
1

FLight: A Lightweight Federated Learning
Framework in Edge and Fog Computing

Wuji Zhu, Mohammad Goudarzi, and Rajkumar Buyya

Abstract—The number of Internet of Things (IoT) applica-
tions, especially latency-sensitive ones, have been significantly
increased. So, Cloud computing, as one of the main enablers
of the IoT that offers centralized services, cannot solely satisfy
the requirements of IoT applications. Edge/Fog computing, as a
distributed computing paradigm, processes, and stores IoT data
at the edge of the network, offering low latency, reduced network
traffic, and higher bandwidth. The Edge/Fog resources are often
less powerful compared to Cloud, and IoT data is dispersed
among many geo-distributed servers. Hence, Federated Learning
(FL), which is a machine learning approach that enables multiple
distributed servers to collaborate on building models without
exchanging the raw data, is well-suited to Edge/Fog computing
environments, where data privacy is of paramount importance.
Besides, to manage different FL tasks on Edge/Fog computing
environments, a lightweight resource management framework is
required to manage different incoming FL tasks while does not
incur significant overhead on the system. Accordingly, in this
paper, we propose a lightweight FL framework, called FLight,
to be deployed on a diverse range of devices, ranging from
resource-limited Edge/Fog devices to powerful Cloud servers.
FLight is implemented based on the FogBus2 framework, which
is a containerized distributed resource management framework.
Moreover, FLight integrates both synchronous and asynchronous
models of FL. Besides, we propose a lightweight heuristic-based
worker selection algorithm to select a suitable set of available
workers to participate in the training step to obtain higher
training time efficiency. The obtained results demonstrate the
efficiency of the FLight. The worker selection technique reduces
the training time of reaching 80% accuracy by 34% compared
to sequential training, while asynchronous one helps to improve
synchronous FL training time by 64%.

Index Terms—Federated Learning, Resource Management
Framework, Edge/Fog/Cloud Computing, Internet of Things.

I. INTRODUCTION

RECENTLY, Machine Learning (ML) applications such
as speech recognition, natural language processing, com-

puter vision, decision-making, and recommendation systems
have gained significant popularity. An essential factor for the
successful development and deployment of ML applications
and models is accessing a large amount of data [1, 2]. Due
to the ever-increasing number of Internet of Things (IoT)
applications, exploding amounts of data have been continu-
ously being generated from different sources. However, the
increasing awareness of data protection and privacy concerns

Wuji Zhu and Rajkumar Buyya are with the Cloud Computing and
Distributed Systems (CLOUDS) Laboratory, School of Computing and In-
formation Systems, The University of Melbourne, Australia (e-mail: wu-
jiz1@student.unimelb.edu.au, rbuyya@unimelb.edu.au).

Mohammad Goudarzi is with the School of Computer Science and En-
gineering, The University of New South Wales (UNSW), Australia (email:
m.goudarzi@unsw.edu.au)

prevent unconstrained data collection and access. General Data
Protection Regulation (GDPR) [3] was introduced in 2018,
which regulates and formalizes how organizations should
utilize collected data. Similarly, the United States has the
California Consumer Privacy Act (CCPA) [4], which also leg-
islates practices of using customer data. Also, even in scenarios
where data collection is legally permitted, data silo issues still
may happen, referring to the cases in which a data repository
controlled by a department (e.g., hospitals or organizations) is
isolated and incapable of reciprocal operation. Thus, collecting
huge amount of raw data from different sources for ML
applications and models face an important barrier. Accord-
ingly, a method to access a rich amount of available data in
distributed sites while satisfying data access, protection, and
privacy constraints is required. Federated Learning (FL) arises
as a promising method to train models based on data from
different sites while satisfying data protection rules [5].

The main idea of FL is to communicate the model weights
or parameters rather than the raw data for training models.
In FL, models are first trained locally over multiple devices
on different sites. Because the data are trained locally, data
privacy is protected, and there is no violation of the GDPR
or organizations’ rules. After a few epochs of local training
performed at different sites, model weights are extracted and
transmitted to an aggregation server. Afterward, the aggrega-
tion server merges the received weights from different sites
using different algorithms to build a more robust model. So, FL
can solve the data silo issues by providing access to more data
for ML applications and models. FL features not only leads
to more robust models but also promise better data security,
privacy, and also more efficient data transmission [6, 7].

The rapid increase in the number of IoT applications and
their heterogeneous requirements (such as low latency, high
privacy, and geo-distributed coverage) has caused centralized
computing solutions, such as Cloud Computing, to fall short
in solely providing efficient services for a wide variety of
IoT applications [8, 9]. Consequently, Edge/Fog computing,
as a distributed computing paradigm, has emerged, in which
heterogeneous distributed servers in the proximity of end-
users process and store the data [10]. Since the resources
in Edge/Fog computing are often limited compared to the
Cloud resources, Edge/Fog servers may require collaboration
with other Edge/Fog servers or Cloud resources for the proper
execution of diverse IoT applications. In such a distributed
computing environment, FL can be appropriately fit due to sev-
eral reasons. First, Edge/Fog devices have access to the local
data of many IoT applications, which can be used to train more
powerful models. Second, privacy and data protection can be



2

satisfied using the localized data in the Edge/fog resources.
Third, each Edge/Fog resource often does not have sufficient
resources and data for the training of powerful models, while
using FL, they can share their data and resources to more
efficiently train better models. Fourth, the heterogeneous na-
ture of data in different Edge/Fog servers offers more valuable
data for training better models. Fifth, FL helps resource-
limited Edge/Fog servers, which have higher limitations in
terms of resources and/or data, to more frequently update their
models based on the model shared by the model aggregation
servers. However, the heterogeneity in Edge/Fog computing
environments requires further considerations for the successful
deployment of FL.

Heterogeneity among servers participating in FL includes
systems’ resources, networking characteristics, available data
size, and availability [11]. Different Systems’ resources com-
prise different CPU frequencies, CPU utilization rates, RAM,
and GPU, just to mention a few. These diverse resources result
in different required training times for each server to train a
fixed amount of epochs with a predefined amount of data.
Considering different computing times among various servers
participating in FL, fast servers often need to wait for slower
servers, which constrains the efficiency of the training model
in a distributed manner [11]. Different Network characteris-
tics can also influence the deployment of FL [12]. Because
different servers have various networking capabilities (e.g.,
download and upload speeds, dropout rates), the time required
to transmit the common model structure used by FL from an
aggregation server to other servers will vary significantly [12].
In extreme cases, other servers can finish multiple training
rounds when a model is transmitted to servers with minimal
network capacity. Such heterogeneous characteristics incur
slower sites to wait for a long period, which is a waste of
resources. Different data sizes for training a model on each
server also challenge the FL. A large training data model can
produce a much more robust and accurate ML model com-
pared to servers with limited data. Thus, combining models of
sites with various amounts of data will underperform compared
to only combining models from sites with large amounts
of data. However, simply dropping results from sites with
limited data failed to explore the potential of all data available.
Hence, to successfully conduct FL, it is essential to address
the heterogeneity among different participants of the training
process. To address these challenges, intelligent decisions
about participant selection for each round of training, network
allocation for each participant, and merging algorithms should
be carefully investigated [11, 12].

Although some works attempt to improve time efficiency
or computational energy efficiency based on system statistics,
none of them have attempted to integrate asynchronous FL.
Furthermore, to the best of our knowledge, only a few works
that optimized the deployment of FL mechanisms provide
the source code of their research. Besides, among the studies
that offer their source code, it is very difficult to implement
new worker selection policies or new models. To address
these challenges and limitations, we propose the containerized
FLight framework based on the FogBus2 resource manage-
ment framework. The main contributions of this paper are:

• Designing and implementing a containerized FL system
by extending the FogBus2 resource management frame-
work.

• Implementing a lightweight mechanism so that partici-
pants’ selection policies for FL and employed algorithms
for merging models from different participants can be
efficiently integrated.

• Implementation of an asynchronous participants selection
policy based on real data obtained from FogBus2 and
underlying computational resources.

• The practical implementation and analysis demonstrating
Flight frameworks and their integrated policies outper-
form synchronous and other baseline techniques in terms
of time efficiency in reaching the desirable accuracy.

The rest of the paper is organized as follows. Section II
discusses the relevant literature. Section III presents the design
of the Flight framework, worker selection, and respective
problem formulation. Section IV describes the experimental
setup and evaluates the performance of the Flight framework.
Finally, Section V concludes the paper and draws future work.

II. BACKGROUND AND RELATED WORK

In this section, we discuss the required FL concepts, re-
view techniques targeting to optimize FL based on system
parameters, and describe FogBus2’s main components. The
terminologies used for FL are summarized in table I.

A. FL Concepts

FL is an approach to train a shared ML model based on
data from multiple parties [13]. A server can take different
roles [14, 15]. Firstly, the worker, which is a server that
contributes to the FL by training a commonly agreed model by
their local data. Secondly, the aggregation server, which is a
server collecting model weights from workers and aggregating
them via different aggregation algorithms. Lastly, peers refer
to servers communicating with each other, while none of them
are central aggregation servers.

