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Abstract—Deploying distributed training workloads of deep
learning models atop serverless architecture alleviates the burden
of managing servers from deep learning practitioners. However,
when supporting deep model training, the current serverless
architecture faces the challenges of inefficient communication
patterns and rigid resource configuration that incur subpar and
unpredictable training performance. In this paper, we propose
FasDL, an efficient serverless-based deep learning training ar-
chitecture to solve these two challenges. FasDL adopts a novel
training framework K-REDUCE to release the communication
overhead and accelerate the training. Additionally, FasDL builds
a lightweight mathematical model for K-REDUCE training, offer-
ing predictable performance and supporting subsequent resource
configuration. It achieves the optimal resource configuration
by formulating an optimization problem related to system-
level and application-level parameters and solving it with a
pruning-based heuristic search algorithm. Extensive experiments
on AWS Lambda verify a prediction accuracy over 94% and
demonstrate performance and cost advantages over the state-
of-art architecture LambdaML by up to 16.8% and 28.3%
respectively.

Index Terms—Serverless computing, deep learning, communi-
cation optimization, resource configuration.

I. INTRODUCTION

THE past decade has witnessed the successful development
of serverless computing [1], [2], [3], which started with

the release of AWS Lambda [4], the first commercial serverless
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service, in 2014. Serverless computing, also known as Function
as a Service (FaaS), has many advantages over conventional
cloud computing paradigms like Infrastructure as a Service
(IaaS) [5], Platform as a Service (PaaS) [6] and Software as a
Service (SaaS) [7]. For cloud customers, serverless computing
eliminates tedious operation and maintenance (O&M) because
of its automatic scalability to handle burst requests. For cloud
vendors, since serverless computing transfers the responsibility
of system operation from cloud customers to vendors, they have
more superiority in system scheduling to improve the utilization
of the underlying infrastructures. Therefore, serverless comput-
ing has attracted attention from industry and academia and has
wide application in all fields like video processing [8] and high-
performance computation [9].

Due to the automatic scalability and cost-effectiveness, it has
also attracted widespread attention from deep learning prac-
titioners to deploy their training on serverless platforms [10].
Serverless computing benefits deep model training in two as-
pects. The lightweight nature of serverless functions accelerates
the training procedure by effortlessly running a multitude of
serverless functions in parallel, which is especially beneficial
during hyperparameter tuning. Moreover, serverless comput-
ing provides a cost-efficient methodology for deploying deep
learning training workflows because deep learning practitioners
are billed only by the used resources with the “pay-as-you-go”
billing mode. A multitude of works have arisen to optimize
serverless-based deep learning training workflows [11], [12],
[13], [14].

Since LambdaML [14] provides a comprehensive character-
ization of serverless-based deep model training, we follow its
footstep and identify two critical challenges in practice.

1) Excessive Communication Overhead: The first challenge
arises from the lack of peer-to-peer communication [1] because
of the stateless nature of serverless computing. The absence
of peer-to-peer communication in serverless computing im-
pedes the implementation of traditional communication patterns
such as Ring AllReduce and Decentralized Parallel [15] which
depend on stable connections between workers. LambdaML
implements two communication patterns, AllReduce and Scat-
terReduce, with external storage as the communication channel
to address this challenge. However, the communication over-
head can be at most 6× over the computation latency [13].
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2) Challenging Parameter Configuration: The second chal-
lenge is that although serverless computing can alleviate O&M
efforts, deep learning practitioners are still required to config-
ure system-level and application-level parameters to balance
training latency, model accuracy and monetary cost [16]. Our
experiments in Section II-C reveal that the misconfiguration
of dual-level parameters can result in either slow training or
high cost.

To address the aforementioned two critical challenges, we
propose FasDL, an efficient serverless-based deep learning
training architecture, to enhance the performance of training
deep learning models on serverless platforms and facilitate
automatic configuration to alleviate the effort of finding the
optimal parameter configuration.

