
Integrated CPU-GPU Task Scheduling for Energy
Efficiency and Low Latency in Heterogeneous

Industrial IoT Systems
Jiahui Zhai1, Jing Bi1, Haitao Yuan2, Ziqi Wang1, Jia Zhang3, and Rajkumar Buyya4

1College of Computer Science, Beijing University of Technology, Beijing, 100124, China
2School of Automation Science and Electrical Engineering, Beihang University, Beijing, 100191, China

3Dept. of Computer Science, Southern Methodist University, Dallas, TX 75275, USA
4School of Computing and Information Systems, University of Melbourne, Melbourne, VIC 3010, Australia

Abstract—The unprecedented prosperity of the Industrial
Internet of Things has significantly driven the transition from
traditional manufacturing to intelligence. In industrial environ-
ments, resource-constrained industrial equipment (IEs) often fail
to meet the diverse demands of numerous compute-intensive and
latency-sensitive tasks. Mobile edge computing has emerged as an
innovative paradigm to reduce latency and energy consumption
for IEs. However, the increasing number of IEs in industrial
settings relies on heterogeneous platforms integrated with dif-
ferent processing units, i.e., CPUs and GPUs. To address this
challenge, we propose a three-stage heterogeneous computing
architecture that accurately models the multi-task processing
of both scientific and concurrent workflows in real industrial
environments. We formulate a joint optimization problem to
minimize task completion time and energy consumption for IEs
simultaneously. To solve this problem, we design an Improved
Two-stage Multi-Objective Evolutionary Algorithm (IT-MOEA).
IT-MOEA employs a novel multi-objective grey wolf optimizer
based on manta ray foraging and associative learning to ac-
celerate convergence in the early evolution stages and adopts
a diversity-enhancing immune algorithm to enhance diversity
in the later stages. Simulation results with various benchmarks
demonstrate that IT-MOEA outperforms several state-of-the-art
multi-objective algorithms by 39.45% in terms of delay and
energy consumption.

Index Terms—Industrial Internet of Things, mobile edge com-
puting, task offloading, multi-objective optimization, evolutionary
algorithms.

I. INTRODUCTION

With the rapid development of wireless communication and
the Internet of Things (IoT), Industrial IoT (IIoT) is transform-
ing manufacturing by enhancing efficiency through various
types of industrial equipment (IE) such as robots, vehicles, and
sensors [1]. However, limited computational power and battery
capacity often prevent IEs from running compute-intensive,
latency-critical tasks independently. Offloading these tasks

This work was supported by the National Natural Science Foundation
of China under Grants 62173013 and 62473014; in part by the Beijing
Natural Science Foundation under Grants L233005 and 4232049; in part by
Beihang World TOP University Cooperation Program; and in part by the 2023
International Cooperation Training Program for Innovative Talents (“Double
First-class” Construction Special Program-“Artificial Intelligence + Internet
of Things”) of the China Scholarship Council (CSC).

to resource-rich computing nodes can reduce both latency
and energy consumption [2]. Traditionally, cloud data centers
(CDCs) handle such workloads, while distance-induced delays
are increasingly prohibitive for large-scale IIoT. Mobile edge
computing (MEC) addresses this issue by placing resources
closer to IEs, thereby mitigating latency and energy overhead
[3]. Nonetheless, the complexity and diversity of industrial
tasks demand an offloading strategy that effectively balances
delay and energy metrics, ensuring optimal performance in
evolving industrial environments. The increasing complexity
of IIoT tasks necessitates advanced heterogeneous computing
architectures, as traditional CPU-centric methods struggle with
parallel processing demands [4]. Modern systems increasingly
integrate hybrid platforms like CPU+GPU or CPU+ASIC
configurations to optimize subtask execution. Although GPUs
demonstrate significant parallel acceleration capabilities [5],
prevailing offloading research predominantly targets isolated
CPU or GPU resources [2], [3], overlooking synergistic het-
erogeneous resource coordination.

Considering the heterogeneous task offloading with CPUs
and GPUs in IIoT, we aim to minimize the completion time for
industrial applications and the energy consumption of IEs. This
multi-objective task offloading problem in industrial environ-
ments is a typical mixed-integer nonlinear program (MINLP)
[6], which is NP-hard and complicates the development of
efficient and scalable algorithms. This work proposes an
improved multi-objective evolutionary algorithm (MOEA) that
integrates various advanced optimization techniques to address
this challenge. Primary contributions can be summarized as:

1) We propose a novel hybrid equipment-edge-cloud archi-
tecture with multiple IEs, access points (APs), and a
CDC. It considers the three-stage heterogeneous comput-
ing processes of tasks with CPUs and GPUs. On this
basis, we propose a large-scale constrained bi-objective
optimization problem that simultaneously minimizes task
completion time and energy consumption for IEs.

