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SUMMARY

The paper describes creation of a contention-aware environment in a large-scale distributed system where
the contention occurs to access resources between external and local requests. To resolve the contention, we
propose and implement a preemption mechanism in the InterGrid platform, which is a platform for large-
scale distributed system and uses virtual machines for resource provisioning. The implemented mechanism
enables the resource providers to increase their resource utilization through contributing resources to the
InterGrid platform without delaying their local users. The paper also evaluates the impact of applying var-
ious policies for preempting user requests. These policies affect resource contention, average waiting time,
and imposed overhead to the system. Experiments conducted in real settings demonstrate efficacy of the
preemption mechanism in resolving resource contention and the influence of preemption policies on the
amount of imposed overhead and average waiting time. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Federated large-scale distributed systems [1], such as InterGrid, enable sharing, selection, and aggre-
gation of resources across several resource providers (RPs). These RPs (e.g., clusters or sites) are
usually connected through high-bandwidth network connections. Nowadays, heavy computational
requirements, mostly from scientific communities [2], are supplied by these RPs.

The main objective of InterGrid is to provide a software platform for interconnecting disjoint RPs.
The RPs motivation for contributing resources to a resource sharing environment is to increase their
utilization and revenue. However, they would like to ensure that the requirements of local (organi-
zational) requests are met. Therefore, resource provisioning within such RPs is carried out for two
types of user requests, namely, local and external requests. Local requests are submitted by local
users to the local resource management system (LRMS) of the RP, whereas external requests are
submitted by users in other RPs that tend to access larger amount of resources through InterGrid.

The mixture of local and external requests within RPs leads to a resource contention between
requests to access resources. Typically, in this situation, local requests have priority over external
requests [3]. Indeed, the organization that owns the resources welcomes external requests to use
resources if they are available. Nonetheless, the external requests should not delay the execution of
local requests.
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Similar to many current distributed systems, InterGrid [4] provides resources in the form of VM-
based leases. A lease is an agreement between an RP and a resource consumer whereby the provider
agrees to allocate resources to the consumer according to the lease terms presented by the consumer
[5]. Virtual machine (VM) technology is a suitable vehicle for implementing lease-based provision-
ing model [5]. VM capabilities in getting suspended, resumed, stopped, or even migrated (when
there is enough bandwidth) have been extensively studied and shown to be useful in resource pro-
visioning without major utilization loss [3, 5, 6]. InterGrid creates one lease for each user request.
Leases in InterGrid are contiguous and must be served within resources of a single RP.

The current implementation of the InterGrid platform does not recognize the resource contention
between local and external requests and treats them equally. In fact, the current implementation
of InterGrid suffers from lack of proper resource management at the RP level that considers the
difference between local and external requests. Therefore, in this work, we extended the InterGrid
platform by introducing LRMS at the RP level that recognizes the resource contention by differ-
entiating local and external requests. The LRMS employs preemption mechanism to resolve the
contention between local and external requests. That is, when there is not enough vacant resources
to be allocated to an arriving local request, external leases are preempted and relinquish resources
for the arriving local request. The preempted external leases are scheduled at a later time in the same
RP to resume their execution.

Preempting VM-based leases entails the overhead time of suspending VMs of that lease (i.e.,
unloading memory contents of the VMs into the disk) and resuming them (i.e., loading VMs from
the disk image into the memory) at the scheduled time. Thus, the amount of imposed overhead time
for preemption depends on the VM characteristics, such as memory size, in that lease. In addition,
preempting external leases and scheduling them at a later time increase the waiting time of external
leases.

For a local request that requires multiple VMs, possibly, several external leases have to be pre-
empted to make sufficient vacant resources. Therefore, there are potentially several sets of candidate
external leases that can be preempted. In this paper, each set of the candidate leases is termed a
candidate set. Choosing different candidate sets for preemption affects the amount of imposed
overhead and the average waiting time of external leases.

These issues raise another problem that is choosing the optimal candidate set for preemption in a
way that minimizes the side effects of preempting leases (i.e., overhead and waiting time). There-
fore, as another contribution of this paper, we evaluate the impact of different preemption policies
on the side effects of preemption.

In summary, this paper makes the following contributions:

1. It designs and implements LRMS component for the InterGrid platform (Section 3.2).
2. It recognizes resource contention between local and external requests in the InterGrid and

resolves it by preempting external leases in favor of arriving local requests (Section 4.3).
3. It implements different preemption policies that choose different candidate sets for preemption

(Section 4.3.1).
4. It evaluates the impact of the proposed policies upon key performance metrics in a real

environment (Section 5.2).