In response to the first challenge, we revisit the design of
the communication patterns AllReduce and ScatterReduce in
LambdaML, finding that the rigid selection of the number of
aggregators leads to the high communication overhead. AllRe-
duce selects 1 worker as the aggregator, while all the workers
participate in aggregation in ScatterReduce, which are two ex-
treme cases in terms of the number of aggregators. We con-
duct experiments to compare the communication performance
as we change the number of aggregators from 1 to that of
workers in Section II-B. Our experimental results reveal that
increasing the number of aggregators can not necessarily al-
leviate the communication overhead. The performance gain
becomes negligible as the number of aggregators approaches
that of the workers, and can even lead to an increase in com-
munication overhead due to the decay of throughput caused
by excessive partitioning of the model parameters. Based on
the observation, we design an adaptive communication pattern
named K-REDUCE in Section IV where we select the optimal
K aggregators from all the workers for model aggregation to
ensure the communication quality. Furthermore, we observe
that workers other than the aggregators (referred to as non-
aggregators) are idle during the aggregation step. Therefore, we
design an unequal dataset partitioning scheme and a Hybrid
Asynchronous Parallel protocol, as detailed in Section IV, to
utilize the idle time of non-aggregators to further accelerate
training.

Regarding the second challenge, we identify that we can
predict the performance with unseen parameter configurations
after characterizing serverless services and carefully formulat-
ing their relationship. Therefore, we develop a mathematical
model between the dual-level parameters and overall perfor-
mance in terms of training time, convergence efficiency, and
monetary cost in Section V. Subsequently, we efficiently solve
the configuration optimization with a pruning-based heuristic
algorithm in Section VI.

Our contributions are as follows:
• Firstly, to address the issue of low efficiency in com-

munication patterns, we propose K-REDUCE to mitigate
the communication overhead in distributed learning (Sec-
tion IV) with optimal aggregator number. It also exploits
unequal dataset partitioning scheme and Hybrid Asyn-
chronous Parallel (HAP) protocol to further expedite the
training.

Fig. 1. Typical serverless-based distributed model training on AWS Lambda.

• Secondly, to overcome the difficulty in providing cost-
efficient configurations, we formulate a model that re-
lates the dual-level parameters with overall performance
(Section V) to offer predictable performance. Then, we
design a pruning-based heuristic algorithm to automate the
parameter configuration for the K-REDUCE (Section VI).

• Finally, we implement a prototype of FasDL to realize the
K-REDUCE framework atop AWS Lambda and AWS S3
(Section VII). Extensive experiments prove that FasDL
can predict the training performance within 5.4% error,
speed up the training by up to 16.8% and reduce the cost
by up to 28.3% compared with LambdaML (Section VIII).

II. BACKGROUND AND MOTIVATION

A. Serverless-Based Distributed Training

We show a typical workflow of training deep learning models
on serverless computing platforms in Fig. 1. On the developer
side, besides defining model architectures and pre-processing
training datasets, developers also prepare a configuration file
to describe the necessary system-level and application-level
parameters. The system-level parameters include the number of
serverless functions and their memory configuration that will
influence the execution performance of the function, and the
application-level ones are more relevant to the training proce-
dure like the batch size. The developers trigger the function
through the Gateway, and the serverless platform will execute
functions, each corresponding to a worker in distributed train-
ing, in parallel. During the execution of the distributed training
procedure, the functions will communicate with each other
through storage services because of the lack of a peer-to-peer
communication mechanism [1]. Therefore, although serverless
computing can benefit distributed training because of its high
lightweight parallelism, it also puts forward challenges of inter-
function communication overhead and the dual-level parameter
configuration.

B. Inter-Function Communication Overhead

There are two common implementation strategies to solve
the lack of inter-function communication channels during the
distributed training on serverless platforms, server-based and
storage-based communication channel. The former, represented
by λDNN [12], launches a long-live server with a fixed commu-
nication address, allowing serverless functions to communicate
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Fig. 2. Three serverless communication patterns under storage-based
channels.

with it through gRPC or HTTP. However, such an implementa-
tion violates the core principles of serverless architectures—
namely, the absence of server management and automatic
scaling—by requiring additional PaaS-based cloud services
and lacking support for automatic scalability to accommodate
increasing communication traffic. The latter, represented by
LambdaML [14], employs an external persistent storage service
as the communication channel and uses lambda functions as
aggregators to perform parameter aggregation. Such an im-
plementation provides good scalability and high parallelism
while adhering to deployment-free semantics. However, it also
results in higher communication overhead. FuncPipe [13] points
out that the communication time can be up to six times the
computation time and proposes an optimization scheme based
on model parallelism. This scheme reduces communication
overhead through model partitioning and pipeline processing. In
this work, we re-explore the parallelism in the communication
under data parallelism by adjusting data partitioning and syn-
chronization methods to reduce communication overhead and
further accelerate training. Our work is orthogonal to FuncPipe,
providing a different solution to the high communication over-
head in storage-based communication.