2) To address the bi-objective optimization problem, we
design an Improved Two-stage MOEA (IT-MOEA) to

979-8-3315-0898-2/25/$31.00 ©2025 IEEE

solve the MINLP problem. It jointly optimizes task
allocation across IEs, APs, and a CDC, the association
between IEs and APs, the transmission power of IEs, and
the heterogeneous computing capabilities with CPUs and
GPUs.

3) IT-MOEA adopts a Multi-objective Grey wolf optimizer
based on Manta ray foraging and Associative learn-
ing (MGMA) in the first evolutionary stage, aiming to
accelerate the convergence of population, and applies
a Diversity-enhanced Immune Algorithm (DIA) in the
second evolutionary stage to improve the distribution of
the final population.

In addition, extensive experiments demonstrate that IT-
MOEA outperforms several state-of-the-art peers regarding
convergence and distribution performance.

II. PROBLEM FORMULATION

A. System Model

AP ES

IE

Local IE

layer

Edge computing

layer

Edge computing

layer

Cloud computing

layer

SDN controller

AP ES AP ES

CDC

Fiber link

Wireless link

Local computing

Edge computing

Load balancing
computing

Cloud computing

Fig. 1. Framework of an industrial environment.

This work illustrates an SDN-enabled equipment-edge-
cloud architecture for multiple task offloading in a hybrid
heterogeneous system, including M IEs, J APs, an SDN
controller, and a single CDC. Fig. 1 illustrates the proposed
IIoT application architecture, which comprises three distinct
layers: a local IE layer, an edge computing layer, and a cloud
computing layer.

Each IE runs K delay-sensitive and computation-intensive
tasks, represented by K={1, 2, . . . ,K}. K tasks need to be
completed before a given deadline. The CPU parameter of
IE m is represented by the tuple {ώC , f́C , ṕC,d, ṕC,i}. ώC

is the number of CPUs, f́C is the computational capability
of each CPU (in FLOPS), ṕC,d is the dynamic power of the
CPU (in W), and ṕC,i is the static power of the CPU (in W).
Similar to CPU, IE m’s GPU parameters are represented as the
tuple {ώG, f́G, ṕG,d, ṕG,i}. Moreover, {ω̇C , ḟC , ω̇G, ḟG} and
{ὼC , f̀C , ὼG, f̀G} denote the computing resources of edge
servers (ESs) and CDC, respectively. When a task is generated
by an IE, a computation request is sent to the SDN controller,
which makes the optimal execution decisions. Ultimately, the
SDN controller schedules the pending tasks to the designated
parts for computation.

This work examines a binary offloading strategy where
tasks are either processed locally in IEs or entirely offloaded
to ESs or CDC. Each task requires at least one CPU, and

CPUs and GPUs are dedicated to a single task at any given
time. The utilization of both CPUs and GPUs can be up
to 100%. Let λ́k

m (λ́k
m∈{0, 1}), ˙λk

m (˙λk
m∈{0, 1}), and λ̀k

m

(λ̀k
m∈{0, 1}) denote the offload factors of task k (1≤k≤K) of

IE m (1≤m≤M) executed in IE, ESs, and CDC, respectively.
Thus, λ́k

m+ ˙λk
m+λ̀k

m=1. Each IE is exclusively linked to a
solitary AP. Then, if tasks from IE m are linked to AP j,
xm,j=1; otherwise, xm,j=0. Thus, for each IE m, we have∑J

j=1 xm,j=1.

B. Task Model

Original

Task

Serial

Subtask

Serial

Result

Parallel

Subtask

Parallel

Result

Result

Aggregation

Task preprocessing Hybrid computing Result aggregation

CPU computing GPU computing

Concurrent workflow tasks

1t

2t

3t

5t

6t

4t 7t

Scientific workflow tasks

1t

2t 3t 4t

5t 6t

7t

Fig. 2. Three-stage heterogeneous computing model of tasks.

