
Vol.:(0123456789)

The Journal of Supercomputing
https://doi.org/10.1007/s11227-022-04911-8

1 3

A federated multi‑agent deep reinforcement learning
for vehicular fog computing

Balawal Shabir1 · Anis U. Rahman1 · Asad Waqar Malik1  · Rajkumar Buyya2 ·
Muazzam A. Khan3

Accepted: 21 October 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2022

Abstract
Vehicular fog computing is an emerging paradigm for delay-sensitive computations.
In this highly dynamic resource-sharing environment, optimal offloading decision
for effective resource utilization is a challenging task. In recent years, deep rein-
forcement learning has emerged as an effective approach for dealing with resource
allocation problems because of its self-adapting nature in a large state space sce-
nario. However, due to high mobility and rapid changes in the network topology
cause fluctuating task arrival rate. Similarly, the data sharing between the vehicles
and the fog nodes raises a variety of security and privacy concerns. Therefore, the
proposed system is based on local and global model training approaches. In this
paper, we propose a federated multi-agent deep reinforcement learning solution that
efficiently learns task-offloading decisions at multiple tiers i.e. locally and glob-
ally. The proposed work results in fast convergence due to its collaborative learning
model among vehicles and fog servers. The local model runs at the vehicular nodes,
and the global model runs at the fog servers. To reduce network overhead, the mod-
els are learned locally; thus, limited information is shared across the network this
reduces the communication overhead and improves the privacy of the agents. The
proposed system is compared with the greedy and stochastic approaches in terms of
residence times, cost, delivery rate, and utilization ratio. We observed that the pro-
posed approach has significantly reduced the task residence time, end-to-end delay
and overall system cost.

Keywords  Deep reinforcement learning · Federated learning · Computation
offloading · A3C · Advantage function · Residence time

 *	 Asad Waqar Malik
	 asad.malik@seecs.edu.pk

Extended author information available on the last page of the article

http://orcid.org/0000-0003-3804-997X
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-022-04911-8&domain=pdf

	 B. Shabir et al.

1 3

1  Introduction

With the rapid growth in Internet-of-Things (IoT), V2X communication has
become more prevalent for efficient communication and computation [1]. The
vehicular agents communicate with other devices, share the underutilized com-
putation resources to support the delay-sensitive applications. Particularly, the
vehicular network exhibits highly dynamic and nonlinear behavior and decision
making in vehicular systems is challenging due to the continuously varying state
of the resource sharing environment [2]. The time-critical nature of vehicular
applications, high mobility and rapidly varying queue state makes task offloading
a challenging task [3]. Aforementioned issues can be mitigated by introducing
machine learning based solutions. One traditional solution uses game theory and
reinforcement learning for decision optimization by collecting perpetual feedback
from the environment [4]. Such solutions fail to capture the large state space that
corresponds to the frequently varying queue states of the nodes. Comparatively
advanced solutions employ deep reinforcement learning for decision optimization
but they are mostly compute-intensive and yield slower speed of convergence [5]

To achieve faster convergence, policy optimization-based solutions are adopted
that can approximate the task offloading strategy in a large state space but con-
verge to local minima due to uncertainty of the environment, limited informa-
tion sharing and centralized architecture There is a limited knowledge sharing
among vehicular agents and presented solutions are centralized in nature as they
collect knowledge from the central fog servers [6]. Therefore, a new paradigm of
distributed learning named federated learning can play an indispensable role to
achieve improved decision making and fast convergence [7, 8]. Federated learn-
ing accomplishes fast convergence by learning locally on device and also attains
low communication overhead by transmitting less data across the resource shar-
ing environment.

The Federated learning (FL) is a type of distributed learning suitable for situ-
ations where training locally has an advantage [9]. The learning approach lever-
ages the modern smart vehicles with growing computational and storage capabili-
ties [10]. That is, training a model with a large set of input parameters becomes
unsuitable when storing and processing at a central data server with limited stor-
age and computing resources. This centralized approach incurs significantly high
communication costs when transmitting raw input data across the network. Most
importantly, the data is often privacy sensitive, which needs to be kept locally
rather than communicated over the network [11]. The objective of FL is to col-
laboratively come up with a global prediction model, sharing learned model
parameters while keeping the training data local. Generally, in data-parallel FL
approach [12], the learning starts off with vehicles collecting data and using it
to train independent local models. This is followed by an aggregator combining
all learned local model parameters to produce a global model, which is used to
retrain an updated local model. The iterative learning process continues until the
learning algorithm reaches convergence. There are a few limitations of FL, one
that the approach is not fully distributed because it relies on a central aggregator,

1 3

A federated multi‑agent deep reinforcement learning for…

even though full decentralization leads to loss of learning model efficiency.
Another limitation is that the approach is prone to malicious vehicles deliber-
ately altering local training data or selfish vehicles acting non-cooperatively when
sharing local models [13]. Nevertheless, the approach is feasible for providing
more robust and time-efficient innovative vehicular services, especially in the
context of autonomous vehicles.

Reinforcement learning (RL) intelligently learns the optimal policy to maximize
reward based on perpetual feedback from the environment [14]. This is analogous
to humans interacting with their outer environment so that to use the interactions
to understand it without example [15]. However, the time required to fully explore
the complex environment and finally converge to an optimal policy makes tradi-
tional RL infeasible. This is especially challenging when scaling RL for large and
dynamic environments with massive and continuous state-action space. To address
such large-scale spaces, deep reinforcement learning (DRL) is introduced to provide
better generalization and adaptation to unknown environments [16]. Here, an RL
agent interacts with the complex environment and the deep network to approximate
the value function or policy, accelerating the agent’s capability to learn an optimal
policy for future actions. The usefulness of DRL has been demonstrated for solv-
ing problems including control [17], resource management [18], games [19], robot-
ics [20] and autonomous driving [21].

Notably, RL is effective when performing sequential decision-making under
uncertainty [22]. This is the case in highly dynamic mobility scenarios where off-
loading constraints are more implicit and diverse in comparison to traditional opti-
mization problems with explicit rules [5]. For instance, vehicle-to-everything (V2X)
supports various services with different service requirements but with its unique
and challenging dynamics. Moreover, the explosive growth in vehicular technology
adoption is another reason for interest in RL-based offloading decision models. In
general, these models involve training rewards that correlate with an objective, and
eventually reaching an optimal strategy. Interestingly, this training is possible using
distributed algorithms, meaning the strategy can be devised by working collabora-
tively in a distributed manner, improving system-level performance based on local
information. In this work, we propose a DRL-based federated offloading framework
that achieves efficient task offloading decisions by collective learning the tasks off-
loading decisions at multiple tiers. The framework provides an extended learning
capabilities through knowledge sharing among the vehicles and the fog servers. The
main contributions of the work are:

•	 Explore multi-agent V2X scenario where the agents interact with the vehicular
environment, and collaboratively understand its dynamics for better task offload-
ing decisions.

•	 Design a tiered federated offloading system that decentralizes edge intelligence
by learning offloading decisions at multiple tiers with multiple distributed learn-
ing environments. This improves the usage of communication channel and data
privacy with limited information sharing across tiers.

•	 Implement a two-tiered offloading system using asynchronous advantage actor-
critic (A3C) algorithm, a hybrid reinforcement learning algorithm. The local

	 B. Shabir et al.

1 3

models are trained on vehicular agents while the global model is trained at the
fog-servers. A3C captures the bigger part of the state space by running multiple
isolated learning environments. This efficient exploration of the state space and
multi-tier learning achieves faster convergence with an improved offloading deci-
sion knowledge.

The rest of the paper is organized as follows: Sect. 2 discusses the related work.
Section 3 covers the system model. Section 4 we provided the conceptualization
of our model and formulated the problem. Section 5 covered the proposed frame-
work with the result evaluation and discussions in Sect. 6. Finally, the conclusion
is presented in Sect. 7 (Table 1).