With the storage-based communication channel, communi-
cation involves three steps: uploading, aggregation, and down-
loading. Based on their participation in the aggregation step,
workers are categorized into two roles: aggregators and non-
aggregators. Fig. 2 illustrates the process of a single commu-
nication cycle across three communication patterns, varying
the number of aggregators involved. AllReduce and ScatterRe-
duce are commonly adopted in distributed model training, and
Fig. 2(a) and 2(b) show their implementation when applied
in serverless computing [14]. Assuming there are W workers
when training the model, AllReduce selects 1 worker as an
aggregator for parameter aggregation. All the other workers
(i.e., non-aggregators) upload their intermediate parameters to
the external storage, and then the aggregator collects them from
the storage and handles the parameter aggregation. Finally, the
aggregator stores the merged parameters in the storage and
broadcasts them to the other workers. During the aggregation
step, non-aggregators neither perform computations nor engage
in communication; instead, they continuously poll to determine
whether the aggregation is complete. Regarding ScatterReduce,

Fig. 3. Time breakdown in one iteration.

Fig. 4. Throughput between lambda functions and S3.

all the W workers participate in the aggregation step and the
model parameters are split into W shards accordingly. Each
worker aggregates a shard of parameters, obtains other merged
shards and recombines all into the updated model parameters.
As the number of aggregators in AllReduce and ScatterReduce
is 1 and W , respectively, we generalize by choosing an arbitrary
number K (1≤K ≤W ) of aggregators, as shown in Fig. 2(c).
Specifically, we choose K aggregators for parameters aggrega-
tion and split the model parameters into K shards accordingly.

To observe the impact of aggregators on communication
time, we conduct experiments using AWS Lambda as a server-
less platform and AWS S3 as an external storage. Fig. 3 illus-
trates the overall trends of training and communication time
within a single iteration as we changed the aggregator’s number
from 1 to W . To investigate the impact on models of different
complexities, we choose ResNet50 [17] and SqueezeNet [18]
as training models.

For ResNet50, the trend in communication overhead as K
increases resembles a ‘U’shape—high at both ends and lower in
the middle. When K is small, a single aggregator in AllReduce
becomes the communication bottleneck due to the low degree of
parallelism, leading to high communication overhead. With the
increase of aggregators, there is a sharp decrease in overhead,
reaching a minimum at an intermediate K value. However, as
K gets closer to W , the decrease slows and eventually reverses
into a small increase due to the underutilization of the function’s
bandwidth. We test the throughput of Lambda functions with
different memory quotas. Fig. 4 illustrates the throughput degra-
dation as the payload transferred between Lambda functions
and S3 gets smaller. When K is large, the model parameter
shard during transmission is small, resulting in a decline in
the function’s throughput. For smaller models like SqueezeNet
(4.71MB), opting for multiple aggregators to aggregate model
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Fig. 5. Comparison on training time and monetary cost in serverless
environment with different configurations (number of workers W , memory
quota M and batch size B).

parameters results in a more pronounced decline in function
throughput. In this scenario, the advantages of parallel aggre-
gation do not outweigh the drawbacks associated with low
throughput. Consequently, choosing 1 or 2 aggregators mini-
mizes the communication time for SqueezeNet. Overall, with
an inappropriate choice of aggregator number K, the commu-
nication time would greatly exceed the training time.

C. Dual-Level Parameter Configuration

While serverless computing reduces O&M overhead, the
configuration of system-level and application-level parameters
is still essential for optimizing model performance and cost
efficiency for deep learning practitioners. The system-level pa-
rameters of deep learning applications include the number of
CPU cores [19], [20] and network bandwidth [13], [21] that
influence the training performance and communication latency,
respectively. Within the leading commercial serverless comput-
ing platforms, such as AWS Lambda, the allocation of these
resources are automatically and linearly scaled based on the
user-defined memory quota [22], which is one critical factor
to the billing. Another system-level parameter is the number
of workers, i.e., the parallel functions in AWS Lambda. The
application-level parameters include the batch size that influ-
ences both training speed and model performance.

