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A B S T R A C T

The highly dense small cell structure filled with large number of Femtocell Base Stations (FBSs) is expected
to address the increasing data demand of end users in current and upcoming generation of wireless networks.
However, the large and random deployment of such devices incur severe interference which leads to signifi-
cant performance degradation. To overcome this issue in the Orthogonal Frequency Division Multiple Access
(OFDMA)-based femtocell networks, we propose a hierarchical technique consisting of a dynamic distributed
clustering and a fog-driven resource allocation to optimize the total throughput of the network while mitigating
the interference. Our fully distributed clustering method is designed so that FBSs adaptively form clusters with
dynamic size based on the current status of the network and end users. Moreover, we put forward a policy-aware
resource allocation method to address the intra and inter-cluster interference, which are two potential types of
interference in clustering-based resource allocation techniques. Since our technique carefully considers users’
demands in cluster formation, there is always sufficient resources for end users in each cluster, so that each
cluster head can find a resource allocation solution, by which no intra-cluster interference occurs. Besides, we
employ local fog servers situated in the proximity of clusters for monitoring and assigning a set of policies to
CHs for resource allocation, by which the number of inter-cluster interference can be significantly reduced. The
extensive simulation results demonstrate that our proposed hierarchical technique significantly improves total
throughout, interference, user satisfaction, and fairness compared to other proposed techniques in dense and
ultra-dense femtocell networks.

1. Introduction

A rapid growth in deployment and the use of mobile devices such as
smartphones, tablets, and sensors has resulted in rapid increase of data-
streaming applications such as video streaming, online games, health-
care, and Voice over Internet Protocol (VoIP). This leads to a signifi-
cant amount of data to be transferred over cellular networks (Lee et al.,
2014; Goudarzi et al., 2016, 2017). Considering the fact that the num-
ber of cellular network resources is restricted, the requested quality of
service can be satisfied for only a limited number of users. Besides,
recent studies have revealed that approximately 70 percent of the data
is originated from indoor places where severe wall penetration loss and
longer transmission distance incur poor received signal quality (Garci-
a-Morales et al., 2015). To address these issues, Femtocell Base Stations
(FBSs), which are low-power, short-range, and low-cost edge devices
are deployed over macrocell network to effectively improve the indoor
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received signal quality and overall network throughput. This latter is
obtained by reusing same frequency by several FBSs while the former
one is satisfied by decreasing the distance between transmitter and end
users (Fu et al., 2017).

However, in densely deployed femtocell networks, neighboring FBSs
experience severe co-tier interference (i.e., interference between adja-
cent femtocells (Mhiri et al., 2013)) due to finite domain of shared
spectrum unless an efficient interference management technique is
used. The co-tier interference can be significantly reduced in down-
link Orthogonal Frequency Division Multiple Access (OFDMA)-based
femtocell networks by means of an efficient allocation of Resource
Blocks (RBs) between interfering FBSs (Bu et al., 2015). To achieve this,
researchers have proposed several Resource Allocation (RA) techniques
including centralized and clustering. However, due to non-convex non-
deterministic polynomial time (NP-hard) nature of this problem, cen-
tralized techniques are not efficiently practical and result in high com-
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plexity, signaling overhead, and single point of failure, specifically in
dense and ultra-dense networks (Fu et al., 2017; Rohoden et al., 2019).
To overcome this problem, the clustering-based RA techniques, which
are partially decentralized, are introduced by which the complexity of
RA problem is significantly reduced. In majority of these techniques,
each cluster has access to entire set of RBs, while FBSs in one cluster
cannot use the same RBs simultaneously. This latter enables RA tech-
nique to be performed in each cluster independently of other clusters
(Lee et al., 2014).

In order to effectively utilize the benefits of clustering in RA, several
issues should be carefully addressed. Clusters can be formed either by
gateway (GW) centrally or by FBSs in a distributed manner (Qiu et al.,
2016). Moreover, the maximum size and number of clusters can be stat-
ically determined or can be obtained dynamically by the GW or cluster
heads (CHs) at the runtime. In addition, the RA in each cluster can
be performed by a CH individually or all FBSs collaboratively. Besides,
in the dense and ultra-dense femtocell networks, interference between
clusters should be mitigated so that FBSs located at the edge of clusters
(edge FBSs) do not suffer from decreased throughput, which apparently
reduces total throughput and end users’ quality of experience. Last but
not least, it is worth mentioning that centralized and clustering-based
RA techniques, in which GWs and CHs respectively perform the major-
ity of responsibilities, suffer from the scalability issues in dense and
ultra-dense femtocell networks, because the above-mentioned burdens
are not proportionally distributed.

Considering the aforementioned issues, we propose a Distributed
Dynamic Clustering (D2C)-FOg-driven Resource Allocation Technique
(D2C-FORAT) to optimize the total throughput of the downlink OFDMA
femtocell networks. The proposed solution is divided into two methods
including distributed dynamic clustering and RA, so that we propor-
tionally distribute responsibilities over the network entities including
FBSs, CHs, GW, and local fog servers. The fog servers are local entities
located in the proximity of end users, which have computing capabil-
ities, and can be accessed by low latency (Zhou et al., 2016; Hu et
al., 2017; Chang et al., 2019). In the D2C-FORAT, FBSs make clus-
ters in a distributed dynamic manner so that FBSs which have the
highest co-tier interference on each other join to the same cluster,
and select a CH. Afterward, the CH monitors the available resources
and users’ demands in its cluster, and dynamically control the size
of its cluster in the runtime. In addition, the fog servers collect the
edge FBSs’ information of each cluster which is then used to form
the edge FBSs’ interference graph. Besides, the fog servers employ a
graph-coloring-based technique to assign a set of policies for edge FBSs
in each cluster to reduce the inter-cluster interference. These policies
are then forwarded to respective CHs, by which the RA can be per-
formed more efficiently, resulting in increased throughput and user
satisfaction.

We summarize the main contributions of this paper as follows.