FL is featured by pushing model parameters periodically
between an aggregation server for aggregating model weights
and workers. A complete FL process is partitioned into three
stages: 1) Connection Establishment, 2) Model Training, and
3) Training Evaluation [13, 14]. As FL is a collaborative
process, the connection needs to be established before the
start of FL training. In the connection establishment stage,
different servers identify their roles. Also, the common ML
model that each server uses for FL is set. The aggregation
server sends the description of the ML model to each worker.
In the model training stage, the aggregation server selects
workers to participate in FL training. This process is referred
to as worker selection. Worker selection is a trade-off between
efficiency and accuracy. Intuitively, selecting more workers
will allow the FL to access more data, leading to better model
performance. However, this means faster workers must wait
for slower workers, requiring more training time to reach the
desired accuracy [16]. After worker selection, the aggregation
server informs workers to start the FL training. Then, workers
download the version of the model that the aggregation server



3

TABLE I: Terminologies: Explanation and Parameters

Terminology Explanation Abbreviation
Aggregation Server Server used to aggregate models from different parties AS
Worker Server contributing to FL via pushing the local model to aggregation servers w
Aggregation algorithms Algorithms used to combine model results from different workers to a single model faggr
Worker selection algorithm Algorithms used by aggregation server to select workers for participating in FL. fsel
Aggregation server model weights The model weights of the model held by aggregation server (aggregate for i times) Masi

Worker model weights The weights of the model locally held by worker x (based on version i of the aggregation server and trained for j times) Mwx,i,j

Worker averaging weights Weights allocated for weighted federated averaging for worker x WEIx

provides. There are two methods to achieve this. One is
an aggregation server sending information about the model
directly to workers. This method is easy to implement and
straightforward. However, this will cause network congestion
at the aggregation server point [17]. At the same time, the
worker may not be available to receive the model due to
network availability at the time the aggregation server tries
to send the model. An alternative method is the aggregation
server to push the ML model to a database and provides down-
load credentials to all selected workers [13, 17]. Although it is
harder to implement, this method is more friendly to workers
with various network conditions. This is because workers can
download the model at their desired time. At the same time,
the aggregation server only needs to communicate with the
database instead of multiple workers, which relieves network
pressure. After workers finish training for a few epochs, they
send the model weights back to the aggregation server. Next,
the aggregation server merges received model weights from
workers. After the aggregation server finishes averaging, one
epoch of FL training is finished. In the training evaluation
stage, the aggregation server evaluates the performance of the
averaged model to decide whether to repeat the FL training
step or not. The evaluation process is usually performed
via two methods. The first method is the aggregation server
uses locally available data to test the performance of the
aggregated model. Alternatively, the aggregation server asks
workers to download the latest model, evaluate the model
performance locally, and then provides an average accuracy
[13]. If accuracy does not meet the expectation, stages two
and three are executed repeatedly.

The aggregation server aggregates model weights once a
sufficient number of workers finish transmitting their models to
its cache. However, this step does not require the aggregation
server to wait until all selected workers respond, resulting
in the asynchronous situation [13, 18, 19]. There are three
possible cases regarding worker W sending the model weights
trained by local data and the aggregation server AS starting
merging model weights from workers: 1) Model of W arrives
before AS starts to aggregate model weights from workers,
and when AS starts to aggregate model weights from workers.
It includes model weights W in the aggregation process. 2)
Model of W arrives after AS starts to aggregate model weights
from workers, and AS refuses to receive model weights of
W even when W responds to AS. Model weights of W
will not be included in the aggregation process. 3) The W
model arrives after AS starts to aggregate model weights from
workers. Although AS does not include model weights of W
for the current round of aggregation, AS receives the model
and uses it for the next round of aggregation. The combi-

nation of points one and two is called synchronous FL and
otherwise asynchronous FL. The advantage of synchronous
mode is the simplicity of merging algorithms since all worker
model weights are based on the same version of aggregation
server model weights. In contrast, model weights may be
based on different versions of aggregation server weights for
asynchronous FL. Thus extra consideration is necessary for
the merging algorithms. The advantage of asynchronous FL is
time efficiency compared to the synchronous mode since the
aggregation server does not have to wait for slower workers
before aggregation and to proceed to the next epoch.

Aggregation methods are essential for the successful update
of the aggregation server model, affecting the training time
required to reach a desirable accuracy that depicts the impor-
tance of understanding aggregation algorithms (e.g., federated
averaging, linear weighted averaging, polynomial weighted
averaging, exponential weighted averaging). Aggregation al-
gorithms that are biased to the response from workers with
more training data or newer versions of the aggregation server
model diminish the negative effects of less active workers. In
contrast, algorithms with little or no bias risk being negatively
influenced in terms of aggregated model performance by low-
performing workers. Thus, a trade-off between these two kinds
of methods is required, and difference aggregation algorithms
need to be examined.

B. Related Work

In this section, recent research to improve the efficiency of
FL based on system parameters with a focus on tuning ag-
gregation frequency, worker selection algorithms, and training
epoch tuning are studied.

Tuning aggregation frequency is a method to adjust the
epoch number that workers require to train locally before
responding to the aggregation server. First attempts to op-
timize FL based on system parameters targeted to quantify
several system resources [20]. The main optimization goal
of this work is to achieve maximum accuracy under a fixed
resource budget. This is achieved by tuning the frequency
of global aggregation. Since the resource budget is fixed,
the total training epochs a worker can perform are fixed.
Thus, tuning the frequency of global aggregation can also
determine the number of aggregations performed. While the
evaluation results depict better accuracy by a few percent, there
are some drawbacks to such methods. Firstly, the technique
failed to consider the asynchronous case, and the budget is
calculated as the minimum budget among all workers, which
ignores exploring all resources from other workers with more
substantial computation power. Secondly, it intends to exhaust
all available resources to achieve the best accuracy, resulting in



4

workers with rich resources to calculate for a large number of
epochs before responding to the aggregation server, leading
to training time inefficiency. Lastly, the technique failed to
adaptively adjust based on workers’ performance.

Several research studies in the literature aim at optimizing
the worker selection policy. These works intend to improve
the energy efficiency or training time of the FL process by
selecting appropriate workers to balance resource efficiency
and model accuracy. The authors of [21] proposed a heuristic-
based worker selection policy. This work converts all quanti-
fied workers’ resources to the time required to transmit and
train the model. It assumes all workers can only communicate
the model sequentially with the aggregation server and set
up the total time allowed between each round of aggregation
as a variable. Next, the worker selection policy continuously
adds a worker to the worker set until the required time to
finish training and transmit the model for all workers exceeds
the total time allowed for the current round of aggregation.
If the model accuracy increases slowly, then the total time
allowed for the current epoch increases to allow more workers
to participate in FL training. The technique does not support
asynchronous mode. Thus, the issue of fast computing workers
waiting for slow workers still exists. Also, although the tech-
nique assumes all workers communicate the model weights
with the aggregation server sequentially, which simplifies the
optimization model, it ignores the potential of saving time
by transmitting the model in parallel. While [20, 21] tried to
select as many workers as possible within a given resource
budget, the [22] used a Reinforcement Learning (RL) for the
worker selection process [22]. This work considers the energy
cost, which is a trade-off between the maximum number
of selected workers against the energy consumption [22].
The RL method considers the cost of each step as the total
energy consumed by a set of workers to perform the training
based on CPU power and the required time for processing.
At the same time, the reward is calculated as the accuracy
improvement of the aggregated model. The employed RL
technique offers an adaptability feature for this work. However,
this research only focuses on the trade-off between energy
consumption and model accuracy, while time efficiency is
not considered. Another similar research considered energy
consumption while targeting the trade-off between accuracy
and energy consumption [23]. The above-mentioned works
[21–23] primarily depend on the resources participating in
the FL process by each worker. They generally assume that
more workers will allow the model to be exposed to more
data; hence, it improves the accuracy of the shared model. In
this way, worker selection policies are more biased towards
faster workers and assume more epochs of training conducted
by faster workers can result in better accuracy compared
to fewer epochs of training that slower workers can do.
However, another research suggests that the direction of model
update gradients indicates the effectiveness and contribution of
different workers [24]. This technique requests all workers to
train for a few epochs and fetch their response rate. Next,
the algorithm computes the average model weights in the
first round of aggregation. Then, the algorithm compares all
model response rates with the averaged model by calculating

the norm difference [24]. A more significant norm difference
indicates that the model update direction is different from the
majority’s trend, suggesting the corresponding worker has little
or no contribution to the overall accuracy. On the other hand,
workers with minimum norm difference with the averaged
model indicate the model’s effectiveness in improving the
accuracy of the FL process [24]. This technique conducts a
worker selection process more biased towards workers with
little norm compared to the averaged model. While this tech-
nique plan to save time for FL training by reducing training
epochs, more training time is required since slower workers
will be selected over faster ones if they have less model
norm difference. Previous worker selection strategies have the
idea of allowing fast computing workers to participate in FL
training and then adding slow workers progressively in later
rounds. However, this approach has the drawback that slow
workers cannot communicate with the aggregation server for
a long time and can only participate in the FL in the last few
rounds of training. Accordingly, the authors in [25] considered
the time since the last time a worker fetched model weights
from the aggregation server and contributed by responding
to the updated model. The integrated ranking formula for
worker selection considers such time until the last contribution,
together with other factors like computation time and energy
consumption. Then, the top workers will be selected, leading
to the selection of slower workers before faster workers if
they have not communicated with the aggregation server for a
long time. While the overall time increases in this technique,
the convergence rate is faster. However, because selecting too
many slow workers can negatively affect the training time,
[26] proposed a worker selection technique through clustering
to control the number of slow workers in the FL training.