This work focuses on both serial and parallel tasks in IIoT
applications. CPUs are more efficient for serial tasks, whereas
GPUs excel at parallel workloads [5]. Accordingly, we propose
a three-stage task model, i.e., task preprocessing, hybrid com-
puting, and results aggregation depicted in Fig. 2. Building on
typical GPGPU frameworks (e.g., CUDA and OpenCL [5]),
the CPU first preprocesses tasks and dispatches parallelizable
components to GPUs. In the hybrid computing stage, CPUs
and GPUs handle their respective subtasks concurrently, pro-
ducing separate outputs. Finally, CPU aggregates these outputs
to generate the final result. Although serial and parallel sub-
tasks run simultaneously, the three stages themselves proceed
in sequence. Let the task tkm≜{Ikm, ϖk

m, qkm, okm} generated
by IE m is characterized by: data size Ikm (bits), required
computation ϖk

m (FLOPs), hybrid computation ratio qkm, and
parallel workload ratio okm.

C. Communication Model

This work employs an orthogonal frequency-division mul-
tiple access communication model between various IEs and
their associated APs. According to [3], the path loss between
IE m and its corresponding AP j (1≤j≤J) is given by
(dm,j)

−ς , where dm,j represents the distance from IE m to
AP j, and ς represents the path loss exponent. The uplink
rate between IE m and AP j is denoted by Rm,j . Hence, we
have Rm,j=Wm,j log2(1+

po
mϱ(dm,j)

−ς |h|2ζ
σ2), where Wm,j is

the bandwidth of uplink channel allocated to IE m for AP j,
pom is the transmission power of IE m. The uplink channel
fading coefficient is h. σ2 represents the power parameter of
Gaussian white noise. ϱ and ζ are the path-loss coefficients
and log-normal shadowing.

D. Delay and Energy Consumption Models

The delay and energy consumption models of three comput-
ing models, including local computing, edge computing, and
cloud computing, are discussed below.

1) Local computing: When λ́k
m=1, tkm is computed at IE

m. Fig. 2 shows that CPUs execute both the task preprocessing
and result aggregation stages. Let τ́k,1m denote the sum of the
delays for these two stages of tkm. ωC,k

m and ωG,k
m denote CPU

and GPU resources allocated to tkm in the local computing,
respectively. Thus, τ́k,1m is expressed as τ́k,1m =

(1−qkm)ϖk
m

ωC,k
m f́C

.

Let τ́k,Cm and τ́k,Gm denote the delays for the hybrid
computation stage of tkm, respectively, which are expressed
as τ́k,Cm =

qkm(1−okm)ϖk
m

ωC,k
m f́C

and τ́k,Gm =
qkmokmϖk

m

ωG,k
m f́G

. Thus, the to-
tal delay consumed during the hybrid computation stage,
τ́k,2m , is given as τ́k,2m =max(τ́k,Cm , τ́k,Gm). Let τ́km denote the
total delay for local computing of tkm, which is obtained
as τ́km=τ́k,1m + τ́k,2m . Let ékm denote the total energy con-
sumption of local computing of tkm, which is expressed by
ékm=τ́km(ṕC,i+ṕG,i)+(τ́k,1m +τ́k,Cm)ṕC,d+τ́k,Gm ṕG,d.

2) Edge computing: The computing capability of IE is
limited, and it has to offload its excessive tkm to its ES, i.e.,
˙λk
m=1. Then, ES processes the computational tkm on behalf of

the IE. The task offloading process consists of three phases:
uploading, transfer, and computation.

The computing tkm of IE needs to be uploaded to its
neighboring AP j. According to Rm,j , τ̇k,um,j denotes the data
transmission delay from IE m to AP j, which is given as
τ̇k,um,j=

Ik
m

Rm,j
.

The computing tkm is processed by ES directly associated
with AP j. Let τ̇k,1m,j denote the sum of the delays for
the task preprocessing stage and result aggregation stage.
Let τ̇k,2m,j denote the total delay of the hybrid computing

stage. τ̇k,1m,j and τ̇k,2m,j are calculated as τ̇k,1m,j=
(1−qkm)ϖk

m

ωC,k
m,j ḟ

C
and

τ̇k,2m,j=max(
qkm(1−okm)ϖk

m

ωC,k
m,j ḟ

C
,
qkmokmϖk

m

ωG,k
m,j ḟ

G
), where ωC,k

m,j and ωG,k
m,j

are the numbers of CPU and GPU resources allocated to tkm
by AP j in the offloading computing process.

Considering the computational results of the task are sig-
nificantly smaller than the original task data, the delay from
the ES returning to the IE can be neglected. The total delay of
the offloading process at the ES directly associated with AP
j for task tkm, τ̇km,j , is calculated as τ̇km,j=τ̇k,um,j+τ̇k,1m,j+τ̇k,2m,j .

