
Internet of Things 22 (2023) 100784

A
2
(

R

F
f
e
S
a

b

A

K
F
C
F
E
I
P
R
R

1

p
h
t
a
o

h
R

Contents lists available at ScienceDirect

Internet of Things

journal homepage: www.elsevier.com/locate/iot

eview article

edSDM: Federated learning based smart decision making module
or ECG data in IoT integrated Edge–Fog–Cloud computing
nvironments
hinu M. Rajagopal a,∗, Supriya M. a, Rajkumar Buyya b

Department of Computer Science and Engineering, Amrita School of Computing, Bengaluru, Amrita Vishwa Vidyapeetham, India
CLOUDS Lab, School of Computing and Information Systems, The University of Melbourne, Australia

R T I C L E I N F O

eywords:
ederated learning
loud computing
og computing
dge computing
nternet of things
ublic healthcare
eal-time systems
esource management

A B S T R A C T

Massive data collection in modern systems has paved the way for data-driven machine learning,
a promising technique for creating reliable and robust statistical models. By combining the
data into centralized storage to develop a reliable learning model, there are concerns with
privacy, ownership, and strict rules. It is self-evident that the samples in the typical machine
learning centralized server paradigm have vastly different probability distributions of data
supplied by each user. As a result, the typical model needs to be personalized for critical
medical applications, and the deployment needs an efficient mechanism that can adapt to
varying user inputs. Due to the heterogeneous and dynamic nature of critical medical IoT
applications in such Edge/Fog scenarios, the privacy of patients become a crucial problem.
Federated Learning, the model trained on diversity helps in addressing these concerns when
used. This paper proposes the integration of Federated Learning for distributed Edge–Fog–Cloud
architecture in the IoT smart healthcare sector. This paper presents FedSDM, the Federated
Learning-based Smart Decision Making framework for the ECG data in microservice-based
IoT medical applications. This proposal makes use of the advantages of Edge/Fog computing
for real-time critical applications. It deploys the Federated Learning model at the Edge, Fog,
and Cloud layers for performance comparison. The parameters considered for performance
evaluation are energy consumption, network usage, cost, execution time, and latency. The
proposed method shows that Edge-based deployment outperforms Fog and Cloud in terms of
energy consumption, network usage, cost, execution time, and latency (i.e.) 0.3%, 2%, 15%,
11%, and 3% when compared with Fog and 1.6%, 31%, 41%, 24 % and 85% against Cloud
respectively.

. Introduction

The unprecedented technological developments over the last two decades have accelerated data growth, which has led to data
rivacy issues when stored in centralized systems. This is visible in many domains, especially in the healthcare sector, where
ospitals still store patients’ sensitive information in centralized repositories. A recent study on cyber security statistics disclose
hat data breaches in the first half of 2020 alone revealed 36 billion records [1]. This motivates the introduction of the next level of
rtificial intelligence, which works on the concept of data privacy as its foundation to address the users’ concern about the privacy
f available data such as personally identifiable details, payment details, protected health information, confidential information, and

∗ Corresponding author.
E-mail addresses: mr_shinu@blr.amrita.edu (S.M. Rajagopal), m_supriya@blr.amrita.edu (Supriya M.), rbuyya@unimelb.edu.au (R. Buyya).
vailable online 14 April 2023
542-6605/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

ttps://doi.org/10.1016/j.iot.2023.100784
eceived 5 December 2022; Received in revised form 8 April 2023; Accepted 11 April 2023

https://www.elsevier.com/locate/iot
http://www.elsevier.com/locate/iot
mailto:mr_shinu@blr.amrita.edu
mailto:m_supriya@blr.amrita.edu
mailto:rbuyya@unimelb.edu.au
https://doi.org/10.1016/j.iot.2023.100784
http://crossmark.crossref.org/dialog/?doi=10.1016/j.iot.2023.100784&domain=pdf
https://doi.org/10.1016/j.iot.2023.100784
http://creativecommons.org/licenses/by/4.0/


Internet of Things 22 (2023) 100784S.M. Rajagopal et al.

s
r
w
e
c
n
s

a
r
r
c
w
r

m
a
w
o

o
r
n
d

m

p
p

2

t
c
d
s
l
m

a
c
a
a
E

a
d
t
s

others [2]. Due to the heavy movement of data into and out of the Cloud, two additional challenges arise with Cloud/centralized-
based techniques namely latency and data transfer cost. Users or end devices may be unwilling to disclose private data to preserve
privacy or conserve their phone’s limited bandwidth/battery capacity [2]. In such scenarios, Federated Learning enables smarter
models with less latency, and reduced battery usage while ensuring privacy. Defense, telecommunications, Internet of Things (IoT),
and pharmaceutics are just a couple of applications where it can be used.

Federated Learning (FL) is a machine learning methodology that involves training an algorithm across numerous decentralized
ervers or Edge devices while retaining data samples locally and preventing data transmission. Using data from tens to millions of
emote devices helps build a global statistical model. FL allows devices like mobile phones to develop a shared prediction model
hile retaining all the training data on the end device, removing the requirement to store it in the Cloud. Training occurs while the
nd device is idle, plugged in, and connected to a WiFi network, ensuring that the performance is unaffected. Because of the rising
omputational capacity of these devices, as well as issues about transferring private information, storing data locally, and pushing
etwork computing to the Edge are becoming more desirable. For IoT applications, FL can provide several significant advantages
uch as data privacy enhancement, low-latency network communication, enhanced learning quality, etc. [3].

IoT devices produce enormous amounts of data that need latency-sensitive processing, which cannot be accomplished when
pplications are placed in distant Cloud data centers [4]. Hence Cloud computing seems to be infeasible for delay-sensitive medical
eal-time IoT applications [5]. Fog or Edge computing, a Cloud extension, address smart IoT systems’ needs and provide better
esource management [6]. It allows seamless connection between smart medical devices and computational resources to have more
ontrol over data privacy and security [7]. It also supports critical latency-sensitive IoT applications that require faster responses
ith reduced consumption of energy and bandwidth [8]. In some medical emergencies, making a decision using the appropriate

esources in a fraction of a minute has a direct impact on the life of the patients [9].
The mobility of end IoT devices causes the migration of requested application services from one computing node to another to

aintain the promised QoS. As the user relocates from one place to another, the proximity to a Fog or Edge service may change,
nd hence user mobility restricts the benefits in practice [10]. In real-time, IoT device mobility can impact Fog computing systems
hen they change access points repeatedly. In addition to meeting the demands of latency and bandwidth on the network, Edge/Fog
ffers intelligent services at the Edge to fulfill the vital need of IoT applications in real-time.

IoT applications use various technologies to connect, manage, and operate IoT smart devices. Microservices, a type of service-
riented architecture, have attracted much interest nowadays [11]. Each microservice is responsible for a single sub-task or service,
equiring fewer compute resources and lower communication overhead. Based on the resource availability and workload of Fog
odes, microservices can scale up and down dynamically due to loosely coupled modules provide advantages such as independent
eployment, scalability, and fault isolation [12].

This paper aims at the development of FedSDM, a Federated Learning-based Smart Decision Making module for ECG data in
icroservice-based IoT medical applications.

The following are the research contributions of this paper:

• Design of an early warning system for ECG anomalies using Smart Decision Making module
• Integration of Federated Learning method to critical healthcare applications for the privacy of the end-user data
• Identification of an appropriate placement policy for the Federated Learning module in Edge, Fog, and Cloud layers

The rest of this paper is organized as follows. Sections 2 and 3 discuss Background and related work. Section 4 presents the
roposed method followed by the experimental setup in Section 5. Section 6 summarizes the results, and Section 7 concludes the
aper.

. Background and motivation

The concept of intelligent healthcare involves utilizing AI to learn and analyze patient data. However, it can be challenging
o find large and diverse datasets to train machine learning models in individual medical centers. This means that traditional
entralized AI methods require sensitive data to be moved from medical facilities to data centers, which not only increases the
emand for communication resources and energy, but also violates privacy. This has become a significant obstacle in promoting
cientific collaboration between trans-national clinical medical research centers. A distributed AI technique known as Federated
earning has emerged that enables the cooperative training of ML models without the sharing of patient data. Federated learning
ay prove to be an advantageous method for facilitating Internet of Things-based intelligent applications [13–15].

Due to the necessity for real-time processing, low latency, and privacy considerations, Edge/Fog computing is becoming more
nd more significant for medical applications [16]. Edge computing can limit the quantity of data that must be transferred to
entralized servers or the cloud by processing and analyzing the data closer to the data’s source, thereby reducing network traffic
nd delays [17]. Additionally, Edge computing can help address privacy concerns by keeping sensitive data within a local network
nd limiting access to authorized users only. In medical applications, where time and accuracy are critical, and privacy is essential,
dge computing has become a necessity [18,19].

Real-time ECG abnormality detection is one of the applications in medicine that has several advantages for patient care. First
nd foremost, it allows healthcare providers to quickly identify and respond to cardiac abnormalities, potentially saving lives. Early
etection and treatment of cardiac abnormalities can prevent more serious and costly health issues down the road. Moreover, real-
ime ECG anomaly detection can help reduce healthcare costs and improve patient outcomes. By continuously monitoring ECG
2

ignals in real-time, the system can immediately detect anomalies and alert healthcare providers, who can take action to diagnose



Internet of Things 22 (2023) 100784S.M. Rajagopal et al.

a
m
m
a
L
s

3

o
F
I
a
a
F
w
F
f
i
t
c
E

a
o

3

&
[
m
w
N
d
o
s

Table 1
Comparison of aggregation algorithms in federated learning.