Most recent research attempts to accelerate the FL process
by allocating tasks with different workloads to workers with
different capacities to allow heterogeneous workers to finish
tasks simultaneously [24–30]. A joint optimization algorithm
is proposed by [27], in which the transmission power of
workers and aggregation servers are adjusted to allow trans-
mission efficiency. Instead of tuning the transmission rate
to achieve the balance of worker time consumption through
tuning the bandwidth, [28] intends to tune the amount of data
utilized by different workers so that slow and fast workers
can finish the training simultaneously. The [29] proposed to
use the dropout method to achieve similar computation time
among workers rather than tuning the amount of data. The
authors of [30] proposed the concept of offloading part of
computation tasks to the aggregation server or nearby servers
to reduce the burden of slower workers. While this method is
more efficient in terms of training time and resource usage, it
requires special considerations as the data should be forwarded
from the workers to other servers.

1) Qualitative Comparison: This section identifies impor-
tant parameters in FL and summarizes the properties of the
current literature considering the identified parameters. Table
II depicts an overview of the current FL studies and their
properties. In what follows, the identified parameters and their
respective symbols in the table are explained.

• Implementation level: A prototype system refers to the



5

TABLE II: Recent research on system parameter-based federated learning optimisation

Work Implementation Updt
Freq

Perf
Check

Time
Const Asyn WSP

System Paramters Tuned FL Parameters Derived Parameters

F P B G D WDS WL T t MDR OR TDS TC TU TW EC EU L

[21] Analytical Epoch ✗ ✓ ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗

[23] Analytical Epoch ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓

[26] Analytical Epoch ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗

[27] Simulation Once ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✓

[22] Simulation Epoch ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗

[29] Simulation Epoch ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗

[24] Simulation Epoch ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✗

[20] Prototype Epoch ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

[28] Prototype Epoch ✗ ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✗

[30] Prototype Once ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗

[25] Prototype Epoch ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

FLight Prototype Epoch ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✓

technique that is deployed on different servers, and the
results are practically verified. Analytical refers to only
mathematically modeling the FL training process, such
that the training time and accuracy of the underlying
model are not tested on any data but tested by math-
ematical models. Simulation mimics the network delay
and computation difference on a single server.

• Update Frequency (Updt Freq): It refers to the frequency
of updates (i.e., optimization) in each technique. While
each epoch means the optimization strategy will be up-
dated each time the aggregation server finishes aggregat-
ing model weights, once means the optimization policy
is only calculated once and will keep steady throughout
the FL training process.

• Performance Check (Perf Check): It describes whether
performance is analyzed throughout the FL training.

• Time Constraint: It shows whether training time is con-
sidered a constraint throughout the training process.

• Asynchronous (Asyn): It identifies if the technique can
run asynchronously.

• Worker Selection Policy (WSP): It identifies if the tech-
nique offers worker selection policy.

• System parameters: It is the raw statistics extracted from
a system used to formulate FL optimization algorithms.
These statistics include: 1) F: processor frequency, 2) P:
transmission power, 3) B: bandwidth, 4) G: channel gain,
5) D: aggregation server and worker distance, 6) WDS:
worker data size, 7) WL: Workload required to compute
one epoch of training from the worker side.

• Tuned FL Parameters: 1) T: Total epoch number trained
throughout the FL, 2) t: Number of epochs trained on
workers between two aggregation processes from the
aggregation server, 3) MDR: model dropout ratio, 4)
TDS: training data size, 5) OR: offloading ratio.

• Derived Parameter: 1) TC: the time required for workers
to communicate model weights, 2) TU: the time required
for training as well as loading the model, 3) TW: the time
required to wait until an aggregation server or a worker
is available, 4) EC: energy required for local training, 5)
EU: energy required to upload the model, 6) L: training
loss.

Considering the current literature, each work depends on

different system parameters and derives different intermediate
results for optimization purposes. However, the current litera-
ture always compares their performance with no optimization
or random worker selection policy [20–30], which partially
proves the proposed algorithms’ necessity. However, it is
hard to compare these works against each other because
reproducing the experimental results is cumbersome due to the
difference between their system setup and programming style.
Consequently, implementing an FL framework that allows
different techniques to be integrated allows a fair comparison
for studying the effectiveness of different techniques. Besides,
none of the works has studied the asynchronous FL to utilize
the full computational capacity of workers. While unselected
workers have to wait until the next round of federated worker
selection to contribute to the FL training, asynchronous FL
permits all workers to participate in FL. This is because
asynchronous FL is not concerned about slow workers to keep
fast workers waiting. Instead, asynchronous FL can start aggre-
gation when fast workers finish responding with their trained
model weights. Also, when slow workers finish training, the
aggregation server can merge the results from slow workers.
Moreover, the worker selection policy is required to select the
most suitable workers for the purpose of FL training.

Accordingly, to address these challenges, we design a
lightweight FL framework called FLight by extending the
FogBus2 resource management framework. Flight provides
a mechanism to integrate different worker selection policies
and also proposes a lightweight policy. Finally, FLight offers
asynchronous FL to further improve the current literature.

C. FogBus2 Framework
To implement the FL framework based on system pa-

rameters, the above-mentioned system parameters should be
provided for the FL on demand. Moreover, the FL frame-
work requires access and manage distributed servers in the
environment, which are often highly heterogeneous in terms
of hardware, operating systems, and software. Besides, the
connection establishment stage of the FL requires various
interaction models and online information about the whole
system. To satisfy these requirements, the FogBus2 framework
[31] is chosen as the underlying resource management frame-
work.



6

FogBus2 is a new Python-based framework consisting of
five lightweight and containerized modules (called Master,
Actor, User, Task Executor, and RemoteLogger) that support
centralized, distributed, and hierarchical deployments. To suit
different resource management requirements, it offers several
mechanisms and associated policies, including registration,
profiling, scheduling, scalability, dynamic resource discovery,
IoT application integration, database integration, etc.

FogBus2 provides systems parameters required for the
FL, such as CPU frequency, RAM, resource utilization, and
networking characteristics, just to mention a few, using a
profiling module integrated into its main components. It sup-
ports on-demand and periodical profiling, which is helpful
for asynchronous FL that frequently merges model weights
from workers. After each merging, new worker selection can
be conducted, resulting in a more frequent worker selection
process. Frequent updates about system parameters among
workers allow asynchronous FL to update worker selection
accordingly. A more dynamic and adaptive worker selection
policy results in more time-efficient FL. This suggests that fre-
quent system parameter update is beneficial for more efficient
FL practice. Also, systems parameters in the FogBus2 frame-
work are accessible centrally and also in distributed databases,
facilitating the process of obtaining system parameters.

As FogBus2 is dockerized [32], it helps the FL framework
to be easily deployed on machines with heterogeneous envi-
ronments and various operating systems. FL intends to train
ML models, requiring support from different ML libraries
such as PyTorch. While manually installing ML dependencies
on different operating systems require various configuration,
containerized FogBus2 framework facilitates this process by
adding required dependencies to the configuration file.

Finally, FogBus2 provides a resource discovery sub-module
that facilitates the connection establishment process of FL.
The connection establishment process of FL occurs when
different participants connect with each other and know their
role in the FL framework. This requires network configuration
to allow different servers to communicate with each other
while message handlers on each server need to forward the
message to the FL training agent. Moreover, it requires the
participant who starts the FL process to be aware of potentially
available computing resources within the network, so it can
send initiative commands and invite them to participate in FL.
Moreover, it has integrated task allocation policies, allowing
all available sites with sufficient computing resources to con-
duct FL training, which is convenient for testing and verifying
FL implementation.

III. FLIGHT: A LIGHTWEIGHT FL FRAMEWORK

In this section, we describe the FLight framework and how
it extends the FogBus2 framework.

A. Required FogBus2 Components and their FL Functionality

The relationship between the FL module and FogBus2
framework is shown in Fig. 1. In this figure, bold dashed boxes
show sub-components of FogBus2 that provide information
to the FL module. Moreover, the FL module overrides the

Fig. 1: Federated Learning in FogBus2

TaskExecutor component originally available in FogBus2. This
section introduces how FogBus2 components can provide
information to support the FL. Then, it describes how the
FL module exists as tasks in the TaskExecutor component of
FogBus2.

1) Sensor: The Sensor sub-component in the User compo-
nent of FogBus2 is used to grasp input from users and forward
it to the Master component, which will be further forwarded
to the executor within the TaskExecutor component. Executors
are classes that run FL tasks as functions, where function
inputs are users’ inputs stored in a dictionary. The Sensor sub-
component is then configured to ask hyperparameters from
users for the FL training process. While there can be various
hyperparameters specific to different deployed FL algorithms,
current hyperparameters collected from users include: 1) The
model shared by participants cooperating in the FL training,
2) Total number of aggregations to perform on the aggregation
server side, 3) Number of training epochs each worker has to
complete before contributing the local model weights to the FL
aggregation process, 4) Whether the FL training is conducted
synchronously or asynchronously, and 5) The learning rate
initially used by different workers to update the model. When
the FL application runs in FogBus2 and all corresponding
TaskExecutors are ready, the Sensor sub-component collects
those hyperparameters from users. It is the first step of the FL
training. Next, different executors will conduct FL training
based on hyperparameters.

