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Abstract—Scheduling problems in distributed computing (such
as Cloud or edge computing) usually belong to multi-objective
optimization problems (MOPs). Meta-heuristic algorithm (MHA)
is an effective type of contemporary algorithm for solving difficult
MOPs. The improvement of MHA is an urgent spot, whose main
challenge lies in accelerating convergence speed while enhancing
the optimality of convergence solutions. This challenge requires
a universal and effective method to improve the search efficiency
of various MHAs throughout the entire iteration process for
solving MOPs. Towards this target, this paper restructures the
MHAs’ framework uniformly, and proposes a universal growable
meta-heuristic algorithm framework (GMHA) with hybrid multi-
growth routes. Providing the flexibility for the combination of
various algorithms to serve as the growth route, GMHA is appli-
cable to diverse MHAs. For the sake of the adaptability of GMHA
for various MOPs including Cloud scheduling, the paper further
establishes several general growth routes, including equidistant
feasible solution search route (EFSS), gradient neighborhood
search route (GNS), and weighted neighborhood search route
(WNS). Statistical test on various MOP benchmarks demonstrate
that GMHA has a probability of 90.15% to improve the perfor-
mance of various MHAs. Compared to the corresponding MHA
in experiments on multi-objective Cloud scheduling problems,
GMHA achieves 2.116 times the average convergence speed, with
the specific reductions of 25.05% in total energy consumption,
4.94% in the maximum energy consumption of server nodes, and
35.12% in the sum of the standard deviations of utilizations.

Index Terms—Growable Meta-Heuristic, Multi-Objective Op-
timization Problem, Cloud Scheduling, Energy Consumption

I. INTRODUCTION

D ISTRIBUTED computing systems (e.g., Cloud com-
puting) that provide flexible services have always

been confronted with multi-objective optimization problems
(MOPs) [1]. An MOP typically contains multiple decision
variables, leading to a huge search space and challenging op-
timization methods, which emerges as a widespread attraction
followed by scientific technology and theory [2], [3].

In MOP, a feasible algorithm is required to continuously
optimize the non-dominated solution set to approach the true
Pareto front (PF). Therefore, the method of searching for a
single solution in the neighborhood is generally not suitable
for MOPs. Meta-heuristic algorithm (MHA) has two epitome
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characteristics: establishing the fitness evaluation system based
on multi-objectives to compare and screen multiple solutions;
and regenerating the next iteration’s solution based on spe-
cific strategies [4]. Therefore, MHAs can achieve the search
for multiple optimized solutions and also become promising
methods for solving complex MOPs [5], which have also been
widely applied to Cloud scheduling [6]–[8].

However, meta-heuristic algorithms still face significant
challenges: 1) premature convergence (local optimum) with
a single search process [7]; 2) insufficient search results in
poor optimality of solutions, with few optimal Pareto solu-
tions [4]; 3) consuming computing power on some redundant
solutions [9]. The ultimate manifestation is the poor average
solving efficiency and large time complexity, specifically for
large-scale Cloud scheduling. Especially, the constantly in-
creasing decision-making space highlights these challenges.

At present, there are hundreds of MHAs [9]. However, most
existing improvement methods or strategies are only designed
for one or a few types of MHAs. It is an urgent challenge to
find a method with universality for a wide range of MHAs
and MOPs, so as to enhance the overall capability of MHAs.

With the above considerations, this paper aims to explore a
universal strategy that can widely improve the performance
of various MHAs holistically. Through collation and re-
organization of the existing MHAs’ frameworks, we have
observed that almost all MHAs have two identical or similar
processes: generating new solutions (offspring solutions) based
on a certain meta-heuristic strategy (called meta-heuristic
searching operation), and completing the current iteration to
re-generate the initial solutions of the next iteration (called
update operation). The specific modes of update operation
and searching operation may vary with the type of MHAs,
but both processes are generally indispensable. This phe-
nomenon enlightens us to consider whether it is possible
to enhance the performance of various MHAs by adding a
universal strategy between these two processes. Therefore, this
paper restructures the MHAs’ framework uniformly, adds a
growth stage after the previous iteration’s update operation
and before the current meta-heuristic searching operation, and
then proposes a universal growable meta-heuristic algorithm
framework (GMHA). GHMA allows some solutions to be
improved through additional strategies before participating in
meta-heuristic searching, significantly improving the efficiency
of the algorithm. GMHA is applicable to various MHAs,
as long as they contain these two processes (meta-heuristic
searching operation and update operation). In experiments
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of statistical tests using various GMHAs on various MOP
benchmarks, GMHAs can quickly find a better solution set,
consuming fewer iterations compared to the state-of-the-art
MHAs. Moreover, experiments in Cloud scheduling demon-
strate its practicality.

The main contributions of this paper are as follows:
(1) Growable meta-heuristic algorithm framework

(GMHA): this paper extracts the common processes of
various MHAs and reconstructs a universal framework
of them. With the universal MHA framework, we add
a growth stage before the meta-heuristic search process
and propose GMHA. GHMA allows the designated
solutions to be improved by additional strategies before
participating in meta-heuristic searching, significantly
improving the efficiency of the entire algorithm. GMHA
is a universal framework that adapts to various MHAs.

(2) Hybrid multi-growth routes: to solve various MOPs, es-
pecially in Cloud scheduling, this paper proposes several
general growth routes, including equidistant feasible solu-
tion search route (EFSS), gradient neighborhood search
route (GNS), and weighted neighborhood search route
(WNS). Ulteriorly, this paper proposes the hybrid multi-
growth routes strategy integrating various growth routes,
which possesses the improvement effect in various MOPs.

(3) Various instantiated growable meta-heuristic algo-
rithms: introducing state-of-the-art meta-heuristic algo-
rithms into GMHA framework, this paper instantiates
multiple specific growable meta-heuristic algorithms, ex-
panding the capability boundary of MHAs.

(4) Extensive experiments on various MOPs benchmarks and
Cloud scheduling scenarios verify the adaptability of
GMHA to various MHAs and MOPs, as well as demon-
strate the superiority and practicability of the proposed
algorithms to Cloud scheduling.

The remainder of this paper is organized as follows: we
review the related work in Section II; the methodologies with
the GMHA framework, general growth routes and various in-
stantiated GMHAs are proposed in Section III; we present the
experiments to study the performance of GMHA framework
in Section IV; finally, we conclude this paper in Section V.

II. RELATED WORK AND MOTIVATION

This section briefly reviews the related work from two
aspects: meta-heuristic algorithms and MOPs in Cloud com-
puting. Then, this section explains the motivation of this paper
through discussions and analysis of related work.

A. Meta-heuristic Algorithms

A meta-heuristic algorithm (MHA) is generally considered
as an algorithm with certain adaptability to solving problems,
which iteratively searches solutions by mimicking intelligent
processes or behaviors [4]. The types of MHAs vary with the
strategies of search, forms of solution sets and the manner of
the iteration process. The frequently applied MHAs for MOPs
are population-based algorithms. Shown as Fig. 1, population-
based algorithms mainly include four categories: evolutionary
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Fig. 1. The categories of meta-heuristic algorithms for MOPs.

algorithms, swarm intelligence algorithms, physics-based al-
gorithms, human-based algorithms, etc [10], [11].

The evolutionary algorithm generates new solutions by
selection, mutation, and crossover operators to evolve existing
solutions [9], [12]. Evolutionary algorithms have spawned
various contemporary algorithms for MOPs, including NSGA
(non-dominated sorting genetic algorithm), MODE (multi-
objective differential evolution), etc [13]–[15]. Some typical
NSGAs include NSGA II, NSGA III, U-NSGA III (uni-
fied NSGA III) [13], [16], etc. Some examples of MODE
include AGE-MODE [2], MOEA/D-DE [15], MOEA/D-
HSS [3], etc. Other evolutionary algorithms for MOPs in-
clude CTAEA (two-archive evolutionary algorithm for con-
strained MOP) [17], IBEA (indicator-based evolutionary al-
gorithm) [18], SPEA II (strength Pareto evolutionary algo-
rithm) [19], etc.

A swarm intelligence algorithm usually contains multiple
intelligent agents (called a swarm) with certain self-organizing
abilities, and searches for a solution set based on the collec-
tive behavior or status of the swarm [9], [11], [20]. Some
prevalent swarm intelligence algorithms are particle swarm
optimization (PSO), artificial bee colony algorithm (ABC),
ant colony optimization (ACO), etc [20], [21]. PSO-based
multi-objective algorithms include SMPSO (speed-constrained
multi-objective PSO) [22], MOPSO MCD (multi-objective
PSO with modified crowding distance) [23], etc. Some ABC-
based algorithms are MOABC-PBI [24], GABC (grid-based
ABC) [25], etc. Other swarm intelligence algorithms for MOPs
include HACO-ABCA (hybrid ACO and ABC algorithm) [26],
HWOA (hybrid whale optimization algorithm) [27], etc.