Algorithm Complexity Accuracy Convergence Cost Speed

FedAvg [20] Low High Slow Low High(simple datasets)
FedMA [21] Moderate Moderate Moderate Moderate Moderate(complex datasets)
FedProx [2] Moderate Moderate Moderate Low Moderate(complex datasets)
FedPer [22] Low High Moderate Low High(simple datasets)
FedDist [23] High Moderate Moderate Moderate Moderate(complex datasets)
EdgeFed [24] High High High High High(simple datasets)

and treat the patient. Another benefit is that real-time ECG anomaly detection can improve the accuracy of diagnoses. In some cases,
anomalies may be missed or misinterpreted when relying on visual inspections alone. With automated detection, the system can
analyze the ECG signals with greater precision, reducing the risk of errors and false negatives. Additionally, real-time monitoring
can help identify potential issues before they become acute, reducing the likelihood of hospitalizations and emergency room visits.
Overall, real-time ECG anomaly detection has the potential to improve patient care, increase accuracy, and reduce healthcare costs,
making it a valuable tool in healthcare. Since the healthcare issues related to ECG anomaly detection in microservice-based IoT
systems are not sufficiently addressed by existing research on Edge/Fog/Cloud Federated learning approaches, we were motivated
to do this study.

3. Related work

Federated Learning is appropriate for Edge/Fog/Cloud computing applications and can use the computation power of servers
nd data gathered from widely scattered devices. Effective aggregation of client models is essential to create a generalized global
odel. The fundamental approach is aggregating models from the distributed clients and obtaining a new general global average
odel. The resultant model is then distributed to clients again for further training. Federated Learning makes use of different

ggregation strategies for global model update. The following paragraphs discuss state of the art in aggregation methods in Federated
earning, FL in Edge/Fog/Cloud IoT applications, anomaly detection and Smart Decision Making modules implementations in FL,
mart healthcare applications using FL.

.1. FL aggregation methods

The literature proposes FedAvg as a privacy, security-preserving, and efficient communication aggregation algorithm for FL
ver-Edge devices. FedAvg assumes uniform involvement from all participants and excludes clients responding slowly [20]. The
edMA aggregation approach’s foundation is a layer-wise learning strategy that matches and merges nodes with comparable weights.
ndependently trained layers interact with the server [21]. FedProx addresses the heterogeneity issue in federated networks by
llowing each participant device to execute a different amount of work. It incorporates partial information from stragglers and adds
proximal term to account for heterogeneity, which promises a steady and precise convergence behavior [2]. The principle of the

edPer approach is that the model is divided into personalized and base layers. While the personalized layers are not communicating
ith the server, the base layers are aggregated using transfer learning methodologies by the federated server [22]. FedDist is a
ederated Learning aggregation algorithm based on the Euclidean distance dissimilarity measurement. This algorithm includes a
ew advantages of FedAvg, and FedMA [23]. Separating the local update process from the global aggregation results in a decrease
n mobile devices’ overall communication and computation costs. Also, in varying bandwidth conditions, empirical testing shows
hat the suggested EdgeFed is comparatively more efficient than state-of-the-art algorithms, with a decrease in the computational
ost and the cost of interconnection for mobile devices. This is achieved by offloading a few calculations from mobile clients to the
dge server [24].

A comparison of the above-discussed aggregation algorithms is presented in Table 1. This paper uses FedAvg for the proposed
pproach due to its easy deployment and less complicated implementation on Edge/Fog devices, resulting in reduced communication
verhead.

.2. Federated Learning in Edge/Fog/Cloud IoT applications

Xia et al. give new insight into Federated Learning’s Edge applications, development tools, communication effectiveness, privacy
security, scheduling, and migration [25]. Imteaj et al. examine the difficulties and problems of implementing FL in an IoT scenario

26]. Yu et al. offer a neural-structure-aware resource management approach with module-based Federated Learning, in which
obile clients are allocated with various sub-networks of the global model based on the condition of their local resources using both
hite box and black box approaches. Experiments show the effectiveness and flexibility of the strategy in utilizing resources [27].
guyen et al. evaluate the potential of FL for enabling a vast range of IoT services, including caching and data offloading for IoT
evices, attack detection, location, crowd-sensing on mobile devices, and IoT privacy and safety. Additionally, a thorough analysis
f the usage of FL in various critical IoT applications such as smart healthcare, unmanned aerial vehicles, smart transportation,
3

mart cities, and smart industry is discussed [28].



Internet of Things 22 (2023) 100784S.M. Rajagopal et al.

c
f
t
i
o
a
a
a
t
t
m

m
s
(
a
d

3

s
(
w
T
l
e
w

3

w
e
a
a
c
e
a
e
(
a

3

i
f
l
e
g
o
a
a
I
s
i
s

A greedy heuristic method proposed in literature help in choosing the best fog node to act as a global aggregator. This helps in
ommunication between the Edge and the Cloud and can lower the reliance on server-based execution. This FogFL architecture uses
og nodes to decrease energy consumption and communication latency of resource-constrained edge devices without influencing
he rate of convergence of the global model, hence enhancing system dependability. Extensive deployment and testing claim that,
n addition to fewer global aggregation rounds, FogFL holds 85% less energy and 92% less communication delay than state-
f-the-art [29]. Zhou et al. utilize the combination of Paillier homomorphic encryption and blinding against model attacks to
chieve the security aggregation of model parameters and enable IoT device data to fulfill differential privacy in resisting data
ttacks. Additionally, the proposal validates the scheme’s ability to withstand collusion attempts performed by numerous malevolent
ctors, guaranteeing both model and data security. The study implemented on the Fashion-MNIST dataset claims that the proposed
echnique is effective for real-world applications as well [30]. EdgeFed, draws inspiration from Edge computing and aims to enhance
he learning efficiency and reduce global communication frequency. It achieves this by separating the process of updating the local
odel, which is done independently by mobile devices. The edge server aggregates the outputs of these devices [24].

In order to reduce the model training loss and the overall time consumption, Zaw et al. develop an energy-aware resource
anagement for Mobile Edge computing-enabled FL that takes into account the energy constraint of mobile devices and performed

olution’s convergence analysis and compare its effectiveness to the conventional FL technique [31]. To deliver FL as a Service
FLaaS) to industrial customers deployed on edge devices, Hiessl et al. suggest a FL system made up of a process description
nd software architecture. By grouping customers into cohorts with comparable data distributions, our method addresses skewed
ata [32].

.3. Anomaly detection in IoT applications

Hasan et al. compares the effectiveness of various machine learning models in accurately predicting attacks and anomalies in IoT
ystems. The machine learning algorithms evaluated include Logistic Regression (LR), Support Vector Machine (SVM), Decision Tree
DT), Random Forest (RF), and Artificial Neural Network (ANN) [33]. Abusitta et al. presents an anomaly detection method for IoT,
hich utilizes deep learning to capture and learn resilient and beneficial features that remain unaffected by unstable environments.
he extracted features are then used by the classifier to enhance the accuracy of malicious IoT data detection. The proposed deep

earning model is based on a denoising autoencoder, which is utilized to derive features that can withstand the heterogeneous
nvironment of IoT [34]. Chatterjee et al. provide an overview of the techniques used to identify abnormalities in IoT systems, as
ell as a conversation about how to group different algorithms for anomaly detection [35].

.3.1. ECG anomaly detection
Andrysiak et al. proposes a technique that combines the benefits and features of sparse representation of the analyzed ECG signal

ith the classification characteristics of the modeled neural network, in order to create a method that is both uncomplicated and
fficient [36]. To overcome the limitations of current wearable devices used in ECG detection, Gu et al. suggest a heart rhythm
bnormality classification model that is both lightweight and highly accurate based on traditional convolutional neural networks
nd the hardware acceleration techniques [37]. Nawaz et al. introduces an intelligent system that can automatically evaluate
ardiovascular activity by detecting and classifying anomalies in raw one-dimensional (1D) electrocardiogram (ECG) signals from
nd to end. The raw ECG data is carefully pre-processed before being stored in the cloud, and then analyzed in detail to identify
ny anomalies. For anomaly detection in the 1D ECG time-series signals, a deep learning-based auto-encoder (AE) algorithm is
mployed [38]. Ji et al. introduce a technique for detecting anomalies in univariate time series data using a long short-term memory
LSTM) algorithm. This method learns the structural characteristics of non-anomalous training data, and then applies a statistical
pproach to detect anomalies based on prediction error in observed data [39].

.4. Smart decision making in IoT applications

Cambra et al. showcase the benefits of using a tool that utilizes data in real-time decision-making. The data includes variable rate
rrigation and specific parameters derived from field and weather conditions. The decision-making system processes data obtained
rom periodic sampling of field parameters, vegetation indices estimated through aerial images, and irrigation events like flow
evel, pressure level, and wind speed. The data is analyzed using a learning prediction system combined with the Drools rule
ngine in making decisions [40]. Kaur et al. propose a model that employs embedded sensors within a smart industrial system to
ather data and identify the different industrial activities of employees. The identified activities are classified as positive, negative,
r neutral. This information is then used to make cognitive decisions for employees based on game theory. The model aims to
utomate the cognitive employee evaluation system and decision-making process in smart industries, and it does so effectively
nd efficiently [41]. Bokhari et al. aims to explore the direct and indirect connections between Artificial Intelligence (AI), Social
nnovation (SI), and Smart Decision-Making (SDM). The results thus obtained help local governments to establish smart cities, where
ocial innovation is incorporated into the decision-making process. The study also emphasizes that smart decision-making should
nvolve social innovations and share collected data with entrepreneurs, businesses, industries, and social innovators to benefit the
4

ociety and all the relevant stakeholders [42].