This work describes design and implementation details of the contention-aware scheduling in
the InterGrid platform. More specifically, the work realizes the architecture proposed in Section 3
and explains a system that enables provisioning of VM-based leases for different types of users.
Although the problem we investigate in this paper is in the InterGrid context, it can be applied to
other lease-based grid/Cloud RPs where requests with higher priority (such as local or organizational
requests) coexist with other requests.

The remainder of this paper is organized as follows. In the next section, we provide an overview
of the related work. Then, in Section 3, the InterGrid architecture is described. After that, in
Section 4, we explain the design and implementation details. Performance evaluations are mentioned
in Section 5. Finally, conclusion and future works are provided in Section 6.
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2. RELATED WORKS

As presented in Figure 1, different mechanisms that have been employed in interconnected dis-
tributed systems to resolve the resource contention are preemption, partitioning, and using multiple
queues.

Preemption mechanism, which is also the mechanism we employ in this research, stops the
running request and free resources for another, possibly higher priority or urgent, request. If check-
pointing is supported in a system (e.g., [7]), then the preempted request can resume its execution
from the preempted point. Otherwise, the preempted request has to be killed (canceled) or restarted
its execution. For parallel requests (i.e., those need more than one processing element at the same
time), full preemption is generally performed, in which the whole request leaves the resources. How-
ever, some systems support partial preemption (e.g., [8]), in which a portion of resources allocated
to a parallel request is preempted.

In the partitioning mechanism, resources are reserved for different request types (e.g., local and
external requests). Boundaries of the reservations (partitions) can be fixed (static partitioning) or
can be flexible on the basis of the demand of each request type (dynamic partitioning). For instance,
in [9], the local and external partitions can borrow resources from the other one when there is a high
demand of either.

In the multiple queues mechanism (e.g., [10]), requests are classified in distinct queues upon
arrival. Each queue operates independently and has its own policy for the requests within the queue.
There is a higher level scheduling policy that determines the appropriate queue for dispatching a
request to the resources.

In systems that function on the basis of VMs, preemption mechanism is preferable to resolve
resource contention, because it removes the burden of partitioning or managing several queues from
a resource management system. Although preemption mechanism has not been studied extensively
in the distributed computing systems previously [11], dominance of the VM technology as the
provisioning model has led to undertake several studies in this area [12–15]. In this section, we
review recent studies that have applied preemption mechanism to resolve the contention between
requests.

NDDE [16] is a platform that utilizes VMs to exploit idle cycles for grid or cluster usage in corpo-
rations and educational institutions. This system is able to utilize idle cycles that appear even while
the user is interacting with the computer. In this system, the guest and the owner applications are
executed concurrently. This approach increases the harvested idle cycle to as many as possible with
minor impact on the interactive user’s applications. NDDE has more priority than the idle process in
the host operating system, therefore, it is executed instead of the Idle process. When a new request
from the resource owner arrives, the VM and all the processes that belong to NDDE are preempted
and changed to ‘ready-to-run’ state.

Cluster-on-demand (COD) [17] is a resource management system for shared clusters. COD sup-
ports lease-based resource provisioning in the form of virtual clusters where each virtual cluster is an
isolated group of hosts inside a shared hardware base. It is equipped with a protocol that dynamically
resizes virtual clusters in cooperation with middleware components. It uses group-based priority
and partial preemption scheme to manage request-initiated resource contention. Specifically, when
resource contention takes place, COD preempts nodes from a low-priority virtual cluster. For pre-
emption, the selected virtual cluster returns those nodes that create minimal disruption to the virtual
clusters (i.e., an instance of partial preemption).

Figure 1. Approaches for resolving resource contention in interconnected distributed systems.
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VioCluster [18], is a VM-based platform across several clusters. It uses lending and borrowing
policies to trade VMs between clusters. VioCluster is equipped with a machine broker that decides
when to borrow/lend VMs from/to another cluster. Machine broker also has policies for reclaiming
resources by preempting a leased VM to another domain. Machine property policy monitors the
machine properties that should be allocated to the VMs such as CPU, memory, and storage capacity.
Location policy in the VioCluster proactively determines if it is better to borrow VMs from another
cluster or to wait for nodes on a single domain.

Snell et al. [11] applied preemption on the backfilling scheduling strategy. They provide policies
to select the set of requests for preemption in a way that the requests with higher priority are satis-
fied and, at the same time, the resource utilization increases. The preempted request is restarted and
rescheduled in the next available time slot.