1) We propose a hierarchical RA technique, aiming at maximizing the
total throughput while mitigating the interference, to satisfy the
ever-increasing users’ demands in dense and ultra-dense femtocell
networks

2) We put forward a distributed dynamic clustering algorithm by
which CHs adaptively control their cluster size based on requested
demands of their end users. This results in better scalability so that
our technique can be effectively adapted to dense and ultra-dense
femtocell networks.

3) Considering the fact that sufficient resources are available in each
cluster due to our clustering method, no intra-cluster interfer-
ence occurs. To address the inter-cluster interference problem, we
develop a fog-driven RA method by which the fog servers assign a
set of policies to CHs to be considered in their RA. This latter leads to
decreasing the inter-cluster interference which significantly improve
the total throughput and user satisfaction.

4) We study current clustering-based RA techniques in femtocell net-
works to identify their key elements, and provide a comprehensive
qualitative comparison.

5) The performance of our technique, D2C-FORAT, is comprehensively
evaluated in dense and ultra-dense femtocell networks, and we com-
pared it by the state-of-the-art current techniques in terms of system
throughput, interference, satisfaction rate, and fairness to precisely
analyze its efficiency.

The rest of the paper is organized as follows. Section 2 reviews the
current literature in clustering-based RA techniques in femtocell net-
works. The system model and problem formulations are presented in
section 3. Our distributed clustering and RA methods are presented in
section 4 and section 5, respectively. In section 6, we evaluate the sys-
tem performance under our proposed solution, and compare it by the
state-of-the-art RA techniques of the literature. Finally, section 7 con-
cludes the paper and draws future works.

2. Related work

A significant number of studies has been focused on RA techniques
in OFDMA-based femtocell networks to address the co-tier interference,
among which we study the current literature in clustering-based RA.
The proposed techniques are categorized into two groups of centralized
and distributed based on their clustering approach. Besides, main ele-
ments of each technique are identified, by which we can qualitatively
compare these techniques.

In the centralized clustering techniques, clustering is performed by
the GW. The authors in Li et al. (2012) proposed a centralized clus-
tering technique for the RA in femtocell networks, in which, after for-
mation of interference graph, the GW obtains the minimum-interfered
clusters by Max k-Cut algorithm. Then, a heuristic algorithm is used to
assign available RBs to different clusters. Authors in Abdelnasser et al.
(2014) proposed a hierarchical RA technique, in which the GW collects
the channel gain between each pair of FBSs and builds the interfer-
ence graph. The GW forms clusters based on the correlation clustering
concept. Afterward, due to the NP-hard nature of correlation cluster-
ing, the problem is formulated as a semi-definite program (SDP) and
solved by randomized rounding. Authors in Li and Zhou (2017) pro-
posed a cluster-based solution for the RA, in which the FBSs are clus-
tered together according to their geographical positions by the GW.
Then, in each cluster, the FBS with the largest interference degree is
selected as the CH, whose main task is the RA in its cluster. This lat-
ter is performed by solving an optimization problem via a sub-gradient
iteration-based RA algorithm. In Fu et al. (2017), the GW collects the
interference degree of each FBS and performs a predetermined cluster-
ing accordingly. Then, for each cluster derived in the predetermined
clustering, the GW obtain specifies a set of best candidate sub-clusters.
This process is repeated until the GW recognizes the best sub-clustering
for each cluster. The authors in Li and Zhang (2018) proposed a RA
technique in which GW centrally clusters FBSs by a modified k-mean
clustering algorithm. Afterward, a greedy algorithm is used to distribute
available resources to the FBSs.

Although the main goal of centralized clustering techniques is to
find the best clustering, this is a time-consuming process, specifically in
the dense and ultra-dense femtocell networks (Qiu et al., 2016). More-
over, considering the dynamic nature of femtocell networks, the GW
requires to re-cluster all the FBSs whenever any change occurs in the
network to find the best clustering solution.

In the distributed clustering techniques, FBSs collaboratively make
clusters without participation of the GW. If any changes occur in the
status of the network and end users, the change can be handled locally,
and there is no need to repeat the clustering algorithm for all FBSs.
Authors of Zhang et al. (2013) proposed a graph-based RA technique
in which clusters of non-interfering FBSs are formed in a distributed
manner by FBSs, and then, the GW performs the RA for each cluster
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according to its average users’ demands. Since the RA is performed cen-
trally by the GW, this technique cannot be efficiently employed in dense
and ultra-dense networks. Moreover, RBs are not fairly allocated to end
users because this technique only considers average demand of each
cluster. However, each user’s demand can be more than the obtained
cluster’s average demand, resulting in less fairness and user satisfac-
tion. In Hatoum et al. (2014), the authors proposed a Quality-of-service-
based Femtocell Cluster-based RA (QFCRA). Initially, each FBS builds
a neighboring list containing its one-hop FBSs, and sends it to all of its
proximate neighbors. This latter assists each FBS to obtain interference
degree of its one-hop neighbors. Afterward, the FBS with the largest
interference degree among its neighbors announces itself as the CH, and
other FBSs connect themselves to it. Each CH has the responsibility of
RA, especially in the dense and ultra-dense femtocell networks. In Qiu
et al. (2016), the authors proposed a learning-based scheme (LFCRA)
to solve the inter-cluster interference of the QFCRA. Although the pro-
posed technique is more efficient than QFCRA in handling inter-cluster
interference, similar to QFCRA, its performance mainly depends on its
cluster size which is not dynamically set.

Table 1 identifies and compares key elements of current works
in terms of architectural parameters, clustering parameters, interfer-
ence management, and evaluation parameters. The clustering parame-
ters include approach describing whether that proposal is centralized
or distributed, dynamicity showing whether that cluster updates itself
whenever a new FBS is added or removed, or even when the users’
demands are changed. The cluster size can be set by GW or CHs in a
predefined manner statically or according to the current status of FBSs
dynamically. The clustering criteria show the main factors used for cre-
ation of clusters, which can be interference degree, interference inten-
sity, and users’ demands. The architectural parameters contain hierar-
chical components which describe what entities participate in cluster-
ing and RA, and introduce specific roles of each entity. Furthermore,
although all proposals consider intra-cluster interference management,
only some of them address the inter-cluster interference which has a
significant effect on network throughput, specifically in the densely
deployed femtocell networks. Finally, the evaluation parameters depict
main parameters by which the performance of each proposal is
evaluated.