Internet of Things 22 (2023) 100784S.M. Rajagopal et al.

m
f
u
i
m
u
s
w
a
E

3

C
I
t
e
m
L
a
T
t
s

d
d
l
F
i
i
d
p

i
o
t
s
r
d
e
c
o
v
s
a
o
m

3

a
t
g
a
F
d
b

3.4.1. SDM in smart healthcare applications
Decision support systems (DSS) aim to provide experts with timely and relevant information. They offer tools for data processing,

odels, and knowledge to assist experts in making more informed decisions in various scenarios [43]. Zhou et al. suggest an approach
or utilizing healthcare big data and involves a framework that enables smart and proactive data processing without requiring
ser interventions with an aim to maximize the utilization of data in decision-making. The framework comprises of five stages:
ntelligent data cleaning, customized data fusion, analysis mapping, exploratory visualization analysis, and generation of decision-
aking reports [44]. Quasim suggest a method for evaluating the technological integration efficiency of healthcare management
sing a Smart Healthcare Management Evaluation and Fuzzy Decision Making approach [45]. In this proposed study, the suggested
trategy for SDM anomaly detection includes the utilization of an autoencoder, which is a type of unsupervised learning technique
ithin the realm of AI. This neural network architecture is capable of compressing input data into a lower-dimensional representation
nd then reconstructing the input from this representation. This AI-based SDM can be implemented across various layers, including
dge, Fog, or Cloud.

.5. Federated learning in healthcare

Among many applications, the healthcare sector deserves to be prioritized in terms of service quality compared to other domains.
ritical functions such as simultaneous reporting and monitoring, tracking and alerts, and remote medical aid are all possible with

oT-based apps. The center for connected health policy conducted a study that observed that remote health monitoring systems lower
he re-admission rates of heart failure patients by 50 percent [46]. Machine learning will not be able to realize its full potential or,
ventually, make the leap from academic study to the clinical application without access to enough data. Rieke et al. examine the
ajor contributing causes to this problem, evaluates the challenges faced in the field of digital health and discuss how Federated

earning can provide a solution [47]. Chen et al. propose FedHealth, a system that uses federated and transfer learning to aggregate
nd create reasonably personalized models. The model uses homomorphic encryption to ensure that no user data is leaked [48].
he design of a new aggregation protocol uses a secure hardware component and an Ethereum-native encryption toolkit to prevent
he user data from leakage [49]. Kumar et al. present a framework that collects a modest amount of data from multiple hospital
ources and uses blockchain-based Federated Learning to train a global deep learning model [50].

In order to train deep neural networks, Yuan et al. suggest an enhanced Federated Learning framework that helps the IoT
evice and the associated centralized server to overlook the training computation. The communication overhead is found to be
ecreased by the sparsification of activations and gradients. According to empirical research, the proposed system only necessitates
ess synchronization traffic than plain-vanilla Federated Learning while guaranteeing a low accuracy loss [51]. Analysis of the various
ederated Learning systems, highlight the implications and potentials in healthcare and also summarizes the general difficulties
n using Federated Learning in the bio-medical domain [52]. Nguyen et al. present a state-of-the-art overview of the use of FL
n healthcare domains, including smart health data management, remote medical monitoring, medical imaging, and COVID-19
etection. The major takeaways from the study are also emphasized, along with an analysis of several recent smart healthcare
rojects in Florida [53].

Microservices architecture is suggested as a new design style that is simpler to update and deploy Fog IoT applications due to
ts fundamental properties, such as small granularity and low coupling. Microservice deployments are significant today because
f their high performance and suitability for IoT applications [54]. Compared to service-oriented and monolithic architectures,
he purpose of microservice architecture is to divide the system into discrete, independent components that can be connected to
hare services and architectures [55]. Each microservice is responsible for a single sub-task or service, requiring fewer compute
esources and lower communication overhead. The development of IoT microservices for the healthcare sector is the primary
iscussion of the article by Benayache et al.. Zhao et al. describes an architecture based on the microservice container Fog system to
xecute delay-sensitive and cost-effective mobility applications in which the costs are calculated as the sum of the computation and
ommunication expenses [56]. A novel approach to learning the microservice applications using predictive autoscaling deployed
n containerized Fog computing infrastructure proposed by Abdullah et al. seems to have less number of rejected requests and SLA
iolations compared to existing systems [57]. Samodha et al. investigate the factors that distinguish microservices-based application
cheduling in Fog computing from other application models. In addition, the work analyzes the integration of microservices for IoT
pplications using application modeling, placement composition, and performance evaluation [58]. The introduction of the Internet
f Healthcare Things (IoHT) platform for the healthcare environment uses the broker-less architecture for data collection, user
anagement, device management, and remote device control [59].

.6. Research gaps

Federated Learning in the Edge layer for medical anomaly detection is a promising approach to enable the development of
ccurate and efficient anomaly detection models while preserving the privacy and security of sensitive medical data. However,
here are several research gaps that need to be addressed to fully realize the potential of FL in this domain. One of the research
aps is the incorporation of SDM modules across multiple layers of computing. To the best of our knowledge, no publications have
ddressed ECG anomaly detection using IoT microservice applications using SDM. This paper aims to propose a microservice-based
ederated Learning model for one of the critical medical applications, ECG monitoring which has improved data privacy, increased
ata diversity, more efficient use of resources and real-time updates. The proposed FedSDM model predicts the ECG data anomalies
5

y applying Federated Learning in Edge, Fog, and Cloud layers and brings out a policy of usage at the appropriate level.



Internet of Things 22 (2023) 100784S.M. Rajagopal et al.
Fig. 1. FedSDM — Data flow diagram.

4. Proposed method

4.1. Application model

Healthcare systems are facing enormous challenges due to the pandemic and chronic diseases. The proposed architecture is
based on expectations extracted from the actual application of the healthcare sector. If successfully applied, Edge/Fog computing
can reduce the latency experienced in the quality of service (QoS) and minimize the bandwidth usage in any healthcare application
and later can be extended to other time-critical applications. The main difference between Fog-based and Cloud-based systems is
the computing capacity and storage of the Fog devices between the patient and the Cloud data center. In most cases, the devices
are not effectively used. With Fog technology, the under utilization of such intermediate devices can be addressed. The proposed
Fog-based architecture includes the concept of Fog node virtual machine partitioning to run medical IoT device data efficiently.
Multiple processes running on a single Edge/Fog node might cause congestion, preventing tasks from running smoothly. To solve
this problem, Edge/Fog nodes can establish virtual machines responsible for delivering computational resources to the tasks. Virtual
machines are primarily separate modules, each of which does a certain task.

Medical IoT applications are increasingly being implemented using modular architectures, which use microservices architecture
to allow time-sensitive tasks inside Edge/Fog and latency-tolerant jobs inside the Cloud. Hence, the proposed architecture selects
the microservice architecture for designing and modeling critical real-time medical applications. The following subsections discuss
the application model in detail. The data flow diagram for the proposed model is depicted in Fig. 1.

4.1.1. Multi-tier architecture
A multi-tier architecture paradigm has been identified for an integrated Fog healthcare application. IoT devices such as sensors

and actuators constitute tier-0. The Edge/Fog (proxy servers, gateways) and the Cloud nodes constitute the architecture’s tier-1
and tier-2. In the proposed Fog-based smart healthcare system, the Fog layer act as a supportive intermediate layer for processing
and analyzing real-time critical healthcare data near end-users. The Cloud, which acts as tier 3, supplies additional processing and
storage resources if the Fog devices cannot handle the incoming request requirements. Virtualized processing cores, storage, and
memory are considered as the resources at Fog nodes. If a request meets the resource requirements such as CPU, memory, and
6



Internet of Things 22 (2023) 100784S.M. Rajagopal et al.
Fig. 2. FedSDM — Multi-tier architecture.

bandwidth, the request can be processed by the current Fog or Edge device else, the request can be transmitted to the neighboring
device.

The proposed approach is simulated using iFogSim2 [12], the details of which are presented in Section 4. The workflow of
the proposed work is as follows: Electrocardiogram signals are sensed by sensors connected to the patient and transmitted to the
Edge/Fog nodes. All sensors have the same sensing frequency. A tuple is a data structure consisting of a set of attributes, and is used
to represent a unit of information that can be transmitted between the nodes in a Fog computing environment. The tuple transmit
rates of the sensors are set using transmitDistribution, an attribute in the Sensor class in iFogSim2. ECG_TRANSMISSION_TIME is set
as 5 ms. Actuators are used to carry out corresponding actions based on the outcomes of applications. The Edge/Fog nodes process
the data received from the sensor IoT device, and the patient’s health status is relayed to the patient’s smartphone. The Edge/Fog
nodes are located near the network’s Edge, closer to the IoT device, so that the patients receive immediate action in real-time. The
data center at the Cloud layer is the upper layer of the proposed system, which stores the permanent healthcare data of the patient.
Data stored in the Cloud can be retrieved anytime by the users connected with the application. The proposed health monitoring
system’s multi-tier architecture is depicted in Fig. 2.

4.1.2. Mobility
The mobility of Fog nodes or users raises an issue for the Fog computing platform by maintaining resources close to users at all

times [60]. In addition, IoT device mobility can impact the performance of Fog applications because of the rapid movement of the
devices from one access point to another. The mobility component of iFogSim2 allows distributed node movements and also enable
to customize the movement direction and speed of the end devices. This helps in the better simulation of the system which is at par
in real-time.

4.1.3. Clustering
Resource augmentation can considerably assist resource-limited Fog resources, particularly computational and storage capacity,

used for resource-critical applications. As a result, a clustering technique that allows resource augmentation from among Fog
resources is needed. The clustering component of iFogSim2 allows distributed dynamic coordination and collaboration among
multiple nodes. Each node can query and register its cluster members according to the specific clustering policies.

