
FEDCOMPASS: FEDERATED CLUSTERED AND PERIODIC AGGREGATION
FRAMEWORK FOR HYBRID CLASSICAL-QUANTUM MODELS

Yueheng Wang1, Xing He2, Zinuo Cai3, Rui Zhang1, Ruhui Ma3, Yuan Liu1, Rajkumar Buyya4

1School of Artificial Intelligence and Computer Science, Jiangnan University
2Antai College of Economics & Management, Shanghai Jiao Tong University

3School of Computer Science, Shanghai Jiao Tong University
4Cloud Computing and Distributed Systems Laboratory, University of Melbourne

ABSTRACT

Federated learning enables collaborative model training
across decentralized clients under privacy constraints. Quan-
tum computing offers potential for alleviating computational
and communication burdens in federated learning, yet hybrid
classical-quantum federated learning remains susceptible to
performance degradation under non-IID data. To address this,
we propose FEDCOMPASS, a layered aggregation framework
for hybrid classical-quantum federated learning. FEDCOM-
PASS employs spectral clustering to group clients by class
distribution similarity and performs cluster-wise aggregation
for classical feature extractors. For quantum parameters, it
uses circular mean aggregation combined with adaptive op-
timization to ensure stable global updates. Experiments on
three benchmark datasets show that FEDCOMPASS improves
test accuracy by up to 10.22% and enhances convergence
stability under non-IID settings, outperforming six strong
federated learning baselines.

Index Terms— Federated Learning, Non-IID Data, Spec-
tral Clustering, Circular Mean

1. INTRODUCTION

Nowadays, data privacy and potential leakage risks have be-
come critical issues requiring urgent attention. Federated
learning (FL) [1], as a privacy-preserving distributed learn-
ing paradigm, effectively reduces the privacy risk by training
models locally on client devices and uploading only parame-
ter updates instead of raw data. Thanks to this characteristic,
FL has been widely adopted in scenarios such as mobile
healthcare [2], IoT [3], and distributed sensing [4]. However,
this privacy protection mechanism also introduces significant
communication and computational overhead, posing serious
challenges to training efficiency, especially in large-scale or
resource-constrained edge environments [5].
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At the same time, as an emerging computational paradigm,
quantum computing [6] leverages quantum superposition
and entanglement to enable parallel information process-
ing. Since current quantum devices remain in the Noisy
Intermediate-Scale Quantum (NISQ) era [7] with limited
error correction capabilities and communication reliability
issues [8], hybrid classical-quantum machine learning [9] has
shown great potential. Such architecture employs classical
neural networks for efficient feature extraction, and leverages
quantum circuits to accelerate computation and enhance rep-
resentational learning in specific tasks [10], thereby opening
new avenues for improving federated learning efficiency.

However, federated learning often faces the challenge of
non-IID data [11] in practice, which can easily lead to local
model bias and difficulties in global convergence [12]. Al-
though methods such as FedProx [13], FedBN [14], and Fed-
Per [15] have achieved certain success in traditional scenar-
ios, non-IID data still presents two major challenges in the
classical-quantum federated learning setting. Firstly, signifi-
cant differences in feature distributions among clients exacer-
bate the deviation in classical feature extraction layers, mak-
ing it difficult to maintain global consistency after model ag-
gregation. Secondly, quantum parameters are periodic [16]
and sensitive to data distribution [17]. Direct arithmetic aver-
aging can easily cause parameter period mismatch, aggravat-
ing training instability and leading to optimization conflicts
between classical and quantum modules.

To address the aforementioned challenges, we propose
FEDCOMPASS, a layered aggregation optimization framework
in the hybrid classical-quantum federated learning setting. To
mitigate model deviation caused by differences in client fea-
ture distributions, FEDCOMPASS employs spectral clustering
based on client category statistics and performs weighted
aggregation within clusters to generate cluster-level classical
feature extractors. To tackle the periodicity issue specific to
quantum parameters, we introduce a circular mean for peri-
odic parameters based on the unit circle, combined with an
adaptive optimizer to achieve robust global updates.

To validate the effectiveness and generalization capabil-
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Fig. 1: Overview of our mechanism.

ity of the proposed framework, we conduct extensive ex-
periments on three datasets: MNIST, Fashion-MNIST, and
CIFAR-10. The results demonstrate that FEDCOMPASS sig-
nificantly improves test accuracy and convergence stability
across various non-IID settings, consistently outperforming
six mainstream federated learning baseline methods. The
framework fully exemplifies its comprehensive advantages
in accuracy, stability, and privacy preservation within hybrid
classical-quantum federated learning environments.