Other categories of MHAs can also be leveraged for
MOPs, but with relatively low frequencies in existing re-
search [9]. Generally, physics-based and human-based al-
gorithms require the assistance of other strategies to solve
MOPs. Some examples include MOEOU3 (multi-objective
optimization algorithm consisting of equilibrium optimizer and
NSGA-III) [28], MOEO-EED (multi-objective equilibrium op-
timizer with exploration-exploitation dominance strategy) [29],
PETMSA (Pareto entropy-based two-mode multi-objective
simulated annealing algorithm) [30], NSICA (multi-objective
non-dominated imperialist competitive algorithm) [31], etc.

B. MHA-based MOPs in Cloud Scheduling

The factors that directly affect the difficulty of solving
optimization problems include the numbers and forms of
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objectives, decision variables, and constraint conditions. In
addition, some important factors are the properties of the
search space and the properties of the theoretical optimal
solution set (discrepancy degree, concavity, monotonicity),
not directly reflected in the problems’ expression, but closely
related to the difficulty of solving the problem.

For MOPs in Cloud-related distributed systems, the com-
munity is paying significant attention. Lin et al proposed
Peak Efficiency Aware Scheduling (PEAS) to optimize the
energy consumption and QoS in the online virtual machine
(VM) allocation of Cloud [32]. Zhou et al used evolu-
tionary multitasking optimization based on a meta-heuristic
idea to schedule constrained workflows in Cloud [8]. Shen
et al applied Cuckoo search to solve the task scheduling
and cache updating [33]. Monge et al designed an online
auto-scaler based on the genetic algorithm to optimize VMs
workflows in Cloud systems [34]. Bilal et al designed a
distributed grey wolf optimizer to schedule workflows in
Cloud environments [35]. Shikha et al designed two variants
of whale optimization algorithms for efficiently placing VMs
in Cloud computing [36]. Sun et al proposed a new genetic
programming with multi-tree representation to automatically
learn the task, Cloud and resource selection rules simultane-
ously for the dynamic flexible workflow scheduling in multi-
Clouds [37]. Yang et al combined machine learning and greedy
algorithms to schedule workflow tasks within unknown task
execution time [38]. Xiao et al constructed an efficient service-
aware VMs scheduling approach based on the MOEA to
simultaneously optimize communication cost and migration
time [39]. Qiu et al applied an MPGA (multi-population-
based genetic algorithms) to solve multi-objective workflow
scheduling to optimize makespan and energy consumption
simultaneously [40]. Kaleibar et al established a customized
genetic algorithm to optimize SLA-aware service provisioning
in Cloud [6].

C. Motivation

From related work, solving MOPs mainly relies on
population-based MHAs, especially on evolutionary algo-
rithms and swarm intelligence algorithms. The communities
mainly concentrate on the strategies for decomposition of
problems, evaluation metrics, screen method, and regenera-
tion mechanism. However, these improvement measures are
generally effective for only one or a few algorithms, lack-
ing universality to various MHAs. Furthermore, MHAs have
been widely leveraged to solve MOPs in Cloud scheduling,
where MOPs exhibit variable complexity with the composition
of their specific elements in different scenarios. Therefore,
the existing improvement measures for MHAs have unstable
adaptability to a wide range of Cloud scheduling.

The above circumstances prompt this paper to explore a
universal method to improve various MHAs in different MOPs.
A universal strategy is necessary and significant to improve the
overall performance of MHAs in solving Cloud scheduling.
Based on this motivation, this paper sorts out the architectures
and processes of various MHAs, extracts their commonalities,
and reconstructs a universal framework of MHAs. With the

reconstructed framework, this paper establishes a universal
growable meta-heuristic algorithm framework (GMHA) with
hybrid multi-growth routes, which can pervasively improve the
performance of various MHAs in various MOPs, demonstrat-
ing adaptability to multi-objective Cloud scheduling.

III. METHODOLOGIES

Assuming there are n decision variables X⃗ =
(x1, x2, . . . , xn), m objectives F⃗ (X⃗) and l constraint
conditions S⃗(X⃗) = (s1, s2, . . . , sl), MOP can be defined as:Minimize F⃗ (X⃗) =

(
ω1(X⃗), ω2(X⃗), . . . , ωm(X⃗)

)
,

subject to : sj(X⃗) ≤ 0, j = 1, 2, . . . , l.
(1)

When m > 1, a single optimization solution is usually unable
to satisfy the minimization of all optimization objectives. Thus,
a MOP requires obtaining multiple solutions that will form a
non-dominated solution set (denoted as D) according to the
dominant relationship between solutions. Eq. (1) can represent
most problems in Cloud scheduling. For two solutions X
and Y , if ωi(X⃗) ≤ ωi(Y⃗ ) for ∀i ∈ {1, 2, . . . ,m}, and
∃k ∈ {1, 2, . . . ,m} s.t. ωk(X⃗) < ωk(Y⃗ ), it is defined that
X⃗ dominates Y⃗ . A non-dominated solution set obeys that X⃗
and Y⃗ do not dominate each other for ∀X⃗ ̸= Y⃗ ∈ D.

To explore a universal method for improving performance in
MOPs, we also consider a multi-objective Cloud scheduling
problem minω = min

(
ω(1), ω(2), ω(3)

)
, in addition to the

general MOP forms of Eq. (1). The objectives are respectively
as minimizing total energy consumption (denoted as minω(1),
optimizing energy consumption), minimizing the maximum
energy consumption of each server node (denoted as minω(2),
balancing energy consumption ) and minimizing the sum of the
standard deviations of multi-dimensional resource utilization
(denoted as minω(3), load balancing). The formula for energy
consumption introduces nonlinear terms as follows:

Ej =

l∑
k=1

ajk

(
n∑

i=1

xijuijk

)2

+ bjk

(
n∑

i=1

xijuijk

)
+

l∑
k=1

(
cjk + djk

n
max
i=1

(xij)
) (2)

where Ej means the energy consumption of the j-th server
node; l is number of resource dimensions; n is the number
of tasks; uijk means the resource occupancy rate of the i-
th task for the k-th dimension in j-th server node; ajk, bjk,
cjk and djk are the coefficients of energy consumption for
quadratic polynomials; the matrix {xij}1≤i≤n,1≤j≤m consists
of decision variables, where xij ∈ {0, 1} and m is the number
of server nodes. xij = 1 means the i-th tasks is allocated to
the j-th server node. Then, multiple objectives can be written

as Eq. (3) where
m

std
j=1

is standard deviations.
minω(1) = min

m∑
j=1

Ej , minω(2) = min
m

max
j=1

Ej ,

minω(3) = min

l∑
k=1

m

std
j=1

(
n∑

i=1

xijuijk

)
.

(3)
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Fig. 2. The universal frameworks of growable meta-heuristic algorithms compared with universal framework of meta-heuristic algorithms.

To achieve the improvement on the performance of algo-
rithms for MOP problems, especially for Cloud scheduling,
our proposed methodologies mainly consist of four compo-
nents: a reconstructed framework of MHAs, a universal frame-
work of GMHA with hybrid multi-growth routes, multiple
general growth routes, and instantiated algorithms of GHMA.

The frameworks of methodologies are shown in Fig. 2. The
meta-heuristic row of Fig. 2 is the reconstructed framework
of MHAs containing three stages: initialization stage, meta-
heuristic search stage and regeneration stage. On this basis,
we add an additional growth stage, thus forming a growable
meta-heuristic algorithm framework (GMHA) as shown in
Fig. 2. To adapt to different MOPs, this paper further proposes
several general growth routes, including equidistant feasible
solution search route (EFSS), gradient neighborhood search
route (GNS), and weighted neighborhood search route (WNS).
Incorporating different MHAs based on the GMHA frame-
work, this paper instantiates multiple growable meta-heuristic
algorithms, including growable multi-objective particle swarm
algorithm (G MOPSO), growable Pareto archived evolution
strategy (G PAES), growable constrained two archive evolu-
tionary algorithm (G CTAEA), growable non-dominated sort-
ing genetic algorithm II (G NSGA II), etc.

Next, we respectively present the four components in detail
and conduct theoretical analysis on the proposed GMHA.

A. Universal Meta-heuristic Algorithm Framework

The universal framework and strategy are indispensable to
improve the overall performance of various meta-heuristic
algorithms (MHAs) in solving different MOPs, especially in
Cloud scheduling. Therefore, this paper investigates the exist-
ing MHAs and reconstructs them by universally dividing them
into three stages: initialization stage, meta-heuristic search
stage and regeneration stage. The reconstructed framework of
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Fig. 3. The flowcharts of the universal meta-heuristic framework with the
mapping relationships diagram to several popular meta-heuristic algorithms
(PSO, GA, GSO, BSO).

MHAs is shown in the first row of Fig. 3. In order to present
the reconstruction process of the universal framework more
intuitively, we select several popular MHAs, including PSO
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(particle swarm optimization, belonging to swarm intelligence
algorithm), GA (genetic algorithm of evolutionary algorithm),
AOA (Archimedes optimization algorithm of physics-based
algorithm) and BSO (brain storm optimization of human-based
algorithm), as well as draw their flowcharts and mapping
relationships with the universal meta-heuristic framework.