Meanwhile, ėkm,j denotes overall energy consumed by
task tkm associated with AP j, which is computed as
ėkm,j=pomτ̇k,um,j+τ̇km,j(ṕ

C,i+ṕG,i).
3) Cloud computing: If the computational tkm is offloaded

to CDC for processing, i.e., λ̀k
m=1, the IE m first transmits

it to AP j that provides transmission services via a wireless
link. Subsequently, AP j forwards it to the SDN controller,
which then transmits it to the CDC for processing over a wired
link. Therefore, we consider the data uploading, transmission,
and computation delays associated with the task tkm. τ̀k,cm,j is
the transmission delay associated with AP j from the SDN

controller to CDC, which is given as τ̀k,cm,j=
Ik
m

Wc
, where Wc

denotes the SDN controller to CDC transmission rate.
Let τ̀k,1m,j denote the sum of the delays for the task prepro-

cessing stage and result aggregation stage of tkm associated
with AP j. Let τ̀k,2m,j denote the total delay of the hybrid
computing stage of tkm associated with AP j. They are obtained
as τ̀k,1m,j=

(1−qkm)ϖk
m

ωC,k
m,j f̀

C
and τ̀k,2m,j=max(

qkm(1−okm)ϖk
m

ωC,k
m,j f̀

C
,
qkmokmϖk

m

ωG,k
m,j f̀

G
).

According to τ̇k,um,j and τ̀k,cm,j , the total delay of tkm and
energy consumption of the IE during the offloading process
at CDC are computed as τ̀k,2m,j=max(

qkm(1−okm)ϖk
m

ωC,k
m,j f̀

C
,
qkmokmϖk

m

ωG,k
m,j f̀

G
)

and èkm,j=pomτ̀k,um,j+τ̀km,j(ṕ
C,i+ṕG,i).

In summary, the average delay of K tasks
and the energy consumption of M IEs in the
equipment-edge-cloud system are obtained as
T= 1

M

∑M
m=1

∑K
k=1{λ́k

mτ́km+
∑J

j=1(
˙λk
mτ̇km,j+λ̀k

mτ̀km,j)} and
E= 1

M

∑M
m=1

∑K
k=1{λ́k

mékm+
∑J

j=1(
˙λk
mėkm,j+λ̀k

mèkm,j)}.

E. Problem Formulation

The formulated problem is given as follows. In (1), ℏℏℏ
denotes a set of decision variables including λ́k

m, ˙λk
m, λ̀k

m,
ϕk
m,j , ωC,k

m , ωG,k
m , ωC,k

m,j , ωG,k
m,j , pom, and xm,j . Our objective

is to jointly minimize T and E, i.e.,

argmin
ℏ

{T ,E} (1)

III. PROPOSED FRAMEWORK

This section proposes IT-MOEA to solve the problem in
(1). The framework of IT-MOEA and details are presented.

A. Framework of IT-MOEA

Start

End

Initialization process

Evaluation of population

g < ϑ * ĝ

Evolution

MGMA

Evolution

DIA

g = g + 1

g < ĝ

Evolutionary process

Yes

Yes

No

No

Fig. 3. Main flow of IT-MOEA.

IT-MOEA framework in Fig. 3 consists of initialization and
evolutionary phases. Following initialization as described in
Section III-B, the evolutionary phase is divided into two stages
with the threshold ϑ to enhance convergence and diversity. The
first stage utilizes the novel MGMA method from Section III-C
to accelerate convergence and improve optimization, while the
second stage employs DIA from Section III-D to enhance
population distribution. The evolutionary loop concludes after
ĝ iterations, resulting in the final IT-MOEA population.

B. Population Initialization

Typically, individuals are randomly initialized without prior
information, resulting in uneven distributions and slow conver-
gence. The tent map offers more uniform coverage and faster
searches, but has small cycles and unstable periodic points.
To overcome these limitations, we propose an improved tent

chaotic map xg+1=

{
2xg+rand(0, 1)× 1

N , 0≤x≤ 1
2

2(1−xg)+ rand(0, 1)× 1
N , 1

2<x≤1
.

The transformed expression is given as
xg+1=(2xg)mod 1+ rand(0, 1)× 1

N , where N is the
population size and rand(0, 1) is a random number in [0,1].
IT-MOEA preserves randomness while controlling the random
value within a certain range, ensuring the regularity of the
Tent chaos.