Table 1   The Notations
Definitions P

t
Transmission power

V Set of vehicles
P Parked vehicles
F Fog servers
d Distance
l Path loss
C Channel capacity
� Bandwidth
N
0

Channel noise
sj Task size
cj Computing requirements
� Arrival rate
� Service rate
si Input size
Zi Residence time
Q Queue length
Zi Residence time
fi Clock frequency
D1

i
Transmission delay

�i Frequency reuse cost
�
2

Leased computation cost
D2

i
Computation delay

D3

i
Queuing delay

Ri Agent reward
ri Action reward
T Total timesteps
Mi Total received task

1 3

A federated multi‑agent deep reinforcement learning for…

2 � Related work

This section covers the recent contributions made to efficiently utilize comput-
ing nodes available across a vehicular network.

2.1 � Conventional task offloading

Considers the vehicle speed and its direction to determine the task offload-
ing decision. That is, vehicles moving in the same directions become potential
candidates for the task offloading. For instance, in [23], mobility-aware and
location-based task offloading schemes are presented for individual and coop-
erative fog-servers. The work effectively uses communication and computation
resources while meeting task deadlines. This approach only considers device
mobility for resource selection without considering its queue state. However,
in [24], a context-aware opportunistic offloading based on vehicle direction,
speed, position and queue state is proposed to improve resource utilization in
a vehicle-to-vehicle (V2V) resource-sharing network. In [25], an adaptive task
offloading technique based on multi-armed bandit theory is proposed that relies
on offloading delay of fog nodes. To reduce the workload on the nearby fog-
servers, Zhang et al. [26] propose a game-theoretic approach for load balancing
in a FiWi-enabled fog-computing network. The solution relies on the concept
of software-defined networks for centralized network management. In [27], the
available resources are pooled and shared in the form of an incomplete informa-
tion game strategy for task offloading. It selects resources based on a greedy-
pruning algorithm to minimize energy consumption and maximizing resource
utility. Similarly, in [28], a genetic algorithm is used to optimize resource allo-
cation from the pool. Notably, such meta-heuristics techniques depend on cen-
tralized network management, and they are more focused on associated device
parameters for resource selection. These techniques perform well for discrete
optimization problems but degrades performance with increasing requests and
fluctuating queue states. Furthermore, AI-based task offloading captures large
state spaces and adapts to the dynamic vehicular environment. For instance,
in [29], a prediction-based model is used to minimize execution delay. In [30],
multi-model multi-task offloading is proposed where multiple UAVs are
deployed to efficiently compute high-requirement tasks using ensemble learn-
ing. In [31], an auction-based technique for fog-server allocation to incoming
requests from mobile nodes. The technique uses a deep neural network (DNN)
model to minimize energy utilization and delay constraints of mobile nodes.
Similarly, in [32], a DNN-based task scheduling and computation offloading
scheme is implemented for edge computing. The evaluation results demonstrate
improved resource scheduling. Notably, such DNN-based methods are not suit-
able for rapidly changing vehicular environment with large state space and lim-
ited information sharing, impact their decision-making capabilities.

	 B. Shabir et al.

1 3

2.2 � Reinforcement learning‑based offloading

More recent attempts like in [33] present an intelligent task offloading scheme based
on deep Q-learning where the information and network data throughput is managed
through a centralized controller. Similarly, in [34], a computing resource allocation
scheme based on deep Q-network is presented to alleviate constraints of traditional
Q-learning. It considers vehicle speeds and their computing powers to determine an
effective decision model for task offloading. However, Q-learning becomes ineffi-
cient for large state space scenarios with slow convergence due to frequent policy
explorations and relevant computations. In [6], a service offloading framework per-
forms online learning at the vehicles, which is later used to learn an optimal offload-
ing policy at the fog device. In [7], a ’when and where to schedule’ model formulates
a stochastic resource optimization problem using DRL. The model ingests a charac-
teristic feature set for task queue states, which is used to approximate a task assign-
ment strategy using DNN. A relevant study in [35] proposes a priority-aware DRL
solution with incentives for vehicles to share their idle computational resources. The
solution defines a dynamic pricing strategy based on task priority, node mobility and
resource availability. Similarly, in [36], a DRL-based offloading strategy optimizes
a joint objective function incorporating task queue state, vehicular mobility and task
dependency. The strategy optimizes the function by minimizing energy consumption
and task offloading delay. In [35] presents an interesting work on the task offloading
paradigm based on deep reinforcement learning. The paper uses a model free deep
reinforcement learning based on the SAC (soft actor critic) algorithms which maxi-
mizes the entropy and the expected utility of the task. However, the presented work
is centralized in nature where the task offloading decisions are only learned on the
base station. Unlike our proposed solution, where two different models are learned
at the vehicles and the base stations respectively, the presented work is not federated
in nature and learns the task offloading decisions only at the base stations. Notably,
the DRL solutions converge to a local optimum due to the inherent uncertainties of
the dynamic environment and limited knowledge sharing in continuous state space
scenarios. Interestingly, distributed and federated DRL may well serve this purpose
by ensuring a diverse training environment while resulting in faster convergence to
global optimum (Table 2).

2.3 � Summary of literature

Most of the proposed work considers the context of the neighboring vehicles to opti-
mize the offloading decision. Conventional offloading techniques are suitable for the
environments with little or no mobility and optimize a few parameters, limiting their
decision-making capabilities. These solutions are not able to predict the environ-
ment state that corresponds to the optimal offloading decision. Recent work uses
deep reinforcement learning but it slowly converges to the optimal solution. We pro-
pose a federated and multi-tier deep reinforcement learning that quickly converges
to an optimal solution resulting in an improved resource utilization. The federated

1 3

A federated multi‑agent deep reinforcement learning for…

Ta
bl

e 
2  

S
um

m
ar

y
of

 th
e

co
nt

rib
ut

io
ns

 o
f t

hi
s p

ap
er

 a
nd

 c
om

pa
ris

on
 w

ith
 o

th
er

 re
le

va
nt

 re
po

rte
d

w
or

ks

A
ut

ho
rs

 (y
ea

r)
A

rc
hi

te
ct

ur
e

Te
ch

ni
qu

e
Fa

st
co

nv
er

-
ge

nc
e

C
ol

la
bo

ra
tiv

e
le

ar
ni

ng
Lo

ad
 b

al
an

ci
ng

M
ul

ti-
ag

en
t

C
om

m
un

ic
at

io
n

effi
ci

en
cy

Pr
iv

ac
y

R
ah

m
an

 e
t a

l.
 [2

4]
D

ist
rib

ut
ed

C
on

te
xt

-a
w

ar
e

X
✓

Fo
g

co
ns

or
tiu

m
X

X
X

C
he

n
et

 a
l.

 [3
2]

C
en

tra
liz

ed
G

re
ed

y
X

X
Fo

g
co

ns
or

tiu
m

X
X

X

H
 G

uo
 e

t a
l.

 [3
3]

C
en

tra
liz

ed
D

ee
p

Q
-L

ea
rn

in
g

X
X

Fo
g

co
ns

or
tiu

m
X

X
X

Q
i Q

i e
t a

l.
 [6

]
D

ist
rib

ut
ed

A
3C

✓
✓

Fo
g

co
ns

or
tiu

m
X

✓
X

W
. Z

ha
n

et
 a

l.
 [7

]
C

en
tra

liz
ed

Po
lic

y
G

ra
di

en
t(P

PO
)

✓
✓

Fo
g

co
ns

or
tiu

m
X

X
X

J.
Sh

i e
t a

l.
 [3

5]
C

en
tra

liz
ed

So
ft

A
ct

or
 C

rit
ic

(G
ra

di
en

t)
✓

X
Fo

g
co

ns
or

tiu
m

X
✓

X

B
. L

in
 e

t a
l.