From Fig. 3, one of the most important processes of MHAs,
is the meta-heuristic search process based on the specific
strategies, which also determines the search capability. E.g.,
in Fig. 3, the search process of GA is based on crossover
and mutation, and PSO is based on the position update of the
particle swarm. In addition to the algorithms in Fig. 3, other
MHAs can also make similar mappings with the universal
framework. These search processes can be collectively referred
to as meta-heuristic search processes (called the meta-heuristic
search stage). Moreover, all iteration-based MHAs require
updating the current active solution (or solution set) at the
end of each iteration, which can be called the regeneration
stage.

B. Growable Meta-heuristic Algorithm Framework

Comprehensive enhancement to the performance of MHAs
for MOPs requires an architecture level improvement. To
achieve it, this paper considers adding an additional growth
stage on top of the three stages (initialization stage, meta-
heuristic search stage and regeneration stage) of the universal
MHA framework. Then, we propose the growable meta-
heuristic algorithm framework, shown in Fig. 2.

Different from original MHAs, GMHA selects a part of
solutions to enter the growth routes for improvement in the
growth stage, and then substitutes the grown solutions into
the subsequent meta-heuristic search stage. GMHA framework
has considerable flexibility, allowing for the combination of
different growth routes and MHAs. To ensure the universality
of GMHA for optimization problems, GMHA applies hybrid
growth routes instead of the single growth route. Due to
varying optimization degrees of the active solution set, the
improvement effect of the growth route also differs. Benefit
from the flexibility of framework, GMHA allows flexible con-
figuration of growth strategies for each iteration and solution.
Thus, it is not necessary to use the same growth strategy at
every iteration, and each solution also does not have to use
the same growth routes. The flowchart of hybrid multi-growth
route strategy in GMHA is shown in Fig. 4.

As shown in Fig. 4, the hybrid growth strategy of GMHA
selects a subset from the initial solution set of the current
iteration to participate in growth; makes the selected solutions
enter different growth routes where the growth routes assigned
to different individuals can change with iteration; integrates
solutions after growth and solutions without growth to form
the mature solutions; and substitutes mature solutions into the
meta-heuristic search stage sequentially.

For the sake of organizing the execution process and the
subsequent theoretical analysis, we present the pseudo-code
of GMHA with hybrid multi-growth routes in Algorithm 1.
What is more flexible in Algorithm 1 is that each iteration’s
meta-heuristic strategy can be different, for example, the first

Algorithm 1: GMHA with hybrid multi-growth routes

Input : Objectives F⃗ (X⃗) and constraints S⃗(X⃗)
Output: Non-dominated solution set D

1 Initialization Stage:
2 Initialize solutions PO0 =

〈
X⃗

(0)
1 , . . . , X⃗

(0)
p

〉
where

p is a preset swarm (or population) size, and set
of growth route functions as Gr = ⟨g1, g2, . . . ⟩.

3 Record the non-dominated solution set as D.

4 for i = 0 to iteration number do
5 Growth Stage with Hybrid Growth:
6 Select partial solutions from POi as

PS =
〈
X⃗

(i)
α1 , X⃗

(i)
α2 , . . . , X⃗

(i)
αQi

〉
, to randomly

enter different growth route functions in Gr
where the vector composed of the growth
route functions assigned to each solution is
denoted as Ga =

〈
gβ1 , gβ2 , . . . , gβQi

〉
where

gβk
∈ Gr for 1 ≤ k ≤ Qi;

7 Then obtain the solutions after growth as Pg =〈
gβ1

(
X⃗

(i)
α1

)
, gβ2

(
X⃗

(i)
α2

)
, . . . , gβQi

(
X⃗

(i)
αQi

)〉
.

8 Integrate the solutions after growth (Pg) and the
solutions without growth (POi

− Ps) to obtain
mature solutions as Pgn = (POi − Ps) + Pg .

9 Meta-heuristic Search Stage:
10 Solving Offspring Solutions:
11 Based on the mature solutions Pgn, use a

specific meta-heuristic search strategy (or
multiple strategies) to obtain the offspring
solutions as Pms = ms (Pgn).

12 Stack the offspring solutions and the mature
solutions as stack ⟨Pms, Pgn⟩.

13 Calculate the fitness of the stacked solutions as
fitness ⟨Pms, Pgn⟩ according to dominance
relationship (domination hierarchy, crowding
distance, etc) based on the objectives F⃗ (X⃗).

14 Regeneration Stage:
15 Substitute the stacked solutions to update the

non-dominated solution set D.
16 Compare the stacked solutions and retain p

solutions (POi+1
) to the next iteration.

iteration uses the genetic algorithm’s search strategy, while the
second iteration can still use the particle swarm optimization
algorithm’s search strategy. In addition, the growth routes can
also be dynamically adjusted based on the context during
the optimization process, such as leveraging game theory
and policy-based reinforcement learning. However, this paper
mainly focuses on the construction of a growable meta-
heuristic algorithm framework rather than the heterogeneous
meta-heuristic search strategies and growth routes. Therefore,
this paper only considers the case where each iteration of the
meta-heuristic search strategy is fixed with randomly selecting
a growth route from the given general growth routes.
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Fig. 4. The flowchart of hybrid multi-growth route strategy in GMHA.

C. General Growth Routes for MOPs

From the above presentation, an indispensable component of
GMHA is the growth route. MHAs have an important advan-
tage, that is, various MHAs generally have certain adaptability
to different MOPs. In order to maintain this advantage for
GHMA, we need to construct some growth routes that are
universal for various MOPs. In this paper, we design three
general growth routes, i.e., equidistant feasible solution search
route (EFSS), gradient neighborhood search route (GNS), and
weighted neighborhood search route (WNS).

(1) Equidistant feasible solution search route (EFSS): as-
suming a solution to growth is X⃗ = (x1, x2, . . . , xn),
EFSS randomly selects a decision variable xl, sets values
equidistant within its domain, and obtain multiple values
of xi as xl = {e1, e2, . . . , eu} where e1 is the lower
bound, eu is the upper bound of xl. The multiple values
needs to satisfy ej+1−ej = ∆x for ∀j ∈ {1, 2, . . . , u−1}
where the interval ∆x can be customized. There are u
neighbor solutions according to the different values of
xl. EFSS selects the solutions with the highest fitness
from these u solutions as the growth solution.

(2) Gradient neighborhood search route (GNS): GNS ran-
domly selects one (or more) decision variable xl from
X⃗ = (x1, x2, . . . , xn), starts from the value of xl to add
or subtract the interval ∆x, and obtains multiple values
{. . . , xl − 2∆x, xl −∆x, xl, xl +∆x, xi + 2∆x, . . . } to
replace xl in X⃗ . Then, GNS also selects the solutions
with the highest fitness as the growth solution.

(3) Weighted neighborhood search route (WNS): WNS ran-
domly generates an n-dimensional unit weight W⃗ =
⟨w1, w2, . . . , wn⟩ for a solution, and obtain multiple
solutions as

{
X⃗, X⃗ +∆xW⃗ , X⃗ + 2∆xW⃗ , . . .

}
. Then,

WNS also selects the solutions with the highest fitness.

The advantage of these three growth routes is that they
are applicable to various MOPs. As they only consider the
range of values for decision variables and they are not affected
by the optimization objectives, which is sufficient to support
the validation of GMHA’s universality. These three routes can
also be further improved, such as selecting multiple decision
variables at once for similar operations, which can also keep
the universality to various MOPs. Since the target of this paper
is to propose GMHA and verify its universality for various

types of MHAs and MOPs, this paper only considers the local
growth of one decision variable per growth step.

D. Instantiations of GMHA

With GMHA framework and general growth routes, another
specific component is the method of meta-heuristic search.
Owing to the flexibility of the GMHA framework shown as
Fig. 2 and Algorithm 1, switching the meta-heuristic search
process to a specific MHA (such as GA, PSO, BSO, etc.) can
obtain a corresponding growable meta-heuristic algorithm. To
instantiate the GMHA in this paper, we select several typical
MHAs, including the multi-objective particle swarm algorithm
(MOPSO), Pareto archived evolution strategy (PAES), con-
strained two archive evolutionary algorithm (CTAEA), refer-
ence vector guided evolutionary algorithm (RVGEA), unified
non-dominated sorting genetic algorithm III (UNSGA III),
etc., and built their corresponding growable meta-heuristic
algorithm. Due to the similarity in the position of various
meta-heuristic algorithms in GMHA framework (namely the
meta-heuristic search part of Algorithm 1), this paper only
presents the pseudo-code of G MOPSO in Algorithm 2. Other
meta-heuristic algorithms that did not appear in the experi-
ments of this paper, such as Distributed Grey Wolf Optimizer
(DGWO) [41], island-based Cuckoo search with polynomial
mutation (iCSPM) [42], etc., can also be used to obtain the
corresponding growable algorithms in a similar way, where
the main difference lies in the method of solving offspring
solutions, i.e., meta-heuristic search strategy.

Algorithm 2: Growable multi-objective particle swarm
optimization algorithm (G MOPSO)

Input : Objectives F⃗ (X⃗) and constraints S⃗(X⃗)
Output: Non-dominated solution set D

1 Initialization Stage:
2 Similar to initialization stage in Algorithm 1.

3 for i = 0 to iteration number do
4 Growth Stage with Hybrid Growth:
5 Similar to growth stage in Algorithm 1.