To address the above-mentioned issues, we propose a hierarchical
technique, called D2C-FORAT, containing clustering and RA methods.
The clustering is performed in a distributed manner, where FBSs col-
laboratively form clusters based on interference intensity, and clus-
ter members (CMs) identify a CH for each cluster. Each CH dynam-
ically controls the size of its cluster in the runtime based on avail-
able resources and interference intensity. Besides, CHs, based on a
proposed routine, dynamically update the cluster parameters when-
ever users’ demands change or a FBS send join/disjoin message to
the CHs. In addition, the RA method concurrently addresses the
intra and inter-cluster interference problem. Since each CH guaran-
tees that there is always sufficient RBs for FBSs within a cluster, the
intra-cluster interference never occurs. Moreover, we employ local
fog servers, that are aware of location and demands of edge FBSs,
to run a graph-coloring-based algorithm to address the inter-cluster
interference.

3. System model and formulation

In this section, we describe the system model and formulate the RA
as an optimization problem to maximize the network throughput.

3.1. System model

We consider an OFDMA-based femtocell network in which FBSs are
densely deployed. In such networks, FBSs may face to two types of inter-
ferences including cross-tier interference (i.e., interference between
femtocell and macrocells (Mhiri et al., 2013)), and co-tier interference. Ta
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Fig. 1. The 3GPP dual-strip residential apartment model.

This latter interference, which is significantly aggravated in dense and
ultra-dense networks, can be reduced by forming clusters of FBSs, and
coordinating among them through their X2 interfaces (Pratap et al.,
2018). Besides, the interference between macrocell and FBSs can be
regarded as Additive White Gaussian Noise (AWGN) (Kim and Cho,
2010).

We use the 3GPP dual-strip residential apartment model (3GPP,
2010) to represent how FBSs are deployed in our network. In this
model, we have two strips of one-floor buildings, so that strips are
separated by a 10m-wide street, and each one contains 20 buildings
(10 m × 10 m). Each building comprises a FBS, so that its location is
set based on uniform distribution model. In addition, since the own-
ers can turn on/off their FBSs randomly, which change the network
topology, we set the activation status of each FBS, Sa ∈ {0,1}, and
FBS density, 𝜆 ∈ [0,1]. This latter represents the ratio of active FBSs
to all FBSs in the network (Lee et al., 2017). Each active FBS can
support up to maximum of four end users that are uniformly dis-
tributed in its proximity. Moreover, the user demand of each FBS is
defined as the number of requested RBs by that user. Fig. 1 repre-
sents an example of FBSs’ deployment in 3GPP dual-strip apartment
model, where FBSs are grouped into seven different clusters. More-
over, this Figure demonstrates the concept of intra and inter-cluster
interference.

In our model, we use LTE specification for downlink, in which the
available 5 MHz bandwidth is divided into a number of RBs so that each
RB contains 12 consecutive subcarriers with 15 KHz of spacing between
adjacent subcarriers, and 7 OFDMA symbols with the time duration of
0.5 ms (Capozzi et al., 2013).

3.1.1. Hierarchical architecture
We propose a hierarchical architecture in which responsibilities are

proportionally distributed over the network entities including GW, fog
servers, CHs, and CMs, in order to meet the requirements of dense and
ultra-dense networks. Fig. 2 depicts an overview of our hierarchical
architecture. In what follows, we briefly illustrate responsibilities of
each entity, and define how they collaborate.

The GW. The main responsibility of this entity is managing Oper-
ation and Maintenance (OAM) information, including FBSs’ location,
identification, authentication, aggregating and validating signaling traf-
fic (Li et al., 2012).

The Fog Server. This entity is located between the GW and CHs,

and its main responsibility is forwarding policies to its in-range CHs so
that they can efficiently allocate RBs to their FBSs. It receives the clus-
ters’ configuration of FBSs and forms an edge FBSs’ interference graph.
Afterward, by means of its computing capacity, the fog server attempts
to solve the inter-cluster interference and forward specific policies to
CHs.

The CH. The CH is placed between CMs and the fog server,
and its main duties include notifying the fog server of its edge
FBSs’ configuration, and RA runtime. This feature helps the clus-
ters to dynamically change and adapt themselves to the current state
of the network. Furthermore, it periodically notifies the fog server
about its edge FBSs’ configuration. This latter is largely because each
CH has a local view of its CMs’ configuration, and is not aware
of other clusters’ configurations, which results in less-precise RA.
Finally, it allocates available resources to its CMs while considers
the received policies from the fog servers. This leads to more effi-
cient RA which improves the total throughout and satisfaction of end
users.

The FBS. The main responsibilities of FBSs in this architec-
ture, alongside with satisfying their users, are cluster formation
and CH selection which are obtained in a distributed dynamic
manner.

3.2. Problem formulation

We define a set of FBSs as  = {f1, f2, f3,… , fM}, so that each FBS
is a member of disjoint cluster set  = {c1, c2, c3,… , cL}. Hence, each
FBS fi ∈ cl can be represented by fi,l. Moreover, we define the in-range
neighbors of FBS fi as a set of FBSs shown by  fi . It is important to note
that  fi contains members that are not necessarily in the same cluster
as fi. Moreover, the set of end users of fi are defined as  fi .

We denote the set of RBs as Δ, and hence, the received amount of
signal to interference plus noise (SINR) of each u ∈  fi on the RB k ∈ Δ
is defined as follows (Le et al., 2018; Ha and Le, 2014):

𝛾
fi,l
u,k =

Pfi,l
k × Hfi,l

u,k

𝜎2 + ∑
fj,l′ ∈ ,j≠i,l≠l′

P
fj,l′
k × H

fj,l′
u,k

(1)

where Pfi,l
k and Hfi,l

u,k are the transmission power of fi,l and the
channel gain between u and fi,l on RB k, respectively. Moreover,
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Fig. 2. An overview of proposed hierarchical architecture.