2. THE PROPOSED FEDCOMPASS ALGORITHM

2.1. Overview

Fig. 1 illustrates the overall workflow of FEDCOMPASS. The
server first initializes a hybrid global model composed of a
classical feature extraction layer and a quantum classifier,
which is distributed to all clients (Step 1). Subsequently, each
client conducts end-to-end training of the model based on
their local data (Step 2). After training, clients upload the
updated model parameters along with their data class distri-
bution vectors to the server (Step 3). The server employs a
hierarchical aggregation strategy, processing the classical and
quantum layers separately. For the classical layer, clients are
dynamically clustered based on data distribution similarity,
and weighted aggregation is performed within each cluster
to generate cluster-level classical feature extractors (Step 4).
For the quantum layer, the circular mean method is applied
to aggregate quantum parameters, combined with an adaptive
optimization strategy to achieve robust global updates (Step
5). Finally, the server distributes the updated cluster-level
classical model parameters and global quantum parameters to
the clients for the next round of training.

2.2. Cluster-Based Aggregation for Classical Feature Ex-
traction Layer

To address model bias caused by non-IID data distribu-
tions, we introduce a client clustering mechanism based
on data distribution similarity in the classical network part,

enhancing the model’s adaptability to data heterogeneity.
Throughout the federated learning process, no raw data
is uploaded, thereby ensuring privacy protection. Let the
client set be {c1, c2, . . . , cN}, with corresponding datasets
{d1, d2, . . . , dN}, a total number of classes C, and a data
concentration parameter α. During data partitioning, the
concentration parameter α controls the degree of data het-
erogeneity: a smaller α indicates a more heterogeneous data
distribution. Simultaneously, each client uploads its class dis-
tribution vector p⃗ to the server as a statistical representation
of its data features. This vector is a C-dimensional vector
representing the proportion of samples from each class in the
client’s local data, i.e., p⃗i = (pi1, pi2, . . . , piC), where pij
denotes the proportion of class j data in client ci.

The server collects the local data distribution vectors
{p⃗1, p⃗2, . . . , p⃗N} from the clients and computes a similarity
matrix S based on these statistics:

Sij = exp

(
−λ1JS(p⃗i, p⃗j)− λ2

|ni − nj |
ni + nj

)
. (1)

The similarity metric comprehensively evaluates the sim-
ilarity between clients by considering both distribution diver-
gence and sample size discrepancy. The Jensen–Shannon di-
vergence JS(·, ·) measures the difference in class distribution
patterns between clients. The second term serves as the rel-
ative difference in sample size, where ni denotes the sample
size of client ci, reflecting the impact of data volume dispar-
ity on model updates. The hyperparameters λ1 and λ2 balance
the weights of the two terms: increasing λ1 places greater em-
phasis on distribution consistency, while increasing λ2 prior-
itizes the alignment of sample size scales.

Based on this, the server employs a spectral clustering al-
gorithm grounded in the Normalized Cut criterion. It com-
putes the normalized Laplacian matrix, performs eigenvalue
decomposition, and applies K-means clustering to the top M
eigenvectors to identify groups of clients with similar data
distribution patterns. The clients are then grouped into M
clusters {C1, C2, . . . , CM}, with each cluster corresponding to
a potential data distribution pattern, thereby achieving an ef-
fective partitioning of heterogeneous client groups.

During the aggregation phase, the server receives the clas-
sical feature extraction layer parameters θ(i)c uploaded by the
clients and performs a weighted average aggregation within
each cluster:

θ(m)
c =

∑
i∈Cm

ni · θ(i)c∑
i∈Cm

ni
, (2)

where the weights are determined by the local sample size of
each client, resulting in a cluster-shared classical model.

2.3. Global Aggregation Optimization for Periodic Quan-
tum Classifier

As a globally shared module, the quantum classifier requires
consistency and stability in its parameters across all clients.



Algorithm 1 Quantum Parameter Update and Aggregation.