6 Meta-heuristic Search Stage:
7 Solving Offspring Solutions:
8 Find the global optimum solutions in the

mature solutions Pgn.
9 Calculate the new velocities and positions

of the mature solutions Pgn, and obtain
the offspring solutions according to new
velocities and positions.

10 Stack the offspring solutions and the mature
solutions, and calculate their fitness.

11 Regeneration Stage:
12 Similar to regeneration stage in Algorithm 1.

E. Theoretical Analysis of GMHA

To further illustrate the advantages of GMHA in theory, we
analyze its complexity and convergence speed.



IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. XX, XX 202X 7

The total complexity (denoted as c) of an instantiated
algorithm of GMHA can be written as Eq. (4), which mainly
contains the complexity of meta-heuristic search in each
iteration (denoted as cms), the complexity of the additional
growth route in each iteration (denoted as cg), and the total
number of iterations (denoted as κ).

c = κ (cms + cg) (4)

To further analyze the complexity of GMHA, we can discuss
decisive components (cms and cg) of Eq. (4).
(1) The complexity of meta-heuristic search in each iteration

(cms) is determined by the number of active individuals
(i.e., p), the complexity of calculating fitness of each
individual (denoted as cf ) and the complexity of up-
dating populations (denoted as cu). Among them, cf is
determined by the relationship between the optimization
objective function and the solution set, as well as the
fitness indicators. When the problem and fitness indica-
tors (such as dominance level, crowding degree, etc.) are
given, cf can be regarded as a constant. cu is determined
by meta-heuristic strategies and competitive elimination
mechanisms in population updates. When these strategies
are given, cu can also be considered as a constant.
Therefore, the complexity of meta-heuristic search in
each iteration can be expressed as Eq. (5).

cms = O (p · (cf + cu)) (5)

(2) The complexity of growth stage in each iteration (cg) is
determined by the growth quota of each iteration (denoted
as Qi which means the number of solutions entering
additional growth routes in the i-th iteration), the growth
step of each iteration (denoted as Si which means the
times of each solution undergoing searches along the
growth route), and the complexity of a solution to grow
once through growth route (denoted as cr). cr is related
to optimization problems and the algorithm of the growth
route, which can also be regarded as a constant for the
given MOP and growth route. Then, the complexity of
the growth stage in each iteration can be expressed as
Eq. (6).

cg (Qi, Si) = O (Si ·Qi · cr) (6)

Substituting Eq. (5) and Eq. (6) into Eq. (4) can obtain the
detailed complexity of GMHA as Eq. (7).

c = O

(
κ · p · (cf + cu) + cr ·

κ∑
i=1

(Si ·Qi)

)
(7)

For different basic meta-heuristic search strategies, ad-
ditional growth routes, and specific forms of MOPs, the
coefficients (cf , cu and cr) in Eq. (7) will have spe-
cific expressions. E.g., for growable NSGA II using GNS
(with fixed parameters Si = S and Qi = Q) as the
growth route to solve the problem ω(3), the complexity is
O
(
κ
(
p3 + p ·m · n · l +Q · S ·m · n log n

))
. For the gen-

eral form of c in Eq. (7), when the growth parameters S
and Q are far smaller than p, the complexity of GMHA
approximately equals that of MHA as c ≈ cms. However,

the additional growth route does introduce more computational
complexity, so further discussion is needed on the optimization
degree under unit complexity to analyze the improvement
effect of GMHA on the convergence speed. As this paper
aims to establish a relatively universal analysis method, we
will discuss it in the general form of Eq. (4) or Eq. (7).

Subsequently, we start with analyzing the optimization
benefits of a certain iteration. The initial solution set in the i-
th iteration can be denoted as POi

=
〈
X⃗

(i)
1 , X⃗

(i)
2 , . . . , X⃗

(i)
p

〉
,

the function evaluating the optimization degree is denoted as
ζ. cms remains relatively constant in each iteration. Thus,
for MHA shown as the meta-heuristic row in Fig. 2, the
improvement in the optimization degree (denoted as Dms) of
the solution set after the meta-heuristic search process in the
i-the iteration can be expressed as:

Dms = ζ (ms (POi
))− ζ (POi

) . (8)

where ms (POi) means the solution set obtained from solution
set POi

through a once meta-heuristic search. Therefore,
the improvement in optimization degree obtained by unit
computing complexity (denoted as ϱms) can be expressed as

ϱms =
Dms

cms
=

ζ (ms (POi))− ζ (POi)

p · (cf + cu)
. (9)

Regardless of the expression or encoding in any meta-
heuristic, the individual can accurately transform into the form
of the solution for the targeted optimization problem. This
property indicates that individuals of different MHAs can be
transformed into each other or can be represented uniformly.
Due to the fact that the searchability of MHAs is affected
by the quality of the current active solution set, if some
solutions can be deterministically improved through a certain
strategy (with less computational power consumption), the
overall search efficiency of MHAs can be enhanced. Therefore,
on the basis of the universal framework of MHAs, adding
a growth route and selecting partial solutions for additional
improvement, a universal growable meta-heuristic algorithm
framework (GMHA) can be obtained as the growable meta-
heuristic row in Fig. 2. In GMHA, solutions selected to partic-
ipate in growth are denoted as Ps =

〈
X⃗

(i)
α1 , X⃗

(i)
α2 , . . . , X⃗

(i)
αQi

〉
.

Thus, the solution set after growth from Ps can be represented
as Pg =

〈
g
(
X⃗

(i)
α1

)
, g
(
X⃗

(i)
α1

)
, . . . , g

(
X⃗

(i)
αQi

)〉
. It can be

obtained that after the additional growth stage, the solution
set changes from POi to Pgn = (POi − Ps) + Pg . There-
fore, the improvement in the optimization degree (denoted as
Dgms (Qi, Si)) of the solution set after the growable meta-
heuristic search process in the i-th iteration is:

Dgms (Qi, Si) = ζ (ms (Pgn))− ζ (POi
)

= ζ (ms ((POi
− Ps) + Pg))− ζ (POi

)
. (10)

The improvement in optimization degree obtained by unit
computing complexity for GHMA (ϱgms) can be expressed as:

ϱgms =
Dgms (Qi, Si)

cms + cg (Qi, Si)

=
ζ (ms ((POi

− Ps) + Pg))− ζ (POi
)

p · (cf + cu) + Si ·Qi · cr
.

(11)
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To make GMHA superior to MHA, there only needs to be
a combination of Qi and Si such that ϱgms > ϱms, which
mainly depends on the growth route and meta-heuristic strat-
egy. Through theoretical deduction, we can obtain Theorem 1,
which can be leveraged for quick verification or selection of
growth routes.

Theorem 1: For solutions (or solution sets) that have not
reached convergence, when the growth route satisfies Eq. (12),
then ∃ (Si, Qi) s.t. GMHA superior to MHA.

Dgms (Qi, 1)−Dgms (Qi, 0)

cg (Qi, 1)
>

Dgms (Qi, 0)

cms
(12)

Theorem 1 can be proved through the method of limits.
Proof 1: When Si = 0, GMHA will degrade into MHA.

Thus, limSi→0 Dgms (Qi, Si) = Dms. Adding the numerator
and denominator on both sides of Eq. (12) separately must
result a fraction between the two, so Eq. (13) is tenable.

Dgms (Qi, 1)−Dgms (Qi, 0)

cg (Qi, 1)
>

Dgms (Qi, 1)

cg (Qi, 1) + cms

>
Dgms (Qi, 0)

cms

(13)

Therefore,

ϱgms (Qi, 1) > ϱgms (Qi, 0) = ϱms. (14)

When Si → +∞, the algorithm of the growth route will
achieve convergence. Therefore, ∃Y ∈ N s.t.: for ∀y ≥ Y ,
Dgms (Qi, y) = Dgms (Qi, Y ). Thus, we can obtain Eq. (15).

lim
y→+∞

ϱgms (Qi, y) = 0 < ϱms = ϱgms (Qi, 0) (15)

Combining Eq. (14) and Eq. (15) can obtain that: ∃Y ∈ N+

s.t. ϱgms (Qi, Y ) ≥ ϱgms (Qi, y) is tenable for ∀y ∈ N. In this
case, there must be an optimal parameter configuration for Si

and Qi of GMHA, which maximizes the absolute improvement
in optimization degree per unit of computing complexity.

Theorem 1 explains one of the conditions for the superiority
of GMHA, which is actually easy to achieve under the flexible
configuration of growth routes. Therefore, it also demonstrates
the universal superiority of GMHA. The principle of GMHA
lies in sufficiently combining the global search-ability of meta-
heuristics and the directional search-ability (in the gradient
direction or directional derivative) of growth routes, so as
to improve the overall convergence speed and optimization
degree of the algorithm. Moreover, the additional growth
process requires little computing power to improve a small part
of the solutions, which can enhance the overall performance of
the entire meta-heuristic search process. The above theoretical
analysis is not limited to a specific meta-heuristic strategy,
growth route, or optimization problem, so it can be extended
to various scenarios, which demonstrates the scalability of our
proposed GMHA. In the next section, we will also verify the
universality of GMHA through experiments.