Scojo-PECT [19] provides a limited response time for several job classes within a virtualized
Cluster. They propose a coarse-grained preemption and suspending VMs on the disk to cope with
the resource contention. The preemptive scheduler aims at creating a fair share scheduling between
different job classes of a grid.

A preemptive scheduling algorithm is implemented in MOSIX [20] to allocate excess (unclaimed)
resources to users that require more resources than their share. However, these resources will be
released as soon as they are reclaimed. MOSIX also supports the situations that there are local and
guest jobs and considers a priority between them.

3. INTERGRID ARCHITECTURE

The architecture of InterGrid, as illustrated in Figure 2, presumes that each grid is composed of
several RPs. RPs can be in the form of a cluster, symmetric multiprocessor or a combination of
these resources. Each RP is managed independently and has its own local users while contributing
resources to InterGrid. The LRMS of an RP handles resource provisioning for local and external
requests within that RP. It is worth noting that the current implementation if InterGrid suffers from
lack of LRMS within RPs and creation of this component is one of the contributions of this paper.
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Figure 2. High-level architecture of InterGrid. Grid B has unilateral peering arrangement, and grid C has
bilateral peering arrangement with grid A.
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Utilization and revenue enhancement are the main motivations for RPs to contribute resources to
InterGrid. However, external requests should not delay the execution of local requests. Therefore, in
this work, we consider external requests as best effort, whereas local requests should not be delayed
and have to be served within their requested interval. Best-effort allocation means that if there is
no sufficient resources to start an external request, it is scheduled in the earliest available time slot.
However, in situation that there is no adequate resources for an arriving local request, LRMS should
preempt external requests and makes the resources available for the arriving local request. It is worth
noting that if all resources are occupied by other local requests, or the amount of resources released
by preempting external requests are not sufficient for the local request, then the arriving local request
is rejected.

In the InterGrid platform, sharing resources amongst different grids is achieved through prede-
fined arrangements that are known as peering arrangements (see Figure 2). Such arrangement was
initially inspired from principles of the Internet policy-based routing. Similar idea is applied to
interconnection of grids to offload and redirecting resource requests from one grid to another [21].
Peering arrangement between two grids coordinates adoption of resources between the two grids
based on policies on how resources are allocated to users of peering grids. For instance, in Figure 2,
grid B has chosen a unidirectional peering arrangement with gridA. In this case, grid B can redirect
resource requests to grid A, whereas the opposite is not possible. Peering between grids are formed
on the basis of monetary contracts between these grids (e.g., certain amount of resources from a
particular grid during a month).

Peering arrangements with other grids are handled by InterGrid gateways (IGG). An IGG is
aware of the peering terms between the grids. When a user requires resources from other grids,
IGG chooses the suitable grid that can provide the required resources based on the peering arrange-
ments with other grids. An IGG also replies to resource requests from other peer IGGs through
allocation of resources to them. In fact, provisioning rights over RPs within a grid are delegated to
the IGG that enable it to schedule arriving external requests on the RPs.

Distributed virtual environment manager (DVE manager) is a user level tool in the InterGrid
architecture. Users willing to access InterGrid level resources (i.e., external users) utilize this tool to
interact with IGG and acquire resources. The DVE manager also handles monitoring of the resources
that are allocated to the user.

3.1. InterGrid gateway structure

InterGrid gateway is the core part of the InterGrid platform that has been implemented in Java. A
high-level view of the IGG components is depicted in Figure 3.

The main component of the IGG structure is the scheduler that implements provisioning policies
and peering with other IGGs. Specifically, the peering part of the scheduler selects an appropriate
peer in order to redirect a request to another grid. The provisioning part of the scheduler in an IGG
maps arriving external requests to the available RPs within the grid. Provisioning decisions of the
scheduler are enacted on the RPs through the virtual machine manager interface.

Generic implementation of the virtual machine manager enables an IGG to interact with diverse
platforms used as LRMS in the RPs. Therefore, to enable an IGG to interact with a new platform
in an RP, the interface for interacting with that platform has to be developed. So far, several inter-
faces have been developed in IGG. As it is shown in Figure 3, these interfaces have enabled IGG
to interact with OpenNebula [22] and Eucalyptus [23] to manage the resources in RPs. Moreover,
interfaces have been developed for IGG that enable it to interact with Grid’5000 as a grid mid-
dleware and Amazon EC2‡ as a cloud infrastructure as a service provider. In addition to this, an
emulated interface has been developed for testing and debugging purposes.