[3
6]

D
ist

rib
ut

ed
SA

-D
Q

N
✓

X
Fo

g
co

ns
or

tiu
m

X
X

X

Pr
op

os
ed

D
ist

rib
ut

ed
A

ct
or

-c
rit

ic
✓

✓
Fo

g
co

ns
or

tiu
m

✓
✓

✓

	 B. Shabir et al.

1 3

learning corresponds to faster convergence, minimizes the objective function achiev-
ing low residence time and improved quality of experience for vehicular services.
Proposed method is suitable for the scenarios where there is limited data sharing
among the nodes and a faster convergence is required. It is suitable for the problems
where multiple distributed agents work in parallel to achieve a common goal [37].
Deep reinforcement learning has proved to be an effective tool for the variety of
applications including intelligent transportation systems, smart grids, block-chain
empowered IoT, mobile crowd sensing, industrial IoT applications, etc.

We further assumed that due to the highly mobile vehicular environment, the
vehicles may not be connected with the base station. As discussed, the optimiza-
tion problem presented in our case is solved at the lower tier where vehicles learn
the task offloading model in a distributed fashion. As we have employed the A3C
algorithm which is inherently distributed in nature by running multiple simulation
environments in parallel. Similarly, the vehicular agents are also interacting in their
respective simulation environments. Each vehicle interacts with the environment,
collects experience in an online fashion and optimizes its offloading decisions. As
discussed in the algorithm the upper tier is responsible for the aggregation of the
parameter received from the lower tier and return the updates back. The upper tier is
helping the agents to come up with a more diversified training experience by accu-
mulating updates for all the vehicles in a simulation scene.

3 � System model

We consider a resource-sharing vehicular environment comprising a set of mov-
ing vehicles denoted as V , a set of parked vehicles P , and a set of fog-servers F
deployed at different locations across the vehicular network. Note that only the
moving vehicles generate tasks with varying computational requirements, they are
either computed locally or offloaded to neighboring nodes within the vehicular
environment.

3.1 � Transmission model

Let d denote the distance between devices, the path loss l for wireless channel is
given as [38],

where a and b are the initial offset and shadow fading effect, respectively, with � as
a path attenuation index. So, the upper bound at the communication channel is given
as,

(1)l = a + � log10(d) + b

(2)C = � log2

(
1 +

Pt ⋅ l

N0

)

1 3

A federated multi‑agent deep reinforcement learning for…

where C is the channel capacity for the radio channel with bandwidth � . Trans-
mission power of the vehicular nodes is Pt , whereas channel noise is denoted as
N0 . Note that we assume a quasistatic and time-invariant wireless channel [39]. It
means that all nodes experience a homogeneous channel state with same transmis-
sion power and interference level. Recall, the channel capacity is included in terms
of the transmission delay, an important part of the end-to-end delay which we want
to reduce. For channel capacity, we model consider distance, pathloss and adapts
based on the changing values of the transmission delay to learn better tasks offload-
ing preference.

3.2 � Task model

Different vehicular applications generate tasks that have the same priority without
any interdependency among tasks. Each arriving task j ∈ J , (sj, cj) is represented
by two tuples where sj denotes the task size in MBs and cj is the computing require-
ments in Mbits.

3.3 � Queuing model

We consider an infinite population multi-server FIFO queuing model with the sys-
tem workload as the Poisson process and an arrival rate � . There are N mobile
nodes communicating with the exponentially distributed service rate � . The total
system capacity is denoted as ∀(V,F) =

∑T

i=0
K ⋅ (c ⋅ si) , where K denotes the size

of calling population, c denotes the number of parallel compute nodes and the si
denotes the input data size. The residence time Zi of an agent i is denoted as,

where,
∑
x∈Q

cx denotes the queue length of queue Q whereas fi is the clock frequency.

3.4 � Task execution model

While offloading task, a portion of the bandwidth is occupied by the transmitting
node. The total transmission delay D1

i
 for vehicle i ∈ V is denoted as,

Here, �i represents the cost of the frequency reuse and D↑

i
 and down-link D↓

i
 repre-

sents the up-link and down-link transmission delays. The up-link communication
delay of a task j is denoted as, D↑

i
=
∑

j∈J 1J ⋅ (
sj

Ci

) . Similarly, the indicator random
variable 1J(⋅) is whether or not a task is offloaded. We ignored the output delay due
to its small size [39]. Furthermore, the computation delay D2

i
 for a vehicle i is repre-

sented as,

(3)Zi =
∑

x∈Q

cx

fi

(4)D1
i
= �i� ⋅ (D

↑

i
+ D

↓

i
)

	 B. Shabir et al.

1 3

where, �2 is unit lease cost of the computation resource and fi is the clock frequency
of the computing node. Computation time D∗

i
=
∑

j∈J

cj

fi
 represents the time to ser-

vice a task. Similarly, queuing delay is the waiting time of the task in the queue
before it gets executed. So, queuing delay D3

i
 is represented as,

where Zj represents the residence time which indicates the time for which task j
stays in the system queue and gets executed. �2 is the unit lease cost of the computa-
tion resource for queue management. Similarly, the total service time Di is the sum-
mation of all delays,

3.5 � Offloading model

As mentioned earlier, the vehicles generate tasks that are either executed locally or
offloaded across the resource-sharing vehicular network. This decision is based on
computation requirements of the task and available resources including fog-servers
and parked vehicles. Specifically, the decision model at a source vehicle i for a task
j considers an extensive feature set when deciding to offload a task to neighboring
nodes, given as,

where (x1, x2, x3,⋯ , xn) is the feature set corresponding to the current state of the
vehicle i. The function � (⋅) for an agent i is the mapping from the agent’s state to an
offloading mode �i learned by the task offloading algorithm.

4 � Problem formulation

Vehicular agents interact with the vehicular environment to improve their offloading
decisions based on prior experience. Consider an agent i that selects an offloading
action ai based on its current state si , subsequently, a reward ri get into the next state
s′
i
 . This interaction of the agent with the environment can be represented in the fol-

lowing form:

4.1 � State space

The current state of the vehicle represents the availability of the computing
resources at the current instance. The computing demand varies drastically in

(5)D2
i
= (�2fi) ⋅ D

∗

i

(6)D3
i
= (�2fi) ⋅

J∑

j=1

Zj

(7)Di = D1
i
+ D2

i
+ D3

i

(8)�i =
{
(0, 1) ∶ � = � (x1, x2, x3,⋯ , xn)

}
, ∀j ∈ J

1 3

A federated multi‑agent deep reinforcement learning for…

vehicular systems so vehicles must fulfil the computing requirements-based com-
puting requirements and the availability of the computing resources. Our solution
considers the variety of the parameters related to the tasks and the vehicles. We have
considered a holistic model to devise the state of the system considering the task
computing requirement and computing capabilities of the nodes. We have also con-
sidered the data rates and the transmission delays of the vehicles that control the
flow rate of the tasks. Generally, a state space for a vehicular agent corresponds to
the set of relevant parameters that effectively capture the dynamics of the surround-
ing vehicular environment. For this purpose, we define a state profile Si for an agent
i with a job j as Si = {Zi,Δi,Vi,Wi, fi, (sj, cj)}.

•	 Zi : is a set of residence times of available resources including local, fog-servers,
moving and parked vehicles.

•	 Δi : is a distance set from the task source vehicle to neighboring resources includ-
ing fog-servers, and moving and parked vehicles.

•	 Vi : is a set of relative speed to neighboring resources including fog-servers, and
moving and parked vehicles.

•	 Wi : is a set of offloading modes of available resources including local, fog-serv-
ers, and moving and parked vehicles.

•	 fi : corresponds to task source agent’s computing capacity.
•	 (sj, cj) : represents the task attributes including the input data size and required

frequency cycles.

Notably, the performance metrics should be dynamically measured for the changing
vehicular environment. As it is difficult to completely capture the dynamics of the
networks due to rapidly changing topology and a very large state space. Hence our
state creation module dynamically generates the environment state in real time and
uses that experience to select the tasks offloading action at the current instance.