2) Registry: In the FL implementation, different partici-
pants must regularly communicate with each other to transmit
messages and model weights. This requires that different
TaskExecutors running FL tasks know the IP address and
port number of other FL TaskExecutors before FL training
starts. In FogBus2, different tasks within an application are
linked to each other according to a dependency graph. In the
dependency graph, a task may be the parent of one/several
tasks and be the child of one/several tasks. Also, results from
parents will be forwarded to their children as input to task
function calls on children. This feature is used to transmit the



7

IP address and port number between different TaskExecutors
of FL. The aggregation server is responsible for starting the FL
training process by creating the FL model and calling selected
workers to start training. This makes the Executor running
the aggregation server know the network address of all other
Executors running as workers so that it can send instructions.
Other Executors running as workers only need to wait until the
aggregation server contacts them, so the network address of
the aggregation server is available, and they can send messages
back. Thus, the implementation lets the task that operates
as the aggregation server be a child task of all other tasks
which run as workers. Moreover, the implementation lets the
returning results of tasks that run as workers be the network
address to which they are listening. These results will be inputs
of the task running the aggregation server. In this way, the
aggregation server can have the network address of all other
workers before FL training starts.

3) Message Handler: Since Executors running as workers
need to return the network address to which they are listen-
ing, they need to listen to that address. In order to make
the Executor aware of the IP address for tasks running FL
training, the implementation takes the IP address from the
Actor module. The Actor component is responsible for starting
the docker container of the TaskExecutor component in place.
Thus, the Actor is physically on the same machine as the
TaskExecutor, which makes the IP address of the Message
Handler sub-component of the Actor module the same as the
IP address of the Executor. The implementation adds a tag
noting whether input data from users are related to FL or not.
When the Actor component calls the TaskExecutor component
to start tasks, it will add the IP address of its Message
Handler to the input dictionary if the tag indicating tasks are
related to FL. Since the Executor running FL tasks needs to
communicate with each other regularly, the implementation
lets them communicate with a separate port instead of the
port used by the Message Handler sub-component to avoid
congestion. The port is subject to the port availability of the
machine running TaskExecutor. In this way, the TaskExecutor
can start the socket server listening on the same IP address
and different port compared to the Message Handler of the
Actor, initializing it for FL purposes.

4) Profiler: The Profiler sub-component in FogBus2 is
responsible for collecting statistics related to available system
resources. FL optimization depends on parameters describing
available system resources. Since the Actor initializes the
TaskExecutor, the Profiler sub-component within the Actor
is physically on the same machine as the Executor sub-
component within TaskExecutor. Thus, data from Profiler
of Actor also describe available resources for the Executor
running FL tasks. The aggregation server is responsible for
making optimization decisions, so it requires system param-
eters from all workers. The FLight implementation uses the
property that parent tasks will pass results to child tasks
to pass profiling information from worker Executors to the
aggregation Executor. This is achieved by adding profiling
data to Executor running as worker results if tasks are tagged
as relating to FL. The TaskExecutor that runs the aggregation
server will then receive the profiling information, which can be

exploited to implement different FL optimization mechanisms
accordingly.

5) Federated Learning Modules (Executor): After prop-
erly initializing the aggregation server Executor and multiple
worker Executors, the necessary information is ready for FL
tasks. In particular, worker Executors will start the socket
server listening for instructions from the aggregation server.
At the same time, the aggregation server Executor will own
the network addresses of socket servers on workers, as well
as profiling information describing available computing re-
sources. Then, the aggregation server task call functions from
the FL component to define the FL process and execute the
training accordingly. It is worth noting that Executors running
as workers still are kept alive by holding the socket server on a
separate thread after returning the socket server address. This
is different from other tasks in FogBus2 that will terminate
after returning results for children’s tasks. This is because
worker tasks still need to regularly listen to instructions from
the aggregation server to perform FL training.

B. FL Main Sub-components

In this section, we describe how FogBus2’s TaskExecutor
component is extended to enable FL. Fig. 2 shows the design
of FL implementation and its sub-components.

The FL components take the network address of other
Executors and statistics of available resources from Executors
of the FogBus2 framework. The FL component is divided into
three sub-components: 1) ML APIs, 2) FL Communicator,
and 3) Data warehouse. The Data warehouse sub-component
allows easy storage and data access required by FL. Moreover,
the FL Communicator is used for communicating messages
between different participants of FL training and handling
them correspondingly. Lastly, ML APIs are sub-components
that encapsulate FL logic such that calling those APIs is
sufficient to define FL training. Overriding those APIs enables
new ML models to be trained by FL.

1) Data Warehouse Sub-component: Figure 3 shows the
design of the data warehouse sub-component. This sub-
component is responsible for providing an interface to access
and store all kinds of data related to FL training. In FL
training, data that needs to be stored includes 1) ML classes,
2) Parameter weights of ML models, 3) Parameter weights of
ML models of other participants, and 4) Training Data. These
four types of data can be placed in different storage, including
RAM, remote repository, database, or files on local storage.
However, to write and retrieve data from these storages,
different implementations are required. The data warehouse
sub-component encapsulates these various implementations.
The data warehouse provides the getter and setter functions
such that all kinds of data can be accessed by providing a
unique ID. Moreover, if data is saved to the warehouse for the
first time, the sub-component will return an ID that uniquely
identifies that data. When a unique ID is provided to the
getter function, the data warehouse uses the ID to retrieve
the saved credentials and storage type used to store the data
corresponding to the provided ID. Then it will use those
credentials to retrieve the actual data. While setters allow data



8

Fig. 2: Federated Learning Component Structure

Fig. 3: Data warehouse Design

to be stored on a specified type of storage, default storage for
ML model weights and training data is set to the local disk.

This design allows extension for different storage types.
Defining a new storage type can be done by defining the
methods to write and retrieve data and then adding that to
the data warehouse. Due to the design that only a unique ID
is sufficient to retrieve data, the ML model, which is one type
of data, can be referred to only by the ID locally. Referring to
a remote ML model needs to specify the network address as
well. This gives rise to the idea of the Pointer class, used by
FL training participants to identify a model on a remote site
uniquely. The Pointer class consists of the data warehouse’s
network address and unique ID for it. For example, when the
aggregation server asks a remote worker to conduct training,
multiple worker network addresses can be saved, and each
worker can own several ML models. The aggregation server
can provide the address to uniquely identify the worker and
the unique ID to identify the model on that worker.

2) Communication Sub-component: Fig. 4 shows the de-
sign of the FL communicator. Since FL training involves
frequent message communication between different parties,
the FL implementation provides its communicator. The FL
communicator’s sub-component consists of a socket server, a

Fig. 4: Federated Learning Communicator

message converter, a message dispatcher, and handlers. The
socket server is a server that listens to incoming messages
via a receiver and sends out messages by the sender. All
messages that go through the socket server are binary data.
The message converter is responsible for converting messages
into binary formats so that data can be transmitted between
the local message sender and remote message receiver. The
message dispatcher uses message types to forward messages to
corresponding handlers. There are three handlers in the imple-
mentation. Firstly, the relationship handler is responsible for
handling incoming requests for establishing an FL relationship.
For example, if the aggregation server asks a remote site to
be the worker of itself, then the relationship handler on that
remote site is responsible for handling related messages. Sec-
ondly, training handlers are responsible for handling messages
related to FL training. This includes the aggregation server
asking a worker to start training, and the worker acknowledges
to the server that local training is complete. Lastly, model
transmission handlers are responsible for sending a request
to fetch the weights of a remote model and send back the
credentials required to download the weights.

It is important to note that the weights are not transmitted
directly through the socket connection between the message
sender and receiver. This is because model weights are large



9

Fig. 5: Machine Learning APIs

compared to other messages. If weights are sent over the
communication channel of FL, other messages have to wait
for the weights to finish transmission. This long waiting time
influences the time efficiency if the weights are sent over the
communication channel of FL. Alternatively, in FLight, when
a server receives the request to fetch a local model weight, the
server saves the weights to a File Transmission Protocol (FTP)
server and sends back a one-time login credential. The remote
server fetching the model weights can use the credential to
log in to the FTP server and download through FTP. Fig. 5
shows the design of the ML APIs sub-component. This sub-
component is a minimum set of functions that an ML model
requires to define for the training of different participants. All
these functions are collected into a single class. Therefore, ML
models can override functions to be deployed for FL training.
ML APIs are further divided into relationships, training, and
transmission APIs.

3) ML API Sub-component: Relationship APIs are func-
tions to establish a relationship with other models. It includes
functions to request remote servers to act as its workers
or request being workers of a remote aggregation server.
Functions related to relationships first send a message via the
communication sub-component, and the relationship handler
on other sites will handle the forwarded message. Training
APIs are functions related to ML training, including remote
and local training functions. Remote training APIs are func-
tions used by aggregation servers to request a remote worker to
perform specified rounds of training. Those functions need a
pointer class that refers to a remote model as an argument.
So the message sender within the FL communication sub-
component can use the network address within the pointer
to send the message to a remote message receiver, and the
handler can use a unique ID within the pointer on the remote
side to retrieve the model via getter of the data warehouse
module. Local training APIs are functions used to conduct
some calculations on a locally stored model. These include
functions to conduct training based on available data, which
is the same as regular ML training. Moreover, local training
APIs include various functions to federate model weights
from workers for the aggregation server based on different
algorithms. Besides, Model transmission APIs are functions
used to transfer model weights between different participants.
Fetcher functions are responsible for sending messages re-
questing remote model weights. After receiving the fetch
request, the FTP access generator on the remote side generates
a credential that the participant uses to fetch the model and

downloads the model weights from the FTP server. The actual
download functionality is implemented in the Downloader.

C. FLight’s Sub-components Interactions

The ML APIs, FL communicator, and data warehouse sub-
components enable FL mechanisms. This section presents how
these different sub-components cooperate together to enable
important functionalities, including the addition of a worker,
model transmission between different servers, and conducting
the training.