We carry out training on ResNet50 with three sets of random
parameter configurations for the same amount of data samples.
As shown in Fig. 5, training with 8 workers, 1024MB memory
and a 32 batch size takes more than twice the time and cost than
that of training with 8 workers, 2048MB memory and a 128
batch size. The latter configuration shows inverse performance
with the configuration of 4 workers, 1024MB memory and a
128 batch size on time and cost, i.e., the training time doubles
however the cost is only half. In conclusion, misconfigura-
tion of dual-level parameters by developers can lead to unpre-
dictable and excessively high training time and cost, posing
a barrier to conducting training tasks on serverless computing
platforms.

Fig. 6. System architecture and workflow.

III. SYSTEM ARCHITECTURE

We propose FasDL, an efficient serverless-based deep learn-
ing training architecture to mitigate communication overhead
and achieve automatic parameter configuration. FasDL con-
sists of a K-REDUCE training framework, a Modeling module,
a Profiler module, and an Optimizer module. The workflow
of FasDL is shown in Fig. 6. Initially, deep learning practi-
tioners ❶ submit their workloads through Gateway, including
deep models, training datasets, training epochs and constraints.
Compared with the existing platform in Fig. 1, FasDL aims
to adaptively determine the parameter configuration within the
time and convergence constraints, and the least monetary cost.
FasDL firstly ❷ conducts system modeling, including end-to-
end training time, monetary cost and convergence efficiency
in terms of the workloads. The parameter configurations of
the workload include memory quota M , number of work-
ers W , batch size B, and number of aggregators K. Then
FasDL ❸ employs a profiler to determine the workload-specific
and platform-specific coefficients. The workload-specific coef-
ficients characterize the relationship between the training speed
of the given model and the dual-level parameter configuration.
The platform-specific coefficients characterize the network ca-
pabilities provided by the platform. The modeling and profiling
results will transfer to the optimizer to ❹ formulate the opti-
mization problem, determine the parameter search range and
determine parameter configurations based on the pruning-based
heuristic algorithm. Finally, FasDL will ❺ trigger serverless
functions as aggregators and non-aggregators respectively and
allocate datasets of varying sizes. The workers ❻ carry out
distributed training according to the K-REDUCE framework and
use external storage as the communication channel.

IV. K-REDUCE FOR SERVERLESS-BASED TRAINING

We design a new training framework, K-REDUCE, to en-
hance the performance of model training based on serverless
computing. We adopt a novel communication pattern to reduce
excessive communication overhead, and simultaneously, we
design a suitable data partitioning scheme and synchronization
protocol to further accelerate the training process. Fig. 7 illus-
trates the serverless-based deep learning training workflow with
the framework of K-REDUCE.
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Fig. 7. Workflow of K-REDUCE for serverless-based distributed training.

A. Optimal K-Aggregator Selection for Communication
Optimization

With the observation in Section II-B, we select optimal K
(1≤K ≤W ) workers to serve as aggregators and the other
W −K workers as non-aggregators to minimize the commu-
nication overhead. The communication pattern with K aggre-
gators is shown in Fig. 2(c). To select the optimal number of
aggregators K, we model the relationship between communi-
cation overhead and the number of aggregators in Section V,
and design a heuristic algorithm for the efficient search of K
in Section VI-B.

B. Enhanced Data Partitioning and Synchronization for
Accelerated Training

As shown in Fig. 2, the non-aggregators are idle in the ag-
gregation step. We leverage this idle time of non-aggregators to
accelerate the training procedure. However, implementing such
a design is far from trivial, as it could result in asynchronous
training processes among workers as well as issues with asyn-
chronous weight updates, which would invalidate conventional
training data partitioning and synchronization protocols. There-
fore, we design an unequal dataset partitioning scheme and a
Hybrid Asynchronous Parallel protocol. The former mechanism
precisely partitions additional data to non-aggregators, and the
latter flexibly implements distinct synchronization protocols for
different roles of workers. Under these design considerations,
we effectively utilize the idle time of non-aggregators during the
communication to accelerate the training. Only the aggregators
experience brief idle periods during the initialization due to
loading fewer data samples, and during the first iteration for
synchronization.