C. Proposed MGMA

Multi-objective grey wolf optimizer (MOGWO) preserves
GWO’s population updating, mimicking grey wolves’ hierar-
chy and hunting behavior for fast convergence, high efficiency,
and precision. However, MOGWO is prone to premature
convergence and local optima [7]. To address these issues,
we propose an improved MOGWO with the position update
mechanism of the three best wolves, the population update
mechanism, and the archive update mechanism.

1) Position update mechanism of three best wolves: α, β,
and δ represent the evolutionary directions of the population in
MOGWO, playing crucial roles in guiding the search process.
However, their position updates rely on the same mecha-
nism, disregarding the unique status of α in the traditional
MOGWO. To address this issue, separate update strategies
are proposed for α, β, and δ. δ accepts leadership from α
and β. Its update method are given as Xδ(g+1)=Dδ−Xδ(g)
and Dδ=ρXδ(g)+(1−ρ)Xα(g)+(1−ρ)Xβ(g), where ρ is a
random number uniformly distributed in [0,1]. The random
number introduces variability throughout the optimization pro-
cess, facilitating global exploration.

β accepts leadership from α, incorporating a spiral updat-
ing mechanism inspired by the whale optimization algorithm
(WOA) to approach α in a spiral motion. Its update method
is given as Xβ(g+1) = |Xα(g)−Xβ(g)| ebl̇ cos(2πl̇) +
ρXα(g), where b is a constant for defining the shape of the
logarithmic spiral, l̇ is a random number in [-1,1], and ρ is
a random number uniformly distributed in [0,1]. Randomness
similarly enhances the exploration capability of β.

To update α, we introduce random walks using the Lévy
flight mechanism, which balances local exploration with
occasional long jumps. Short-distance exploration enhances
optimization speed and accuracy by effectively searching
around α’s current position, while long jumps expand the
search area. To address the stochastic nature of Lévy flights,
we incorporate a greedy selection strategy for a survival-of-
the-fittest approach. The position update of α using the Lévy
flight mechanism is given as X

′

α(g+1)=Xα(g)+ξ⊕Lévy(ℏ),
where ξ is the step size control factor. ⊕ is the dot product
operation. Lévy(ℏ) represents the random search path, which
follows a Lévy distribution. For computational convenience,

the Mantegna algorithm is commonly used to simulate its
flight trajectory. Lévy(ℏ) is obtained as Lévy(ℏ)= µ

|ν|
1
κ

,

where κ=1.5, and µ and ν follow normal distributions, i.e.,
µ∼N(0, σ2

µ) and ν∼N(0, σ2
ν). The variances are expressed as

σ2
µ={ Γ (1+κ)

κΓ (1+κ)
2

sin(πκ
2)

2
κ−1
2

2
κ } and σ2

ν=1, where Γ (·) represents the
Gamma function. The position update of α is expressed as

Xα(g+1)=

{
X

′

α(g+1), other
Xα(g), f(X

′

α(g+1)>Xα(g)) and rand<ṗ
,

where rand represents a random variable in [0,1], ṗ denotes
the probability of survival-of-the-fittest selection, and f(·)
represents the fitness value. This mechanism guides the
population toward optimal evolution while effectively
enhancing search efficiency.

2) Population update mechanism: We design a novel po-
sition updating mechanism to enhance information exchange
among the grey wolf population, inspired by the manta rays
foraging optimization (MRFO). The first half of (2) provides
rapid convergence to the optimal solution, while the latter
provides higher population diversity to prevent premature
convergence. Thus,

X(g+1)=
w(X1(g)+X2(g)+X3(g))

3
+a(1−w)

(r(Xr(g)−X(g))+au̇r(Xα(g)−X(g)))
(2)

where w= (ŵ−w̌)g
ĝ +w̌, u̇=2erιsin(2πr), and ι= ĝ−g+1

ĝ . w
denotes an inertia weight in iteration g. w̌ and ŵ are the
minimum and maximum values of w. r is a random number
in (0,1). Xr(g) denotes a randomly selected individual. In the
initial stage, individuals exhibit higher social learning capa-
bilities, ensuring exploration of the globally optimal position
and enhancing search space coverage. The later stage focuses
on searching around α to accelerate convergence.