1: Input: Client parameters {ϕi}Ni=1, sample sizes
{ni}Ni=1, previous global parameters ϕt, FedAdam states
mt−1, vt−1, hyperparameters β1, β2, η, ϵ

2: Output: Updated global parameters ϕt+1, updated states
mt, vt

3: Compute client weights: ωi = ni/
∑

j nj

4: for each dimension j = 1, . . . ,m do
5: Compute ϕ̄j via Eq. 3 {Circular mean aggregation}
6: end for
7: Aggregated parameters: ϕ̄ = (ϕ̄1, . . . , ϕ̄m)
8: Construct gradient: gt = ϕt − ϕ̄
9: Update moment: mt, vt via Eq. 4

10: Bias correction: m̂t, v̂t via Eq. 5
11: Global update: ϕt+1 via Eq. 6
12: return ϕt+1,mt, vt

To achieve this, we design a quantum parameter aggregation
method on the server side based on periodic averaging and
adaptive updating. This approach first employs circular mean
to resolve inconsistencies caused by the periodicity of rotation
angles, and then introduces an adaptive update mechanism to
enhance the stability of global convergence.

The overall quantum parameter aggregation and update
process is described in Algorithm 1. Let the quantum param-
eters uploaded by client ci be ϕi = (ϕ

(1)
i , ϕ

(2)
i , . . . , ϕ

(m)
i ).

For the j-th parameter dimension, the aggregation process is
defined as:

ϕ̄j = atan2

(
N∑
i=1

ωi sin
(
ϕ
(j)
i

)
,

N∑
i=1

ωi cos
(
ϕ
(j)
i

))
, (3)

where ωi = ni/
∑

j nj is the client weight. This operation
(line 5) maps angles to the unit circle for averaging before
mapping them back to the angular space, thereby avoiding
periodicity-induced inconsistencies.

To further enhance the convergence stability of the global
quantum classifier, we employ an adaptive optimizer on the
server side (lines 7–11) to update the aggregated parameters
globally. First, the average gradient gt for the quantum pa-
rameters in round t is computed based on the global quantum
parameters gt = ϕt − ϕ̄. Subsequently, momentum update,
bias correction, and parameter update are performed as fol-
lows:

mt = β1mt−1+(1−β1)gt, vt = β2vt−1+(1−β2)g
2
t , (4)

m̂t =
mt

1− βt
1

, v̂t =
vt

1− βt
2

, (5)

ϕt+1 = ϕt − η · m̂t√
v̂t + ϵ

, (6)

where β1 and β2 are momentum hyperparameters, η is the
learning rate, and ϵ is a numerical stability constant. The

integration of the adaptive optimizer with the periodic con-
straints of quantum parameters ensures stable convergence of
the quantum classifier under non-IID data distributions.

Finally, the server distributes the updated cluster-level
classical model parameters θ

(m)
c and the quantum classifier

parameters ϕt+1 to the clients for the next round of train-
ing and aggregation. This design addresses the periodicity
of quantum parameters while facilitating the transfer of dis-
criminative capabilities across different clients through global
sharing, thereby improving overall classification performance
and convergence stability.

3. PERFORMANCE EVALUATION

3.1. Experiments Setup

Datasets. We evaluate FEDCOMPASS and comparative meth-
ods on three datasets: MNIST, Fashion-MNIST, and CIFAR-
10. From each dataset, we uniformly selected 4 classes to
form a four-class classification task. The data was partitioned
using a Dirichlet distribution [4] with two non-IID parameter
settings, α = 0.3 and α = 0.7.

Models. We adopt a hybrid classical-quantum architec-
ture, where a classical network performs feature extraction
and a quantum network carries out classification. For MNIST,
we use LeNet followed by a parameterized quantum circuit.
For more complex datasets such as CIFAR-10 and Fashion-
MNIST, the first two layers of ResNet-18 are employed for
feature extraction, and the features are then passed to a quan-
tum convolutional network.

Training Settings. We simulate a federated learning envi-
ronment with 10 clients. Each client performs 5 local epochs
per communication round with a batch size of 32. Due to
the high overhead of quantum training, the server conducts 5
global communication rounds in total. We use the Adam opti-
mizer with a learning rate of 0.001 for updating both the local
models and the server-side quantum parameters.

Baselines. We compare FEDCOMPASS with the following
six classical federated learning methods: (1) FedAvg [18];
(2) FedProx [13]; (3) FedBN [14]; (4) FedPer [15]; (5) Fed-
Nova [19]; (6) Scaffold [20].