4.1.4. Microservices
Application development has shifted from monolithic design to microservice architecture to fully use the Fog computing

paradigm. The proposed system’s application model comprises a collection of microservices. Microservices architecture use for
building an application as a collection of small services that each runs in their process and communicates using lightweight
protocols. Microservices allow one to build a system out of a collection of small, isolated units that can manage their respective
data. Advantages include heterogeneity, scalability, resilience, organizational alignment, ease of deployment, and composability,
which will open up the possibility of large-scale IoT application development. Due to its excellent performance and applicability
for IoT applications, microservice deployments are more relevant nowadays. The proposed system’s application model is made up
of a collection of microservices which is depicted in Fig. 1. The vertices indicate each microservice, while the edges show the data
relationships between them. There are three microservices in this design, which are described below.
7



Internet of Things 22 (2023) 100784S.M. Rajagopal et al.
Fig. 3. Structure of FedAvg for FedSDM.

Fig. 4. Flowchart — Autoencoder in FedSDM.
8



Internet of Things 22 (2023) 100784S.M. Rajagopal et al.

a
m
w
g

4

e
c
a
m
e
l
a
s
F

e
a
c

t
d
A
b
t
d

d
s
T

m
r
f
t
r
u
A
l

t
F
i
s

4

m
c

• Client microservice: It is the Fog computing-based healthcare system’s front end. The sensor ECG signals attached to each
smartphone are received by the client microservice, deployed on the users’ cellphones, and transmitted to the preprocessing
microservice on the Fog device.

• Preprocessing microservice: Before transferring data for further processing, the preprocessing microservice performs data
validation and cleaning to remove the noise of ECG sensor data.

• Decision-making microservice: The microservice is in charge of real-time decision-making whether the ECG is normal or
anomalous. Based on the decision, a warning signal regarding the patient’s health is sent to the client microservice.

These microservices communicate with one another to keep track of users’ health. Based on the placement policy, preprocessing
nd decision-making constitutes a time-critical service that can be deployed on Edge or Fog. The data for permanent storage is being
oved to the storage module. An effective resource provisioning methodology uses a multi-level hierarchical Fog architecture in
hich application placement requests are handled at the Fog node at different levels. It models an IoT-critical medical application as
roupings of containerized microservices and uses a decentralized placement strategy to distribute them within the Fog environment.

.2. Federated learning model

Federated Learning is a distributed privacy-preserving machine learning paradigm in which a central server connects with various
nd devices, including smartphones, laptops, and security cameras, with limited computation and storage availability. Hence the
lients avoid sharing the data with the server. Clients receive the server’s most recent global model for each communication round,
nd a small percentage of clients use stochastic gradient descent (SGD) to update it throughout several rounds. The new global
odel is then obtained by aggregating these updated parameters on the central server. Most of the server’s Cloud deployments need

normous storage and computing capacity. In the proposed system, the Edge/Fog devices use a methodology named FedAvg to
aunch the Federated Learning module. A communication-efficient approach for distributed training with many clients is federated
veraging (FedAvg). Compared to traditional training and learning, FedAvg considerably lowers the communication cost between
ervers and clients by involving many local SGD updates and one aggregate by the server in each communication cycle [61]. The
edAvg module used in this work is depicted in Fig. 3.

To initiate the process, an overall model is downloaded from the central server and is trained with local data over several
pochs. The outcomes are the local updates. These local model updates collected from the end devices are aggregated by the FegAvg
lgorithm to generate the global model, which is continued until the required performance is achieved. The proposed method
onsiders three scenarios where the FedAvg is deployed in different layers: Edge, Fog, and Cloud.

The proposed approach also uses autoencoders, a particular type of neural network used for training and testing the data
o detect anomalies in the ECG (electrocardiogram) readings. An autoencoder consists of three components: encoder, code, and
ecoder. The encoder compresses the input and produces the code, which is later used by the decoder to reconstruct the input.
n encoding technique, a decoding technique, and a loss function to compare the output with the objective are required when
uilding an autoencoder. Autoencoders can only compress data meaningfully similar to what they have been trained on. Although
he autoencoder’s output will not be a perfect replica of its input, it will be a similar degraded representation. The encoder and
ecoder are both fully linked feedforward neural networks. Fig. 4 depicts the flowchart of the proposed system’s autoencoder.

The architecture of the autoencoder is presented in Fig. 5(a). The proposed approach has two layers in both the encoder and
ecoder, without accounting for the input and output, as shown in Fig. 5(b). The number of nodes per layer reduces with each
ubsequent encoder layer and grows back in the decoder. In terms of layer structure, the decoder and encoder are also symmetrical.
he loss function is the mean squared error in the proposed system configuration.

The proposed architecture implements an encoder and a decoder using an ANN architecture. The ECG data is fed as input to the
odel, and the model tries to reconstruct it. The error between the original data and the reconstructed output will be called the

econstruction error. Based on this reconstruction error, the ECG data is classified as anomalous. In order to do this, the model is
irst trained on the standard ECG data and is tested on the complete test set. The autoencoder reconstructs the abnormal ECG when
he input is provided. However, since it has been trained only on the standard ECG data, the output will have a more significant
econstruction error. The input is classified as anomalous if the reconstruction error exceeds the threshold. The proposed system
ses the Keras Subclassing API to build the model, as it provides reasonable control over the model compared to Sequential API.
utoencoders are unsupervised learning models, but the proposed method trains them using the supervised method, so it is more

ike they are used as self-supervised.
Large-scale FL experiments can be deployed and carried out using FL frameworks. The flower is a comprehensive FL framework

hat offers new tools to conduct large-scale FL experiments and consider highly heterogeneous FL device environments. It can run
L experiments with clients up to 15M in size. It uses only a pair of high-end GPUs. We have selected the flower framework to
mplement the Federated Learning module of the proposed system. The architecture of the flower framework for the proposed
ystem is depicted in Fig. 6(a). As can be seen in Fig. 6(b), the autoencoder is added to the flower framework.

.3. Proposed method

The proposed method works as follows: ECG sensor values collected from the patient are stored in the Edge device (Ex:
obile phones). The client microservice and the data preprocessing microservice, which resides on the Edge, do the required

omputation. The preprocessed ECG values are fed to the Smart Decision Making module, which checks for the anomaly. If any
9



Internet of Things 22 (2023) 100784S.M. Rajagopal et al.
Fig. 5. Auto encoder and ANN.

Fig. 6. Auto encoder integrated Flower framework.

anomaly exists, the notification is sent to the end device. The proposed architecture compares the results of placing the FL-based
decision-making module at different layers, as mentioned in the previous section. In all the placement policies, the local updates
from the corresponding devices/nodes are aggregated in the respective layer (Edge/Fog/Cloud). The diagrammatic representation
of the different deployment policies is presented in Fig. 7. Each deployment has been compared for its performance in the learning
efficiency and the QoS parameters, which are presented in the next section.
10



Internet of Things 22 (2023) 100784S.M. Rajagopal et al.
Fig. 7. FL deployment in different computing layers.

4.4. Evaluation metrics

This section explains the performance evaluation measures used to evaluate the FedSDM. Key Performance Indicators (KPIs)
that compare Edge/Fog/Cloud computing in various usecase implementations can help organizations to evaluate the performance
and effectiveness of each approach in different scenarios. Here are some KPIs that can be used for comparing Edge/Fog/Cloud
computing:

Latency: Measuring the round-trip time between a device and the Edge/Fog/Cloud node can help to identify any latency issues
and evaluate which approach is better suited for the specific use case.

Bandwidth usage: Measuring the amount of data transferred between the device and the Edge/Fog/Cloud node can help to
evaluate which approach is more effective in reducing bandwidth usage.

Availability: Edge/Fog/Cloud computing rely on distributed nodes to process data. Measuring the availability of these nodes can
help to evaluate the best approach which is more reliable in terms of availability.

Processing time/Execution Time: Measuring the time taken to process data on the Edge/Fog/Cloud node can help to evaluate
the approach that is more effective in handling the workload.

Energy consumption: Measuring the energy consumed by the Edge/Fog/Cloud implementations can help to identify the most
energy-efficient node.

Security: Measuring the security solutions can help to evaluate more secure implementation in handling sensitive data.
By comparing these KPIs, organizations can determine the approach that best fits their requirement and ensure that they are

making the most effective use of their computing resources [62–64]. We have chosen latency, energy consumption, network use, cost,
and execution time as evaluation criteria in our proposed method, as they are crucial for evaluating critical medical applications.
The subsequent section outlines the evaluation parameters for our proposed approach.
11



Internet of Things 22 (2023) 100784S.M. Rajagopal et al.

T
c

w

T
F

E

w
f
t
c

a

L
C
i
m
m
t
i

d
h

Table 2
Notations used in evaluation metrics equations.

Symbol Meaning Symbol Meaning

𝑇 Tasks 𝐸0 Power required for the server in an idle state
𝑁 Nodes 𝑁𝑈 Network use
𝑚 The Number of servers 𝑙 Latency experienced by the network
𝑛 Number of VMs inside the host 𝑇𝑁𝑆 Tuple network size
𝐸𝑋𝑇 (𝑁𝑖) The execution time required by node 𝑁𝑖 𝑐𝑜𝑠𝑡(𝑇 𝑖

𝑘) Cost for processing task 𝑇 𝑖
𝑘

𝑇𝑋𝑇 Total execution time 𝑀(𝑇 𝑖
𝑘) Memory needed by task 𝑇 𝑖

𝑘
𝑇𝐿 Total latency 𝐵𝑤(T𝑖

𝑘) Bandwidth needed by task 𝑇 𝑖
𝑘

𝐶𝐴𝐿 Current average latency 𝑁𝑈 Network use
𝐶𝐶 Simulator clock
𝐸𝑇 Execution time of the tuple
𝐸 Total energy consumption
𝐸𝑁𝑖𝑘 Energy consumption by the task 𝑇𝑘

4.4.1. Evaluation parameters for proposed approach
A set of n independent tasks are delivered to the system at each time, assuming that 𝑇𝑘 represents the 𝑘th task denoted as follows:

𝑇 = {𝑇1, 𝑇2, 𝑇3,… , 𝑇𝑛} (1)

he assumed infrastructure comprises Edge/Fog/Cloud nodes, which are processors with characteristics such as CPU rate, CPU usage
ost, bandwidth usage cost, and memory usage cost. The set of m processors is made up of fog nodes as mentioned below:

𝑁 = {𝑁1, 𝑁2, 𝑁3,… , 𝑁𝑚} (2)

here 𝑁𝑖 represent the 𝑖th processing node. The processor 𝑁𝑖 allocated with job 𝑇𝑘 is denoted by 𝑇 𝑖
𝑘.