IV. EXPERIMENTAL STUDIES

A. Experiment Setting
For the sake of the comprehensive evaluations of our

proposed GMHA framework, we carry out several groups of
experiments from the following aspects:

(1) universality tests for various meta-heuristic algorithms and
various MOP benchmarks;

(2) practicability tests for multi-objective Cloud scheduling;
(3) statistical tests via the Wilcoxon test and Friedman test.

In order to verify the universal improvement effect of
GHMA on different MHAs, we select representative MHAs
as the basic algorithms, and construct their growable meta-
heuristic algorithms leveraging the framework in Fig. 2 and Al-
gorithm 1. The basic MHAs in the experiment include 12 algo-
rithms, i.e., SPEA II, PAES, UNSGA III, NSGA II, RVGEA,
CTAEA, NSGA III, MOEAD, IBEA FC, MOPSO, SMPSO,
and GREA (Grid-based Evolutionary Algorithm) [16], [17],
[19], [43]. To avoid early convergence and sufficiently reflect
the search-ability of algorithms, we combine domination hi-
erarchy and crowding distance [13] to evaluate the fitness of
solutions during the meta-heuristic search stage.

These algorithms and their growable algorithms are eval-
uated on multiple recognized MOPs testing benchmarks, in-
cluding ZDT [44], WFG [45], DTLZ [46] and IMOP [47].
This combination allows for the inclusion of diverse forms
of Pareto front in the testing benchmarks (covering convex,
concave, mixed, disconnected, 2D and 3D PFs). The repre-
sentative indicators adopted to evaluate the performance of the
algorithms are IGD (inverted generational distance) and HV
(hyper-volume) [48]. IGD can be used to measure the distance
between the Pareto front of the non-dominated solution set and
the true (theoretical) Pareto front. The formulas of IGD and
HV can be written as:

IGD =

∑|PF |
i=1 d2i
|PF |

, HV = δ
⋃|S|

i=1
vi (16)

where |PF | is the number of true Pareto front, di represents
the Euclidean distance between the i-th reference objective
vector and nearest objective values obtained by the algorithm,
δ represents Lebesgue measure, |S| means the number of non-
dominated solutions, vi represents the hyper-volume formed
by the reference point and the i-th solution in the non-
dominated solution set.

To maintain the comparability of the results, we
use the absolute HV and absolute IGD of non-
dominated solutions related to the true Pareto front by
calling the functions of pymoo.indicators.igd.IGD and
pymoo.indicators.hv.Hypervolume [48], whose reference
points are set as the corresponding points of the true Pareto
front. The growth quota and growth step parameters of
GMHA are respectively set as Qi = 10 and Si = 2. Other
parameter settings, such as population size and iteration
times, may vary in each experimental group and will be
explained in the corresponding experimental group section.

B. Universality Tests for Basic Algorithms and Problems

1) Universality for Meta-heuristic Algorithms: The exper-
iments in this subsection are to verify the prompting effect
of GHMA on the basis of different meta-heuristic algorithms
from the perspective of hyper-volume over iterations.

To ensure that the experimental results are conducted under
consistent parameter configurations, we set the population size
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Fig. 5. Verification of GMHA’s universality for various meta-heuristic algorithms on test benchmark ZDT1 (100 population size, 100 generations).
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Fig. 6. Radar charts of HV to verify GMHA’s universality for various test benchmarks (100 population size, 100 generations).

of each algorithm to 100, and observe the trend of their
hyper-volume within 100 iterations. Due to similar comparison
conclusions under different benchmarks, only a subset of the
experimental results is presented in this paper, where we
selected the experimental results under the ZDT1 problem. The
experimental results of each basic MHA and its corresponding
GMHA are shown in Fig. 5.

In the comparison results of each sub-figure in Fig. 5, the
HV-over-iteration curve of the GMHA is higher than that of
its basic MHA. The results of Fig. 5 show that within the
same number of iterations, the non-dominated solution set of
MOPs obtained by a GMHA is closer to the true solution
set compared to its basic MHA. This phenomenon indicates
that different MHAs have improved their convergence speed
and optimization performance in multi-objective optimization
to a certain extent after introducing the proposed GMHA
framework, which demonstrates the universal implications of
GMHA for multiple MHAs. In addition, due to the different
solving processes and strategies of different basic MHAs, their
basic performance varies. On the basis of the performance of
different basic MHAs, the improvement effect presented by the
GMHA framework is also different. For example, in Fig. 5,
when utilizing PAES to solve the ZDT1 problem, the HV-
over-iteration curve is the lowest. After leveraging GMHA,
the performance has been significantly improved. However,
due to the limitations of the basic performance of PAES, the
performance of G PAES with the addition of GMHA still has
a significant gap compared to other algorithms. It indicates that
the upper improvement effect of the GMHA is limited by the
performance of the basic MHA. However, it also indirectly
reflects the robustness of GMHA’s improvement effect, that
even if the performance of the basic algorithm is too low or too
high, GMHA can still present a certain degree of improvement
effect, showing the significance of GMHA in enhancing the
overall capability of MHAs.

GHMA possessing universality for various MHAs may be
because GMHA framework is a further improvement on top
of the universal MHA framework (Fig. 3) that is reconstructed
by extracting the common process of various MHAs. There-
fore, the improvement effect of GMHA actually reflects the
improvement of GMHA on the universal framework, and it
is precisely the universality of the universal MHA framework
that generalizes the improvement effect of GMHA.

2) Universality for Optimization Problems: The above
experimental results verify the universality of GMHA for
different basic meta-heuristic algorithms only in ZDT1. The
experiments in this subsection are to verify the universality of
GHMA for different MOPs.

To verify this property, we select several sets of MHAs
and their growable meta-heuristic algorithms for experiments
under different benchmarks, and record their HV at the 100-
th generation. As different parameter settings can derive
similar conclusions, we only present experimental results for
the configuration of 100 population size. Then, we plot the
experimental results under the same benchmark into radar
charts, as shown in Fig. 6, where “Refer HV” means the HV
of the true Pareto front.

Fig. 6 presents experimental results of RVGEA, UNSGA III,
PAES, MOPSO, NSGA II and their GMHAs under multiple
benchmarks. From the figures, the HV has been generally
improved under various MOP benchmarks by GMHA. It
is worth noting that due to the different patterns of the
solution sets in different MOPs, the performance of the same
algorithm varies greatly for different benchmarks. On the basis
of different basic performances, GMHA has a wide range of
improvement effects. Especially in some difficult problems,
the performance of the original basic algorithm is poor, while
the indicators of the growable algorithms can approach the
theoretical optimal HV (reference HV). For example, RVGEA
in DTLZ3, UNSGA III in DTLZ1, and MOPSO in ZDT2 can
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Fig. 7. Non-dominated solutions over iterations of MOPSO and G MOPSO in ZDT1 (400 population size).
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Fig. 8. Non-dominated solutions over iterations of NSGA II and G NSGA II in ZDT3 (100 population size).
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Fig. 9. Non-dominated solutions over iterations of UNSGA III and G UNSGA III in DTLZ7 (112 population size: 6 reference size).

only obtain a solution set with HV significantly worse than
the theoretical optimal HV, while their corresponding GMHA
successfully achieve appreciable HV close to the theoretical
optimal HV.

GHMA possessing universality for various MOPs may
mainly come from the universality of the proposed general
growth routes expounded in Section III-C. The general growth
routes are direct optimization processes within a specific local
range of the selected variables, ensuring to some extent that
the evaluation indicators of the solution obtained after passing
through the general growth routes are at least not inferior to
those of the solution before growth. Moreover, these direct
optimization processes are applicable to most representative
optimization problems, finally proving that GMHA has uni-
versality for various MOPs.

However, the proposed GMHA also has limitations in im-
proving certain problems, such as WFG1. It indicates that there
is still room for improvement in certain specific problems, such
as designing targeted growth routes or dynamically configuring
growth strategies for specific problems. It is also because this
paper adopts growth routes with certain universality in the
GMHA framework. Therefore, the improvement for different
problems may not be consistent. The adaptability of general

routes to different problems varies, also indicating that the
performance of GMHA is limited by the usage of general
growth routes, which can be regarded as sacrificing superiority
over a specific single problem in exchange for universality
over extensive problems. Overall, GMHA still demonstrates
considerable universality and effective improvement.

3) Discussion on Convergence via Non-dominated Solu-
tions: The above experiment verified the universality of the
proposed GMHA for meta-heuristic algorithms and optimiza-
tion problems, where the main indicator is HV. HV-over-
iteration can, to some extent, demonstrate the convergence
performance of algorithms. However, it is also necessary to
further observe from the perspective of the non-dominated
solution set-based Pareto scatter, which can intuitively exhibit
the changes in non-dominated solution sets. As a large number
of experimental results can derive similar conclusions, we
only present a subset of them. We present the results for
three representative benchmark problems leveraging different
algorithms: MOPSO and G MOPSO for ZDT1 (2D, con-
vex, continuous), NSGA II and G NSGA II for ZDT3 (2D,
discrete), UNSGA III and G UNSGA III for DTLZ7 (3D,
discrete). Then, the non-dominated solutions over iterations
are respectively plotted in Fig. 7 to Fig. 9.