Implementation. We employ Ray as the distributed com-
puting framework to coordinate multi-client parallel training
tasks. The model construction and gradient calculation for the
quantum part are implemented using the PennyLane library.
The federated learning process is built and executed based on
the Flower framework.

3.2. Results and Discussion

We evaluate FEDCOMPASS on MNIST, Fashion-MNIST, and
CIFAR-10 under two non-IID settings with α = 0.3 and α
= 0.7, comparing it against six baseline methods. As shown
in the accuracy results (Table 1) and convergence curves



Table 1: Comparison of test accuracy of different federated
learning algorithms across three datasets under non-IID set-
tings. Best values are in bold and second best are underlined.

Dataset MNIST Fashion-MNIST CIFAR-10

Non-IID Degree 0.30 0.70 0.30 0.70 0.30 0.70

FedAvg [18] 99.54 99.49 96.15 96.05 66.78 76.30
FedProx [13] 74.96 50.69 93.18 93.03 55.20 69.68
FedBN [14] 50.83 50.83 23.98 25.55 71.25 57.63
FedPer [15] 33.68 26.65 48.50 69.83 66.55 57.68

FedNova [19] 40.32 99.62 4.40 25.25 23.13 19.10
Scaffold [20] 40.29 47.17 64.65 85.15 38.53 54.28

FEDCOMPASS (Ours) 99.69 99.76 96.20 95.50 77.00 80.10

Table 2: Test accuracy of ablation study on CIFAR-10 across
communication rounds.

Round No Clustering No Circular Mean FedCompass

1 25.10 25.00 25.98
2 50.65 38.60 52.65
3 50.38 46.23 71.55
4 55.15 32.85 70.03
5 56.13 26.25 77.00

(Fig. 2 – 4), FEDCOMPASS consistently achieves the best
performance in most scenarios.

FEDCOMPASS demonstrates the most significant improve-
ment on the CIFAR-10 dataset. Under the condition of α =
0.3, it achieves an accuracy of 77.00%, which is a 10.22%
increase compared to FedAvg. This result depends on FED-
COMPASS’s clustering mechanism, which effectively groups
clients with similar class distributions, thereby reducing dis-
crepancies in classical feature learning. When α = 0.7, the
accuracy further improves to 80.10%, outperforming FedAvg
by 3.80%, confirming the robustness of our method across
varying degrees of non-IID data. On MNIST, its perfor-
mance approaches the dataset’s upper limit of 99.7%, while
on Fashion-MNIST, the improvement is relatively smaller,
indicating the dataset’s lower sensitivity to distribution shifts.
Nonetheless, FEDCOMPASS still maintains leading results.
Convergence analysis shows that FEDCOMPASS exhibits
faster and more stable convergence under different hetero-
geneity conditions, with the advantage being particularly
pronounced at α = 0.3.

In the ablation study(Table 2), FEDCOMPASS achieved the
highest test accuracy, with steady improvement as the number
of communication rounds increased, demonstrating the effec-
tiveness of the complete framework. Removing the clustering
mechanism for the classical layers resulted in a significant
performance drop, particularly in the later rounds. This in-
dicates that the absence of clustering grouping leads to diver-
gence in the feature extractors, adversely affecting global con-
vergence. Omitting the circular mean aggregation for quan-
tum parameters yielded the lowest and most unstable perfor-
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Fig. 2: Convergence curves of test accuracy versus commu-
nication rounds on MNIST under non-IID settings.
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Fig. 3: Convergence curves of test accuracy versus commu-
nication rounds on Fashion-MNIST under non-IID settings.
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Fig. 4: Convergence curves of test accuracy versus commu-
nication rounds on CIFAR-10 under non-IID settings.

mance. The substantial fluctuations reflect the adverse impact
of misaligned periodicity in quantum rotation angles, under-
scoring the necessity of circular aggregation for coordinating
periodic updates and avoiding optimization conflicts.

4. CONCLUSION

This paper proposes FEDCOMPASS, a novel hybrid classical-
quantum federated learning framework designed to address
the challenges of non-IID data distribution. The method im-
plements two key mechanisms, a spectral clustering-based
client grouping strategy with within-cluster aggregation of
classical feature extractors, and a circular mean aggregation
method combined with adaptive optimization tailored for the
periodic nature of quantum parameters. It provides an effec-
tive solution to data heterogeneity in hybrid federated learn-
ing while enhancing overall performance without compromis-
ing convergence.
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