3) Archive update mechanism: To enhance solution set
diversity, this work perturbs solutions in the crowded regions
of the archive. Associative learning, a recently proposed update
strategy, is employed to improve exploratory performance.
Hence, this work introduces associative learning to update
some individuals in the archive. Thus,

X(g+1)=X(g)+0.001G(X(g)−κ̌, κ̂−X(g))

+b0S1r1(Xr(g)−X(g))+b0S2r2(Xα(g)−X(g))
(3)

where G(·) denotes a Gaussian distribution function, κ̌ and
κ̂ represent the upper and lower bounds of the search space
dimensions, respectively. r1 and r2 are random numbers in
(0,1), b0 is a constant, and S1 and S2 are adaptive cognitive
and social factors, respectively. S1 and S2 are updated as
S1=(1− g

ĝ) and S2=
2g
ĝ .

D. Diversity-enhanced Immune Algorithm

In the second evolutionary stage, IT-MOEA uses DIA to im-
prove the population distribution. Specifically, DIA allocates
the cloning resources for each individual according to the ver-
tical distance [8] between the individual and its corresponding
weight vector, i.e., Vi=

∥∥∥F (Xi)−(Z∗+d(Xi,λi, Z
∗) λi

∥λi∥)
∥∥∥

and d(Xi,λi, Z
∗)=∥(F (Xi)−Z∗)λi∥

∥λi∥ , where d(Xi,λi, Z
∗) de-

notes the projection of vector F (Xi) − Z∗ on the weight
vector λi (1≤i≤N). F (·) denotes the objective function, and
Z∗ denotes an ideal approximated point. Based on the above
vertical distance, the cloning number ci of individual Xi is
calculated as ci =

⌈
N(1−Vi)∑N
i (1−Vi)

⌉
.

Note that smaller vertical distance values imply that the
individual is closer to its weight vector and performs better
about diversity. Then, each individual performs the propor-
tional cloning operator, defined as X̃ =

⋃N
i=1{ci⊗Xi}, where

⊗ indicates the cloning operator, X̃ indicates the cloning
population consisting of all cloning offspring. According to
the principle of DIA, these individuals with better diversity
receive more computing resources to generate more promising
offspring, thus significantly improving the distribution of the
whole population.

Algorithm 1: IT-MOEA
Input: Maximum iteration number (ĝ), population size (N),

objective function (F)
Output: Final population (P)
/* Initialization process */

1 Initialize parameters of MGMA and DIA;
2 Initialize positions of individuals to obtain P;
/* Evolutionary process */
/* MGMA */

3 Initialize a, A, and C;
4 Evaluate F (Xi) of each Xi to perform non-dominated sorting on

P to establish the archive;
5 for g←1 to ϑ×ĝ do
6 for i←1 to N do
7 Select α, β, and δ with roulette wheel selection in the

archive;
8 Update α, β, and δ;
9 Update positions of Xi in the P with (2);

10 end
11 Update a, A, and C;
12 Evaluate F (Xi) of each Xi to perform non-dominated sorting

on P to update the archive;
13 Perform (3) for updating the archive;
14 if the archive is full then
15 Calculate the crowding density and remove individuals

from the most crowded regions;
16 end
17 end

/* DIA */
18 for g←ϑ×ĝ to ĝ do
19 for i←1 to N do
20 Calculate the vertical distance Vi for Xi;
21 Calculate the cloning number ci for Xi;
22 end
23 Perform cloning operator on P to generate offspring X̃;
24 Add all cloning offspring X̃ into P;
25 end

IV. PERFORMANCE EVALUATION

This work simulates the experiments in a 1000 m×1000 m
area with MATLAB, where a cloud server, IEs, and APs are
deployed in a grid network. Three experimental scales with
different M , J , and K are given in Table I.

A. Experimental Setup
1) Parameter settings: For the heterogeneous computing

process with CPUs and GPUs, ώC=4, ω̇C=16, ὼC=32,

TABLE I
SIX TEST INSTANCES.

Instances M J K

1 1–5 1–3 1–4
2 6–10 4–6 5–8
3 11–15 7–9 9–12

ώG=128, ω̇G=1024, and ὼG=6192. Besides, f́C=2×109

FLOPS, ḟC=1×1010 FLOPS, f̀C=1×1011 FLOPS,
f́G=2×107 FLOPS, ḟG=5×108 FLOPS, and f̀G=3×109

FLOPS. ṕC,d=65 W, ṕG,d=160 W, ṕC,i=15 W, and
ṕG,i=50 W. For the computation tkm, Ikm=[25, 50]
MB, ϖk

m=[2.5×108, 5×108] FLOPS, qkm=[0.5, 0.9],
and okm=[0.5, 0.9]. For the communication process,
dm,j=[50, 200] m, ς=4, h=0.98, σ=1.6×10−11, Wm,j=[2, 4]
MHz, ϱ=1, ζ=1, Wc=256 Mbps, and δ=1. For MGMA,
b0=1.4172. The threshold ϑ in IT-MOEA is 0.6. The overall
population size (N) is 30, and the maximum iteration number
(ĝ) is 1000.