a) Unequal Dataset Partitioning: To fully utilize the
CPU time of non-aggregators in aggregation, we devise un-
equal dataset partitioning that precisely assigns additional train-
ing samples to the non-aggregators. The unequal partitioning
should meet the alignment constraints on the following two as-
pects. First, the total time of non-aggregators should not exceed
that of aggregators in each iteration; otherwise, it would cause
idle waiting of aggregators. Second, the total number of itera-
tions in an epoch should be the same for the two roles to ensure
the aggregators and non-aggregators finish the training within a
similar period. Therefore, we determine the exact batch size for
non-aggregators in Section VI and partition the dataset ensuring

that the ratio of the total training samples between aggregators
and non-aggregators is consistent with their respective batch
sizes, thereby maintaining an equal number of iterations across
roles.

b) Hybrid Asynchronous Parallel: The iterative nature
of deep learning training requires synchronization protocols
to maintain progress consistency between multiple workers.
Bulk Synchronous Parallel (BSP) [23], [24] adopted by Scat-
terReduce and AllReduce requires each worker to wait for the
others in each iteration, ensuring high consistency but intro-
ducing lengthy overhead. In K-REDUCE, workers are divided
into two distinct roles, aggregators and non-aggregators, each
with different synchronization requirements. Aggregators are
responsible for aggregating parameters after each training it-
eration, necessitating higher synchronization fidelity. In con-
trast, non-aggregators focus primarily on training and submit
parameters at specific points for updates, thus requiring less
stringent synchronization. Therefore, K-REDUCE introduces a
new synchronization protocol, Hybrid Asynchronous Parallel
(HAP). The aggregators employ the BSP protocol for inter-
aggregator communication to keep the global model consis-
tent. The protocol between aggregators and non-aggregators is
Stale Synchronous Parallel (SSP) [25]. The SSP protocol allows
workers to asynchronously retrieve stale parameters and sets
a staleness threshold to ensure convergence performance. To
alleviate the effects of asynchronous updates on weights, we
fix the staleness of non-aggregators at 1, i.e., non-aggregators
retrieve the merged parameters of the previous iteration and
immediately transition to the subsequent iteration without any
extra waiting.

V. MODELING OF K-REDUCE

The dual-level parameters of serverless distributed training
include the memory quota M , the number of total workers W
and the batch size B. With the K-REDUCE (Section IV), due
to the categorization of the worker roles, an additional system-
level parameter, the number of aggregators K, is introduced.
Meanwhile, we denote the batch sizes for aggregators and non-
aggregators as Ba and Bn, respectively. The configuration of
the above parameters affects the training performance in the
following three aspects: end-to-end training time, monetary cost
and convergence efficiency. The key notations in our modeling
of K-REDUCE are summarized in Table I.
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TABLE I
KEY NOTATION IN THE MODELING OF K-REDUCE

Notation Definition
Sm Size of the total model parameters
Ss Size of the model parameter shard in transmission
Sd Size of the training dataset
D Number of training data samples
I, E Number of training iterations per epoch, epochs
W Number of provisioned serverless functions (workers)
M Memory allocation of serverless functions
K Number of aggregators
Ba, Bn Batch size of aggregators, non-aggregators
tpup, tpdown upload, download throughput of serverless functions

A. End-to-End Training Time

a) Communication Overhead: As shown in Fig. 2, the
communication includes three steps, uploading, aggregation
and downloading. Firstly, each worker splits the model param-
eters into K shards and uploads them to the communication
channel in the uploading step. The shard size Ss equals Sm

K ,
where Sm denotes the size of the deep model. In the aggregation
step, each aggregator downloads the corresponding shards from
the other W − 1 workers and uploads the merged shard back
to the communication channel. Finally, each worker downloads
all the merged shards from the communication channel and
recombines them back to model parameters. Based on the above
analysis, the time consumption of these three steps is shown in
Equation 1a, Equation 1b and Equation 1c, respectively.