∑
fj,l′ ∈ ,j≠i,l≠l′

P
fj,l′
k × H

fj,l′
u,k is the interference generated by other adjacent

FBSs belonging to other clusters, called inter-cluster interference, and
𝜎2 is noise power density.

According to the amount of 𝛾
fi,l
u,k on RB k, the user u can select

an appropriate Modulation-and-Coding Scheme (MCS) to achieve the
highest-possible data rate while guarantee reliability. We represent the
achievable data rate on the RB of this user by Rfi,l

u,k so that this should
be always between the maximum and minimum achievable data rate,
which is calculated based on MCS and SINR threshold used in Mach and
Becvar (2011), as follows:

Rmax = (7symbol× 4.8bit∕symbol) × .5ms × 12 = 806.4kbs (2)

Rmin = (7symbol× .66bit∕symbol) × .5ms × 12 = 110.88kbs (3)

To calculate Rmax and Rmin, the QAM-64 with code rate 4/5 and the
QPSK with code rate 1/3 are used, respectively.

The principal goal of this work is to maximize the total through-
put of the network while mitigating the severe interference through
allocating appropriate RBs to each FBS. Thus, according to the above-
mentioned goal, the clustering-based RA problem can be formulated as

follows:

maximize
∑
cl∈

∑
fi∈cl

∑
u∈ fi

∑
k∈Δ

afi,l
u,k × Rfi,l

u,k (4)

s.t.

C1 ∶ afi,l
u,k ∈ {0,1}, ∀u∈  fi , ∀fi ∈ cl, ∀cl ∈ , ∀k ∈ Δ

C2 ∶
∑
fi∈cl

∑
u∈ fi

∑
k∈Δ

afi,l
u,k ≤ |Δ|, ∀cl ∈ 

C3 ∶
∑
fi∈cl

∑
u∈ fi

afi,l
u,k ≤ 1, ∀cl ∈ ,∀k ∈ Δ

C4 ∶
∑
k∈Δ

afi,l
u,k × Rfi,l

u,k ≥ R̂fi,l
u , ∀u∈  fi , ∀fi ∈ cl, ∀cl ∈ , ∀k ∈ Δ

C5 ∶ afi,l
u,k × Rfi,l

u,k ≥ afi,l
u,k × Rmin, ∀u∈  fi ,∀fi ∈ cl, ∀cl ∈ , ∀k ∈ Δ

C6 ∶
⋃
cl∈

cl = 

C7 ∶ cl
⋂

cl′ = ø, ∀cl, cl′ ∈ , l ≠ l′

5



M. Goudarzi et al. Journal of Network and Computer Applications 145 (2019) 102407

Table 2
Parameters and respective definitions.

Parameter Definition Parameter Definition

Sa Activation status of each FBS 𝜆 FBSs’ density
 ,  Set of all FBSs, Number of all FBSs fi The ith FBS
fi,l The FBS fi in cluster cl , L Set of clusters, Number of clusters
 fi

Set of one hop neighbors of FBS fi  fi
Set of end users of FBS fi

𝛾
fi,l
u,k The SINR that end user u receives from FBS fi,l on RB k R

fi,l
u,k Data rate of end user u belongs to fi,l on RB k

Δ Set of all RBs 𝜎2 Noise power density
P

fi,l
k Transmission power of FBS fi,l on RB k R̂

fi,l
u Minimum data rate required by end user u

H
fi,l
u,k Channel gain between the FBS fi,l and the end user u on the RB k I(fi, cl) Relative sum interference of FBS fi on cluster cl

Rmax Maximum throughput on each RB Rmin Minimum data rate on each RB
FCcl

Free capacity of cluster cl f⋆cl The worst CM in the cluster cl

 (fi, cl) Set of one-hop neighbors of FBS fi belonging to cluster cl I(fi, fj) Interference between FBS fi and FBS fj
deg(fi, cl) Relative interference degree of FBS fi on cluster cl  cl

Set of all possible partitions for cluster cl

policycl The set of policies enacted for the cluster cl range(fi,l) The set of authorized RBs for (fi,l)
G The interference graph of edge FBSs Kmax The maximum number of colors
a

fi,l
u,k Exclusion factor indicating whether RB k is assigned to end user u of FBS fi,l , or not FC⋆

cl
Free capacity of cluster cl without considering f⋆cl

I⋆(fi, cl) Relative sum interference of FBS fi on cluster cl without considering the f⋆cl demandu The demand of end user u in terms of number of RBs

In the optimization problem (4), the afi,l
u,k is an exclusion factor to rep-

resent whether the RB k is assigned to the user u of FBS fi,l or not, as
depicted in the constraint C1. The second constraint, C2, expresses that
each cluster can use all available network’s RBs, while the C3 denotes
that each RB k in each cluster can be assigned only to one user. Thus,
there is no intra-cluster interference in our problem. The C4 indicates
that each user u of FBS fi,l should at least receive its minimum requested

data rate, depicted as R̂fi,l
u . The C5 expresses the fact that the RB k should

not be assigned by FBS fi to its end users whenever a severe interfer-
ence is existed on that RB from. The C6 and C7 denote that each FBS fi
is a member of one cluster, and the set of clusters are disjoint. Table 2
summarizes the parameters used in this paper and their respective def-
initions.

4. Distributed dynamic clustering method

In this section, we propose a Distributed Dynamic Clustering (D2C)
method, in which FBSs with highest relative interference form differ-
ent clusters. Moreover, FBSs in each cluster select one FBS as their
CH. The CH dynamically controls the cluster size based on requested
demands of its end users and makes the decision whether a new FBS
can join the cluster or not, accordingly. The D2C has three principal
functions including new FBS arrival (NFA), update clustering parame-
ters (UCP), and cluster migration possibility (CMP), as discussed in this
section.

4.1. New FBS arrival (NFA)

Whenever a new FBS fi joins the network, it creates its neighbor list
 fi , in which each fj ∈  fi is either a CM or CH. If  fi does not have
any CH member, the fi creates the cluster cl, set itself as the CH, and
calculates the free capacity of the cluster as follows:

FCcl
= |Δ| − ∑

fi∈cl

∑
u∈ fi

demandu ∀cl ∈  (5)

where demandu depicts the number of RBs requested by the user u ∈
 fi .