4.2 � Action space

In a resource-sharing vehicular network, an offloading action space describes the set
comprising the available actions for task execution. That is, this space corresponds
to computational resources available locally, at fog-servers, and moving or parked
vehicles. Consider for a vehicle agent i with task j, the action space Ai is given as,

where a1 queues the task locally for execution; a2 offloads the task to a neighboring
moving vehicle; a3 offloads the task to a nearby fog-server; and a4 offloads the task
to a nearby parked vehicle.

4.3 � Reward function

A reward function guides a learning algorithm to achieve its objective function.
Here, we define one based on residence times, that is it maximizes the reward at

(9)Ai = {a1, a2, a3, a4}

	 B. Shabir et al.

1 3

every subsequent iteration by selecting an offloading action among the available
action space to minimize the residence time. Say for an action ai taken by a vehicle
agent i with a task execution at k ∈ {i,Xi} , the reward ri is represented as
ri = −

(
1

�

)
Zk where, � is the task arrival rate and Zk is the residence time of the

selected destination node k. Hence, the total accumulated reward Ri for an agent i is
defined as,

where ri is the received reward against an action ai at timestep t in a simulation of
total T timesteps, and Mi is the total number of tasks received by the agent i.

To conclude, the agents start the learning process by receiving the state vector as
an input. The local and global model sharing helps the agents to better perceive the
environment state and results in improved decision making. Initially the decisions
are taken randomly and based on the rewards received against an action, the agents
improve their action. The reward is the function of the residence time and selection
of nodes with the lower residence time produce the higher value of the rewards. So,
based on the availability of the vehicles in the surrounding area, the vehicular agents
prefer the action with the higher reward which results in lower residence time.

4.4 � Multi‑agent A3C algorithm

Actor-critic networks is a policy gradient algorithm that parameterizes the policy
�(a|s;�) by updating the parameter � . These algorithms are inherently different
from traditional Q-learning and deep Q-nets (DQN) where the best action is deter-
mined based on the current state, meaning the action with the maximum Q value.
In contrast, policy gradients directly learn the policy � or state to action mapping
suitable for the environment with large state space. In general the actor-critic net-
work comprises of two states, the actor is responsible for taking action according
to policy whereas the critic appraises this action to improve the actor’s decision.
This improvement is represented by a reduction in variance or advantage, computed
as Rt − bt(st) by subtracting the cumulative return Rt from a baseline function. The
baseline is usually referred to as the learned value estimate V�

(st).
Considering a multi-agent deep reinforcement setting, we have a group of N

agents interacting within the vehicular environment. This forms a basic Markov deci-
sion process (MDP) with tuples representing agents such as (s, a, r, s�) . Here, s is the
current state of the agent, a is the action chosen by the agent, r is the reward associ-
ated with the action taken, and s′ is the next state of the agent. Say at an instant t, the
N agents interact with the environment, taking independent actions with a transition
probability p and getting rewarded for them while jumping to their next states s′ .
The goal of an agent is to learn a state to action mapping �(s) → a that maximizes
the expected discounted future reward, represented as V�

(st) = �(Rt|(st, ai)) . Here,
Rt is the cumulative discounted future return computed as Rt =

∑∞

k=0
�krt+1 with a

discount factor � ∈ (0, 1].

(10)Ri =

T∑

t=0

ri(t) − Ri

Mi

1 3

A federated multi‑agent deep reinforcement learning for…

In practice, A3C algorithm runs concurrent threads for model training, meaning it
improves its training efficiency by running multiple parallel threads with diverse and
improved learning experience. Here, multiple agents simultaneously explore separate
parts of vehicular state space. Due to multiple asynchronous interaction the updates are
uncorrelated, which explores the larger part of the state space in less time. At a time
instant t, the algorithm calculates an advantage function by finding the temporal dif-
ference (TD) error between the target reward and the estimated value function V�

(st) ,
given as,

The advantage function represents the suitability of an action in term of the return
compared to the other actions. The actor network updates itself using the equation,

 where entropy parameter describes the uncertainty of the action according to
a policy. For the higher value of the entropy means agent is taking more random
actions. Without the entropy term the agent takes the priority actions corresponding
to the high reward and converges to the locally optimum policy rather than achiev-
ing the global optimum. Whereas the parameter � is a regularization term that tries
to achieve an exploitation-exploration trade-off by controlling the strength of the
entropy. Furthermore, the critic model is updated using the equation,

 Here, the critic update monitors the advantage function to minimize the error
between estimated and target rewards.

4.5 � System consumption problem

Tasks generated by the agents can be added in the local queue or offloaded to the nodes
in the neighborhood. The decision selection to offload or enqueue locally is a com-
plex function. Decision optimization can effectively utilize the computation resources
resulting in lower residence time. The objective of the multiagent Deep reinforcement
is to minimize the expected discounted future utility such that

(11)A(st, ai;�,w) = rt + �V(st+1;w) − V(st;w)

(12)
d� ← d�+∇�� log��� (ai ∣ st;�

�
)A(st, ai;�

�,w�
)

+ �∇��H(�(st;�
�
))

(13)dw ← dw + 2A(st, ak;w,wc)∇w�A(st, ak;�
�,wc)

(14)dw ← dw +
�A(st, ai;�

�,w�
)
2

�w�

(15)P1: minimize V�
(s = st) =

T∑

i=0

E(Rt|(st, ai))

	 B. Shabir et al.

1 3

As discussed, Equation (14) is the expected reward for following the policy � from
state st . It corresponds to the value estimate that in fact represents the waiting times
of tasks in queue. The goal is to minimize this value estimate which in turn decreases
the staying time of tasks in the queue. C1 denotes the decision tuple ai = {0, 1} with
local and offload actions, respectively. Agents prefer those offloading actions which
help to achieve the objective function i.e. minimization of residence time. Initially,
there is more exploration and agents take random action because of the ignorance of
environment As the agent gets familiar, actions become more deterministic in nature
moving closer to the objective. C2 denotes that the workload w should not exceed
the total available capacity W. C3 denotes the advantage function which describes
that the difference between the cumulative reward and the estimated value function
should be close to zero. This is achieved when an agent follows an optimal policy �∗
that leads to optimal actions a∗ based on learned weights � and w.

Notably, the vehicular environment is a limited knowledge sharing environment
so it is challenging to select the optimal tasks offloading decisions that result in
higher delays and slow convergence. However, as discussed in [40] federated learn-
ing serves this purpose where learning is done at multiple tiers and it avoids the
overhead in knowledge sharing by only exchanging the gradients across the upper
and the lower tiers. This results in faster convergence and higher system scalability.
Similarly, we employed the A3C algorithm which runs multiple simulation environ-
ments in parallel. This enhanced interaction results in improved decision-making by
exploring a bigger part of the state space in less time.

5 � Proposed federated learning architecture for computation
offloading

In this work, we propose a federated task offloading framework based on multi-agent
DRL. The proposed solution lays down a multi-tier architecture, where local and
global models mutually share knowledge to make well-informed task offloading
decisions. As mentioned earlier, each vehicular agent captures the dynamics of the
underlying vehicular environment and trains a model locally by interacting with it.
Moreover, the agents continuously receive updates from an aggregated global model
located at the edge device to improve its local model accordingly. As discussed, the
models are learned locally and retained on the vehicular nodes. Federated learning
helps to reduce the communication delays by training locally at the vehicular nodes.
It also improves the privacy of the vehicles and data as a small amount of criti-
cal data is shared across the resource sharing environment and the training is done
on the vehicular nodes. This preserves the privacy of the vehicles and the trained
model is more robust as there are less chances of the data modifications as only

(16)

subject to badhboxai ∈ {0, 1}, ∀i ∈ T

badhbox
∑

wj ⩽ W, j ∈ E

C3: A(st, ai;�,w) ≈ 0; ∀T s.t�∗
(s) = a∗

1 3

A federated multi‑agent deep reinforcement learning for…

gradients are shared across the networks. Trained model is more robust and there are
less chances of the data modifications due to limited knowledge sharing.