1) Worker Addition: The sub-components to add a remote
server as a worker is shown in Fig. 6, while Fig. 7 depicts
the corresponding sequence diagram. The aggregation server
is called side S, and the worker is denoted by W . The function
is called on side S initially, which contains the following steps:
1) Before calling the function, an ML model should be created
on the side S. 2) User first calls the relationship function in
the ML APIs sub-component for worker addition on S. Then,
S requests W to create an ML model with the same structure
and initiate the worker model. 3) After calling the function of
worker addition, the message sender on S is called to send
an invitation to the remote participant regarding the network
address. Function arguments also include the unique ID of
the aggregation server model. Then, W creates a pointer class
composed of the network address of the message sender on
side S and a unique ID of the aggregation server model. The
remote worker model can use this pointer to refer to its server
model. 4) The communicator calls the message converter on
S to pack the message into a tuple and serialize it into binary
data for socket transmission. 5) After receiving data in binary
format, the message sender on S sends the data over the socket
to the message receiver on W . 6) The message receiver on W
interprets the message and sends the remaining messages to the
relationship handler on W . 7) The relationship handler on W
creates a model with an identical structure to the aggregation
server model on W . The model is also added to the data
warehouse sub-component for later retrieval. 8) The worker
model on side W saves the unique ID of the aggregation server
model and the S network address as the server model’s pointer.
Next, the worker model is ready for further instructions, such
as training. 9) The relationship handler on W informs S that
the worker model is ready. The message contains the unique
ID of the worker model and the aggregation server model,
as well as the network address of the S. Then the message
passes through the converter, which serializes the message and
transmits the message through a socket. 10) After S receives
the acknowledgment from W that the worker model is ready,
it lets the relationship handler on S handle the message. 11)
The relationship handler on S uses the server ID to retrieve the
aggregation server model from the data warehouse. After that,
the pointer referring to the worker model, which consists of the
unique ID of the worker model and the network address of W ,
will be recorded into the aggregation server model class. After
these steps, the aggregation server model on S has one extra
stored worker model pointer. Moreover, the worker model on
W has one stored server pointer, referring to the aggregation
server model.



10

Fig. 6: Sub-components involved in Worker Addition

Fig. 7: Adding Worker Sequence Diagram

2) Transfer a model: Fig. 8 shows the sub-components
involved in communicating model weights between servers,
while Fig. 9 depicts the respective sequence diagram. We
assume the server fetching the model weight is F , and the
server that sends back model weights is on side S. 1) A
model on F calls a fetching model function within the model
transmission APIs. Arguments include a pointer referring to
the remote model from which the local model fetches weights.
Moreover, identification information, such as the unique ID of
the model on F , is also provided. 2) Message is then serialized
by a message converter and sent out by the message sender
on F . The message converter will also add an additional tag
to indicate that the message is about fetching the model so
that the remote handler can react correspondingly. 3) When
the message receiver on S gets the message, the dispatcher
forwards the message to its own model transmission handlers.
The handler checks the pointer that F has sent and uses
the ID to retrieve the ML model from the data warehouse.
4) If the model exists, S also checks whether it has the

privilege to access its weights. Since model weights are not
shared in public, it has to check for the identity of remote
servers fetching it. 5) If the access check passes, the model
transmission handler exports the model weights to a file in the
FTP server. 6) The model transmission handler on S collects
the file name where model weights are stored and also login
credentials for downloading that file from the FTP server as a
response. 7) The credential will be sent back from S to F . 8)
After the message receiver on F gets the message and forwards
it to the model transmission handler, the handler sends out a
fetch request. 9) If the check suggests the local model still
wants remote model weights, then the model transmission
handler will use the Downloader function to log in to the FTP
server and download model weights to a local file. After these
steps, a file containing the latest model weights of a remote
model at the time of fetching is generated on S.

3) Requesting to train a model: Fig. 10 shows the sub-
component involved when an aggregation server asks a remote
worker to train, while Fig. 11 depicts the respective sequence



11

Fig. 8: Components for Transferring Model Weights

Fig. 9: Model Transmission Sequence Diagram

diagram. Let’s represent the aggregation server by S and the
remote worker by W : 1) Starting from S, the user calls
the function from the Training APIs sub-component in an
aggregation server model. The argument points to a remote
worker model asking to train and the number of training
epochs. 2) The function call in APIs serializes the message
by message converter on S. The serialized message is then
forwarded to site W with a specified network address. 3)
After receiving the message asking the worker model to
conduct training, the dispatcher on W returns the training
handler to handle the message. 4) The training handler first
retrieves the local worker model based on the pointer that S
provided. Next, the training handler checks whether the local
model agrees to conduct specified training or not. Reasons
for rejecting training instructions from a remote server may
include the remote server is not recognized by the worker
model or there are insufficient computation resources at the
moment. 5) The worker model on W fetches the aggregation
server model weights. 6) After receiving the aggregation server

model weights from S, the original parameter weights of the
worker model will be replaced by aggregation server model
weights. Next, the model is trained based on a specified epoch
number. The training data comes from local data files, and
the FLight framework support reading from the database for
real-time applications or a local file for testing purposes. 7)
After the training, W acknowledges the training is done by
sending the message back to S. The acknowledgment message
contains pointers to the worker model and the aggregation
server. 8) When the acknowledgment is received on S, the
training handler controls the remaining message. It retrieves
the aggregation server model from the data warehouse module
and then checks if the aggregation server model still requires
results from W . This is because the aggregation server can
finish multiple rounds of aggregation while the worker model
on W conducts training. In this way, model weights from
W are outdated and useless. In the asynchronous FL case,
the aggregation server takes the results no matter how many
rounds of aggregation have already been conducted. The



12

Fig. 10: Components for Worker Training

Fig. 11: Remote Worker Training Sequence Diagram

criteria for whether accepting results from a worker can be
overridden by other logic for other use cases. 9) If the model
accepts the model weights from the worker model on W , it
fetches the model weights. After these steps, the aggregation
server has a new file containing the model weights of a remote
worker model. The aggregation server model can use weights
to update local weights via aggregation.

4) Aggregating worker model weights: When the aggrega-
tion server model receives enough model weights or reaches
a time limit, it then aggregates the received model weights.
The default implementation of the FLight for synchronous
FL waits until a specified amount of model weights are
downloaded from workers. The default implementation of
FLight for asynchronous FL starts aggregation once it receives
any model weights from any worker. Noting that this step does
not involve any communication with remote workers since all
model weights have been downloaded beforehand. Moreover,
during the aggregation process, if some workers respond with
their updated model weights, the aggregation server ignores

them or keeps those model weights for the next round of
aggregation rather than the current aggregation round.

D. Worker Selection Algorithm Design

This section describes two heuristic algorithms to select
workers participating in FL. The worker selection algorithms
can be applied to synchronous and asynchronous FL. Both
heuristic algorithms depend on the required time to complete
training an entire batch of data for one epoch Tone and the
time required to transmit the model Ttransmit; however, they
differ from the perspective of acceptable maximum training
time.

1) R-min R-max based worker selection: Algorithm 1
demonstrates the first heuristic algorithm.

After each round of aggregation, rmin and rmax are up-
dated based on average accuracy among all selected workers.
Let accnn be the accuracy achieved at the aggregation server
on round n, and accnn−1 be the accuracy achieved at the last



13

Algorithm 1: R-min R-max based algorithm

1 Input:
2 W : A set of workers
3 Tonew∀w ∈W : Training time required to go through

all training data for one epoch
4 Ttransmitw∀w ∈W : Time required to communicate

model weights
5 rmin: Minimum training epoch
6 rmax: Maximum training epoch
7 Output: Wselected ∈W
8 Tminw ← Tonew ∗ rmin+ Ttransmitw∀w ∈W
9 Tmaxw

← Tonew ∗ rmax+ Ttransmitw∀w ∈W
10 Tminimum ← minTmaxw

∀w ∈W
11 Wselected ← ∀w ∈W : Tminw

>= Tminimum

round. Then rmin and rmax are updated:

rmin← rmin ∗ accnn + 1

accnn−1 + 1
(1)

rmax← rmax ∗ accnn−1 + 1

accnn + 1
(2)

Firstly, this algorithm takes the training time required for
each worker to go through their training data for one epoch as
input. Also, the time required for communicating the model
weights between the aggregation server and a worker is con-
sidered. After that, rmin and rmax are two hyperparameters
that define the minimum and the maximum number of epochs
a worker should train before sending back the worker model
weights to the aggregation server.