If the  fi contains CH members, the fi sends message to those CHs
and requests their free capacities, FCs. Afterward, clusters whose FCs
are greater than or equal to

∑
u∈ fi

demandu are considered as candidate
clusters by fi. To select the best candidate cluster to join, the fi calculates
the relative sum interference of itself on all members of each candidate

cluster as follows:

I(fi, cl) =
∑

fj∈cl,i≠j
I(fi, fj) (6)

where I(fi, fj) represents the interference between fi and fj as calculated
in Tan et al. (2011).

I(fi, fj) = Pfj × H
fj
fi

(7)

To simplify the problem, we assume the mutual interference between
two FBSs is symmetric, as shown in the following:

I(fi, fj) = I(fj, fi) (8)

Among all candidate clusters, fi selects the candidate cluster by which
it has the highest relative sum interference, I(fi, cl), and sends the soft-
join request to that cluster’s CH. The soft-join indicates that the can-
didate cluster has enough FC to accept the join-request of fi while the
CH guarantees to allocate sufficient requested RBs to its current end
users.

If there is no candidate clusters with sufficient FCs to support the
required demand of fi, the hard-join is considered as a potential solu-
tion. In this latter, the candidate cluster cl should substitute its worst
FBS, called f⋆cl

, for the fi. To identify the f⋆cl
, each fj,l creates the

 (fj, cl) ⊆  fj where  (fj, cl) denotes one-hop neighbors of fj that
are in the cluster cl. Moreover, the FBS fj calculates its relative inter-
ference degree on cluster cl as deg(fj, cl) = | (fj, cl)|. Hence, the CH
selects the member with the lowest relative interference degree as f⋆cl
on its cluster. In a case that there are several members with the low-
est deg(fj, cl), the member whose interference with other members is
the lowest, is selected as the f⋆cl

. Considering the fact that any cluster
cl has its f⋆cl

, the fi sends message to each neighboring CH to obtain
its free capacity while worst FBS f⋆cl

is excluded, as shown in the
following:

FC⋆
cl
= FCcl

+
∑

u∈ f⋆cl

demandu, ∀cl ∈  (9)

Afterward, each cluster whose FC⋆
cl

is greater than or equal to∑
u∈ fi

demandu is considered as candidate cluster for hard-join. Among
these candidate clusters, the fi sends the hard-join request to the CH of
the cluster by which it has the highest relative sum interference I⋆(fi, cl).

I⋆(fi, cl) = I(fi, cl) − I(fi, f⋆cl
) (10)

6
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Fig. 3. New FBS Arrival (NFA) flowchart.

In a case that there is no possibility to perform soft-join and hard-join,
the fi acts exactly the same as the condition that there is no CHs in its
 fi , as discussed earlier, and forms a new cluster. Fig. 3 represents the
process of NFA function.

4.2. Update clustering parameters (UCP)

When the configuration of a cluster cl changes (e.g. joining or
removing a member), its CH requests all its members fx,l to calculate
their deg(fx, cl) and I(fx, cl), and send them back. Then, it makes a prior-
ity list of its members according to these parameters so that members
with the largest relative interference degree receive higher priority. If
there are several members with the same relative interference degree,
those members are sorted in terms of the relative sum interference.
Finally, the member with the highest priority is selected as the CH, and
the member with the lowest priority is selected as the f⋆cl

.

4.3. Cluster migration possibility (CMP)

The main goal of this function is to check whether any CM can
migrate to other clusters so that the quality of clustering improves or
not. This function is called by the CMs that at least have one another
CH in their neighbor lists belonging to another cluster. To illustrate,
we consider fi,l and fj,l′ , fj ∈  fi and the fact that fj,l′ is the CH of cl′ .
Then, the fi,l should request the FCcl′

and periodically calculate the
I(fi, cl′ ). If I(fi, cl) < I(fi, cl′ ), then fi sends the soft-join request to the fj
to join the cluster cl′ . This guarantees that each FBS always attempts
to join a cluster to which it has the highest relative interference. This
latter helps to improve clusters as the network configuration changes,
and consistently attempts to maintain FBSs with highest relative sum
interference as a cluster, which finally leads to less inter-cluster
interference.

7
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Algorithm 1 General view of policy identification algorithm.

5. A new resource allocation method

In this section, we propose a RA method in which fog servers and
CHs collaborate to mitigate the interference and improve the network
throughput.

Each CH is responsible to allocate the RBs so that no intra-cluster
interference occurs in its cluster. Since each CH is unaware of adjacent
clusters’ RAs, there is high probability of inter-cluster interference on
edge FBSs. This problem is aggravated in dense and ultra-dense net-
works to the point that the network throughput is severely dropped
(Qiu et al., 2016). Hence, we concurrently consider both intra and inter-
cluster interference for the RA so that our method can be applied to fem-
tocell networks ranging from sparse to ultra-dense. In this method, the
fog servers are responsible to provide a set of policies to CHs in order
to minimize the inter-cluster interference. The CHs consider these poli-
cies and their users’ demands, and aim at maximizing clusters’ through-
put alongside with decreasing the interference by proper allocation of
resources.

5.1. Policy identification

We divide the FBSs of each cluster into two categories containing
central and edge FBSs. The fi,l is considered as a central member when-
ever  fi only contains neighbors from cl, while it is considered as edge
member if the  fi contains any member from other clusters, as noted
in equation (11). Apparently, the central nodes never experience inter-
cluster interference.

fi,l is

{
Central, if fi − (fi, cl) = ø
Edge, if fi − (fi, cl) ≠ ø

(11)

The fog servers provide a set of policies for each cluster cl, in which
each element contains the specific FBS on which that policy should be
applied, and specific subset of RBs, called range representing the RBs
which can be assigned to that FBS, as shown in the following.

policycl
= {(fi,l , range(fi,l)) ∣ fi,l isEdge, range(fi,l) ⊆ Δ} (12)

The policies to mitigate the inter-cluster interference are provided
in three phases including graph formation, graph coloring, and graph
relaxation, as discussed in the following. The Algorithm 1 represents a
general view of policy identification through these phases.