The workflow of the proposed federated architecture is illustrated in Fig. 1, con-
sisting of two tiers. The upper and the lower tiers. Upper tiers are based on the feder-
ation of the fog servers whereas lower tiers contain the vehicular nodes. The vehicu-
lar agents at the lower tier take the state as their respective actor and critic network
learns the policy and the value functions, respectively. The updates are then shared
to the fog servers at the upper tier which aggregates the actor and critic updates of
all the vehicular agents in the transmission range. This mutual sharing of the updates
between the lower and the upper tier improves the offloading decision model.

We consider a distributed and multi-tier learning framework for a multi-agent
scenario where N vehicular agents jointly compete for computational resources.
As discussed, we are running multiple instances of A3C algorithms and each vehi-
cle explores the state space in an independently running A3C instance of the entire
vehicular environment. Each agent tries to learn a policy � that helps it to minimize
the task residence times in a highly dynamic resource-sharing environment. Unlike
other DRL solutions that either use experience replay or deploy a centralized archi-
tecture, we use a distributed strategy where learning is done at multiple tiers simul-
taneously as shown in Fig. 1. Consequently, this leads to better decision-making in
a continuous state space environment with faster rate of convergence, which is suit-
able for many different delay-tolerant vehicular services. As mentioned above, the
learning process works at two levels elaborated as follows:

•	 Lower-tier Learning Every agent joining the vehicular network employs a
local actor-critic network. The network allows the agent to learn its own sepa-
rate local model. For initiation, the agent resets its local network’s weights
(�i,wi) to ones from the global actor-critic network. Thereafter, it starts learn-
ing in an online manner by interacting with its environment. That is, upon

Fig. 1   Federated learning framework showing multi-tier network. The vehicles at the lower tier commu-
nicate with each other as well as the nearby connected fog node

	 B. Shabir et al.

1 3

task arrival, the agent’s actor network takes an offloading action ai following
a policy �(s) → a , subsequently, earning a reward ri for the action taken. The
local critic network criticizes the actor’s actions by estimating a state value
V�

(st) . This estimated value is used by the actor network to update its offload-
ing policy, meaning by exploring a new set of offloading actions. This collab-
oration between the actor and critic networks help to learn a local task offload-
ing model. The agents follow local policy to interact with the environment for
specific time steps tmax until a terminal state is reached. After the end of each
episode, agents compute local value and policy loss, get gradients from losses,
and update global network with the gradients.

•	 Upper-tier Learning At the end of every episode, the weights of the locally-
learned offloading model, (��

1
, ��

2
,⋯ , ��

n
,w�

1
,w�

2
,⋯ ,w�

n
) , are shared with a

global actor-critic network. The episode ends if a stopping criterion is reached
or the game has ended. In this work, we implement the global network across
a federation of fog-servers. Note that one federate is delegated the learning of
the global network, possibly an underloaded fog-server with low residence
time ( arg min

i∈F

Zi ). The remaining federates are responsible for cross-tier

parameter exchange. The global network aggregates weights of the local
model and shares an updated global model, (�1, �2,⋯ , �n,w1,w2,⋯ ,wn) , with
the agents. Due to the inherent asynchronous nature of the algorithm, the
global network proceed without local updates. Hence, a diverse interaction
and collaborative knowledge sharing between the two tiers helps the algorithm
converge quickly, stabilizing the system performance by minimizing the
expected discounted future utility E(Rt|(st, ai)) that corresponds to the resi-
dence time of the tasks in the queue.

So, vehicles select the task offloading decisions based on the accumulated reward
which relates to residence time of the tasks. As discussed, vehicles choose an
action to offload tasks to the neighbors and each action is associated with the
reward which the vehicle accumulates. The offloading vehicle collects the state
of the vehicles at the run time and checks their accumulated reward by analyzing
the residence time of the tasks. The vehicle with the lowest task residence time
accumulates more reward and becomes the destination node. After the model is
trained, the solution uses the learned weights and the probability distribution to
select the offloading decisions at the run time for different arrival rates.

As discussed, the optimization problem is solved at the lower tier where vehi-
cles learn the task offloading model in a distributed fashion. As we have employed
the A3C algorithm which is inherently distributed in nature by running multiple
simulation environments in parallel. Similarly, the vehicular agents are also inter-
acting in their respective simulation environments. Each vehicle interacts with
the environment, collects experience in an online fashion and optimizes its off-
loading decisions. The upper tier is responsible for the aggregation of the param-
eter received from the lower tier and return the updates back to the lower tier.
The upper tier is helping the agents to come up with a more diversified training
experience by accumulating the updates for all the vehicles in a simulation scene.

1 3

A federated multi‑agent deep reinforcement learning for…

As discussed, the proposed multi-tier architecture in a multi-agent setting have
several advantages. First, the architecture achieves learning diversity with agent
interactions across multiple locally distributed environments. Second, the asynchro-
nous learning helps agents to learn with faster convergence, providing broader expo-
sure to underlying resource-sharing environment. Third, the learning at the upper
tier is performed across a fog federation, which provides an extended view of the
environment by aggregating knowledge shared by the lower tier. Notice that unlike
the upper tier, lower tier has lower visibility due to its limited interactions with its
immediate surroundings only. This interactive learning guarantees faster conver-
gence to global minima, meaning that collaborative learning happens with actions
based on global policy rather than solely on local knowledge. Vehicular network
has some inherent limitations as the vehicle is connected to few vehicles and has
limited perception. In this way the decisions making only occurs at one layer i.e.,
the lower tier which can result in sub-optimal decisions due to limited connectiv-
ity and perception of the vehicles. The upper tier consisting of fog servers has con-
nectivity with the large number of the vehicles, so it can receive the learned data
from the vehicles and other fog servers to provide an enhanced perception for better
offloading decisions. This mutual learning helps the vehicles to capture the large
state space in an efficient way. Fourth, the tiered architecture improves the utiliza-
tion of communication channel because the models are learned locally with limited
information exchange with the global network at the upper tier. Fifth and last, the

	 B. Shabir et al.

1 3

proposed work effectively utilizes communication resources by independent learn-
ing and limited knowledge exchange across the resource sharing environment. This
collaborative learning framework ensures improved decision-making, which corre-
sponds to improved task residence times in the vehicular resource-sharing network.

To conclude, the optimization problem is solved at the lower tier where vehicles
learn the task offloading model in a distributed fashion. As we have employed the
A3C algorithm which is inherently distributed in nature by running multiple simula-
tion environments in parallel. Similarly, the vehicular agents are also interacting in
their respective simulation environments. Each vehicle interacts with the environ-
ment, collects experience in an online fashion and optimizes its offloading decisions.
So, two processes boost the performance of our algorithm. The first process is run-
ning multiple simulations environments in parallel which explore the bigger part of
the state space at a particular instance whereas the second process gives the better
visibility of the environment by aggregating and resharing the updates at the upper
tier.

6 � Performance evaluation

For experimental simulation of the proposed framework, we use SUMO traffic sim-
ulator with Manhattan road and mobility model. The simulation parameters and sys-
tem specifications are mentioned in Table 3.