If a worker trains for an insufficient amount of epochs before
responding to the aggregation server, then model weights
from that worker will have limited differences compared to
the original model weights obtained from the aggregation
server. rmin is then selected to let the worker contribute
model parameter weights with a promising difference. Among
different ML models and available data sizes, difference rmin
needs to be figured out to ensure a meaningful update from
workers. rmax, on the other hand, defines the maximum
number of epochs a worker can train before responding. If
a worker trains for too many epochs before aggregation,
the model weights will be biased to training data that the
worker locally uses. This will result in a large divergence
between the aggregation server’s update trend and the worker.
In order to keep workers updating model weights in a similar
direction as the average direction among all workers, regular
communication with the aggregation server is necessary. This
makes the algorithm introduce rmax to limit workers from
training too many epochs locally. After selecting rmax and
rmin, the algorithm calculates the time required to train those
amount of epochs plus transmission time for each worker. This
time can also be interpreted as the required time after the
aggregation server sends out the instruction to conduct training
until the aggregation server receives a response. Although this
time can be varied since estimation for Tonew and Ttransmitw

has a difference with reality, it provides a heuristic suggesting
which worker will respond faster. The selection criteria intend

to minimize the time that fast computing workers wait for
slow computing workers. When there is a difference between
the time required to finish specified training, fast computing
workers can train for more epochs than slow computing work-
ers, which allows them to respond to the aggregation server
in a similar time. However, extra training rounds from fast
computing workers cannot exceed rmax. For slow computing
workers, the minimum requirement is complete rmin rounds
of training. This suggests the selection criteria described in
algorithm 1 (lines 3 − 4). If a worker requires more time to
train a minimum number of epochs compared to the worker
that can finish the maximum number of epochs for training,
then that worker is excluded. After excluding slow computing
workers, it is guaranteed that within the time the fastest
computing workers finish maximum epochs of training, all
other selected workers can at least complete the minimum
training requirement. In order to achieve time efficiency of
training, the worker selection algorithm lets fast computing
workers participate in earlier training rounds. The initial
worker selection process guarantees that only fast computing
workers are selected. In order to generally include slow com-
puting workers as training proceeds, the update will decrease
rmin while increasing rmax. Increasing the upper limit and
decreasing the lower limit has the following impact: 1) Since
the maximum number of iterations a worker can train before
aggregation increases, this also increases the time required to
complete full training rounds for all workers. Consequently,
it increases the minimum value among those times. 2) In the
same way, with decreasing rmin, the minimum requirement
for workers decreases, resulting in reducing the time required
for each worker to complete minimum training requirements.
3) According to the selection criteria, a worker will be selected
only when they can finish the minimum required training
before the fastest worker completes the maximum allowed
amount of training between aggregation on the server side.
With decreasing time, slow-computing workers are required
to finish minimum training, and with increasing time, fast-
computing workers need to finish maximum training epochs.
Slow-computing workers can be included since they can finish
minimum training before fast-computing workers finish the
maximum allowed training amounts. Consequently, decreasing
rmin while increasing rmax as the training progress can
provide the effect of fast computing workers joining in an
earlier round and slow computing workers joining later, which
is time efficient. Training progress is expressed as an increase
in the accuracy achieved by aggregated model weights against
testing data. According to Eq. 1 and Eq. 2, rmin is updated
by multiplying the accuracy of previous aggregation rounds
and dividing it by the accuracy in the current round. So, the
more significant increase between the accuracy achieved by
the aggregation server model in two aggregation rounds, the
faster rmin drops and vice versa for rmax. Furthermore, these
equations adjusts the numerator and denominator by adding
one to avoid the situation in which ML model accuracy surges
in earlier training rounds. Without the adjustment, when there
is a significant increase in accuracy, the factor deciding the
decrease in rmin is going to be very large. This will cause
rmin to decrease very fast and hit a low value in earlier



14

training rounds. The same condition applies to rmax in terms
of increase. If rmin reaches a low value and rmax reaches a
very large value, then a large proportion of workers is eligible
based on the selection criteria. This causes slow-computing
workers to be included in training too early.

a) Discussion of R-min R-max worker selection: The
algorithm addressed above has the potential to accelerate the
FL training efficiency. However, the design has defects that
may fail under specific scenarios.

The first scenario is due to improper initialization of rmin
and rmax. If rmin is initialized too low, it requires min-
imum time to satisfy the minimum training epochs. At the
worker selection stage before the first round of training, since
all workers have the relatively low time required to satisfy
minimum training epochs, many slow-computing workers will
be included. Including a large number of inefficient workers is
harmful to training efficiency. On the other hand, initializing
rmin to a large value will result in a large training time
required to satisfy minimum training epochs. This excludes a
large number of workers in the early stage. Although workers
selected under large initial rmin are fast responding, inade-
quate workers participating in early-stage training can cause
a large time before model accuracy starts to increase. Since
rmin only starts to drop once accuracy rises, slow accuracy
growth in the early stage delays the time when more workers
are included. This negatively affects training efficiency. The
same scenario happens when the initialization of rmax is
chosen inappropriately. For every available machine learning
model structure and training data, optimal initialization of
rmin and rmax can be derived by grid search. However,
a closed-form solution cannot be derived before training.
This makes the worker selection algorithm 1 hard to be
applied to large categories of models. Secondly, the value
of rmin and rmax may drop and increase too fast in the
early stage. For ML training from scratch, model weights are
initialized randomly. This causes the initial accuracy of the ML
model to be relatively low compared to accuracy after a few
epochs of training during the early stage. Since a significant
accuracy increase leads to low rmin and high rmax, the
large difference between rmin and rmax arises when the
accuracy surge happens in an earlier round of ML training. As
a result, many slow workers will be selected in early rounds,
which is time inefficient. If the ML model uses a pre-trained
model, it can bypass the scenario that accuracy differences
are too significant in earlier training rounds. However, this
limits the types of applicable ML models to those models
working with a pre-trained model. Furthermore, the issue of
rmin and rmax diverging too quickly gets worse when the FL
is conducted asynchronously. This is because asynchronous FL
can aggregate results more frequently, causing a more frequent
update of rmin and rmax and leading to a large diverge.
Consequently, algorithm 1 has the issue of hard initialization
of rmin and rmax such that they do not diverge too quickly.
During training, if the accuracy increases unstably, the values
of rmin and rmax will be extremely low and large. This
will cause a large proportion of slow workers to be selected,
reducing time efficiency. Changing the FL from synchronous
to asynchronous further worsened the situation.

2) Training-time-based asynchronous FL: Algorithm 2 is a
modified version of algorithm 1 that addresses the aforemen-
tioned issues. This algorithm selects workers based on the time

Algorithm 2: Training-time-based worker selection

1 Input:
2 W : A set of workers
3 Tonew∀w ∈W : Training time required to go through

all training data for one epoch
4 Ttransmitw∀w ∈W : Time required to communicate

model weights
5 r: Worker training iteration
6 T : Time allowed for this round of training
7 Output: Wselected ∈W
8 1) Ttotalw ← Tonew ∗ r + Ttransmitw∀w ∈W
9 2) Wselected ← ∀w ∈W : Ttotal <= T

required to complete a specified amount of training. Moreover,
the algorithm will update T , which refers to the time allowed
for each round of training. Let Wns be the group of workers
not selected yet, accnn be the accuracy achieved at the current
round of aggregation, and accnn−1 be the accuracy achieved
last round. Let A be the accuracy improvement threshold such
that T will only increase when the accuracy boost between two
rounds of aggregation is less than that threshold. The update
can be expressed in Eq. 3.

T ← minTtotalw∀w ∈Wns if accnn − accnn−1 < A (3)

The idea of the worker selection algorithm 2 is that each
worker should perform unified epochs of training before
responding to the aggregation server. This allows calculating
the total time required to conduct training and communicate
model weights back as Ttotal. After that, a threshold time
is selected, which excludes slow-computing workers from
training. As the training progresses, if the aggregation server
model’s accuracy stops increasing, more workers are included.
This is achieved by increasing the time limit. For algorithm
2, the only hyperparameter that needs to be initialized is
T . The initialization is straightforward, in which T can be
set to zero at the start. In this case, no worker can be
selected, causing no increase in the accuracy. Thus, the update
mechanism in Eq. 3 for T is triggered. This allows more
workers to be eligible for FL training. Initializing T to zero
or a small value has little impact on time efficiency. This is
because if accuracy fails to increase for one epoch due to an
insufficient worker selected, T will increase and allow a more
significant amount of workers to participate in FL training.
The worker selection algorithm 2 together with the update
Eq. refequation:tupdate sacrifice a little training time to allow
the appropriate amount of workers to be selected, which has
the potential to boost overall efficiency. Secondly, bringing in
slower workers only when accuracy stops increasing means
slow-computing workers are selected only when a converged
accuracy is achieved from faster-computing workers. This
prevents slow computing workers from joining in the early
stage and only allows those slow workers to train when it
is necessary to include them to achieve the desired accuracy,
which improves time efficiency. Thirdly, rmin and rmax also
diverge fast if FL is conducted asynchronously since there is



15

more frequent aggregation and hence more frequent update
of rmin and rmax. Each update increases the difference
between rmin and rmax. The divergence between rmin
and rmax leads to slow-computing workers being included
in early training epochs. Algorithm 2, on the other hand, is
compatible with asynchronous FL. This is because even when
more frequent aggregation is conducted, as long as the model
accuracy keeps increasing, update Eq. 3 will not be triggered,
preventing slow-computing workers from joining the training
process.

3) Estimated required time for training: Both worker selec-
tion algorithms depend on the time required to communicate
model weights and conduct training for each worker. When
each worker is selected and the response model weights to
the aggregation server are sent, the actual time consumed for
communication and training is updated. Initially, the value is
estimated by a heuristic. The estimated training time is based
on system parameters provided by the FogBus2 framework.
For the required time to transmit model weights, the esti-
mated time is obtained based on the randomly transmitted
model weights from the aggregation server to each worker
to obtain the required time for the transmission. For training
time, Tone is the required time to train one epoch based
on CPU availability and the CPU frequency of all workers.
The aggregation server conducts training over one piece of
data and records the consumed time as well as the CPU
frequency allocated to conduct training. Moreover, the amount
of training data that each worker contain is collected when the
worker acknowledges they are ready to train. Then, Tonew is
estimated:

Tone ←
Tonedata

CPUfreq
s

∗ CPUfreq
w ∗ CPUprop

w ∗Nw∀w ∈W (4)

The Eq. 4 first estimates the time required to train one piece
of data on each worker based on the time to train one data
on the aggregation server and the multiplier between CPU
frequencies. After that, the estimated required time for the
training of each worker is obtained by multiplying by the
obtained value to the amount of data belonging to each worker.