5.1.1. Graph formation
The main goal of this phase is to form an interference graph of edge

FBSs. To achieve this, CHs send their neighbor lists of edge FBSs and
their respective demands to the fog servers. Afterward, the fog servers
create the weighted graph of edge FBSs, G(V,E,Wv,We), based on the
information received from their corresponding CHs where V represents
the set of vertices, so that each vertex denotes an edge FBS. The E
explains the set of edges, so that each edge represents the interference
between two edge FBSs, as follows:

evi,vj
is

{
1, iffi ∈  fj
0, iffi ∉  fj

(13)

It is important to note that based on equation (13), edge FBSs that are
in the same cluster and in range of each other are connected by an edge
in the G. Moreover, the Wv and We depict the set of weights for vertices
and edges respectively. The weight of each vertex vi is calculated as the
total users’ demands of each edge FBS as follows:

Wvi
=

∑
u∈ fi

demandu (14)

In addition, the weight of each edge evi,vj
is the amount of interference

between those vertices, as depicted in the following:

if evi,vj
∈ E then wvi,vj

= I(fi, fj) (15)

Finally, the weighted graph G is not necessarily a connected
graph, and it can be comprised of several connected graphs
G = {g1, g2,… , gZ}, with the following condition:

gz
⋂

gz′ = ø, ∀gz, gz′ ∈ G, z ≠ z′ (16)

5.1.2. Graph coloring
In this phase, we address the inter-cluster interference by a

graph coloring method for every connected graph gz in the G, cre-
ated in the graph formation phase. The main goal of graph color-
ing method is to find a set of different colors (so that each color
represents a set of RBs) for edge FBSs and assign a set of respec-
tive policies to CHs for the RA, so that the inter-cluster interference
reduces.

Considering the fact that each assigned color to an edge FBS should
contain sufficient RBs to support demands of all users belonging to that

8
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FBS, the maximum number of colors Kmax is restricted and is calculated
as follows:

Kmax = ⌊ Δ
Wx

⌋, x = arg max (Wvi
),

∀vi ∈ Vgz

(17)

where the Wx represents the weight of the heaviest vertex x ∈ Vgz
.

Thus, the graph coloring problem is changed to the k-coloring
problem, so that we should iterate from k = 2 to Kmax to find the
least-possible number of colors, which is a time-consuming prob-
lem. In this phase, we also propose a greedy simplification algo-
rithm to simplify the connected graph gz, so that we can color this
graph in a timely manner. The Algorithm 2 demonstrates the graph
simplification.

Algorithm 2 Graph simplification.

The simplification algorithm starts from the least possible number
of colors k = 2, and tries to combine the edge FBSs of each cluster
together, if possible, and creates the g⋆z . We can combine any two edge
FBSs vi, vj ∈ gz if they belong to same cluster, and an edge evi,vj

∈ Egz
exists between them, and their aggregate vertices’ weights is not higher
than the capacity of colors ( |Δ|

k ). According to this latter, we can make
a new vertex vij in the g⋆z , whose weight is the aggregate weights of
vi, vj, and vij connects to any vertices to which vi or vj was connected
previously.

if vi, vj ∈ cl & evi,vj
∈ Egz

& wvi
+ wvj

≤
|Δ|
k

then combine(vi, vj)as vij, ∀vi, vj ∈ Vgz
,∀cl ∈ 

(18)

It is crystal clear that if the number of edge FBSs within the cl is equal
to n, n > 2, several configurations for combination of any number of

edge FBSs in cl can be considered, which is obtained by the Dobinsky’s
formula, as follows (Pitman, 1997).

| (cl)| = n∑
m=1

mn

m!

n−m∑
j=0

(−1)j
j! (19)

where we denote the set of all possible partitions of cluster cl as
 (cl), in which each partition is a set of classes {A1,A2,… ,At}. Each
class Aj contains one or more edge FBSs of cluster cl that should be
evaluated whether they can be considered as one vertex or not. The
make-partition() method creates an ascending sorted list of all parti-
tions based on the number of classes, t, of the partitions. In the next
step, the find-partition() method is responsible to return the partition
with the least number of classes, defined as Π, from the partition set
 (cl). For each class Aj in Π, it is examined whether the aggregate
weights of that class is less than |Δ|

k or not. If there is even one class
in the partition Π that does not satisfy this condition, the partition is
removed from the  (cl) and the algorithm searches for the next candi-
date partition. However, if all classes satisfy the condition, FBSs of the
same class can be combined together and new simplified graph g⋆z is
made.

If g⋆z is colored by k colors, the range of RBs for each color can be
specified and respective policies will be sent to the CHs. But, in a case
that the g⋆z cannot be colored by k colors, the k increases and the graph-
simplification() method is invoked to simplify the graph. Fig. 4 depicts
an example of graph coloring phase. Fig. 4a represents the graph of edge
FBSs derived from FBSs’ configuration of Fig. 1. Fig. 4b demonstrates
a candidate simplified graph g⋆z , in which several nodes in each cluster
are combined. Afterward, the g⋆z is colored by three colors as it can be
seen in Fig. 4c, and Fig. 4d denotes how these colors are represented in
the gz.

In an ultra-dense network that even simplification cannot help to
color the graph by Kmax colors, we provide a backup plan as graph
relaxation phase.

5.1.3. Graph relaxation
This phase is the backup phase for the graph coloring, and is

invoked if graph coloring cannot find any solution to color the gz up
to Kmax colors. The graph relaxation phase attempts to decrease the
maximum vertex degree of sub-graph gz by ignoring the weak inter-
ferences leading to creation of new gz with less constraints. The relax-
ation() method receives the subgraph gz, and finds the vertex or vertices
with the largest interference degree because they incur the strongest
constraints on the problem. Afterward, the lightest edge of those ver-
tices is omitted to reduce their interference degree, as shown in the
following:

if deg(vx) = deg(gz) then Egz
= Egz

− evx ,vy
,

y = arg min(Wvx ,vk
),∀vk ∈ Vgz

, evx ,vk
∈ Egz

,∀vx ∈ Vgz

(20)

The new subgraph gz is then created and sent to the graph coloring
phase.