A set of one or more tasks may be assigned to one processor for computing:

𝑁𝑖𝑇 𝑎𝑠𝑘𝑠 = {𝑇 𝑖
𝑥, 𝑇

𝑖
𝑦 ,… , 𝑇 𝑖

𝑧} (3)

he subsequent information discuss the performance metrics employed to assess the implementation of FedSDM across the Edge,
og and Cloud layers.

xecution time. The execution time (EXT) required by node 𝑁𝑖 to finish a set of 𝑁𝑖Tasks assigned to it is:

𝐸𝑋𝑇 (𝑁𝑖) =
∑

𝑇 𝑖
𝑘∈𝑁𝑖𝑇 𝑎𝑠𝑘𝑠

𝐸𝑋𝑇 (𝑇 𝑖
𝑘) (4)

𝐸𝑋𝑇 (𝑇 𝑖
𝑘) =

𝑙𝑒𝑛𝑔𝑡ℎ(𝑇 𝑖
𝑘)

𝐶𝑃𝑈𝑖
(5)

here length(𝑇 𝑖
𝑘) denote the number of instructions in the task 𝑇𝑘. The node 𝑁𝑖’s CPU rate is represented by 𝐶𝑃𝑈𝑖 and depends on

actors such as clock rate, core count, instruction level parallelism, etc. Total execution time is the total time taken by the system
o complete all the tasks, defined from the time when the request is received until the last task, or the time when the last machine
ompletes. Total execution time is determined by the formula:

𝑇𝑋𝑇 =
∑

𝑚
[𝐸𝑋𝑇 (𝑁𝑖)] (6)

The time used to complete the job while utilizing system services is included in the task’s execution time. Execution times differ
mongst tasks because they rely on how intensive the processing and input–output activities are.

atency. The application’s control loop is Client Microservice → Preprocessing Microservice → Decision Making Microservice →
lient Microservice which is described in Section 4.1.4. The control loop in our proposed approach has a relatively shorter latency,

ndicating better coordination and placement of computational resources. The iFogSim2 simulator provide multiple methods for
odule placement, including the one called edge-ward placement which has been utilized in this work. This method involves shifting
icroservices towards the top of the fog hierarchy, so that it leads to a deployment of a singular instance of each microservice along

he route from the edge to the cloud. Due to the restricted resource capacity of fog nodes, this strategy places microservice instances
n higher fog layers, increasing average latency.

𝑇𝐿 =
∑

𝑚
𝐶𝐴𝐿 (7)

Total latency (𝑇𝐿) represented in Eq. (7) directly depends on the allocation of VMs in fog devices in which the tasks are
istributed for execution. Total latency is the summation of the current average delay (CAL) experienced by every VM inside the
ost for 𝑚 servers, where CAL is calculated as follows.

𝐶𝐴𝐿 = 𝐶𝐶 − 𝐸𝑇 (8)
12



Internet of Things 22 (2023) 100784S.M. Rajagopal et al.
Here, CC denote the simulator clock and ET is the execution time of the tuple. CC, the simulator time is recorded by the simulator
when the response is received by the IoT device and ET, when the request is received by the fog node. The difference between these
times give the total latency experienced by the tuple, which include all the delays in the communication path, such as transmission
delay, propagation delay, processing delay, and queuing delay.

Energy consumption. Energy consumption is one of the significant parameters that we have in computing systems. This typically
includes infrastructure for data communications for backup power supplies, environmental controls, including cooling systems, fire
control, and different security technologies. Infrastructure operational costs are impacted by the power supply. Hence methods must
be put in place to lower these costs. The edge-ward method places the majority of microservices on cloud VMs, which increases
the energy consumption of cloud resources. The amount of energy used depends on how many microservices are active on each
tier. Efficiency, affordability, availability, dependability, and environmental protection of devices are all greatly impacted by energy
consumption reduction.

We model the server or host’s energy consumption as the sum of two components: the fixed energy for the server in an idle state
and the variable energy for server utilization while processing the requests. Energy consumption depends on the server’s number of
VMs and the allocated MIPS allocated for each VM.

The variable energy for server utilization while processing the requests is 𝐸𝑁𝑖𝑘 . E is the total energy consumption which can be
calculated by

𝑚
∑

𝑖=0
(

𝑛
∑

𝑘=1
𝐸𝑁𝑖𝑘 + 𝐸0) (9)

𝐸𝑁𝑖𝑘 = 𝑒1 ∗ 𝐸𝑋𝑇 (𝑇 𝑖
𝑘) (10)

where 𝐸𝑁𝑖𝑘 is the energy consumption by the task 𝑇𝑘 running on the virtual machine or node i. Operating the data center requires
𝐸0, the fixed energy of the server in idle state, and 𝑒1, the energy consumption per unit time in node 𝑁𝑖. The suggested method
makes some fixed assumptions regarding the simulation setup, including the distance between fog nodes, energy efficiency, and
power consumption of communication devices. However, we are aware that these factors typically affect the amount of energy used
for communication, therefore we will address this in the future to improve our model.

Network usage. A crucial metric for comparing various approaches is the overall volume of data delivered across a network.
Particularly on large networks, high data transfer may result in network congestion, service interruptions, or an increase in the
control loop’s average delay for the applications. In comparison to cloud operations, the latency can be significantly reduced if
the edge of the network can manage the portion of the workload. Additionally, the Edge-to-Cloud traffic is to be maintained.
Data transmission size could be considerably decreased by data pre-processing at the edge and fog devices. However, bandwidth
conservation is essential because many endpoints connect to the network and many database servers are needed to run them.
Network usage depends on the latency experienced by the network and the tuple size of the data for ′𝑛′ VMs in the host as listed
in Eq. (11).

𝑁𝑈 =
∑

𝑛
(𝑙 ∗ 𝑇𝑁𝑆) (11)

where l denote the latency experienced by the network and 𝑇𝑁𝑆 denote the tuple network size. Tuple network size refers to the
number of tuples that can be processed simultaneously within the network. Total network use depends on the number of VMs in
fog devices in which the tasks are distributed for execution.

Cost. Costs include network hardware, infrastructure, network communications, processing, and storage costs. The investment made
by service providers in Fog computing also include the placement of processing and communication workloads in the fog device.
One of the main issues with Fog computing is cost saving.

Processing cost is defined as:

𝑐𝑜𝑠𝑡(𝑇 𝑖
𝑘) = 𝑐1 ∗ 𝐸𝑋𝑇 (𝑇 𝑖

𝑘) + 𝑐2 ∗ 𝑀(𝑇 𝑖
𝑘) + 𝑐3 ∗ 𝐵𝑤(𝑇 𝑖

𝑘) (12)

where 𝑐1 denote the CPU usage fee per time unit in node 𝑁𝑖, and EXT(𝑇 𝑖
𝑘) is given in Eq. (5). 𝑐2 denote the memory usage fee

per data unit in node 𝑁𝑖 and M(𝑇 𝑖
𝑘) represent the memory needed by task 𝑇𝑘. Task 𝑇𝑘 processed in node 𝑁𝑖 needs an amount of

bandwidth Bw(𝑇 𝑖
𝑘), which is the sum of input and output file size. 𝑐3 is the bandwidth usage fee per data unit. The following formula

is used to determine the cost of each task in the Edge–Fog–Cloud system in total.

𝑇 𝑜𝑡𝑎𝑙𝑐𝑜𝑠𝑡 =
∑

𝑇 𝑖
𝑘∈𝑁𝑖𝑇 𝑎𝑠𝑘𝑠

𝑐𝑜𝑠𝑡(𝑇 𝑖
𝑘) (13)

Our proposed strategy aims to deploy FedSDM in Edge/Fog/Cloud layers and evaluate the above-mentioned parameters. Table 2
13

contains the list of acronyms used in this section.



Internet of Things 22 (2023) 100784S.M. Rajagopal et al.

E
c
d
V
s
p
a
a
i
c

a
c
c

I
m
a
t
u
w
e

5

p
p
T
t
h
f
u

p
L
s
o
o

Table 3
Configuration parameters [12].

Parameter Cloud Fog Smartphone

CPU length(MIPS) 44 800 2800 2800
RAM (MB) 40 000 4000 4000
Uplink BW (MB) 100 10 000 10 000
Downlink BW (MB) 10 000 10 000 10 000
Busy power (J) 16 ∗ 103 107.339 87.53
Idle power (J) 16 ∗ 83.25 83.433 82.44

5. Experimental setup

5.1. iFogSim2

The market is very competitive with simulators for simulating Cloud, Fog, and Edge devices. Few examples are FogNetSim+,
dge–Fog, Yet Another Fog Simulator (YAFS), EdgeNetworkCloudSim, PureEdgeSim. For modeling and simulating Edge/Fog/Cloud
omputing infrastructures and services, we have chosen iFogSim2, an extension of Cloudsim, since this framework can be used to
evelop and deploy experiments for Edge/Fog/Cloud devices that handle compute, memory, I/O, and VM allocation, as well as
M power models, among other things. The iFogSim2 simulator, an extension of the iFogSim simulator, holds the properties of
ervice migration, distributed cluster building across Fog nodes, and microservice orchestration. This simulator helps validate the
roposed approach’s performance in the Fog computing environment. The components of the iFogSim2, such as mobility, clustering,
nd microservices, are loosely coupled and can be utilized for simulation in such scenarios. iFogSim2 incorporates real datasets for
ssessing the performance of different service management strategies in Fog computing settings, unlike most existing solutions. It
ncludes node clustering, mobility management, and microservice orchestration methodologies that can be used as benchmarks for
omparing performance [12].