As discussed, our simulation scene contains 100 vehicles and 9 fog nodes. As
our proposed algorithm runs multiple simulation environments in parallel so for
that purpose the system should have multithreading enabled to run multiple simula-
tions. We have used the Lenovo system Intel Core i7 with a 2.4GHz processor and
8GB RAM. The system uses two of its threads to run two parallel simulation scenes.
To simulate our model, we generate the tasks with different computing require-
ments and nodes with diverse computing capabilities to train the DRL model. We

Table 3   Simulation parameters Parameters Values

Simulation time/area 1000 time steps/900×900m
Vehicle/fog clock frequency 0.6–1.0 GHz/2.0 GHz
#Vehicles/#fog/#parked 100/9/20
Vehicle/fog transmission range 100m/200m
Mobility model/vehicle speed Manhattan/Random
Task cycles/data size 0.2–1.0 Mbits/1–6 MBs
Transmit power/white Gaussian noise 1W/10−3[23]
V2V/V2R/V2P bandwidths 1.0/2.0/1.0 MHz [41]
NN layers/Activation Function (32,16,8,4)/tanh/Softmax
Learning Rate/Discount Factor 10e−5/0.955 [42]
System Intel Core i7 2.4GHz 8 GB
OS Windows 8.1 64-bit

1 3

A federated multi‑agent deep reinforcement learning for…

implement the federated learning algorithm using TensorFlow 1.13.1 and Python
3.7. The vehicular environment is simulated at varying arrival rates to provide learn-
ing diversity to the learning algorithm such as from 60 ≤ � ≤ 200 . Specifically, the
neural network comprises a four (4) layered DNN model implementing an actor-
critic network to learn a local task offloading policy. The input layer takes in the
environment state as 32 neurons whereas the output layer uses four (4) neurons cor-
responding to four different offloading decisions using softmax activation. The two
hidden layers comprise sixteen (16) and eight(8) neurons, respectively. Selection
of the number of neurons in a hidden layer is a hyper parameter. We analyzed the
behavior of the model with the different number of the neurons in a hidden layer.
The network uses tanh activation function and Adam optimizer.

Selecting the optimal number of the hidden layers is challenging and it can
decrease the learning capabilities of the algorithm. Very few numbers of hidden lay-
ers in the input layers result in underfitting and a large number of neurons in the
hidden layers results in the overfitting. To overcome the phenomena of overfitting
and underfitting we choose an optimal number of layers which helps us to learn the
task offloading parameters in an effective way [43, 44]. There is not a specific rule
to select the number of hidden layers; however, the number of hidden layers is usu-
ally in between the size of the input layers and output layers. The number of hidden
layers should be quite less than the number of the input layers. As the tanh is sym-
metric around 0 so it results in faster convergence compared to the sigmoid function.
Similarly, the tanh is steeper and has higher gradient which helps the simulation to
converge faster [45].

As discussed, there are multiple agents simultaneously exploring separate parts
of vehicular state space. It means that due to the inherently distributed nature of the
A3C algorithm, multiple simulation environments can run concurrently in different
threads which are managed by the algorithm on its own. Due to multiple simulation
environments the vehicles can take different actions at the same time and observe
their impact. It means we are able to explore the bigger part of the state space due
to the distributed nature of the algorithm. As the vehicles are learning in an online
fashion so locally learned models are aggregated at the base stations.

6.1 � Online learning

As discussed, our proposed solution is based on online learning where data is gen-
erated at the run time. A3C algorithm collects recently generated experience from
the environment to train a task offloading model. Tasks offloading phenomena for
the vehicular system is a new paradigm so a robust dataset capturing a complete
state space of the vehicular system is not available. Vehicular network is a limited
information sharing environment and the topology of the network is highly dynamic.
For that purpose, generating a dataset that considers all aspects of the vehicular
system is a challenging task. Similarly, a vehicular system is a large or continuous
state space environment which requires a large sample space to generate a robust or
complete dataset. So, the proposed approach is an online learning-based solution
which generates the data at the real time and learns the task offloading preference. It

	 B. Shabir et al.

1 3

is inherently different from experience replay type approaches where experience is
stored in a buffer where a batch of experiences are randomly chosen from to learn
the offloading decisions [46].

For comparison, we use two algorithms as follows:

1.	 Stochastic Selection algorithm (SA) – selects a destination node for task offload-
ing stochastically among a set of computational nodes within its data-transmission
range. Notably, the resources are uniformly selected from the set of fog-servers,
parked vehicles and mobile vehicles [47].

2.	 Greedy Algorithm (GA) – greedily selects a nearest destination node for task off-
loading among the available computational resources within its data-transmission
range [23].

6.2 � Results and discussion

6.3 � Residence time

Is the total time a task spends in queue before it gets provisioned a resource for
execution. Good decisions always lead to lower residence times. Proposed approach
is compared with the two other baseline approaches to analyze the residence time
trends for different values of the arrival rate in Fig. 2. At the lower value of the
arrival rate, all methods almost behave in the same manner. However, after the
arrival rate � = 140 the trend becomes more significant. Our approach seems to
exhibit a decrease of about 58.6% at � = 200 . The reason for this decrease is the
improved decision selection of the proposed approach that results in the smaller
queues and the lower end-to-end delay.

6.4 � End‑to‑end delay

Denotes the total network delay which includes the task transmission delay to the
recipient node, queuing delay and the computation delays at that recipient node. The
end-to-end delay of our proposed scheme is lowest as depicted in Fig. 3. The pro-
posed approach indicates a decrease of 57.11% at � = 200 . The overall decrease
in the end-to-end delay reveals the optimal decision selection in a resource sharing

Fig. 2   Mean residence time at
varying task arrival rates

1 3

A federated multi‑agent deep reinforcement learning for…

environment whereas, other methods take the inefficient decisions, increasing the
overall delay and queue lengths.

6.5 � Transmission delay

Is the delay induced due to the available data rate on the wireless communication
channel. Recall, it has an impact on the residence time. Figure 4 shows the total
transmission delay for the DRL approach compared against the GA and SA meth-
ods. Here, GA exhibits the lowest transmission delay as it offloads in the nearest
neighborhood, however, it leads to the higher residence time. Notably, the pro-
posed scheme shows a decrease of 8.5% compared to GA and there is an increase
of 105.67% compared to the SA. DRL approach effectively utilizes the under-uti-
lized resources of the neighboring nodes by intelligently deciding the offloading
preferences.

6.6 � System cost

Is defined as the sum of local execution and the offload execution. Figure 5 shows
the average system cost for different offloading schemes compared to the proposed
solution. Evidently, both GA and SA incur the highest cost due to their workload-
in cognizant decision model. That is, for � = 200 , SA and GA show an increased
cost of 16% and 56%, respectively. As discussed, the proposed scheme successfully
decreases the residence time by 58.6% for � = 200 , which in turn, improves the
overall system cost of the resource-sharing environment.

Fig. 3   Mean end-to-end delay

Fig. 4   Total transmission delay

	 B. Shabir et al.

1 3

6.7 � Delivery rate

Is the ratio of the total tasks offloaded to the total computed and delivered back to
the offloading nodes. As discussed in Fig. 6, significant drop in the delivery is noted
for the GA and the SA sachems. At � = 200 there is a drop of 45.9% and 20.4% for
GA and SA, respectively. This substantial drop in deliveries is due to the unbalanced
workload distribution which causes the higher queue lengths leading to more fail-
ures. GA incurs the highest failures as more workload is diverted to the neighboring
nodes, increasing the queue lengths and failures.

Figure 7 indicates the total number of tasks delivered at task arrival rate � = 200 .
The proposed scheme delivers around 15K(15000) tasks whereas GA and SA
deliver 17K(17000) and 14K(14000) tasks respectively. Moreover, 9K tasks are
delivered through single hop that is out of the total 15K delivered for the proposed
approach. Recall, delivery is the combination of the one hop and two hop deliver-
ies. The highest number of the first hop delivery compared to SA and GA with the
8K each means that it uses the resources of the proximal nodes more efficiently.
Subsequently, the proposed approach unveils the lowest number of failures with the
decrease of 69% and 53% in contrast to the GA and SA. Consequently, with the

Fig. 5   Mean cost per task at
varying task arrival rates

Fig. 6   Result delivery ratio with
the varying arrival rate

Fig. 7   Task delivery statistics
for task arrival rate � = 200

1 3

A federated multi‑agent deep reinforcement learning for…

increasing arrival rates the SA and GA approach performs an unbalanced workload
distribution, decreasing the delivery count and improving the failures.