In Figure 3, the persistence database is used for storing information needed by IGG, such as infor-
mation of peering arrangements with other grids. The management and monitoring module provides
command-line tools to configure and manage an IGG. This module has been implemented on the

‡http://aws.amazon.com/ec2
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Figure 3. Components of the InterGrid gateway.

Figure 4. Architectural view of local resource management system that is used within each
resource provider.

basis of Java Management eXtensions technology. The communication module provides an asyn-
chronous message-passing mechanism between IGGs that makes IGGs loosely coupled and fault
tolerant.

3.2. Local resource management system

Because of the flexible architecture of IGG, each RP in a grid can have its own local management
platform. In this paper, the local management platforms of RPs are called LRMS. The current imple-
mentation of InterGrid does not have LRMS, and implementation of this component is one of the
contributions of this paper.

According to Figure 4, an LRMS is mainly comprised of a virtual infrastructure manager (VIM)
(e.g., OpenNebula [22]) that performs operations such as creating, starting, and stopping VMs. VIM
enacts its operations through hypervisors (e.g., Xen, KVM) installed on the worker nodes of an RP.
A local scheduler determines how resources are allocated to the arriving local or external request on
the RP’s nodes. The scheduler considers VM as the provisioning unit and is able to preempt external
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leases in favor of an arriving local request. The local scheduler employs aggressive backfilling as
the scheduling strategy of RP’s resources.

The communicator module is comprised of a part that receives lease requests from local users and
another part that interacts with IGG. The latter is in charge of advertising and updating availability
information of the RP on the IGG. In addition, it receives external lease requests from the IGG. Any
received request is delivered to the scheduling module of the LRMS.

4. SYSTEM DESIGN AND IMPLEMENTATION

This section provides details on how we implemented the contention-aware scheduling within the
InterGrid platform. In this regard, first, the model we proposed for resource allocation of local and
external requests in InterGrid is described. Then, design and implementation details of the proposed
resource allocation model is discussed.

4.1. Design of contention-aware resource allocation model

In this part, we describe resource acquisition steps for a user request in InterGrid. The steps are
different for external and local users’ requests. The workflow for resource acquisition for external
requests in InterGrid is illustrated in Figure 5 and is described as follows.

1. An RP advertises its resources availabilities periodically in the registry of an IGG. This
advertisement also implies delegation of the provisioning rights of the RP’s resources to the
IGG.

2. Using a DVE manager, an external user initiates a lease request by specifying details of its
request. A lease request describes required resources to be deployed and has the following
characteristics:

� Virtual machine template (describes specifications of the requested VMs).
� Number of VMs.
� Lease duration (also known as lease wall time).
� Lease deadline (this is optional for external requests).
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Figure 5. Resource allocation steps for external user requests in InterGrid.
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3. The DVE manager forms a lease request and passes that to its correspondent IGG to acquire
resources through InterGrid.

4. Provisioning unit of the IGG scheduler first tries to schedule the lease request on RPs within its
grid. However, if the grid cannot provide the required resources, possibly because of oversub-
scription, then the IGG uses its peering arrangements with other grids (e.g., IGG1 in Figure 5)
to provide resources for the lease request. It is worth mentioning that the peering policy decides
which peering grid should be selected amongst several candidates grids.

5. Once the peering grid (e.g., IGG1 in Figure 5) receives a lease request, its provisioning unit
allocates resources for the lease request on its RPs. Then, the requestor IGG (e.g., IGG2 in
Figure 5) is informed about the allocation details.

6. Requestor DVE manager is given a permission and other deployment information (e.g., IP
address) to deploy the VMs from the allocated RP at the scheduled time.

7. At the scheduled time, the DVE manager is connected to the LRMS of the destination RP and
deploys the requested VMs.

Resource acquisition procedure for local users of an RP is as follows.

1. Local users send lease requests to the LRMS of their RP. This is achieved using any user-level
interface provided by the LRMS of an RP.

2. Local resource management system tries to serve (i.e., schedule) local lease requests during
their requested interval using its available resources.

3. If resources are free during the requested interval, then resource allocation is performed.
4. If during this interval resources are occupied by other local requests (i.e., contention with

other local leases), then the lease cannot be allocated and it will be rejected. In this situation,
the local user may resubmit its lease request to InterGrid in order to access resources elsewhere
for the requested duration.

5. If resources of an RP are occupied by external requests during the requested interval (con-
tention with external leases), then LRMS preempts some or all of external leases in order
to serve the local request. The preempted external lease is scheduled in the next available
time slot.