5.2. Policy aware resource allocation

Considering the fact that CHs receive policies for their edge FBSs
from fog servers, they should apply those policies in their RA. The Algo-
rithm 3 indicates an overview of policy aware RA. To achieve the afore-
mentioned goals, the FBSs that are not assigned any RBs, are divided
into two sets including S1, S2 by each CH. The first set S1 belongs to
FBSs for which the fog server sends some policies to their respective
CHs, while the second set S2 contains the FBSs for which no policies are
assigned. Because more restrictions are applied on the S1, it has higher
priority compared to S2 whenever CH assigns resources. These lists are
sorted based on total users’ demands of FBSs, so that FBSs with the
highest required RBs that are not satisfied yet are placed in front of the

9
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Fig. 4. An example demonstrating graph coloring phase based on FBS configuration depicted in Fig. 1.

lists. In each iteration, each CH selects an RB from the unallocated RBs,
shown as Δ′, and assigns that RB to a FBS fi, existing in S1, if that RB
is in range(fi). In the case that there exists no FBS in the S1 or the range
of that FBS does not comply with the selected FBS, the CH searches the
S2 to find a proper FBS to which it can assign that RB. The algorithm
is finished whenever there is no FBSs in the sets S1, S2, demonstrating
that all FBSs are satisfied.

Algorithm 3 Policy aware resource allocation of each
cluster cl.

6. Performance evaluation

In this section, we evaluate the performance of our proposed
solution through extensive simulations under different scenarios and
compare it by the state-of-the-art RA techniques in femtocell net-

works to understand its efficiency. We discuss the employed system
parameters and study the obtained results in the performance study
subsection.

6.1. System setup and parameters

With regard to the simulation study, all algorithms are implemented
in the MATLAB version R2018b on a machine with 2.2 GHz Intel core
i7 CPU and 16 GB of RAM.

We assume an environment in which FBSs are located according to
the dual-strip model, discussed in section 3, so that each FBS has two
users in its proximity. The channel model of 3GPP (2010) is used for
the propagation environment so that the channel gain includes path-
loss and shadowing. The transmission power and range of each FBS is
supposed to be 13 dBm and 30 m, respectively. Besides, the FBS density
is assumed to be 𝜆 = 0.5 and 𝜆 = 1, of which the first one represents
a dense FBS network while the second one illustrates an ultra-dense FBS
network. Moreover, the total number of available RBs in the network
equals to 25, and the users’ demands for different experiment scenarios
vary between 1 and 4 RBs. We used MCS table of Mach and Becvar
(2011), which has 12 different steps for three modulations including
QPSK, 16-QAM, and 64-QAM. Table 3 summarizes evaluation parame-
ters and their respective values.

6.2. Performance study

We employed four quantitative parameters including throughput,
interference, fairness, and throughput satisfaction to comprehensively
study the behavior of our proposed solution, called D2C-FORAT, and
to compare its efficiency with other solutions in the literature. We
implemented QFCRA (Hatoum et al., 2014) and LFCRA (Qiu et al.,
2016) which are distributed clustering proposals discussed in related
work, and distributed random access (DRA) proposal (Sundaresan and
Rangarajan, 2009). The DRA works based on a random selection of
resources by each FBS and re-selection of interfered RBs by randomized
hashing function. Each experiment is conducted for two different values
of 𝜆, and the outcomes are the average of 200 runs.

10
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Table 3
Evaluation parameters.

Evaluation Parameters Value

Carrier frequency 2 GHz
Bandwidth 5 MHz
No. of available RBs 25
No. of sub-carrier per RB 12
Bandwidth per sub-carrier 15 KHz
Bandwidth per RB 180 KHz
Path loss model 3GPP TR 36.814
FBS transmitted power 13 dBm
Apartment dimension 10 m × 10 m
FBS radius 30 m
Minimum separation between end users and FBS 2 m
User demand 1-4 RBs
FBS density 𝜆 = 0.5 (20 active FBS), 𝜆 = 1 (40 active FBS)
Number of end users per FBS 2
MCS QPSK (1/3,1/2,2/3,3/4),

16-QAM (1/2,2/3,3/4,4/5),
64-QAM (2/3,3/4,4/5)

Variance of AWGN 𝜎2 = −174 dBm/Hz

Fig. 5. Total throughput analysis using different FBS density 𝜆 and users’ demands.

6.2.1. Throughput analysis
The total throughput of each technique is calculated based on equa-

tion (4) which represents the total throughput of all users in the net-
work. Fig. 5 illustrates the total throughput of D2C-FORAT and its coun-
terparts for different values of 𝜆. As it can be seen from Fig. 5a and
b, the throughput of all techniques increases as the users’ demands
grow, while the growth rate decreases in higher demands due to
increased interference. Besides, the D2C-FORAT outperforms its coun-
terparts by the maximum of 17% (𝜆 = 0.5) and 21% (𝜆 = 1) com-
pared to the second-best technique. This improvement is the result of
policies enacted for edge FBSs and our dynamic cluster size, resulting
in better RA. The throughput of the QFCRA and the LFCRA heavily

depends on their cluster size, to the extent that their throughput falls
below the DRA when their cluster size is 6.

6.2.2. Interference analysis
The interference between FBSs occurs whenever the overlapping

FBSs use the same RBs simultaneously. Considering the SINR on the
interfered RBs, the interference can be so weak, by which the through-
put on those RBs does not decrease, or it can be so high, which results
in unusable RBs. As the FBS density and users’ demands increase, this
problem occurs more often which has significant negative impact on the
total network throughput. In this work, we consider RBs on which the
throughput is less than Rmax as interfered RBs. Based on the interfer-

Fig. 6. Interference analysis using different FBS density 𝜆 and users’ demands with three different interference levels including Weak, Moderate, and Strong.
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Fig. 7. Throughput Satisfaction Rate (TSR) using different FBS density 𝜆 and users’ demands.

ence intensity, the interfered RBs can be divided into three categories
including strong, moderate, and weak, for which the QPSK, 16-QAM,
and 64-QAM are respectively selected as the MCS.