Tup =
Sm

tpup
=K · Ss

tpup
(1a)

Tagg =
(W − 1)

K
· Sm

tpdown
+

1

K
· Sm

tpup

= (W − 1) · Ss

tpdown
+

Ss

tpup
(1b)

Tdown =
Sm

tpdown
=K · Ss

tpdown
(1c)

In Equation 1, tpup and tpdown represent the upload and
download throughput of Lambda functions, respectively. As
observed in Fig. 4, the throughput is related to the memory
quota M and the size of the transferred shard Ss. The maximum
bandwidth is positively proportional to the memory quota and
when the shard transferred is small, the throughput declines due
to the under-utilization. Therefore, we use an exponential sat-
uration function to model the relationship between throughput
tp and the size of the shard Ss under a fixed memory quota M ,
as shown in equation Equation 2.

tp= p(M) ∗
(
1− e−t(M)∗Ss

)
(2)

p(M) represents the maximum bandwidth achievable under the
specific memory quota M , and t(M) characterizes the decay
rate of throughput as the size of the shard diminishes. p(M)
and t(M) are platform-specific coefficients and vary for upload
and download.

Based on the above analysis, we obtain the mathematical
model of the communication overhead in Equation 3 where
C1 = Sm( W−1

tpdown
+ 1

tpup
) and C2 = Sm( 1

tpup
+ 1

tpdown
). When

K is small, the shard size Ss is large and the throughput tpup
and tpdown is approximately equal to the maximum bandwidth.
Therefore, C1 and C2 are around a constant and the total time
of communication Tcomm is an inverse proportional function
of K. However, as the K gets larger and approaches W , the
model parameters are split into smaller shards, leading to the
degradation of the throughput and the increase of communica-
tion overhead, which is consistent with the observation of Fig. 3.

Tcomm = Tup + Tagg + Tdown

=
Sm

tpup
+

(
W − 1

tpdown
+

1

tpup

)
Sm

K
+

Sm

tpdown

=
C1

K
+ C2 (3)

b) One-Iteration Training Time: The execution time of
computational workloads on CPUs is influenced by the vol-
ume of computation required and the available computational
resources. In the context of a serverless platform, the duration
of a single training iteration can be primarily attributed to the
batch size B, which determines the computation volume, and
the memory quota M , which is directly proportional to the
CPU capacity provided by the Lambda service. We evaluate
the one-iteration training time of ResNet50 and SqueezeNet
with different batch sizes and memory quotas. Based on the
observation from Fig. 8, the training time of an iteration Ttrain

is linear to the batch size B and is the reciprocal of a linear
function of memory quota M . Therefore, we formulate the
training time of an iteration in Equation 4 where a, b and m
are training-specific coefficients.

Ttrain_iter = a · B + b

M +m
(4)

c) Initialization Overhead: Prior to the initiation of train-
ing, workers loads the training model and partitioned training
data from S3. Due to the 15-minute maximum lifetime con-
straint of Lambda functions, workers must halt at a consistent
iteration before the function times out, and retrigger the func-
tion. Moreover, given the stateless nature of Lambda functions,
each new worker necessitates reloading the model and dataset.
We choose the completion of each epoch as the synchronization
point to initiate a new round of functions. The duration of
dataset loading is contingent upon the non-aggregators, which
are apportioned a larger share of data owing to the unequal
dataset partitioning scheme. As analyzed in Section IV-B, the
size of the dataset allocated to different roles is proportional
to their respective batch sizes. Consequently, the overhead as-
sociated with the loading of the model and training data is
represented in Equation 5.

Tload =
Sm + Sd · Bn

Bg

tpdown
(5)

Sm and Sd represent the size of training model and dataset
respectively. The global batch size Bg is defined as the sum
of the local batch size of all the workers, i.e., the number of
training samples in an iteration. We formulate the global batch
size as Equation 6 in K-REDUCE.

Bg =Ba ·K +Bn · (W −K) (6)
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Fig. 8. Training time with different batch size and memory.

d) End-to-End Training Time: In our design, the training
of each epoch is accomplished by triggering one round of
Lambda functions. The overhead of each epoch includes a one-
time initialization and the training and communication incurred
in each iteration. The number of iterations I in each epoch is
determined by the total number of training samples D and the
global batch size Bg, as I = D

Bg .
Therefore, the end-to-end training time can be calculated in

Equation 7.