2) Compared algorithms: To comprehensively evalu-
ate the performance of IT-MOEA, several state-of-the-art
(SOTA) algorithms are employed for comparisons, including
seven MOEAs (MOGWO, NSGA-II, MOMVO, MOEA/D,
LMOCSO [9], MOWOA, and AR-MOEA [10]) with three test
instances.

B. Experimental Results

This section discusses the experimental results by compar-
ing IT-MOEA with several SOTA MOEAs on three scales.
We conduct a comparative analysis of the performance of
eight MOEAs, focusing on the completion time of industrial
applications and the energy consumption of IEs for three
test instances. Figs. 4 and 5 present the box plots of eight
algorithms concerning completion time and energy consump-
tion, respectively. In Figs. 4–5, IT-MOEA performs better
than others in all test instances. This is because IT-MOEA
utilizes MGMA to optimize completion time and energy
consumption by enhancing MOGWO. Improvements include
the position update, the population update, and the archive
update mechanisms.

Fig. 6 shows the Pareto fronts of eight algorithms, with IT-
MOEA outperforming others in three test instances. Although
AR-MOEA and LMOCSO achieve comparable Pareto sets,
their convergence and distribution are weaker. IT-MOEA effec-
tively balances completion time and energy consumption while
maintaining superior diversity across all instances. In larger-
scale experiments, other algorithms struggle with convergence
and distribution, but IT-MOEA remains robust, demonstrating
clear convergence advantages. Its stability and performance in
realistic industrial environments are due to features such as
a high-quality initial population, avoidance of local optima,
global exploration, and distributed enhancement.

IT-MOEA MOGWO NSGA-II MOMVO MOEA/D LMOCSO MOWOA AR-MOEA

Algorithm

0

0.1

0.2

0.3

0.4

0.5

0.6

C
o

m
p

le
ti

o
n

 t
im

e
(S

ec
.)

(a) Instance 1

IT-MOEA MOGWO NSGA-II MOMVO MOEA/D LMOCSO MOWOA AR-MOEA

Algorithm

0

0.5

1

1.5

2

2.5

C
o

m
p

le
ti

o
n

 t
im

e
(S

ec
.)

(b) Instance 2

IT-MOEA MOGWO NSGA-II MOMVO MOEA/D LMOCSO MOWOA AR-MOEA

Algorithm

1

2

3

4

5

6

7

8

C
o

m
p

le
ti

o
n

 t
im

e
(S

ec
.)

(c) Instance 3

Fig. 4. Box plots of eight algorithms regarding completion time.

IT-MOEA MOGWO NSGA-II MOMVO MOEA/D LMOCSO MOWOA AR-MOEA

Algorithm

2

4

6

8

10

12

E
n

er
g

y
 c

o
n

su
m

p
ti

o
n

 (
J)

(a) Instance 1

IT-MOEA MOGWO NSGA-II MOMVO MOEA/D LMOCSO MOWOA AR-MOEA

Algorithm

0

5

10

15

20

25

30

35

E
n

er
g

y
 c

o
n

su
m

p
ti

o
n

 (
J)

(b) Instance 2

IT-MOEA MOGWO NSGA-II MOMVO MOEA/D LMOCSO MOWOA AR-MOEA

Algorithm

15

20

25

30

35

40

45

E
n

er
g

y
 c

o
n

su
m

p
ti

o
n

 (
J)

(c) Instance 3

Fig. 5. Box plots of eight algorithms regarding energy consumption.

0 0.1 0.2 0.3 0.4 0.5 0.6

Completion time (Sec.)

0

2

4

6

8

10

12

14

E
n
er

g
y
 c

o
n
su

m
p
ti

o
n
 (

J)

Instance 1

IT-MOEA

MOGWO

NSGA-II

MOMVO

MOEA/D

LMOCSO

MOWOA

AR-MOEA

(a) Instance 1

0 0.5 1 1.5 2 2.5 3

Completion time (Sec.)

0

5

10

15

20

25

30

35

E
n
er

g
y
 c

o
n
su

m
p
ti

o
n
 (

J)

Instance 2

IT-MOEA

MOGWO

NSGA-II

MOMVO

MOEA/D

LMOCSO

MOWOA

AR-MOEA

(b) Instance 2

0 1 2 3 4 5 6 7 8

Completion time (Sec.)