IV. PERFORMANCE EVALUATION

This section presents the system configuration and training
dataset used for the performance evaluation along with the
results obtained from different experiments.

A. System Configurations and Training Dataset

To perform experiments, we have used a Mac Book Pro with
8 ARM-based CPU cores and 16 GB of RAM and a Desktop
computer with 8 Core Core i9 CPU and 32 GB of RAM to run
four Virtual Machines (VMs). One VM runs the aggregation
server model, while the rest of the VMs run worker models.
Each VM is allocated 2 GB of RAM, while the CPU core
number and base CPU frequency of all VMs are the same.
Three VMs evenly distribute all worker models for different
numbers of worker models participating in FL. We conduct an
FL with only one worker model, which simulates sequential
implementation. Afterward, we use FL with 10-worker models
and 30-worker models, in which workers are evenly distributed
into three different machines. A VM has 3-4 FL worker models
when there are 10 models in the FL, or a VM has 10 worker
models when there are 30 models in total. For communication,

TABLE III: Batch of data each worker is allocated (10 worker)

Config Data set W1 W2/W3 W4 W5/W6 W7 W8/W9/W10
1 MINST 10 0 0 0 0 0
2 MINST 1 1 1 1 1 1
3 MINST 1 0 3 0 0 2
4 CIFAR 100 0 0 0 0 0
5 CIFAR 10 10 10 10 10 10
6 CIFAR 10 0 30 0 0 20

TABLE IV: Batch of data each worker is allocated (30 worker)

Config Data set W1 W2 - W10 W11 W12 - W20 W21 W22 - W30
1 MINST 30 0 0 0 0 0
2 MINST 1 1 1 1 1 1
3 MINST 4 0 8 0 0 2
4 CIFAR 300 0 0 0 0 0
5 CIFAR 10 10 10 10 10 10
6 CIFAR 40 0 80 0 0 20

each VM is assigned a separate network address through which
different FL and FogBus2 components can communicate.

We have used two different datasets in experiments that
are commonly used in other FL research: 1) MINST [33]
and 2) CIFAR-10 [34]. These datasets have sufficient data
such that both sets have 60000 training data. The data is
split and distributed to different workers, ensuring all workers
have a sufficient amount of distinct training data. The amount
of training data allocated to each worker model in each
experimental configuration when there are 10 and 30 worker
models are shown in table III and table IV, respectively.

Configurations 1 and 4 in table III and table IV only allocate
training batches of data to one worker model to simulate
sequential training. However, other configurations distribute
training data to different worker models. Configurations 2 and
5 indicate the situation where each worker model holds an
even amount of training data, while configurations 3 and 6
denote the case that training data is unevenly distributed. The
total amount of available data for training among all workers
is the same for configurations 1-3 and 4-6. Different amount of
training data leads to a different time to complete the training
among workers. All the training is conducted asynchronously
and synchronously for one hundred epochs. The long training
epoch ensures sufficient time for the aggregation server model
to achieve potential accuracy under available workers.

B. Performance Results

Fig. 12 to Fig. 18 illustrate the results of FL training under
configurations in tables III and IV, which are described in the
following.

FL with even data distribution requires less time to reach
stable accuracy, meaning faster training at the initial stage.
But sequential one eventually reaches a better accuracy. This
can be seen from Fig. 12 that the even data distribution
line reaches a high accuracy before the sequential training.
However, sequential training reaches better results over time.
Moreover, as it can be seen from Fig. 13, the time required for
sets of workers that have even or uneven amounts of training
data to reach stable accuracy is similar.

According to Fig. 14, random worker selection eventually
reaches the same accuracy level as sequential implementation.
However, random worker selection requires a longer time to



16

(a) MINST 10 workers (b) MINST 30 workers

(c) CIFAR 10 workers (d) CIFAR 30 workers

Fig. 12: Sequential Training VS FL Training (even data distribution, no worker selection)

(a) MINST 10 workers (b) MINST 30 workers

(c) CIFAR 10 workers (d) CIFAR 30 workers

Fig. 13: Even vs. Uneven Data Distribution

get the same accuracy as sequential. Moreover, it shows that
the accuracy growth of random worker selection is unstable
compared to sequential one. Besides, based on Fig. 15, the
r-min and r-max worker selection algorithm is not more time
efficient compared to sequential implementation. Moreover,
incorrect initialization of rmin and rmax can lead to inef-
ficient training processes such that accuracy never approaches
the potential accuracy achievable based on all data from all
workers. This latter case can be seen from Fig. 16 that when

rmax is initialized to 5, 6, and 7, the accuracy stays around
15%. In contrast, theoretical accuracy is around 50%. Overall,
the Algorithm 1 is time inefficient because rmin and rmax
diverge too fast in the early stage of ML training. Since model
weights are randomly initialized, there is significant accuracy
growth in the earlier rounds of training. This accelerates the
update of rmin and rmax based on the update Eq. 1 and
causes faster divergence. When rmin and rmax becomes far
different, slow computing workers are also considered since



17

(a) MINST 10 workers (b) MINST 30 workers

(c) CIFAR 10 workers (d) CIFAR 30 workers

Fig. 14: Random worker selection vs. Sequential

(a) MINST 10 workers (b) MINST 30 workers

(c) CIFAR 10 workers (d) CIFAR 30 workers

Fig. 15: R-min R-max Worker Selection vs. Sequential (rmin, rmax initialise to 5)

the time required to complete minimal training is much less
than the time necessary for faster workers to meet maximally
allowed training epochs. Thus, the worker selection algorithm
1 quickly turns into selecting all workers after a few rounds
of aggregation on the server.

According to Fig. 17, the worker selection algorithm 2,
when combined with synchronous FL training, outperforms
random worker selection and sequential ML training during
the early phase of training. This shows the effectiveness of the

worker selection algorithm 2. However, such performance only
takes part in an early phase of training, while sequential train-
ing always reaches stable accuracy faster. The worker selection
algorithm 2 is more time efficient in the early phase compared
to sequential ML training because only fast computing workers
are selected to participate in training. When the FL training
requires slower workers to join in later rounds of training,
since synchronous FL requires faster workers to wait for
slower workers, it becomes time inefficient as training progress



18

Fig. 16: R-min R-max Worker Selection with Different R-max
Initialisation

to later rounds. This is also proved by the fact that the accuracy
of sequential training exceeds it in later training rounds. As
shown in Fig. 18, the worker selection algorithm 2 combined
with asynchronous FL training has similar performance in
the earlier phase. However, during a later stage of training,
asynchronous FL has faster accuracy growth. This makes
asynchronous FL and worker selection algorithm 2 more time
efficient than synchronous FL or sequential ML training.
Asynchronous FL, even when it involves slower workers, does
not require faster workers to wait, resulting in asynchronous
FL outperforms sequential and synchronous training in terms
of time efficiency.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have designed and implemented a
lightweight and containerized framework for FL, called
FLight, by extending the FogBus2 framework. FLight enables
the integration of new ML models and supports different
mechanisms relating to worker selection access control and
storage implementation to be extended easily. Moreover, two
worker selection algorithms are introduced in this work to
improve the training time efficiency. FLight enables easy
extension of mechanism related to FL. New ML models can
be extended as long as import and export model weights and
merging model weights are defined. Moreover, the worker
selection strategy can be extended by overriding the worker
selection function skeleton, where multiple system parameters
relating to available workers are available for different algo-
rithm designs. Also, the flexible storage model design enables
the model weights to be stored on different media, which sup-
ports deployment on various computing resources. The imple-
mentation also supports asynchronous FL. The easy extension
and lightweight property of the FLight makes it a good tool
for comparing different federated learning mechanism design.
In future works, we plan to integrate other the-state-of-the-
art FL optimization mechanisms into the FLight framework.
Moreover, the current framework provides the opportunity to
integrate other ML techniques in a distributed manner, such
as some of the state-of-the-art distributed deep reinforcement
learning techniques for dynamic scheduling of resources [35].
Also, considering security and privacy perspectives, although
FL inherently protects data privacy as data stays locally at
its origination, model weights shared to remote sites still can
leak information about training data. Thus, extra modification

on shared model weights is necessary to prevent any sensitive
information regarding training data leaked out through the for-
mat of ML model weights. This is important since protecting
training data privacy is the key goal of FL which emphasize
this feature should be integrated into the Flight framework.
Finally, because Flight is a containerized FL framework, one
logical step to expand its properties is enabling container
orchestration properties for the Flight framework. So, we plan
to deploy the Flight on container orchestration platforms, such
as Kubernetes and K3S, to offer higher scalability, automated
monitoring, and failure handling for the Flight framework.

SOFTWARE AVAILABILITY

The source code of the FLight framework is accessible from:
https://github.com/Cloudslab/FLight

REFERENCES

[1] W. G. Hatcher and W. Yu, “A survey of deep learning:
Platforms, applications and emerging research trends,”
IEEE Access, vol. 6, pp. 24 411–24 432, 2018.

[2] M. Goudarzi, S. Ilager, and R. Buyya, “Cloud computing
and internet of things: Recent trends and directions,” New
Frontiers in Cloud Computing and Internet of Things, pp.
3–29, 2022.