As G MOPSO in ZDT1 converges in a very small number
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of iterations, Fig. 7 only provides results within 10 iterations
by setting 400 population size. According to the results of the
2-nd iteration in Fig. 7(b), the difference between MOPSO’s
and G MOPSO’s non-dominated solution sets is not obvious,
and moreover, their non-dominated solution sets are both far
from the true Pareto front. At the 4-th iteration, both MOPSO’s
and G MOPSO’s non-dominated solution sets achieve close
to the true Pareto front, but the overall number of non-
dominated solutions is relatively small and only one or two
solutions fall on the true Pareto front. As iteration increases
in Fig. 7(e) to Fig. 7(f), G MOPSO shows a better trend
of more non-dominated solutions falling on the Pareto front
than MOPSO. Until the 10-th iteration, G MOPSO obtains a
non-dominated solution set almost covering the true Pareto
front, while MOPSO can only cover the upper left corner
(coverage ratio is less than 0.5). Furthermore, starting from the
4-th iteration, the probability of G MOPSO’s non-dominated
solutions falling on the Pareto front reaches 100% and all non-
dominated solutions remain on the Pareto front throughout the
subsequent iterations. However, MOPSO always has a portion
of non-dominated solutions that are obviously far from the
Pareto front. The change process of results from Fig. 7(a)
to Fig. 7(f) clearly demonstrates that G MOPSO has better
convergence and can quickly obtain more solutions on the
true Pareto front. This improvement mainly comes from the
GMHA framework with additional growth routes.

Due to more iterations required for each algorithm to
reach convergence under the corresponding problem in the
experiments of Fig. 8 and Fig. 9, we present their flowcharts of
the changes in non-dominated solutions within 100 iterations
(100 population size or a value close to 100). Results in
Fig. 8 and Fig. 9 also clearly demonstrate the comparative
relationship between MHAs and their corresponding GMHAs.
For example, G NGSA II’s non-dominated solutions almost
cover the true Pareto front at the 40-th iteration of Fig. 8(c),
while NGSA II only has few solutions falling on the Pareto
front; G UNSGA III covers most of the PF at the 60-th
iteration of Fig. 8(d), while UNSGA III’s non-dominated
solutions are mostly not on PF.

From the perspective of Pareto front patterns, it can be seen
that the adaptability of GMHA to MOPs is actually reflected
in its adaptability to changes in different PF patterns including
2D to 3D, convex to non-convex, continuous to discrete.

C. Application for Cloud Scheduling
To verify the practicability of our proposed GMHA frame-

work for multi-objective problems in Cloud scheduling, we
carry out experiments in the multi-objective problem minω =
min

(
ω(1), ω(2), ω(3)

)
. The experiments take the resource uti-

lization rates of three dimensions and their relationship with
energy consumption into account. The coefficients of energy
consumption are generated as integers according to the uni-
form distributions:{

ajk ∼ U(1, 10), bjk ∼ U(0, 100),

cjk ∼ U(100, 200), djk ∼ U(500, 1000).
(17)

Considering NSGA and MOEA/D are representative enough
to reflect the properties of population-based meta-heuristics,

we observe the performance of G NSGA II and G MOEA/D
by comparing to their basic algorithms NSGA II and
MOEA/D. Among them, the growable meta-heuristic algo-
rithms leverage the proposed hybrid growth routes to addi-
tionally adjust the solutions, where the growth quota is 5 and
the growth step is 5. To accelerate the overall execution of
the optimization algorithm, we run the calculation function
for individual fitness on the GPU (RTX 2080 Ti), achieving
parallel evaluation for multiple solutions. To ensure the com-
parison under the same computing power consumption, we
set the evolution generations of G NSGA II and G MOEA/D
to 100, as well as adopt the results with the corresponding
execution time. To unify the scale of the three optimization
objectives so as to reflect the influence of each optimization
objective in HV, we implement normalization by calling the
function pymoo.indicators.hv.Hypervolume [48] in settings
of “zero to one = True” and “norm ref point = True”.
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Fig. 10. HV over execution time for problem Eq. (3) in Cloud scheduling
comparing G NSGA II and G MOEA/D with NSGA II and MOEA/D.

As multiple groups of experiments will lead to similar
conclusions, we only present a subset of results, including
(n = 80,m = 30), (n = 100,m = 40), (n = 500,m = 200)
and (n = 1000,m = 300). Then, we can plot the HV over
the execution time of algorithms in Fig. 10. The obvious
observation in Fig. 10 is that the HV curve of the GMHAs is
significantly higher than that of the corresponding basic algo-
rithms, which demonstrates the adaptability of our proposed
GMHA framework to application scenarios and optimization
problems. Especially for large-scale optimization problems in
Cloud computing (with hundreds or thousands of decision
variables), introducing a small amount of additional search
during the optimization solution process (consuming only a bit
of computing power) can fully retain the global search-ability
of the meta-heuristic algorithm while adding the trend of
convergence, enabling the algorithm to obtain better solutions
in less time. Taking the ratio between the HV of GMHA and
the corresponding MHA at the same execution time in Fig. 10
to represent the ratio of convergence speed (abbreviated as
RCS), and taking the ratio between the HV of the convergent
solution to represent the ratio of the optimization degree
(abbreviated as ROD), we can list the results in Table I. From
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Table I, GMHA has 2.116 times the average convergence
speed and 2.068 times the optimization degree of MHA in
the Cloud scheduling scenarios.

TABLE I
RATIOS OF CONVERGENCE SPEED AND OPTIMIZATION DEGREE BETWEEN

GMHA AND THE CORRESPONDING MHA.

Ratio GMHA Fig. 10(a) Fig. 10(b) Fig. 10(c) Fig. 10(d) Average

RCS G NSGA II 2.623 2.509 1.197 2.102 2.108
G MOEA/D 2.560 2.350 1.442 2.144 2.124

ROD G NSGA II 2.372 2.741 1.236 2.314 2.166
G MOEA/D 2.243 1.746 1.543 2.350 1.971
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Fig. 11. Optimization results of each objective over execution time for
scenarios of (n = 80,m = 30) and (n = 100,m = 40).

For the sake of observation of each optimization objective,
we plot the corresponding time-history curves of scenarios of
(n = 80,m = 30) and (n = 100,m = 40) in Fig. 11. From
Fig. 11, our proposed GMHA not only achieves a better
optimization degree of multi-objectives, but also ensures the
fast search speed of each single-objective. Compared to the
corresponding MHA, GMHA achieves improvement in each
objective, averagely reducing the total energy consumption
(ω(1)) by 25.05%, the maximum energy consumption of each
node (ω(2)) by 4.94%, and the sum of the standard deviations
of multi-dimensional resource utilization (ω(3)) by 35.12%.

The above experiments verify the practicability of our
proposed GMHA for large-scale Cloud scheduling consid-
ering multiple objectives, such as energy consumption and
utilization. The above experiments, as a sample of resource
scheduling, are sufficiently representative of Cloud computing,
which aims at providing flexible services to various users.

D. Discussion on Statistical Tests

The above experiments mainly analyze and discuss the
results of one instance. In order to further comprehensively
evaluate the improvement effect of GHMA framework on
various MHAs in various MOPs, this subsection analyzes and
discusses the statistical test of multiple instances of experi-
mental results. In statistical tests, all algorithms are run 30
times independently for each test benchmark. For the sake of
enriching the diversity expression of indicators, this subsection
mainly presents the results under the IGD indicator (where the
HV indicator has similar qualitative comparative conclusions).

We utilize the Wilcoxon rank sum test and Friedman test
to evaluate the algorithms, whose results are respectively

presented in Table II and Table III. The Wilcoxon rank-sum
test can test the null hypothesis that two sets of measurements
are drawn from the same distribution. At the 5% test level,
two algorithms have obvious differences in a function if the
p-value ≤ 0.05, otherwise the difference is not obvious.
On the basis of the Wilcoxon rank-sum test, we carry out
a comprehensive Wilcoxon rank-sum test to evaluate all 24
algorithms respectively. In the comprehensive Wilcoxon rank-
sum test, the results of each algorithm come from taking
the current algorithm as the target algorithm and subjecting
it to the 1-on-1 Wilcoxon rank-sum test with the other 23
algorithms respectively. Based on the results of the 1-on-
1 Wilcoxon rank-sum test, it is decided to add 1 to the
corresponding W/T/L term. For example, the 15/1/7 in column
ZDT4 of row SPEA II in Table II indicates that SPEA II has
won 15 algorithms, is close to 1 algorithm, and has lost to 7
algorithms.

From Table II and Table III, the statistical test results
obtained by GMHAs are generally better than those of their
corresponding basic meta-heuristic algorithms, which verifies
the superiority of GMHA framework from the perspective
of statistical test, reflecting the stability of the GMHA in
improving the performance of basic meta-heuristic algorithms.