10

20

30

40

50

E
n
er

g
y
 c

o
n
su

m
p
ti

o
n
 (

J)

Instance 3

IT-MOEA

MOGWO

NSGA-II

MOMVO

MOEA/D

LMOCSO

MOWOA

AR-MOEA

(c) Instance 3

Fig. 6. Pareto-optimal fronts of eight algorithms for three test instances.

V. CONCLUSION

In the industrial Internet, joint optimization of application
completion time and equipment energy consumption remains
challenging due to heterogeneous task requirements and mul-
tiple access-point (AP) coordination. Existing task offloading
methods often prioritize single objectives or neglect task het-
erogeneity in hybrid CPU-GPU environments. We propose a
three-stage computing framework for scientific and concurrent
workflows, incorporating offloading decisions and task prior-
ities. An Improved Two-stage Multi-Objective Evolutionary
Algorithm (IT-MOEA) simultaneously minimizes time and
energy consumption, demonstrating superior convergence and
Pareto front distribution in experiments.

REFERENCES

[1] A. Jayanetti, S. Halgamuge, and R. Buyya, “Multi-Agent Deep Rein-
forcement Learning Framework for Renewable Energy-Aware Workflow
Scheduling on Distributed Cloud Data Centers,” IEEE Transactions on
Parallel and Distributed Systems, vol. 35, no. 4, pp. 604–615, Apr. 2024.

[2] J. Bi, Z. Wang, H. Yuan, J. Zhang, and M. Zhou, “Cost-Minimized
Computation Offloading and User Association in Hybrid Cloud and
Edge Computing,” IEEE Internet of Things Journal, vol. 11, no. 9, pp.
16672–16683, May 2024.

[3] J. Zhai, J. Bi, H. Yuan, M. Wang, J. Zhang, Y. Wang, and M. Zhou,
“Cost-Minimized Microservice Migration With Autoencoder-Assisted
Evolution in Hybrid Cloud and Edge Computing Systems,” IEEE
Internet of Things Journal, vol. 11, no. 24, pp. 40951–40967, 15 Dec.15,
2024.

[4] Q. Zeng, Y. Du, K. Huang, and K. K. Leung, “Energy-Efficient Resource
Management for Federated Edge Learning With CPU-GPU Heteroge-
neous Computing,” IEEE Transactions on Wireless Communications,
vol. 20, no. 12, pp. 7947–7962, Dec. 2021.

[5] C. Chen, K. Li, A. Ouyang, Z. Zeng, and K. Li, “GFlink: An In-Memory
Computing Architecture on Heterogeneous CPU-GPU Clusters for Big
Data,” IEEE Transactions on Parallel and Distributed Systems, vol. 29,
no. 6, pp. 1275–1288, Jun. 2018.

[6] H. Yuan, M. Wang, J. Bi, S. Shi, J.Yang, Jia Zhang, M. Zhou, and R.
Buyya “Cost-Efficient Task Offloading in Mobile Edge Computing With
Layered Unmanned Aerial Vehicles,” IEEE Internet of Things Journal,
vol. 11, no. 19, pp. 30496-30509, 1 Oct.1, 2024.

[7] J. Bi, J. Zhai, H. Yuan, Z. Wang, J. Qiao, J. Zhang, and M. Zhou, “Multi-
swarm Genetic Gray Wolf Optimizer with Embedded Autoencoders for
High-dimensional Expensive Problems,” 2023 IEEE International Con-
ference on Robotics and Automation, 2023, London, United Kingdom,
pp. 7265–7271.

[8] L. Li, Q. Lin, K. Li, and Z. Ming, “Vertical Distance-based Clonal
Selection Mechanism for the Multiobjective Immune Algorithm,” Swarm
and Evolutionary Computation, vol. 63, no. 2021, pp. 100886–100903,
Apr. 2021.

[9] Y. Tian, X. Zheng, X. Zhang, and Y. Jin, “Efficient Large-Scale
Multiobjective Optimization Based on a Competitive Swarm Optimizer,”
IEEE Transactions on Cybernetics, vol. 50, no. 8, pp. 3696–3708, Aug.
2020.

[10] Y. Tian, R. Cheng, X. Zhang, F. Cheng, and Y. Jin, “An Indicator-Based
Multiobjective Evolutionary Algorithm With Reference Point Adaptation
for Better Versatility,” IEEE Transactions on Evolutionary Computation,
vol. 22, no. 4, pp. 609–622, Aug. 2018.