All iFogSim core classes, such as FogDevice, AppModule, Sensor, and Actuator, have object references in the Controller class,
nd it can access the Tuple class through an Application object. The Clustering element of iFogSim2 allows distributed dynamic
oordination and collaboration between multi-fog devices. To add the mobility component to the iFogSim2 simulation, it includes
lasses such as DataParser and MobilityController. The functions of these classes are described below:

• The data parser class separates and assimilates location data from many IoT end devices so that application services may be
handled based on their unique mobility patterns.

• MobilityController class helps to dynamically start the required sequential and parallel actions on separate FogDevice and
AppModule referenced objects for mobility management.

During simulation, the proposed model assumes two mobility patterns: ‘RANDOM MOBILITY’ and ‘DIRECTIONAL MOBILITY’.
n the ‘DIRECTIONAL MOBILITY’ model, the time period between two of these motions is equal to ensure that the user/IoT device
aintains a constant speed. The ‘DIRECTIONAL MOBILITY’ being used has many consecutive coordinates lying at the exact distances

cross the Melbourne Central Business District (CBD) for a user or IoT device. These coordinates help construct the events to simulate
he movement of the associated end IoT device. Numerous random mobility patterns are available in the simulator to represent
sers’ RANDOM MOBILITY model behaviors. It includes the user’s direction, speed, stopping time at each location, and duration
ithin each Edge/Fog node’s communication range. These patterns help simulate the user’s real-time behavior and enable a better
valuation of the proposed system.

.2. Simulation environment

This section explains the simulation environment used to evaluate the proposed approach. The sensors detect the ECG of the
atient and send the data to the Fog nodes regularly. Data is processed and analyzed on the Fog nodes to determine whether the
atient’s health status is normal or critical. The results are subsequently sent to the Cloud for storage and the patient’s smartphone.
he Fog nodes’ connection to the Cloud server is established through the proxy server. The client module is integrated in IoT devices
o get sensor data. The processing module is embedded in Fog nodes to process and analyze the incoming data to assess the patient’s
ealth status. The Fog node then communicates the results to the associated IoT device, which displays them. It must define values
or numerous parameters in iFogSim2 when generating Fog devices, such as CPU length, RAM, Bandwidth, and so on. The settings
sed for device configuration in iFogSim2 [65] are listed in Table 3.

Fog devices are the computational devices in iFogSim2. Computational gadgets, on the other hand, come in various levels. The
arent node acts as a Cloud server and is placed on Level 3. The Fog nodes are connected to the Cloud server via a proxy server at
evel 2. Fog nodes are closer to the user at Level 1, which is considered as Edge device, giving more frequent computational and
torage capacities. Sensors and actuators are used in Level 0 IoT devices. The MicroserviceFogDevice, Sensor, and Actuator classes
f iFogSim2 simulate the physical topology. The scenarios were simulated on an Intel Core i7 CPU running at 1.80 GHz and 4 GB
14

f RAM. The fractional selectivity of the input–output relationship inside a module is set to 1.0.



Internet of Things 22 (2023) 100784S.M. Rajagopal et al.
Fig. 8. Dataset description.

Fig. 9. Data set for mobility.

6. Results and discussion

6.1. Dataset

6.1.1. Dataset for federated learning
The dataset [66] considered for this work has 140 columns representing the ECG readings and a label encoded as 0 or 1, denoting

whether the ECG is abnormal or normal. Columns 0–139 contain the ECG data point for a particular patient. These are floating point
numbers. The first three column value ranges along with the final label description, are presented graphically in Fig. 8 to understand
the spread of values in the dataset. The first column of Fig. 8 displays the maximum and minimum values for the first data point of
the patient set in the dataset, while columns 2 and 3 represent the same information for the second and third data points respectively.
The final illustration in the figure provide a label indicating whether the ECG is classified as normal or abnormal. The dataset has
58% of the tuples belonging to the normal class and the remaining belonging to the abnormal class.

6.1.2. Dataset for mobility
EUA dataset [67] provides the position information of many Fog nodes distributed across CBD zones of major Australian cities,

namely Melbourne and Sydney. The dataset is segmented into various regions and is divided into several blocks, among which a
random node is picked as the proxy server to ensure granularity. Within a block, all nodes except the proxy server serve as the IoT
devices’ gateway. This repository includes a collection of EUA datasets gathered from real-world data sources. The datasets have
been made available to the public in assisting Edge computing research. The data corresponds to the Australian region and helps
better simulate a natural time environment. The user mobility pattern and the resource location of the dataset are shown in Fig. 9.

6.2. Analysis and observations

This section presents the results and the observation. The model is evaluated as described in the previous sections for varying
placement policies. Fig. 10 presents the normal and abnormal ECG samples. Fig. 11 shows the reconstructed normal and abnormal
ECG plots. The reconstructed ECG helps in predicting whether the ECG is anomalous. The reconstructed one with the error beyond a
threshold is considered anomalous. The error calculated from these figures helps in this classification. Fig. 12 highlights the training
and the testing loss graphically.

Fig. 13 compares the identified performance parameters for different placement policies discussed in this work. It could be
observed that the deployment of the FL module in the Edge layer reduces the Cloud energy consumption by 2% with a decrease
in network use of 32%. This, in turn, reduces the cost by 50%, the execution time by 32%, and the latency by 86%. All the above
comparisons are against the placement of the FL module in the Cloud layer. While analyzing the results of placement of the FL module
in the Fog layer against the Cloud layer, Cloud energy consumption decreases by 2%, network use by 31%, cost by 41%, execution
15



Internet of Things 22 (2023) 100784S.M. Rajagopal et al.
Fig. 10. Normal ECG and anomalous ECG plot.

Fig. 11. Reconstructed normal and anomalous ECG plot.

Fig. 12. Train and test loss graphs.

time by 23%, and latency by 85%. Table 4 presents the above discussions in a consolidated manner for better understanding of the
results. However, the router energy consumption is found to be more (i.e.) 2.3% and 2.4% for FL module deployment in the Edge,
and Fog layers since more computations are performed in those layers. A similar comparison of placing the FL module in Edge and
16



Internet of Things 22 (2023) 100784S.M. Rajagopal et al.
Fig. 13. Result of FL deployment in Edge/Fog/Cloud layers.

Table 4
Comparison of Edge and Fog FL placement against cloud.

Metric Edge FL placement Fog FL placement

Energy consumption (J) 2% 2%
Network use (KB) 32% 31%
Cost ($) 50% 41%
Latency (ms) 86% 85%
Execution rime (ms) 32% 23%

Fog yields a performance increase of 0.3%, 2%, 15%, 11%, and 3% for energy consumption, network usage, cost, execution time,
and latency, respectively as presented in Table 5. Table 6 shows the number of simulations conducted and the average results for
each of the parameters. In conclusion, FL module deployment in the Edge layer is superior to FL module deployment in Fog or
Cloud, which adds to the fact that the integration of AI on Edge enables smart healthcare systems. This could also support real-time
or advanced remote patient monitoring by immediately processing the clinical tests.
17



Internet of Things 22 (2023) 100784S.M. Rajagopal et al.
Fig. 14. Accuracy comparison of FedSDM with FedAvg and Edgefed.

Fig. 15. Training loss comparison of FedSDM with FedAvg and Edgefed.

Table 5
Comparison of Edge FL placement against Fog.

Metric Edge FL placement

Energy consumption (J) 0.3%
Network use (KB) 2%
Cost ($) 15%
Latency (ms) 11%
Execution time (ms) 3%

Table 6
Number of simulations and the mean parameter values for the implementation of Edge FL compared to Fog FL implementation.

Metric Number of simulations Average

1 2 3 4 5

Energy consumption (J) .34% .37% .30% .25% .36% .3%
Network use (KB) 1.6% 1.2% 1.3% 1.5% 2% 1.5%
Cost ($) 14.8% 11.3% 12.7% 13.7% 12% 12.9%
Latency (ms) 2.9% 1.5% 3.4% 3.3% 1.7% 2.5%
Execution time (ms) 10.8% 10.1% 11.3% 11% 9.6% 10.5%

6.2.1. Comparative analysis
In order to have an effective conclusion, the proposed approach has been compared for its accuracy and the training loss

parameters against the existing results presented in the literature [24]. Figs. 14 and 15 show the contrast of the parameters used
for various batch sizes and epochs. These results also prove the conclusion statement in the previous sub-section.

7. Conclusion

Due to the heterogeneous and dynamic nature of critical medical IoT applications in Fog scenarios, the privacy of patients
become a crucial problem. This paper investigates the Federated Learning-based Smart Decision Making module for ECG Data in
microservice-based IoT medical applications. In addition, we also examine the performance of the proposed system with three
different placement policies considering the deployment at Edge, Fog and Cloud layers. Future work will include addressing this
18



Internet of Things 22 (2023) 100784S.M. Rajagopal et al.

t

D

R

work’s limitations and experimenting with the model’s energy usage. Also, we want to put the suggested method into action. To
boost prediction models, we will also look into, improve, and deploy more aggregation techniques. In order to increase system
security in real-time Edge/Fog/Cloud scenarios, we want to leverage blockchain techniques.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
o influence the work reported in this paper.

ata availability

Data will be made available on request

eferences

[1] S. Wadhwani, 36 billion data records exposed (so far) in 2020: Risk based security, 2020, URL https://www.spiceworks.com/it-security/data-security/
news/36-billion-data-records-exposed-so-far-in-2020-risk-based-security/.