However, there are still some specific problems where the
comprehensive Wilcoxon test results of some MHAs and their
corresponding GMHAs are close or even the same. One reason
may be that we only select the IGD values of the 50-th
iteration for comparison, and some basic MHAs and their
corresponding GMHAs may have reached similar convergence
states (approaching theoretical states) in the 50-th iteration
with close IGD values. This reason mainly corresponds to
the cases where the comprehensive Wilcoxon test results
of the basic algorithm and its growable algorithm are very
considerable, such as (SPEA II, G SPEA II) in IMOP4, and
(MOPSO, G MOPSO) in ZDT4. The other reason may be
that not all three general growth routes proposed in this paper
are suitable for the specific scenario (specific algorithms in
specific problems). The strategy adopted in this paper is to
randomly select one route from the three general growth routes
for growth in each iteration, so the final effect of GMHA may
be that the increase and decrease effects cancel each other out.
This reason corresponds to the cases where the basic algorithm
and its growable algorithm both perform poorly, such as
(MOPSO, G MOPSO) in ZDT2, and (SMPSO, G SMPSO) in
DTLZ2. This phenomenon indirectly reflects the disadvantage
of the GMHA based on the hybrid multi-growth route pro-
posed in this paper, lacking targeted consideration for flexible
configuration of growth routes in specific scenarios, which is
also an issue deserving further studies in future work.

According to Table III, the Friedman test can also indicate
that GMHA has a stable improvement effect on MHA. Gen-
erally, in the Friedman test, GMHA has a 90.15% (i.e., 238

264 )
probability of improving the ranking of MHA. The statistical
test results can be used to conduct further analysis that the
introduction of hybrid multi-growth routes results in excellent
overall improvement. Relying solely on a single route will
result in lower adaptability coverage than hybrid multi-growth
routes. Moreover, due to the universality of the GMHA being
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TABLE II
COMPREHENSIVE WILCOXON RANK-SUM TEST (W/T/L) BASED ON IGD AT THE 50-TH ITERATION FOR 30 TIMES RUNS (100 POPULATION SIZE).

Algorithm
ZDT WFG DTLZ IMOP

1 2 3 4 5 6 1 2 3 4 5 1 2 3 4 5 6 7 1 2 3 4
SPEA II 17/3/3 18/0/5 19/1/3 15/1/7 20/1/2 11/8/4 17/3/3 18/3/2 14/6/3 17/2/4 17/3/3 10/2/11 19/2/2 11/2/10 21/0/2 19/3/1 22/0/1 20/0/3 22/1/0 22/1/0 19/3/1 22/1/0

G SPEA II 21/1/1 22/1/0 21/1/1 17/0/6 20/1/2 22/1/0 17/3/3 18/3/2 15/5/3 18/1/4 17/3/3 12/4/7 20/1/2 12/1/10 22/1/0 20/2/1 23/0/0 22/0/1 22/1/0 22/1/0 19/4/0 22/1/0
PAES 0/0/23 0/1/22 0/1/22 0/1/22 8/5/10 1/0/22 3/2/18 7/1/15 11/3/9 14/0/9 6/3/14 0/4/19 0/0/23 1/5/17 3/0/20 0/0/23 2/1/20 0/1/22 1/1/21 5/1/17 2/2/19 4/2/17

G PAES 1/1/21 2/0/21 2/2/19 2/1/20 2/6/15 3/3/17 6/0/17 10/2/11 14/6/3 16/2/5 14/1/8 12/3/8 3/0/20 14/2/7 4/1/18 3/2/18 4/0/19 2/2/19 3/0/20 10/7/6 4/4/15 6/3/14
UNSGA III 6/4/13 5/6/12 6/4/13 2/2/19 14/5/4 2/2/19 12/3/8 18/3/2 0/2/21 21/1/1 21/1/1 3/4/16 18/0/5 1/4/18 13/2/8 17/1/5 15/2/6 17/1/5 8/1/14 7/3/13 12/4/7 0/1/22

G UNSGA III 13/1/9 11/1/11 12/2/9 5/2/16 14/5/4 16/3/4 11/4/8 22/1/0 1/3/19 23/0/0 23/0/0 12/3/8 19/1/3 14/2/7 20/0/3 19/1/3 17/3/3 21/0/2 9/3/11 10/6/7 17/1/5 3/1/19
NSGA II 15/1/7 13/2/8 16/0/7 6/6/11 23/0/0 4/2/17 15/3/5 18/3/2 11/4/8 20/1/2 17/3/3 4/4/15 22/0/1 3/5/15 14/5/4 20/2/1 20/1/2 17/1/5 17/0/6 12/6/5 2/7/14 13/2/8

G NSGA II 23/0/0 22/1/0 21/1/1 6/6/11 22/0/1 20/0/3 15/3/5 22/1/0 11/4/8 20/2/1 21/1/1 18/2/3 23/0/0 14/2/7 22/1/0 23/0/0 18/3/2 23/0/0 19/2/2 20/1/2 13/2/8 13/2/8
RVGEA 7/3/13 5/6/12 6/4/13 5/5/13 1/2/20 7/3/13 21/2/0 9/0/14 12/8/3 7/2/14 6/2/15 10/2/11 11/1/11 8/4/11 13/3/7 7/3/13 6/3/14 14/1/8 13/3/7 0/0/23 19/3/1 18/1/4

G RVGEA 10/1/12 5/6/12 10/1/12 12/2/9 1/5/17 8/2/13 22/1/0 12/2/9 21/2/0 10/1/12 9/1/13 22/1/0 14/2/7 22/1/0 18/1/4 13/1/9 6/3/14 14/1/8 18/0/5 1/3/19 21/2/0 18/2/3
CTAEA 13/1/9 15/2/6 12/2/9 5/7/11 0/0/23 11/4/8 21/1/1 13/1/9 14/5/4 7/2/14 7/2/14 7/2/14 11/2/10 1/6/16 11/1/11 7/4/12 11/0/12 11/0/12 0/0/23 2/2/19 0/0/23 16/1/6

G CTAEA 17/3/3 19/0/4 17/1/5 18/0/5 6/5/12 15/2/6 12/8/3 15/1/7 14/6/3 10/1/12 11/2/10 22/1/0 14/2/7 17/0/6 16/2/5 13/1/9 12/2/9 12/0/11 13/3/7 11/7/5 19/4/0 16/1/6
NSGA III 2/2/19 0/1/22 2/2/19 0/1/22 2/4/17 0/0/23 3/2/18 7/1/15 3/2/18 4/3/16 3/2/18 0/4/19 5/1/17 0/0/23 4/1/18 3/2/18 2/1/20 1/1/21 1/1/21 2/2/19 1/3/19 2/7/14

G NSGA III 17/3/3 13/4/6 6/4/13 8/4/11 1/5/17 7/1/15 1/1/21 2/2/19 6/3/14 12/1/10 14/1/8 16/2/5 9/1/13 21/0/2 0/2/21 10/2/11 9/1/13 8/2/13 6/1/16 20/1/2 10/2/11 6/3/14
MOEAD 5/0/18 3/0/20 5/0/18 3/1/19 9/5/9 2/3/18 15/5/3 5/1/17 4/2/17 2/0/21 2/0/21 4/5/14 4/0/19 1/8/14 8/1/14 3/2/18 5/0/18 9/1/13 8/4/11 1/1/21 1/1/21 11/1/11

G MOEAD 6/3/14 4/1/18 12/3/8 6/5/12 6/4/13 16/3/4 8/1/14 10/1/12 9/2/12 12/1/10 12/1/10 19/1/3 9/1/13 18/2/3 10/0/13 6/0/17 12/2/9 13/0/10 9/3/11 5/1/17 11/3/9 11/1/11
IBEA FC 12/0/11 13/2/8 14/1/8 7/7/9 2/4/17 8/2/13 3/2/18 5/1/17 8/2/13 0/1/22 0/1/22 5/4/14 5/1/17 7/4/12 8/1/14 7/4/12 12/2/9 7/0/16 12/3/8 7/2/14 4/5/14 0/1/22

G IBEA FC 21/1/1 20/1/2 23/0/0 15/1/7 14/3/6 15/4/4 7/0/16 11/2/10 10/10/3 0/1/22 0/1/22 21/0/2 12/1/10 22/1/0 16/2/5 15/1/7 15/4/4 8/1/14 14/2/7 18/1/4 14/2/7 2/1/20
MOPSO 6/4/13 5/6/12 6/5/12 20/2/1 7/7/9 11/4/8 9/1/13 0/0/23 0/3/20 4/3/16 3/2/18 0/2/21 1/1/21 1/10/12 0/1/22 1/1/21 6/4/13 4/2/17 4/1/18 11/7/5 4/4/15 20/1/2

G MOPSO 6/5/12 5/6/12 6/4/13 20/2/1 7/10/6 11/4/8 8/2/13 1/0/22 0/3/20 3/1/19 3/2/18 1/7/15 1/1/21 4/7/12 1/1/21 1/1/21 6/3/14 4/2/17 4/1/18 11/7/5 4/4/15 19/2/2
SMPSO 1/3/19 4/7/12 0/1/22 19/1/3 10/4/9 2/4/17 0/1/22 2/2/19 6/2/15 3/3/17 6/4/13 15/2/6 7/1/15 18/2/3 6/0/17 8/4/11 0/1/22 0/4/19 6/1/16 7/3/13 7/2/14 4/2/17

G SMPSO 2/2/19 5/7/11 2/2/19 19/3/1 9/5/9 11/4/8 0/2/21 2/2/19 5/3/15 5/4/14 11/1/11 17/2/4 7/1/15 18/2/3 7/0/16 7/5/11 0/1/22 2/4/17 9/4/10 8/4/11 10/3/10 6/3/14
GREA 15/1/7 15/2/6 17/1/5 12/2/9 16/3/4 21/0/2 12/3/8 15/2/6 21/2/0 15/1/7 16/0/7 1/4/18 14/2/7 2/7/14 11/1/11 15/1/7 15/2/6 16/0/7 19/2/2 11/6/6 10/6/7 10/0/13

G GREA 17/3/3 20/1/2 19/1/3 23/0/0 16/3/4 22/1/0 11/1/11 16/1/6 21/2/0 15/2/6 17/3/3 10/5/8 17/0/6 5/5/13 13/3/7 17/1/5 17/3/3 19/0/4 19/2/2 14/5/4 17/1/5 13/2/8

TABLE III
FRIEDMAN TEST RANKING BASED ON IGD AT THE 50-TH ITERATION FOR 30 TIMES RUNS (100 POPULATION SIZE).