6.8 � Workload distribution

Figure 8 exhibits the total number of tasks allocated and executed by the system.
The stats at � = 200 show that the proposed offloading solution distributes tasks to
ensure effective usage of available resources. Further breakdown shows that the pro-
posed approach has the highest number of locally executed tasks, an increase of 30%
and 4.1% compared to the GA and the SA schemes. The proposed approach uses
optimal allocation of neighboring resources by allocating 15K tasks to each destina-
tion. Although the GA approach seems to be better utilizing the neighboring mobile
nodes with an increase of 65% but results show a performance degradation in terms
of the lowest delivery costs whereas the proposed results show improved delays and
result deliveries across resource sharing framework.

6.9 � Utilization ratio

Defines the ratio of the total number of tasks computed to the total number of tasks
received by the available computing nodes. It can be observed that the proposed
DRL based approach effectively utilizes the resource sharing environment. Figure 9
describes the ratio of three different types of the scenarios i.e. V2V, V2F, and V2P.
It can be seen that the task utilization efficiency of the proposed approach is highest
compared to the GA and SA. For all the three cases, the proposed approach better

Fig. 8   Task statistics for task
arrival rate � = 200

Fig. 9   Utilization ratio for task
arrival rate � = 200(task/s)

	 B. Shabir et al.

1 3

utilizes the resources: for V2P(5.35% improvement) and for V2V(8.5% improve-
ment). Recall, these are the stats for the congested state of the system

Figure 10, top and middle plots, represents actor- and critic-network loss, respec-
tively. Initially, the actor network explores by taking random actions while observing
the reward from the environment. The actor adjusts its offloading policy based on
the accumulated reward, subsequently, it selects future action contributing to higher
reward with lower residence times. Moreover, the critic-network loss is related to
value estimation that minimizes the advantage error by reducing the difference
between the target reward and value function exhibited in the bottom rewards plot.
This also guides and critiques the actor network to review its policy.

7 � Conclusion and future work

In this work, we presented a resource allocation framework based on a federated
Multi-agent based deep reinforcement learning. The proposed model simultane-
ously learns the decision model at multiple tiers which results in fast convergence
for a delay sensitive resource sharing environment. The simulation results show that
our multi-agent deep reinforcement learning framework achieves improved task
residence times, better end-to-end delay, enhanced results deliveries and improved
resource utilization in a heterogeneous environment. The proposed work improve
the utilization ratio; in V2P 5.35% and V2V 8.5% improvement is noted; Further,
9K tasks are delivered through single hop. Moreover, the local execution has been
increased by 30% in comparison with GA.

In future, we are planning to extend this work to incorporate more sophisticated
DRL techniques for comparison. The framework will be made available to the com-
munity through the GitHub repository. Further, other techniques can be adopted

Fig. 10   The convergence trend
of the proposed DRL task off-
loading scheme for task arrival
rate � = 200 . Top: represents
the total actor-network loss;
Middle: represents the total
critic-network loss; and Bot-
tom: represent the accumulated
reward over time

1 3

A federated multi‑agent deep reinforcement learning for…

to improve sampling efficiency, transmission delays, and overall collaborative sys-
tem performance. The large number of gradient updates shared across the resource
sharing vehicular environment could consume some communication resources can
be improvised to reduce the network utilization. Although training locally ensures
the privacy of the data shared across the tiers, it is vulnerable to gradient spoofing
attacks because of the updates shared in plain

Funding Information  No funding was received for conducting this study.

Data Availability  Data availability - There is no data associated with this work.

Declarations 

Conflict of interest  All authors certify that they have no affiliations with or conflict or involvement in any
organization or entity with any financial interest or non-financial interest in the subject matter or materials
discussed in this manuscript.

References

	 1.	 Ma L, Wang X, Wang X, Wang L, Shi Y, Huang M (2021) Tcda: Truthful combinatorial double
auctions for mobile edge computing in industrial internet of things. IEEE Trans Mobile Comput
2:58

	 2.	 Liu S, Guo L, Easa SM, Chen W, Yan H, Tang Y (2018) Chaotic behavior of traffic-flow evolution
with two departure intervals in two-link transportation network. Discr Dyn Nat Soc 68:45

	 3.	 Raza S, Wang S, Ahmed M, Anwar MR (2019) A survey on vehicular edge computing: architecture,
applications, technical issues, and future directions. Wireless Commun Mobile Comput 2019:865

	 4.	 Ranadheera S, Maghsudi S, Hossain E (2017) Mobile edge computation offloading using game the-
ory and reinforcement learning. http://​arxiv.​org/​abs/​1711.​09012

	 5.	 Ning Z, Dong P, Wang X, Rodrigues JJ, Xia F (2019) Deep reinforcement learning for vehicu-
lar edge computing: An intelligent offloading system. ACM Trans Intell Syst Technol (TIST)
10(6):1–24

	 6.	 Qi Q, Wang J, Ma Z, Sun H, Cao Y, Zhang L, Liao J (2019) Knowledge-driven service offloading
decision for vehicular edge computing: a deep reinforcement learning approach. IEEE Trans Veh
Technol 68(5):4192–4203

	 7.	 Zhan W, Luo C, Wang J, Wang C, Min G, Duan H, Zhu Q (2020) Deep-reinforcement-learning-
based offloading scheduling for vehicular edge computing. IEEE Internet Things J 7(6):5449–5465

	 8.	 Zhu Z, Wan S, Fan P, Letaief KB (2021) Federated multi-agent actor-critic learning for age sensitive
mobile edge computing. IEEE IoT J 9:1053

	 9.	 Tian G, Ren Y, Pan C, Zhou Z, Wang X (2022) Asynchronous federated learning empowered com-
putation offloading in collaborative vehicular networks. In: 2022 IEEE Wireless Communications
and Networking Conference (WCNC), pp. 315–320 . IEEE

	10.	 Shinde SS, Bozorgchenani A, Tarchi D, Ni Q (2021) On the design of federated learning in latency
and energy constrained computation offloading operations in vehicular edge computing systems.
IEEE Trans Veh Technol 71(2):2041–2057

	11.	 Kang J, Xiong Z, Niyato D, Zou Y, Zhang Y, Guizani M (2020) Reliable federated learning for
mobile networks. IEEE Wireless Commun 27(2):72–80

	12.	 Verbraeken J, Wolting M, Katzy J, Kloppenburg J, Verbelen T, Rellermeyer JS (2020) A survey on
distributed machine learning. ACM Comput Surv 53(2):1–33

	13.	 Lu Y, Huang X, Zhang K, Maharjan S, Zhang Y (2020) Low-latency federated learning and block-
chain for edge association in digital twin empowered 6g networks. IEEE Trans Industr Inform
17(7):5098–5107

	14.	 Thrun S, Littman ML (2000) Reinforcement learning: an introduction. AI Magaz 21(1):103–103

http://arxiv.org/abs/1711.09012

	 B. Shabir et al.

1 3

	15.	 Lewis FL, Vrabie D (2009) Reinforcement learning and adaptive dynamic programming for feed-
back control. IEEE Circuits Syst Mag 9(3):32–50

	16.	 Van Seijen H, Fatemi M, Romoff J, Laroche R, Barnes T, Tsang J (2017) Hybrid reward architecture
for reinforcement learning. http://​arxiv.​org/​abs/​1706.​04208

	17.	 Spielberg S, Gopaluni R, Loewen P (2017) Deep reinforcement learning approaches for process con-
trol. In: 2017 6th International Symposium on Advance Control of Induction Processes (AdCONIP),
pp. 201–206. IEEE

	18.	 Zhang Y, Yao J, Guan H (2017) Intelligent cloud resource management with deep reinforcement
learning. IEEE Cloud Comput 4(6):60–69

	19.	 O’Shea TJ, Clancy TC (2016) Deep reinforcement learning radio control and signal detection with
kerlym, a gym rl agent. http://​arxiv.​org/​abs/​1605.​09221

	20.	 Gu S, Holly E, Lillicrap T, Levine S (2017) Deep reinforcement learning for robotic manipulation
with asynchronous off-policy updates. In: 2017 IEEE Int Conf Robot Autom, pp. 3389–3396 . IEEE