[2] T. Li, A.K. Sahu, A. Talwalkar, V. Smith, Federated learning: Challenges, methods, and future directions, IEEE Signal Process. Mag. 37 (3) (2020) 50–60.
[3] D.C. Nguyen, M. Ding, P.N. Pathirana, A. Seneviratne, J. Li, H.V. Poor, Federated learning for internet of things: A comprehensive survey, IEEE Commun.

Surv. Tutor. (2021) 1, http://dx.doi.org/10.1109/COMST.2021.3075439.
[4] J. Santos, T. Wauters, B. Volckaert, F. De Turck, Towards end-to-end resource provisioning in Fog Computing over low Power Wide Area Networks, J.

Netw. Comput. Appl. 175 (2021) 102915.
[5] V.K. Quy, N.V. Hau, D.V. Anh, L.A. Ngoc, Smart healthcare IoT applications based on fog computing: architecture, applications and challenges, Complex

Intell. Syst. (2021) 1–11.
[6] S. Tuli, N. Basumatary, S.S. Gill, M. Kahani, R.C. Arya, G.S. Wander, R. Buyya, HealthFog: An ensemble deep learning based Smart Healthcare System for

Automatic Diagnosis of Heart Diseases in integrated IoT and fog computing environments, Future Gener. Comput. Syst. 104 (2020) 187–200.
[7] I. Martinez, A.S. Hafid, A. Jarray, Design, resource management, and evaluation of fog computing systems: A survey, IEEE Internet Things J. 8 (4) (2020)

2494–2516.
[8] M. Laroui, B. Nour, H. Moungla, M.A. Cherif, H. Afifi, M. Guizani, Edge and fog computing for IoT: A survey on current research activities & future

directions, Comput. Commun. 180 (2021) 210–231.
[9] A. Shakarami, H. Shakarami, M. Ghobaei-Arani, E. Nikougoftar, M. Faraji-Mehmandar, Resource provisioning in edge/fog computing: A comprehensive

and systematic review, J. Syst. Archit. (2021) 102362.
[10] C. Puliafito, D.M. Gonçalves, M.M. Lopes, L.L. Martins, E. Madeira, E. Mingozzi, O. Rana, L.F. Bittencourt, MobFogSim: Simulation of mobility and migration

for fog computing, Simul. Model. Pract. Theory 101 (2020) 102062.
[11] B. El Khalyly, A. Belangour, M. Banane, A. Erraissi, A comparative study of microservices-based IoT platforms, Int. J. Adv. Comput. Sci. Appl. (IJACSA)

11 (7) (2020) 389–398.
[12] R. Mahmud, S. Pallewatta, M. Goudarzi, R. Buyya, IFogSim2: An extended iFogSim simulator for mobility, clustering, and microservice management in

edge and fog computing environments, J. Syst. Softw. (JSS) (ISSN: 0164-1212) (2022) Elsevier Press, Amsterdam, the Netherlands.
[13] D.G. Nair, C. Aswartha Narayana, K. Jaideep Reddy, J.J. Nair, Exploring SVM for federated machine learning applications, in: Advances in Distributed

Computing and Machine Learning: Proceedings of ICADCML 2022, Springer, 2022, pp. 295–305.
[14] V.P. Pillai, R.K. Megalingam, System partitioning with virtualization for federated and distributed machine learning on critical IoT edge systems, in:

Congress on Intelligent Systems: Proceedings of CIS 2021, Volume 2, Springer, 2022, pp. 443–453.
[15] H.G. Abreha, M. Hayajneh, M.A. Serhani, Federated learning in edge computing: A systematic survey, Sensors 22 (2) (2022) http://dx.doi.org/10.3390/

s22020450, URL https://www.mdpi.com/1424-8220/22/2/450.
[16] D. Jose, J. Swaminathan, A model in healthcare cloud for securing the data using fog computing, in: ICT Infrastructure and Computing: Proceedings of

ICT4SD 2022, Springer, 2022, pp. 441–448.
[17] H. Pydi, G.N. Iyer, Analytical review and study on load balancing in edge computing platform, in: 2020 Fourth International Conference on Computing

Methodologies and Communication, ICCMC, IEEE, 2020, pp. 180–187.
[18] M. Prabhu, A. Hanumanthaiah, Edge computing-enabled healthcare framework to provide telehealth services, in: 2022 International Conference on Wireless

Communications Signal Processing and Networking (WiSPNET), IEEE, 2022, pp. 349–353.
[19] P.D. Bharathi, V.A. Narayanan, P.B. Sivakumar, Fog computing enabled air quality monitoring and prediction leveraging deep learning in IoT, J. Intell.

Fuzzy Systems (Preprint) (2022) 1–22.
[20] P. Yu, Y. Liu, Federated object detection: Optimizing object detection model with federated learning, in: Proceedings of the 3rd International Conference

on Vision, Image and Signal Processing, 2019, pp. 1–6.
[21] H. Wang, M. Yurochkin, Y. Sun, D. Papailiopoulos, Y. Khazaeni, Federated learning with matched averaging, 2020, arXiv preprint arXiv:2002.06440.
[22] M.G. Arivazhagan, V. Aggarwal, A.K. Singh, S. Choudhary, Federated learning with personalization layers, 2019, arXiv preprint arXiv:1912.00818.
[23] E. Sannara, F. Portet, P. Lalanda, V. German, A federated learning aggregation algorithm for pervasive computing: Evaluation and comparison, in: 2021

IEEE International Conference on Pervasive Computing and Communications (PerCom), IEEE, 2021, pp. 1–10.
[24] Y. Ye, S. Li, F. Liu, Y. Tang, W. Hu, EdgeFed: Optimized federated learning based on edge computing, IEEE Access 8 (2020) 209191–209198.
[25] Q. Xia, W. Ye, Z. Tao, J. Wu, Q. Li, A survey of federated learning for edge computing: Research problems and solutions, High-Confid. Comput. 1 (1)

(2021) 100008.
[26] A. Imteaj, U. Thakker, S. Wang, J. Li, M.H. Amini, A survey on federated learning for resource-constrained iot devices, IEEE Internet Things J. 9 (1)

(2021) 1–24.
[27] R. Yu, P. Li, Toward resource-efficient federated learning in mobile edge computing, IEEE Netw. 35 (1) (2021) 148–155.
[28] D.C. Nguyen, M. Ding, Q.-V. Pham, P.N. Pathirana, L.B. Le, A. Seneviratne, J. Li, D. Niyato, H.V. Poor, Federated learning meets blockchain in edge

computing: Opportunities and challenges, IEEE Internet Things J. (2021).
[29] R. Saha, S. Misra, P.K. Deb, FogFL: Fog-assisted federated learning for resource-constrained IoT devices, IEEE Internet Things J. 8 (10) (2020) 8456–8463.
[30] C. Zhou, A. Fu, S. Yu, W. Yang, H. Wang, Y. Zhang, Privacy-preserving federated learning in fog computing, IEEE Internet Things J. 7 (11) (2020)

10782–10793.
[31] C.W. Zaw, S.R. Pandey, K. Kim, C.S. Hong, Energy-aware resource management for federated learning in multi-access edge computing systems, IEEE Access

9 (2021) 34938–34950.
19

https://www.spiceworks.com/it-security/data-security/news/36-billion-data-records-exposed-so-far-in-2020-risk-based-security/
https://www.spiceworks.com/it-security/data-security/news/36-billion-data-records-exposed-so-far-in-2020-risk-based-security/
https://www.spiceworks.com/it-security/data-security/news/36-billion-data-records-exposed-so-far-in-2020-risk-based-security/
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb2
http://dx.doi.org/10.1109/COMST.2021.3075439
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb4
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb4
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb4
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb5
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb5
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb5
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb6
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb6
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb6
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb7
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb7
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb7
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb8
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb8
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb8
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb9
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb9
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb9
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb10
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb10
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb10
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb11
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb11
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb11
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb12
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb12
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb12
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb13
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb13
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb13
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb14
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb14
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb14
http://dx.doi.org/10.3390/s22020450
http://dx.doi.org/10.3390/s22020450
http://dx.doi.org/10.3390/s22020450
https://www.mdpi.com/1424-8220/22/2/450
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb16
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb16
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb16
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb17
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb17
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb17
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb18
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb18
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb18
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb19
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb19
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb19
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb20
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb20
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb20
http://arxiv.org/abs/2002.06440
http://arxiv.org/abs/1912.00818
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb23
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb23
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb23
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb24
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb25
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb25
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb25
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb26
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb26
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb26
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb27
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb28
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb28
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb28
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb29
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb30
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb30
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb30
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb31
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb31
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb31


Internet of Things 22 (2023) 100784S.M. Rajagopal et al.
[32] T. Hiessl, S.R. Lakani, J. Kemnitz, D. Schall, S. Schulte, Cohort-based federated learning services for industrial collaboration on the edge, J. Parallel Distrib.
Comput. 167 (2022) 64–76.

[33] M. Hasan, M.M. Islam, M.I.I. Zarif, M. Hashem, Attack and anomaly detection in IoT sensors in IoT sites using machine learning approaches, Internet
Things 7 (2019) 100059.

[34] A. Abusitta, G.H. de Carvalho, O.A. Wahab, T. Halabi, B.C. Fung, S. Al Mamoori, Deep learning-enabled anomaly detection for IoT systems, Internet Things
21 (2023) 100656.