4.2. Implementation of resource allocation for external requests

Resource allocation workflow for external requests that was described in Figure 5 is implemented
within IGG. The sequence diagram of invoking the IGG classes to accept and allocate an external
request is shown in Figure 6. For the sake of clarity, this figure just shows parts of the whole
provisioning process that take place within IGG.

Post Office ReqScheduler OpenNebula LocalManager

enableSched(msg)

submit(req)

rcvMsg(msg)

handleReq(req)

assign(req)

acknowledge

Figure 6. Scheduling external user requests in IGG.
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When a message is received by an IGG, it is handled by a central component, called post office,
which spawn one thread to handle each message. In the case that the received message is an external
request received through peering arrangement with another IGG, the spawned thread invokes the
scheduler in the request scheduler class. At this stage, the scheduling is carried out by invoking
handleRequest method that extracts the request from the message and allocates it to an appropriate
RP. The scheduling of external requests on an appropriate RP is carried out in a proactive manner
with the aim of reducing the number of contentions within RPs. Interested readers can refer to [24]
for more details on the rationale of the scheduling methods within IGG. Allocation of the scheduled
external request starts with calling submit method that is a method in virtual machine management
interface (see Figure 3). This method is implemented by different classes that implement the virtual
machine management interface—OpenNebula in our setting. In the last step, the OpenNebula inter-
face in IGG calls assign method to send the external request to the LRMS of the selected RP. The
way an external request is handled in the LRMS of an RP is explained in the next subsection.

4.3. Implementation of contention-aware scheduling within LRMS

The critical part of a contention-aware LRMS is a scheduler that allocates resources across an RP.
The local scheduler should be aware of the contention between local and external requests within
an RP.

Another component of LRMS is a virtual infrastructure manager that offers an on-demand provi-
sioning model in form of VMs (we employed OpenNebula [22] as the virtual infrastructure manager
that is explained in Section 4.3.2). However, on-demand provisioning of VMs is not sufficient
for resource provisioning in InterGrid. Specifically, lease requests in InterGrid have the following
requirements:

� Priority between local and external users.
� Capacity reservation at specified times for local requests.
� Preemption throughout VMs’ lifetime.

The local scheduler that operates on top of the virtual infrastructure manager has to cover these
requirements. Haizea is an open source scheduler developed by Sotomayor et al. [25] that employs
VM-based leases for resource provisioning. The advantage of Haizea is enabling VM preemption
(i.e., suspending and resuming) and considering overheads of deploying and preempting VMs in the
scheduling.

We adopt and customize Haizea to be the local scheduler component of LRMS in RPs. This
scheduler operates on top of virtual infrastructure manager and enables recognition of the con-
tention between local and external requests that occurs within an RP. More importantly, adopting
Haizea as the local scheduler enables leasing resources to external requests in a best-effort manner
while allocating resources to the local requests within their requested time interval. When a resource
contention occurs (i.e., a local request arrives and resources are occupied by external leases), the
local scheduler resolves it through preempting the external lease(s) and vacating resources to serve
the local request. In this way, the local scheduler operates as the scheduling back-end of virtual
infrastructure manager (i.e., OpenNebula). The local scheduler also employs aggressive backfilling
scheduling strategy [11] along with VMs’ abilities (i.e., suspend and resume) to efficiently schedule
leases and to increase resource utilization.

The sequence diagram of invocations between the local scheduler classes is shown in Figure 7.
The scheduling process in the local scheduler starts by receiving a lease request either from local or
external user (through IGG) in the LocalManager class.

The manager requests the LeaseScheduler class to schedule the lease request. Then, the schedule
method in the VMScheduler class is called, which schedules local and external requests. For local
requests, VMs are scheduled on the basis of the requested time interval. External requests are allo-
cated in the first vacant space. The map function in the mapper class maps requested resources to the
physical resources based on their availability times. When the mapper class handles a local request,
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LocalManager LeaseSched VMsched Mapper PreemptionPolicy ResourcePool

assign(Req)

reqLease(req)
schedule(req)

map(req)

sortLeases()

preemptOrder

mapping

VMRsrv(req)

reservation

startVMs(req)

Figure 7. Scheduling local requests in the local scheduler.

if there is not enough resources, then the mapper calls the PreemptionPolicy to determine the pre-
ferred order of preempting external leases. The order is determined on the basis of the preemption
policy. That is, the preemption policy determines the proper set of external leases to be preempted
from a set of possible external leases that their preemption creates enough room for allocation of
an arriving local request. More details on preemption policies can be found in Section 4.3.1. In
the next step, in Figure 7, the mapper performs the mapping and returns the mapping list to the
VMScheduler.