Fig. 6 represents obtained results for the number of interfered RBs
with their corresponding categories. The QFCRA follows a conservative
approach, and if any interference occurs between two FBSs, one of them
is prevented of using that RB which results in no interference whenever
the system is converged. However, this brings about several issues such
as less throughput due to smaller RB reuse, as shown in the throughput
analysis. As it can be seen from Fig. 6a and b, as the users’ demands
and FBS density increase, the number of interfered RBs increases. These
results show that the DRA, due to its intrinsic random behavior and lack
of coordination between FBSs, suffers from high number of interfered
RBs, so that number of RBs that experiences strong interference is also
more than its counterparts. The performance of LFCRA heavily depends
on its cluster size, so that smaller cluster size incurs more interference
and larger cluster size results in reduced number of interfered RBs. In
contrary to LFCRA, as long as unallocated RBs are available, the D2C-
FORAT achieves minimum number of interfered RBs compared to its
counterparts (Fig. 6a: users’ demands 1 to 3 RB, and Fig. 6b: users’
demands: 1 to 2 RBs), while it accepts some interference if throughput is
satisfying. Besides, it is worth mentioning that the D2C-FORAT obtains
minimum number of strong interference which has the most negative
effect on the total throughput.

6.2.3. Throughput satisfaction analysis
The Throughput Satisfaction Rate (TSR) is a quantitative parameter

demonstrating the satisfaction degree of each user. The TSR is defined
as the ratio of actual data rate of one user to its requested data rate, as
depicted in the following.

TSR(u) =

∑
k∈Δ

afi
u,k × Rfi

u,k

demandu × Rmax
, ∀u∈  fi ,∀fi ∈  (21)

Fig. 7 represents the Cumulative Distributed Function (CDF) of the
TSR for different values of 𝜆 and users’ demands. As it can be observed,
increasing users’ demands in all techniques leads to less satisfaction,
however, the D2C-FORAT still outperforms its counterparts. This lat-
ter is because our technique dynamically controls cluster size, so that
requested RBs can be completely assigned to end users. Also, it miti-
gates the interference on those RBs by the policy aware RA technique.
In scenarios in which the number of RBs is greater than users’ demands,
the clustering techniques with larger cluster size incur less interference
and better performance, however, as the users’ demands increase the
CHs are obliged to distribute the RBs between more users, and hence,
the TSR significantly decreases. This latter can be observed in Fig. 7
when users’ demands increase from 2 RB (Fig. 7a and b), in which
techniques with larger cluster size are more efficient in terms of the
TSR, to 4 RB (Fig. 7c and d) in which techniques with smaller cluster
size can better satisfy the end users. Fig. 7a denotes that more than
95% of the end users have their TSR greater than 0.95 for D2C-FORAT,
which achieves 51% improvement compared to second-best technique.
Fig. 7b represents that 59% of end users have the TSR greater than
0.95, which improves the second-best technique by 96%. Fig. 7c and d
depict the TSR results whenever users’ demands are 4 RB, in which the
D2C-FORAT achieves 0.8 user satisfaction for more than 55% and 18%
of end users, respectively. These results demonstrate that our technique
improves second-best techniques in Fig. 7c and d by 67% and 97%,
respectively.

6.2.4. Fairness analysis
The Jain fairness index (Jain et al., 1984) is used to evaluate how

fairly RBs are allocated between different end users, as expressed in the
following:

Fairness =
(∑N

u=1 TSR(u))2

N ×∑N
u=1 TSR(u)2

(22)
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Fig. 8. Fairness analysis using different FBS density 𝜆 and users’ demands.

where N represents the total number of end users in the system, and
the maximum value for fairness is equal to 1 when all RBs are fairly
allocated between end users.

As it can be seen from Fig. 8, as the users’ demands and the FBS den-
sity increase, the fairness decreases due to increased number of inter-
fered RBs. However, the D2C-FORAT outperforms other techniques due
to the policies enacted for edge FBSs and dynamic clustering that con-
siders users’ demands for controlling cluster size. Besides, the LFCRA
obtains better results compared to the QFCRA because it improves the
management of inter-cluster interference, which results in less interfer-
ence for the edge FBSs. Furthermore, the DRA outperforms the QFCRA,
because all end users in the DRA receive RBs either interfered or non-
interfered ones, while the QFCRA attempts to assign only non-interfered
RBs to end users which results in unsatisfied end users, specifically end
users of the edge FBSs.

7. Conclusions and future work

In this work, we proposed a distributed dynamic clustering-fog
driven RA technique, called D2C-FORAT, to address the interference
problem of femtocell networks, and to increase the total network
throughput. Moreover, we used a hierarchical architecture, including
the GW, fog servers, CHs, and CMs, among which the clustering and RA
responsibilities are distributed. This latter results in better scalability,
helping our technique to be efficiently run in sparse, dense, and ultra-
dense networks. We proposed a distributed dynamic clustering method,
in which FBSs select CHs, which are responsible to manage their cor-
responding cluster size based on the total demands of their CMs and
available RBs. Moreover, each CH is responsible to allocating the cluster
RBs and notifying its corresponding fog server of the cluster’s parame-
ters. Considering the fact that the inter-cluster interference is a big issue
in clustering techniques, which decreases the total throughput of net-
work, we proposed a policy aware fog-driven RA method to reduce such
interferences. This method has three phases including graph formation,
simplification, and relaxation which are performed on the fog servers
located at the proximity of clusters. The outcome of these phases is a
set of policies for edge FBSs of each cluster, by which the CH can assign
the RBs more efficiently and prevent the severe inter-cluster interfer-
ence. The effectiveness of the D2C-FORAT is analyzed through exten-
sive experiments and comparison by the state-of-the-art techniques in
the literature. The obtained results demonstrate that our proposed solu-
tion outperforms other existing techniques in terms of total network
throughput, interference, user satisfaction, and fairness.

In future, we aim to add virtualization concept to our technique as it
helps to use resources more efficiently. Moreover, our plan is to exploit
the computing capabilities of FBSs in the proposed hierarchical archi-
tecture, so that it jointly optimizes allocation of radio and computing
resources.
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