	21.	 Xiong X, Wang J, Zhang F, Li K (2016) Combining deep reinforcement learning and safety based
control for autonomous driving. http://​arxiv.​org/​abs/​1612.​00147

	22.	 Mekrache A, Bradai A, Moulay E, Dawaliby S (2021) Deep reinforcement learning techniques for
vehicular networks: recent advances and future trends towards 6g. Veh Commun 25:100398

	23.	 Yang C, Liu Y, Chen X, Zhong W, Xie S (2019) Efficient mobility-aware task offloading for vehicu-
lar edge computing networks. IEEE Access 7:26652–26664

	24.	 Rahman AU, Malik AW, Sati V, Chopra A, Ravana SD (2020) Context-aware opportunistic comput-
ing in vehicle-to-vehicle networks. Veh Commun 24:100236

	25.	 Sun Y, Guo X, Song J, Zhou S, Jiang Z, Liu X, Niu Z (2019) Adaptive learning-based task offload-
ing for vehicular edge computing systems. IEEE Trans Veh Technol 68(4):3061–3074

	26.	 Zhang J, Guo H, Liu J, Zhang Y (2019) Task offloading in vehicular edge computing networks: a
load-balancing solution. IEEE Trans Veh Technol 69(2):2092–2104

	27.	 Hu J, Li K, Liu C, Li K (2020) Game-based task offloading of multiple mobile devices with qos in
mobile edge computing systems of limited computation capacity. ACM Trans Embedded Comput
Syst 19(4):1–21

	28.	 Tang C, Xia S, Li Q, Chen W, Fang W (2021) Resource pooling in vehicular fog computing. J Cloud
Comput 10(1):1–14

	29.	 Gao M, Cui W, Gao D, Shen R, Li J, Zhou Y (2019) Deep neural network task partitioning and
offloading for mobile edge computing. In: 2019 IEEE Global Communication Conference, pp. 1–6 .
IEEE

	30.	 Hu L, Tian Y, Yang J, Taleb T, Xiang L, Hao Y (2019) Ready player one: Uav-clustering-based
multi-task offloading for vehicular vr/ar gaming. IEEE Netw 33(3):42–48

	31.	 Mashhadi F, Monroy SAS, Bozorgchenani A, Tarchi D (2020) Optimal auction for delay and energy
constrained task offloading in mobile edge computing. Comput Netw 183:107527

	32.	 Chen Z, Hu J, Chen X, Hu J, Zheng X, Min G (2020) Computation offloading and task scheduling
for dnn-based applications in cloud-edge computing. IEEE Access 8:115537–115547

	33.	 Guo H, Liu J, Ren J, Zhang Y (2020) Intelligent task offloading in vehicular edge computing net-
works. IEEE Wireless Commun 27(4):126–132

	34.	 Zhang Y, Zhang M, Fan C, Li F, Li B (2021) Computing resource allocation scheme of iov using
deep reinforcement learning in edge computing environment. J Adv Signal Process 1:1–19

	35.	 Shi J, Du J, Wang J, Wang J, Yuan J (2020) Priority-aware task offloading in vehicular fog comput-
ing based on deep reinforcement learning. IEEE Trans Veh Technol 69(12):16067–16081

	36.	 Lin B, Lin K, Lin C, Lu Y, Huang Z, Chen X (2021) Computation offloading strategy based on deep
reinforcement learning for connected and autonomous vehicle in vehicular edge computing. J Cloud
Comput 10(1):1–17

	37.	 Lei L, Tan Y, Zheng K, Liu S, Zhang K, Shen X (2020) Deep reinforcement learning for auton-
omous internet of things: model, applications and challenges. IEEE Commun Surv Tutorials
22(3):1722–1760

	38.	 Cui T, Hu Y, Shen B, Chen Q (2019) Task offloading based on lyapunov optimization for mec-
assisted vehicular platooning networks. Sensors 19(22):4974

	39.	 Guo H, Liu J (2018) Collaborative computation offloading for multiaccess edge computing over
fiber-wireless networks. IEEE Trans Veh Technol 67(5):4514–4526

	40.	 Prathiba SB, Raja G, Anbalagan S, Dev K, Gurumoorthy S, Sankaran AP (2021) Federated learning
empowered computation offloading and resource management in 6g–v2x. IEEE Trans Netw Sci Eng
2:65

http://arxiv.org/abs/1706.04208
http://arxiv.org/abs/1605.09221
http://arxiv.org/abs/1612.00147

1 3

A federated multi‑agent deep reinforcement learning for…

	41.	 Raza S, Liu W, Ahmed M, Anwar MR, Mirza MA, Sun Q, Wang S (2020) An efficient task offload-
ing scheme in vehicular edge computing. J Cloud Comput 9:1–14

	42.	 Li M, Gao J, Zhao L, Shen X (2020) Deep reinforcement learning for collaborative edge computing
in vehicular networks. IEEE Trans Cognit Commun Netw 6(4):1122–1135

	43.	 Sheela K, Deepa SN (2013) Review on methods to fix number of hidden neurons in neural net-
works. Math Probl Eng. https://​doi.​org/​10.​1155/​2013/​425740

	44.	 Uzair M, Jamil N (2020) Effects of hidden layers on the efficiency of neural networks. In: 2020
IEEE 23rd International Multitopic Conference (INMIC), pp. 1–6 . doi: https://​doi.​org/​10.​1109/​
INMIC​50486.​2020.​93181​95

	45.	 Hayou S, Doucet A, Rousseau J (2018) On the selection of initialization and activation function for
deep neural networks. arXiv

	46.	 Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A, Riedmiller M,
Fidjeland AK, Ostrovski G et al (2015) Human-level control through deep reinforcement learning.
Nature 518(7540):529–533

	47.	 Alghamdi I, Anagnostopoulos C, Pezaros DP (2019) On the optimality of task offloading in mobile
edge computing environments. Proc IEEE Global Commun Conf (GLOBECOM) 19:1–6

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

Authors and Affiliations

Balawal Shabir1 · Anis U. Rahman1 · Asad Waqar Malik1  · Rajkumar Buyya2 ·
Muazzam A. Khan3

	 Balawal Shabir
	 bilawalshabir@gmail.com

	 Anis U. Rahman
	 anis.rahman@seecs.edu.pk

	 Rajkumar Buyya
	 rbuyya@unimelb.edu.au

	 Muazzam A. Khan
	 khattakmuazzam@gmail.com

1	 School of Electrical Engineering and Computer Science, National University of Sciences
and Technology (NUST), Islamabad, Pakistan

2	 School of Computing and Information Systems, The University of Melbourne, Melbourne,
Australia

3	 Department of Computer Science, Quaid-i-Azam University, Islamabad, Pakistan

https://doi.org/10.1155/2013/425740
https://doi.org/10.1109/INMIC50486.2020.9318195
https://doi.org/10.1109/INMIC50486.2020.9318195
http://orcid.org/0000-0003-3804-997X

	A federated multi-agent deep reinforcement learning for vehicular fog computing
	Abstract
	1 Introduction
	2 Related work
	2.1 Conventional task offloading
	2.2 Reinforcement learning-based offloading
	2.3 Summary of literature

	3 System model
	3.1 Transmission model
	3.2 Task model
	3.3 Queuing model
	3.4 Task execution model
	3.5 Offloading model

	4 Problem formulation
	4.1 State space
	4.2 Action space
	4.3 Reward function
	4.4 Multi-agent A3C algorithm
	4.5 System consumption problem

	5 Proposed federated learning architecture for computation offloading
	6 Performance evaluation
	6.1 Online learning
	6.2 Results and discussion
	6.3 Residence time
	6.4 End-to-end delay
	6.5 Transmission delay
	6.6 System cost
	6.7 Delivery rate
	6.8 Workload distribution
	6.9 Utilization ratio

	7 Conclusion and future work
	References