Using the mapping information, VMScheduler calls the VMRsrv and updates the scheduling infor-
mation of the resources. After that, the lease can be started by calling the startVMs method in the
ResourcePool class. In addition, the LeaseScheduler is informed to update all of the affected leases
in the scheduling table.

4.3.1. Preemption policies. The local scheduler described in the previous part enables recognition
of the contention between local and external requests and resolves it using the preemption technique.
However, preemption technique implies side effects that should be taken into account. Overhead
imposed for suspending and resuming VMs is one side effect of the preemption technique. The sec-
ond side effect is the waiting time of preempted leases. In fact, preempted leases are rescheduled in
a later time slot, which increases the overall waiting time of the leases.

Time overhead of preemption is a factor that the resource owner wants to minimize (i.e., instance
of a system-centric metric), whereas minimum waiting time (MWT) of external request is a factor
that end users expect from the system (i.e, a user-centric metric). However, administrator of an RP
may want to make a balance between these factors. Therefore, a combinatorial policy is also needed
to consider both of these factors.

In this work, we have proposed and implemented the following preemption policies in the local
scheduler that proactively detect the resource contentions and try to minimize their side effects.

� Minimum waiting time. This policy tries to minimize the average waiting time of external lease
requests through selecting leases for preemption that has MWT. For this purpose, leases with
the MWT are given higher preemptibility score. In the event that all requests have the same
waiting time, ties are broken by selecting younger leases. That is, leases that have been submit-
ted more recently receive higher preemptibility score. This policy disregards the time overhead
imposed for preempting leases.
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� Minimum overhead (MOV). This policy tries to minimize the overall overhead time imposed
to the system by preempting VMs. Implementation of the policy is based on selecting set of
leases for preemption that result in the MOV time. For that purpose, we calculate the overhead
imposed by suspending and resuming a lease with n VMs as follows [26].

scoreD
1

n�
�
mem
s
C mem

r

� (1)

where mem is the amount of memory requested by VMs of a lease, s is the rate of transferring
megabytes of VM memory to disk per second, and r is the rate of reallocating megabytes of
VM memory per second. Similar to MWT, in the event that all requests have the same waiting
time, ties are broken by selecting younger leases.
� Combinatorial preemption policy (CP). This policy considers both waiting time and overhead

in selecting leases for preemption. In this policy, preemptibility score is calculated on the basis
of Equation (2), where v indicates the amount of overhead imposed by preempting a lease
based on Equation (2), and w is the waiting time of the lease.

scoreD ˛� vC .1� ˛/�w (2)

Performance of this policy depends on the value of ˛. The current value of ˛ is worked out
experimentally through sweeping different values for that. Details of optimally determining
the value of ˛ is described in Section 5.1.

4.3.2. Virtual infrastructure manager. We utilize OpenNebula [22] as the virtual infrastructure
manager to handle VMs’ lifecycle across an RP. OpenNebula provides a software layer between
a service and hypervisor and enables dynamic provisioning of resources to services.

The architecture of OpenNebula has been designed to be flexible and modular to be able to sup-
port various hypervisors and infrastructure configurations within an RP (e.g., cluster). It enables
dynamic resource partitioning and provides web and command-line interfaces that allows local
users to conveniently request leases. For each user request, OpenNebula starts, monitors, and stops
VMs according to the provisioning policies in place. OpenNebula architecture includes three main
elements as follows:

� Core is responsible for managing VMs’ life cycle by performing basic operations such as start,
migrate, monitor, and terminate [27].
� Capacity manager consists of pluggable policies that determine the VM placement across an

RP. Default capacity manager in OpenNebula provides a simple VM placement and load bal-
ancing policies. In particular, it uses an on-demand provisioning model, where virtualized
resources are allocated at the time they are requested, without the possibility of requesting
resources at a specific future interval.
� Virtualizer access drivers provide the abstraction for the underlying virtualization layer by

exposing the general functionalities of the hypervisor (e.g., start, migrate, and terminate). As
a result of this component, OpenNebula is able to work with various hypervisors such as Xen,
KVM, and VMware.

OpenNebula is equipped with databases for storing VM templates [22]. A template file consists of
a set of attributes that defines a VM, such as the number of processing elements, amount of mem-
ory, and disk. OpenNebula uses a shared storage to store VM images. The shared storage model
requires the head node (where LRMS and OpenNebula reside) and hosts (where hypervisors and
VMs reside) to share the VM image repository. Typically, these storage areas are shared using a
distributed file system such as NFS [28] and GlusterFS [29]. A shared storage reduces VM deploy-
ment times and enables live migration, but it can also become a bottleneck in the infrastructure and
degrade the VMs performance specially for executing disk-intensive workloads. We used GlusterFS
as the shared storage in our configuration.
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For the following reasons, we used GlusterFS.