Algorithm
ZDT WFG DTLZ IMOP

Average
1 2 3 4 5 6 1 2 3 4 5 1 2 3 4 5 6 7 1 2 3 4

SPEA II 5.467 6.633 4.433 9.367 3.667 9.367 5.533 4.667 6.800 5.967 5.833 13.77 4.033 13.27 3.267 4.033 1.900 3.933 1.733 1.733 5.767 1.933 5.595
G SPEA II 2.400 1.667 2.800 7.500 4.100 1.567 5.033 4.433 6.000 5.733 5.500 8.700 3.533 12.53 2.033 3.133 1.100 1.767 1.600 1.300 3.533 1.767 3.988

PAES 23.70 23.50 23.20 23.33 13.57 22.50 20.57 16.67 11.43 9.833 16.07 21.23 23.77 20.13 21.63 23.73 21.87 23.00 22.30 17.57 20.93 18.47 19.95
G PAES 21.90 22.00 21.27 20.70 17.77 19.83 19.00 12.67 7.533 6.833 9.000 9.833 21.47 9.100 19.17 20.47 19.97 21.30 20.17 11.27 17.57 17.07 16.63

UNSGA III 15.80 15.70 15.50 19.80 8.867 20.67 10.43 3.667 21.80 2.667 3.033 18.97 6.300 20.10 10.13 6.633 7.067 6.700 15.43 15.47 11.03 23.33 12.69
G UNSGA III 11.10 12.57 11.50 17.53 9.000 6.333 10.70 2.800 20.90 1.900 1.567 9.733 4.267 9.367 4.200 4.100 5.667 3.467 13.33 11.13 8.167 20.50 9.083

NSGA II 8.233 10.63 8.433 14.67 1.133 19.20 8.033 4.267 10.50 3.767 5.200 18.33 2.100 18.33 7.567 2.933 4.567 6.333 7.400 9.767 18.30 9.933 9.074
G NSGA II 1.467 2.133 2.367 14.57 2.700 4.500 7.833 2.067 10.87 2.900 2.767 5.400 1.133 8.567 1.700 1.433 5.167 1.300 4.533 4.100 10.37 10.03 4.905

RVGEA 15.27 16.27 16.13 16.23 20.27 15.17 2.000 14.77 8.700 16.27 17.17 13.67 12.73 14.50 9.567 15.43 16.10 10.10 9.700 23.03 3.500 5.467 13.27
G RVGEA 14.40 15.60 13.43 11.17 18.97 15.00 1.733 11.30 3.433 12.80 14.20 2.133 8.867 1.367 5.600 11.03 16.23 9.633 6.333 20.87 2.267 4.833 10.05

CTAEA 11.07 8.667 12.03 15.50 22.67 12.17 3.767 10.50 8.067 16.23 16.07 16.67 11.90 19.43 11.10 14.77 12.70 13.27 23.33 20.67 22.03 8.400 14.14
G CTAEA 5.233 6.067 6.700 5.933 15.93 7.700 8.233 8.900 6.867 13.20 12.13 3.067 9.367 6.833 7.533 11.07 12.10 12.47 10.77 9.233 2.833 7.167 8.606
NSGA III 21.37 23.23 21.17 23.33 18.37 23.77 20.13 17.00 19.27 18.40 19.37 21.47 18.20 23.00 19.60 20.13 21.93 22.13 21.60 20.70 20.30 19.00 20.61

G NSGA III 7.100 10.23 15.33 14.33 18.57 16.27 21.70 20.20 16.17 11.77 9.333 7.067 14.57 3.567 22.70 13.53 14.33 15.67 15.97 4.100 12.67 16.97 13.73
MOEAD 19.13 20.60 18.77 19.00 12.90 20.27 7.600 17.97 18.90 21.90 21.53 18.27 19.40 18.37 15.73 20.73 19.10 14.47 13.73 22.43 21.50 11.90 17.92

G MOEAD 15.80 18.00 10.90 15.13 16.27 6.800 14.77 13.37 14.10 11.93 11.93 4.833 14.73 5.367 13.10 17.13 11.60 10.53 13.33 18.33 11.23 12.23 12.79
IBEA FC 11.87 10.53 9.567 13.00 19.00 14.53 19.87 18.63 14.57 23.33 23.30 17.73 17.83 15.20 15.13 14.50 12.23 17.20 10.90 15.93 16.27 23.17 16.10

G IBEA FC 2.133 2.867 1.233 8.833 9.667 7.267 16.47 11.97 9.767 23.67 23.70 3.367 11.27 1.833 7.900 8.267 6.800 16.07 8.767 6.767 9.167 21.47 9.965
MOPSO 15.33 15.67 15.10 3.033 14.40 11.17 14.30 23.57 21.50 19.83 19.73 20.60 22.67 17.23 23.10 22.07 16.03 18.77 19.67 9.867 18.17 4.367 16.57

G MOPSO 13.73 14.90 14.17 2.767 12.97 11.00 13.90 23.07 21.47 18.77 19.73 19.20 22.10 16.00 22.00 21.83 15.57 19.10 18.87 9.533 17.57 4.000 16.08
SMPSO 21.87 16.53 22.63 5.700 12.03 18.37 23.20 21.33 17.47 18.93 16.17 8.733 17.13 5.600 17.97 13.90 22.73 20.80 17.83 14.10 16.13 18.07 16.69

G SMPSO 20.97 14.97 21.60 3.933 12.43 11.43 22.37 20.70 17.10 17.60 13.50 6.700 16.53 5.433 17.23 14.60 22.47 19.50 13.17 12.77 12.67 16.43 15.19
GREA 8.800 7.467 6.967 11.87 7.200 3.367 11.00 8.100 3.333 8.067 7.233 19.70 8.700 18.13 12.33 7.767 7.100 7.467 4.900 10.50 11.03 13.93 9.317

G GREA 5.867 3.567 4.767 2.767 7.567 1.733 11.83 7.400 3.467 7.700 5.933 10.77 7.400 16.73 9.700 6.767 5.667 5.033 4.633 8.033 7.000 9.567 6.995

built on different algorithms and different problems, and the
optimal scales of different algorithms and problems being dif-
ferent, additional considerations need to be given to parameter
settings during the application of meta-heuristics, which is also
a difficult point in meta-heuristic research. The combination
of GMHA and hybrid multi-growth routes actually improves
the statistical performance of meta-heuristic algorithms from a
statistical perspective by increasing the adaptation probability.

V. CONCLUSION AND FUTURE WORK

Due to the superior performance and irreplaceability of
meta-heuristic algorithms (MHAs) in solving MOPs, espe-
cially for Cloud scheduling, a universal strategy or framework

that can enhance the overall performance of various MHAs is
of profound significance and also a highly challenging topic.

In response to this challenge, the main contributions of this
paper include reconstructing a universal MHA framework by
integrating the common features of various MHAs, proposing
the growable meta-heuristic algorithm framework (GMHA)
with the hybrid multi-growth routes strategy combining several
proposed general growth routes, and concretely instantiating
multiple growable meta-heuristic algorithms, which practically
expands the capability boundary of MHAs in MOPs.

Integrating the advantages of the universal meta-heuristic
framework and hybrid multi-growth routes strategy, GMHA
possesses universality for various basic MHAs and MOPs.
Extensive experiments have verified this universality from
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multiple perspectives. From statistical test, GMHA has a
probability of 90.15% to improve the performance of various
MHAs in various MOP benchmarks. Experiments in Cloud
scheduling showcases that the average convergence speed of
GMHA is 2.116× of the corresponding MHA, achieving
reductions of 25.05% in total energy consumption, 4.94%
in the maximum energy consumption of server nodes, and
35.12% in the sum of the standard deviations of utilizations.

As an exploration of MHA framework, GMHA demon-
strates its potential. However, during the exploration of the
universal framework, this paper only implements the fixed
meta-heuristic strategy and growth parameters, as well as uses
the random selector based on uniform distribution to determine
the growth routes, hence showing limitations and instability in
certain problems or scenarios. In the future, part of our work is
to study how to dynamically set the configurations of growth
parameters, growth routes and basic meta-heuristic search
strategies based on the context during the optimization process
for different problems and algorithms in services-oriented
distributed computing. Furthermore, theoretical modeling and
analysis of GMHA’s performance are also worth exploring.
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