[3] P. Štarchoň and T. Pikulı́k, “Gdpr principles in data
protection encourage pseudonymization through most
popular and full-personalized devices-mobile phones,”
Procedia Computer Science, vol. 151, pp. 303–312,
2019.

[4] P. BUKATY, The California Consumer Privacy Act
(CCPA): An implementation guide. IT Governance
Publishing, 2019. [Online]. Available: http://www.jstor.
org/stable/j.ctvjghvnn

[5] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. In-
german, V. Ivanov, C. Kiddon, J. Konečnỳ, S. Mazzocchi,
B. McMahan, et al., “Towards federated learning at scale:
System design,” Proceedings of machine learning and
systems, vol. 1, pp. 374–388, 2019.

[6] S. Shen, T. Zhu, D. Wu, W. Wang, and W. Zhou, “From
distributed machine learning to federated learning: In
the view of data privacy and security,” Concurrency and
Computation: Practice and Experience, vol. 34, no. 16,
p. e6002, 2022.

[7] M. Al-Rubaie and J. M. Chang, “Privacy-preserving
machine learning: Threats and solutions,” IEEE Security
& Privacy, vol. 17, no. 2, pp. 49–58, 2019.

[8] M. Goudarzi, H. Wu, M. Palaniswami, and R. Buyya,
“An application placement technique for concurrent iot
applications in edge and fog computing environments,”
IEEE Transactions on Mobile Computing, vol. 20, no. 4,
pp. 1298–1311, 2020.

[9] X. Xu, Q. Liu, Y. Luo, K. Peng, X. Zhang, S. Meng, and
L. Qi, “A computation offloading method over big data
for iot-enabled cloud-edge computing,” Future Genera-
tion Computer Systems, vol. 95, pp. 522–533, 2019.

[10] M. Goudarzi, M. Palaniswami, and R. Buyya, “Schedul-
ing iot applications in edge and fog computing en-

https://github.com/Cloudslab/FLight
http://www.jstor.org/stable/j.ctvjghvnn
http://www.jstor.org/stable/j.ctvjghvnn


19

(a) MINST 10 workers (b) MINST 30 workers

(c) CIFAR 10 workers (d) CIFAR 30 workers

Fig. 17: Algorithm 2 Worker Selection (synchronous) VS Sequential

(a) MINST 10 workers (b) MINST 30 workers

(c) CIFAR 10 workers (d) CIFAR 30 workers

Fig. 18: Algorithm 2 Worker Selection (Synchronous) VS (Asynchronous) VS Sequential

vironments: a taxonomy and future directions,” ACM
Computing Surveys, vol. 55, no. 7, pp. 1–41, 2022.

[11] F. Yu, W. Zhang, Z. Qin, Z. Xu, D. Wang, C. Liu, Z. Tian,
and X. Chen, “Heterogeneous federated learning,” arXiv
preprint arXiv:2008.06767, 2020.

[12] D. Li and J. Wang, “Fedmd: Heterogenous feder-
ated learning via model distillation,” arXiv preprint
arXiv:1910.03581, 2019.

[13] Q. Yang, Y. Liu, Y. Cheng, Y. Kang, T. Chen, and H. Yu,

“Federated learning,” Synthesis Lectures on Artificial
Intelligence and Machine Learning, vol. 13, no. 3, pp.
1–207, 2019.

[14] T. Zhang and S. Mao, “An introduction to the federated
learning standard,” GetMobile: Mobile Computing and
Communications, vol. 25, no. 3, pp. 18–22, 2022.

[15] A. Lalitha, O. C. Kilinc, T. Javidi, and F. Koushan-
far, “Peer-to-peer federated learning on graphs,” arXiv
preprint arXiv:1901.11173, 2019.



20

[16] Y. J. Cho, J. Wang, and G. Joshi, “Client selec-
tion in federated learning: Convergence analysis and
power-of-choice selection strategies,” arXiv preprint
arXiv:2010.01243, 2020.

[17] Q. Li, Z. Wen, Z. Wu, S. Hu, N. Wang, Y. Li, X. Liu,
and B. He, “A survey on federated learning systems:
vision, hype and reality for data privacy and protection,”
IEEE Transactions on Knowledge and Data Engineering,
vol. 35, pp. 3347–3366, 2023.

[18] C. Xu, Y. Qu, Y. Xiang, and L. Gao, “Asynchronous
federated learning on heterogeneous devices: A survey,”
arXiv preprint arXiv:2109.04269, 2021.

[19] P. M. Mammen, “Federated learning: opportunities and
challenges,” arXiv preprint arXiv:2101.05428, 2021.

[20] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya,
T. He, and K. Chan, “Adaptive federated learning in
resource constrained edge computing systems,” IEEE
Journal on Selected Areas in Communications, vol. 37,
no. 6, pp. 1205–1221, 2019.

[21] T. Nishio and R. Yonetani, “Client selection for federated
learning with heterogeneous resources in mobile edge,”
in ICC 2019-2019 IEEE international conference on
communications (ICC). IEEE, 2019, pp. 1–7.

[22] H. Yang, J. Zhao, Z. Xiong, K.-Y. Lam, S. Sun, and
L. Xiao, “Privacy-preserving federated learning for uav-
enabled networks: Learning-based joint scheduling and
resource management,” IEEE Journal on Selected Areas
in Communications, vol. 39, no. 10, pp. 3144–3159,
2021.

[23] L. Yu, R. Albelaihi, X. Sun, N. Ansari, and M. Devet-
sikiotis, “Jointly optimizing client selection and resource
management in wireless federated learning for internet of
things,” IEEE Internet of Things Journal, vol. 9, no. 6,
pp. 4385–4395, 2021.

[24] G. Wang, F. Xu, H. Zhang, and C. Zhao, “Joint resource
management for mobility supported federated learning
in internet of vehicles,” Future Generation Computer
Systems, vol. 129, pp. 199–211, 2022.

[25] A. Sultana, M. M. Haque, L. Chen, F. Xu, and X. Yuan,
“Eiffel: Efficient and fair scheduling in adaptive federated
learning,” IEEE Transactions on Parallel and Distributed
Systems, vol. 33, no. 12, pp. 4282–4294, 2022.

[26] C. Keçeci, M. Shaqfeh, F. Al-Qahtani, M. Ismail, and
E. Serpedin, “Clustered scheduling and communication
pipelining for efficient resource management of wireless
federated learning,” arXiv preprint arXiv:2206.07631,
2022.

[27] M. Chen, Z. Yang, W. Saad, C. Yin, H. V. Poor, and
S. Cui, “A joint learning and communications framework
for federated learning over wireless networks,” IEEE
Transactions on Wireless Communications, vol. 20, no. 1,
pp. 269–283, 2020.

[28] Y. Deng, S. Gu, C. Jiao, X. Bao, and F. Lyu, “Making
resource adaptive to federated learning with cots mo-
bile devices,” Peer-to-Peer Networking and Applications,
vol. 15, no. 2, pp. 1214–1231, 2022.

[29] D. Wen, K.-J. Jeon, and K. Huang, “Federated
dropout—a simple approach for enabling federated learn-

ing on resource constrained devices,” IEEE Wireless
Communications Letters, vol. 11, no. 5, pp. 923–927,
2022.

[30] D. Wu, R. Ullah, P. Harvey, P. Kilpatrick, I. Spence,
and B. Varghese, “Fedadapt: Adaptive offloading for iot
devices in federated learning,” IEEE Internet of Things
Journal, vol. 9, no. 21, pp. 20 889–20 901, 2022.

[31] Q. Deng, M. Goudarzi, and R. Buyya, “Fogbus2: a
lightweight and distributed container-based framework
for integration of iot-enabled systems with edge and
cloud computing,” in Proceedings of the International
Workshop on Big Data in Emergent Distributed Environ-
ments, 2021, pp. 1–8.

[32] M. Goudarzi, Q. Deng, and R. Buyya, “Resource man-
agement in edge and fog computing using fogbus2 frame-
work,” arXiv preprint arXiv:2108.00591, 2021.

[33] L. Deng, “The mnist database of handwritten digit im-
ages for machine learning research,” IEEE Signal Pro-
cessing Magazine, vol. 29, no. 6, pp. 141–142, 2012.

[34] A. Krizhevsky, V. Nair, and G. Hinton, “Cifar-10
(canadian institute for advanced research).” [Online].
Available: http://www.cs.toronto.edu/∼kriz/cifar.html

[35] M. Goudarzi, M. S. Palaniswami, and R. Buyya, “A
distributed deep reinforcement learning technique for
application placement in edge and fog computing en-
vironments,” IEEE Transactions on Mobile Computing,
vol. 22, no. 5, pp. 2491–2505, 2023.

http://www.cs.toronto.edu/~kriz/cifar.html

	Introduction
	Background and Related Work
	FL Concepts
	Related Work
	Qualitative Comparison

	FogBus2 Framework

	Flight: A Lightweight FL Framework
	Required FogBus2 Components and their FL Functionality
	Sensor
	Registry
	Message Handler
	Profiler
	Federated Learning Modules (Executor)

	FL Main Sub-components
	Data Warehouse Sub-component
	Communication Sub-component
	ML API Sub-component

	FLight's Sub-components Interactions
	Worker Addition
	Transfer a model
	Requesting to train a model
	Aggregating worker model weights

	Worker Selection Algorithm Design
	R-min R-max based worker selection
	Training-time-based asynchronous FL
	Estimated required time for training


	Performance Evaluation
	System Configurations and Training Dataset
	Performance Results

	Conclusions and Future Work