� It provides a scalable, shared replicated storage across hosts over Ethernet.
� Compared with other centralized shared storage approaches, such as NAS, GlusterFS does not

suffer from single point of failure. That is, due to its distributed nature, even if a host fails the
storage and data will remain available.
� GlusterFS is highly scalable, as I/O operations are distributed across hosts.
� As data are replicated, VMs have local data access that remarkably improves the I/O

performance.

4.3.3. Virtualization infrastructure. Along with the virtual infrastructure manager, a virtualization
infrastructure (i.e., a hypervisor) is required in each host of an RP to manage VMs. Specifically,
utilizing OpenNebula as a virtual infrastructure manager enables us to deploy various hypervisors
within an RP.

In our implementation, we use Kernel-based virtual machine (KVM) [30] as the hypervisor within
each host of the RPs. KVM is a hardware-assisted, fully virtualized platform for Linux on X86 hard-
ware that has virtualization extensions. By installing KVM, multiple execution environments (guest
VMs from different disk images) can be created on top of physical machines. Each of these VMs
has private and virtualized hardware that includes a network card, storage, memory, and graphics
adapter.

5. PERFORMANCE EVALUATION

The testbed for performance evaluation of the implemented system is as follows:

� A four-node cluster as the RP. Hosts are four IBM Systems X3200 M3 machines, each with a
quad-core Intel Xeon x3400, 2.7 GHz processor with a 4 GB memory. The head node, where
LRMS resides, is a Dell Optiplex 755 machine with Intel Core 2 Duo E4500, 2.2 GHz processor
and 2 GB memory.
� The hosts’ operating system is CentOS 6.2 Linux distribution. The operating system in the head

node is Ubuntu 12.4.
� All the nodes are connected through a 100-Mbps switched Ethernet network.
� The RP’s LRMS is comprised of OpenNebula 3.4, as the virtual infrastructure manager, and

Haizea version 1.1, as the local scheduler.
� Qemu-KVM 0.12.1.2 was installed as the hypervisor on each host.
� GlusterFS is used as the cluster file system. It aggregates commodity storages across a cluster

and forms a large parallel network file system [29]. The disk images needed by the VMs and
the memory image files (created when a VM is suspended) are stored on the shared file system.

The scenario we consider in our experiment involves an InterGrid with three IGGs with peering
arrangements established between them, as illustrated in Figure 8. IGG1 has the cluster as the RP
and users from IGG2 and IGG3 request external leases through their DVE managers. On the basis of
the peering arrangements, IGG1 provides resources for requestors. IGG1 receives these requests in
the form of external requests, and they are allocated resources through LRMS of the RP. However,
the RP has its own local requests that have more priority than the external ones.

To have a realistic evaluation, the experiments are carried out on the basis of real traces from the
blue horizon cluster [31] in San Diego Supercomputer Center. We consider the first 60 requests in
this workload as the external requests received by IGG1. Local lease requests received by LRMS of
IGG1 are explained in the Table I.

According to the table, 13 local lease requests are submitted to the RP. Each row of the table
shows the arrival time, number of requested processing elements, amount of memory, start time,
and the duration of local requests. The reason that we consider few requests is that all times are in
real. Also, we wanted to demonstrate the feasibility of the implementation and be able to trace the
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Figure 8. Evaluation scenario based on three InterGrid Gateways.

Table I. Characteristics of lease requests used in the experiments.

Request ID Arrival time No. nodes Memory (MB) Start time Duration (s)

1 01:00:00 4 1024 01:15:00 00:45:00
2 02:00:00 4 2048 02:15:00 01:00:00
3 03:00:00 8 512 03:15:00 02:40:00
4 04:00:00 4 1024 04:15:00 00:10:00
5 05:00:00 2 1024 05:15:00 00:35:00
6 06:00:00 8 2048 06:15:00 01:12:00
7 07:00:00 8 1024 07:15:00 02:10:00
8 08:00:00 4 512 08:15:00 00:32:00
9 09:00:00 4 1024 09:15:00 01:00:00
10 10:00:00 4 2048 10:15:00 03:10:00
11 11:00:00 4 1024 11:15:00 01:00:00
12 12:00:00 4 2048 12:15:00 02:35:00
13 13:00:00 8 1024 13:15:00 01:40:00

order of events taking place in the system. We consider 00:00:00 as the start of the experiment, and
the arrival time of other requests are proportional to the start time of the experiment. All of these
lease requests use a ttylinux disk image located on the shared storage.