[35] A. Chatterjee, B.S. Ahmed, IoT anomaly detection methods and applications: A survey, Internet Things 19 (2022) 100568.
[36] T. Andrysiak, Machine learning techniques applied to data analysis and anomaly detection in ECG signals, Appl. Artif. Intell. 30 (6) (2016) 610–634.
[37] M. Gu, Y. Zhang, Y. Wen, G. Ai, H. Zhang, P. Wang, G. Wang, A lightweight convolutional neural network hardware implementation for wearable heart

rate anomaly detection, Comput. Biol. Med. (2023) 106623.
[38] M. Nawaz, J. Ahmed, Cloud-based healthcare framework for real-time anomaly detection and classification of 1-D ECG signals, Plos One 17 (12) (2022)

e0279305.
[39] Z. Ji, J. Gong, J. Feng, A novel deep learning approach for anomaly detection of time series data, Sci. Program. 2021 (2021).
[40] C. Cambra Baseca, S. Sendra, J. Lloret, J. Tomas, A smart decision system for digital farming, Agronomy 9 (5) (2019) 216.
[41] N. Kaur, S.K. Sood, Cognitive decision making in smart industry, Comput. Ind. 74 (2015) 151–161.
[42] S.A.A. Bokhari, S. Myeong, Use of artificial intelligence in smart cities for smart decision-making: A social innovation perspective, Sustainability 14 (2)

(2022) 620.
[43] M.W. Moreira, J.J. Rodrigues, V. Korotaev, J. Al-Muhtadi, N. Kumar, A comprehensive review on smart decision support systems for health care, IEEE

Syst. J. 13 (3) (2019) 3536–3545.
[44] S. Zhou, R. Zhang, D. Chen, X. Zhu, A novel framework for bringing smart big data to proactive decision making in healthcare, Health Inform. J. 27 (2)

(2021) 14604582211024698.
[45] M.T. Quasim, A. Shaikh, M. Shuaib, A. Sulaiman, S. Alam, Y. Asiri, Smart healthcare management evaluation using fuzzy decision making method, 2021.
[46] D.H. Brahmbhatt, M.R. Cowie, Remote management of heart failure: an overview of telemonitoring technologies, Cardiac Fail. Rev. 5 (2) (2019) 86.
[47] N. Rieke, J. Hancox, W. Li, F. Milletari, H.R. Roth, S. Albarqouni, S. Bakas, M.N. Galtier, B.A. Landman, K. Maier-Hein, et al., The future of digital health

with federated learning, NPJ Digit. Med. 3 (1) (2020) 1–7.
[48] Y. Chen, X. Qin, J. Wang, C. Yu, W. Gao, FedHealth: A federated transfer learning framework for wearable healthcare, IEEE Intell. Syst. 35 (4) (2020)

83–93, http://dx.doi.org/10.1109/MIS.2020.2988604.
[49] J. Passerat-Palmbach, T. Farnan, R. Miller, M.S. Gross, H.L. Flannery, B. Gleim, A blockchain-orchestrated federated learning architecture for healthcare

consortia, 2019, arXiv preprint arXiv:1910.12603.
[50] R. Kumar, A.A. Khan, J. Kumar, A. Zakria, N.A. Golilarz, S. Zhang, Y. Ting, C. Zheng, W. Wang, Blockchain-federated-learning and deep learning models

for COVID-19 detection using CT imaging, IEEE Sens. J. (2021) 1, http://dx.doi.org/10.1109/JSEN.2021.3076767.
[51] B. Yuan, S. Ge, W. Xing, A federated learning framework for healthcare iot devices, 2020, arXiv preprint arXiv:2005.05083.
[52] J. Xu, B.S. Glicksberg, C. Su, P. Walker, J. Bian, F. Wang, Federated learning for healthcare informatics, J. Healthc. Inform. Res. 5 (1) (2021) 1–19.
[53] D.C. Nguyen, Q.-V. Pham, P.N. Pathirana, M. Ding, A. Seneviratne, Z. Lin, O. Dobre, W.-J. Hwang, Federated learning for smart healthcare: A survey,

ACM Comput. Surv. 55 (3) (2022) 1–37.
[54] D. Yu, Y. Jin, Y. Zhang, X. Zheng, A survey on security issues in services communication of microservices-enabled fog applications, Concurr. Comput.:

Pract. Exper. 31 (22) (2019) e4436.
[55] A. Benayache, A. Bilami, S. Barkat, P. Lorenz, H. Taleb, Msm: A microservice middleware for smart WSN-based IoT application, J. Netw. Comput. Appl.

144 (2019) 138–154.
[56] X. Zhao, C. Huang, Microservice based computational offloading framework and cost efficient task scheduling algorithm in heterogeneous fog cloud

network, IEEE Access 8 (2020) 56680–56694.
[57] M. Abdullah, W. Iqbal, A. Mahmood, F. Bukhari, A. Erradi, Predictive autoscaling of microservices hosted in fog microdata center, IEEE Syst. J. 15 (1)

(2020) 1275–1286.
[58] S. Pallewatta, V. Kostakos, R. Buyya, Microservices-based IoT applications scheduling in edge and fog computing: A taxonomy and future directions, 2022,

http://dx.doi.org/10.48550/ARXIV.2207.05399, URL https://arxiv.org/abs/2207.05399.
[59] L.N.T. Thanh, N.N. Phien, H.K. Vo, H.H. Luong, T.D. Anh, K.N.H. Tuan, H.X. Son, et al., IoHT-MBA: an internet of healthcare things (IoHT) platform

based on microservice and brokerless architecture, Int. J. Adv. Comput. Sci. Appl. 12 (7) (2021).
[60] A. Mseddi, W. Jaafar, H. Elbiaze, W. Ajib, Joint container placement and task provisioning in dynamic fog computing, IEEE Internet Things J. 6 (6) (2019)

10028–10040, http://dx.doi.org/10.1109/JIOT.2019.2935056.
[61] T. Sun, D. Li, B. Wang, Decentralized federated averaging, IEEE Trans. Pattern Anal. Mach. Intell. (2022).
[62] M.S. Aslanpour, S.S. Gill, A.N. Toosi, Performance evaluation metrics for cloud, fog and edge computing: A review, taxonomy, benchmarks and standards

for future research, Internet Things 12 (2020) 100273.
[63] M. Aazam, S. Zeadally, K.A. Harras, Fog computing architecture, evaluation, and future research directions, IEEE Commun. Mag. 56 (5) (2018) 46–52.
[64] D.P. Abreu, K. Velasquez, M. Curado, E. Monteiro, A comparative analysis of simulators for the cloud to fog continuum, Simul. Model. Pract. Theory 101

(2020) 102029.
[65] H. Gupta, A. Vahid Dastjerdi, S.K. Ghosh, R. Buyya, iFogSim: A toolkit for modeling and simulation of resource management techniques in the Internet

of Things, Edge and Fog computing environments, Softw. - Pract. Exp. 47 (9) (2017) 1275–1296.
[66] kaggle.com/code/devavratatripathy/ecg-anomaly-detection-using-autoencoders, https://www.kaggle.com, https://https://www.kaggle.com/code/

devavratatripathy/ecg-anomaly-detection-using-autoencoders.
[67] P. Lai, Q. He, M. Abdelrazek, F. Chen, J. Hosking, J. Grundy, Y. Yang, Optimal edge user allocation in edge computing with variable sized vector bin

packing, in: International Conference on Service-Oriented Computing, Springer, 2018, pp. 230–245.
20

http://refhub.elsevier.com/S2542-6605(23)00107-5/sb32
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb32
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb32
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb33
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb33
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb33
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb34
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb34
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb34
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb35
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb36
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb37
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb37
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb37
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb38
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb38
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb38
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb39
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb40
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb41
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb42
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb42
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb42
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb43
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb43
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb43
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb44
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb44
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb44
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb45
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb46
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb47
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb47
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb47
http://dx.doi.org/10.1109/MIS.2020.2988604
http://arxiv.org/abs/1910.12603
http://dx.doi.org/10.1109/JSEN.2021.3076767
http://arxiv.org/abs/2005.05083
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb52
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb53
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb53
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb53
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb54
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb54
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb54
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb55
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb55
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb55
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb56
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb56
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb56
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb57
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb57
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb57
http://dx.doi.org/10.48550/ARXIV.2207.05399
https://arxiv.org/abs/2207.05399
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb59
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb59
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb59
http://dx.doi.org/10.1109/JIOT.2019.2935056
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb61
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb62
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb62
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb62
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb63
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb64
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb64
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb64
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb65
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb65
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb65
https://www.kaggle.com
https://https://www.kaggle.com/code/devavratatripathy/ecg-anomaly-detection-using-autoencoders
https://https://www.kaggle.com/code/devavratatripathy/ecg-anomaly-detection-using-autoencoders
https://https://www.kaggle.com/code/devavratatripathy/ecg-anomaly-detection-using-autoencoders
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb67
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb67
http://refhub.elsevier.com/S2542-6605(23)00107-5/sb67

	FedSDM: Federated learning based smart decision making module for ECG data in IoT integrated Edge–Fog–Cloud computing environments
	Introduction
	Background and Motivation
	Related Work
	FL aggregation methods 
	Federated Learning in Edge/Fog/Cloud IoT applications 
	Anomaly detection in IoT applications
	ECG Anomaly detection

	Smart Decision Making in IoT applications
	SDM in smart healthcare applications 

	Federated Learning in healthcare
	Research gaps

	Proposed method
	Application model
	Multi-tier architecture
	Mobility
	Clustering
	Microservices

	Federated Learning model
	Proposed method
	Evaluation metrics
	Evaluation parameters for proposed approach 


	Experimental setup
	iFogSim2
	Simulation Environment

	Results and Discussion
	Dataset
	Dataset for Federated Learning
	Dataset for Mobility 

	Analysis and Observations 
	Comparative analysis


	Conclusion
	Declaration of Competing Interest
	Data availability
	References


