas the number
of PMs varies.

In this scenario, we run the experiment for 1024 VMs (i.e.,
n=1024) and vary the number of PMs and compare our method
to the state-of-the-art methods. The results are reported in Ta-
ble IX. In this table, the percentage of improvement in the
number of used PMs varies from 20% to 27% over FFD, from
31% to 51% over BFD, from 16% to 24% over RFF, from 20%
to 24% over MBFD, and from 24% to 31% over MaxMin.
In terms of resource wastage, the proposed algorithm shows
great improvement compared to the other algorithms. This
amount of improvement is to be expected because our GRVMP
places VMs on PMs based on these important metrics, whereas
others do not consider it. RFF has the second-best results on
resource wastage. Considering power consumption, GRVMP
performs very well and provides a significant improvement over
all other algorithms. The main reason behind this improve-
ment is that none of FFD, BFD, RFF, and MaxMin take into
account power consumption during VM placement. Although
MBFD considers this key metric, it ignores the efficient use
of resources of activated PMs. Unlike experiment #3 reported
in Section V-D2, in this experiment we increase the number
of PMs, the improvement percentage of GRVMO increases
for all metrics. To justify this behavior, the higher number of
available PMs gives our algorithm the opportunity of placing
VMs on the more power-efficient and powerful PMs. Here again,
algorithms give almost the similar runtime to those presented
in Fig. 4(f).
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VI. DISCUSSION AND LIMITATIONS

Despite the effectiveness of our GRVMP, several aspects are
remaining that this section addresses them. First, similar to many
of the other works [3], [13], [28], the presented work does not
consider the network topology of a CDCN and flow among
VMs on the application level. Although some recent research
works have focused on this aspect [43]–[45], how to minimize
power consumption, resource wastage, and network bandwidth
consumption has remained as a key challenge in today’s CDCNs.
To address this issue, our problem formulation must be extended
to build a suitable model for network bandwidth consumption.
The model should guarantee the proximity of PMs hosted VMs
of an application. Second, our primary goal in this work is to
focus on the VM placement problem. Therefore, we need to add
some other phases to our algorithm to apply to the VM migration
problem. In particular, we believe that our randomized approach
can apply to the VM selection phase, with a little modification.
Finally, due to the low time complexity and the high performance
of the proposed GRVMP, we can use it in a dynamic service
placement problem in the domain of fog computing [46], [47].

VII. CONCLUSION

In this article, we proposed a greedy randomized algorithm
for VM placement in large-scale CDCNs. We evaluated the
performance of the proposed algorithm with the state-of-the-
art algorithms through extensive simulation experiments. The
results demonstrate that our algorithm significantly reduces the
number of active PMs, the total resource wastage, and the total
power consumption of CDCNs with different configurations.
The results of the experiment show that the improvement of
our algorithm is above 15% for all baseline algorithms and
achieves up to 51%, in terms of the number of activated PMs.
Regarding the resource wastage, the percentage of improvement
is significant, where it is between 59% and 90%. In comparison
with the second-best results, our algorithm exhibits 15%–18%
gain in total power efficiency. For future work, We intend to
apply ensemble learning or federate machine learning solutions
to tackle the VMP problem in the cloud system.
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