5.1. Managing trade-off between waiting time and overhead

To implement the CP policy, we need to determine the value of ˛. In fact, this value determines the
behavior of this policy. System administrator can use this parameter to adjust behavior of the sys-
tem. According to Equation (2), if ˛ D 0, then the policy becomes MWT, whereas ˛ D 1 transforms
the CP policy to the MOV policy.

In order to determine an appropriate value for ˛, we swept 100 possible values of ˛ (i.e.,
0 6 ˛ 6 1 with step D 0.01), and the result is shown in Figure 9. Each point in this figure
shows the overhead, and waiting time resulted from applying a specific value of ˛ in the CP policy.

Figure 9 shows that the behavior of the CP policy does not change entirely linearly by changing ˛.
In other words, there are points where we can compromise a little bit of one parameter and receive
a huge gain on the other parameter. Nonetheless, selecting a proper value for ˛ is defined on the
basis of the administrative policies in an RP. For instance, if the administrative policy is giving more
weight to user-centric metrics (i.e., lower average waiting time), the lower values on the waiting
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Figure 9. Variations in the overhead and average waiting time when ˛ parameter in Equation (2) changes
from 0 to 1.

time axes should be selected that results into a high overhead. In our case, we selected values of
˛ D 0.31 (the dashed point in Figure 9). We can see that at this point, a huge gain on the average
waiting time can be attained by compromising a little bit on the overhead.

5.2. Evaluation results

In the first experiment, we demonstrate how our implementation enables InterGrid to resolve the
contention between local and external requests. It shows the effect of preempting existing external
leases on a virtualized physical testbed to satisfy the requirements of an arriving local request. For
that purpose, we only compare situation that there is not any preemption policy (NOP) against sit-
uation that the CP preemption policy is applied. In the former, all the local requests were rejected,
whereas in the latter, when there is no sufficient resources, external leases are preempted and vacate
resources for the local requests. We notice that all of the local requests are served without being
delayed. In addition, the RP could utilize its resources more efficiently by leasing them to the
external requests.

Various contention resolution policies (preemption policies) preempt different leases. These poli-
cies lead to different amount of overhead and average waiting time. In the second experiment, we
evaluate the efficacy of the implemented policies from the overhead, average waiting time, and
overall makespan time aspects. The overhead imposed to the system is imposed by suspension and
resumption operations on the preempted leases. Calculation of suspension and resumption opera-
tions are worked out on the basis of the read/write throughput of our Gluster file system, which is
40 MB/s [29].

In Table II, the amount of overhead, makespan, and average waiting time resulted from MWT,
MOV, and CP policies that are shown. As we can see, the MWT policy results in less waiting time
and more overhead time compare with MOV. The MOV policy aims at minimizing the overall pre-
emption overhead. Therefore, it preempts leases that impose MOV to the system and based on the
amount of memory should be de-allocated and snapshot on the disk.

Table II. Total imposed overhead, average waiting time, and makespan results
from applying different preemption policies.

Policy Overhead (s) Average waiting time (s ) Makespan (s)

MWT 1912 36520.33 190,665
MOV 1028 39984.44 195,971
CP 1476 36621.6.03 194,686
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We can also see that CP can make a trade-off between overhead (as a system-centric metric)
and waiting time (as a user-centric metric). In other words, it results in a good waiting time and
makespan while imposing overhead just a little bit more than MOV.

The comparison of the results from different policies indicates that the selection of different pre-
emption policies is effective on the side effects of resource contention. In addition, CP policy can
be used by a system administrator to manage the trade-off between user-centric and system-centric
metrics in an RP based on the administrative policies and priorities.

6. CONCLUSION

We presented the real implementation and evaluation of the preemption mechanism in InterGrid
where local and external leases coexist in RPs. We also designed, implemented, and incorporated
LRMS component of the InterGrid platform that adheres to the flexible and diverse nature of large-
scale distributed systems. The system prototype demonstrates how an RP can contribute resources
to InterGrid and accepting external requests without affecting the local requests. The provided
implementation also implements several preemption policies for the RPs. Evaluation of the pre-
emption policies indicated how the average waiting time and overall makespan time and amount of
imposed overhead are affected by these policies. Specifically, such policies can be used by the sys-
tem administrator to make a trade-off between diverse parameters based on administrative policies
of an RP.
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