T = (Tload + (Ttrain_iter + Tcomm) · I) · E (7)

B. Monetary Cost

The total cost C consists of the billing of Lambda Function
Cλ and network transmission. The billing of Lambda functions
is related to the memory quota M and running time T . Given
the unit price of Lambda prλ, the cost of AWS Lambda can be
calculated as

Cλ = prλ · T ·M ·W (8)

The selection of storage services includes persistent storage
(e.g. S3) and caching (e.g. ElasticCache). The billing of S3 is
based on the number of requests PUT and GET. The upload and
download requests number of one-time communication can be
calculated as Rup =K ·W and Rdown = 2K · (W − 1).

CS3 = I · (prS3
PUT ·Rup + prS3

GET ·Rdown) (9)

The billing of ElasticCache is based on the size of the data
transferred. According to Fig. 2, the total size of the model
parameter in a each iteration is equal to Sm · (3W − 2). Given
the unit price of ElasticCache prEC , the cost of ElasticCache
can be calculated as

CEC = prEC · E · (2Sd + I · (Sm · (3W − 2))) (10)

Therefore, we formulate the total monetary cost in Equation 11.

C = Cλ +

{
CS3 with S3

CEC with ElasticCache
(11)

C. Convergence Efficiency

The training loss is influenced by both the number of epochs
E and global batch size Bg. As the global batch size increases,
the model typically requires a greater number of epochs to
achieve a specified training loss value, i.e., converges slowly,

as observed in studies such as [12]. Therefore, with a specified
number of training epochs, the global batch size impacts the
convergence efficiency of the model.

VI. PARAMETER CONFIGURATION

A. Problem Formulation

As indicated in Section V, the performance of K-REDUCE is
related to the following five configuration-related parameters:
the memory quota M of functions, the number of total workers
W and aggregators K, the batch size of aggregators Ba and
non-aggregators Bn. In addition, the performance can be
evaluated in three aspects: end-to-end training time, monetary
cost and convergence efficiency. Therefore, we formulate the
optimization problem in K-REDUCE as follows: given the
end-to-end time constraint Tcon and convergence-enabling
maximum global batch size Bg

max, find the optimal
configuration-related parameters that minimize the monetary
cost in total. The optimization problem can be formally defined
in Equation 12.

min
M,W,K,Ba,Bn

CK-REDUCE

s.t. T ≤ Tcon,

Bg ≤Bg
max (12)

By substituting Equations 6, 2, 1, 3, 4 into Equation 7 and
Equation 11, the end-to-end training time T and monetary cost
C are actually affected by M , W , K, Ba and Bn. Obviously,
the total time T in constraint and the total monetary cost C are
non-linear with the undetermined parameters above. Accord-
ingly, the optimization problem in Equation 12 turns out to be
in the form of non-linear integer programming, which is NP-
hard to solve [26].

B. Pruning-Based Heuristic Algorithm

To solve the above NP-hard optimization problem, we de-
sign a pruning-based heuristic search algorithm to search for
relatively optimal parameter configuration efficiently.

1) Parameter-Range Pruning: Firstly, we narrow down the
search range of each parameter sequentially as follows:

a) Batch Size of Aggregators Ba: We define the training
rate TR as the number of training samples processed per unit
time in an iteration.

TR=
Ba

Ttrain
=

M +m

a
· 1

1 + b
Ba

(13)

Authorized licensed use limited to: University of Melbourne. Downloaded on February 10,2025 at 07:39:07 UTC from IEEE Xplore.  Restrictions apply. 



CHEN et al.: FASDL: AN EFFICIENT SERVERLESS-BASED TRAINING ARCHITECTURE 475

The training rate is capped at M+m
a , with γ = 1

1+ b
Ba

represent-
ing the proportion of this maximum rate achieved. To ensure
a high training rate, we set a minimum threshold γmin for
the proportion (empirically set between 0.6 and 0.8), thereby
determining a lower bound for the batch size. As to the upper
bound of batch size, two constraints need to be taken into
consideration. First, as the increase of batch size, the minimal
executable memory increases as well, which should not exceed
the memory quota M . Second, the constraint of maximum
global batch size should be satisfied. Therefore, we narrow
down the search range of batch size Ba as follows:

Blower ≤Ba ≤Bupper

Blower =
b

1
γmin

− 1

Bupper =min

{
BM ,

Bg
max

W

}
(14)

where BM is the maximum executable batch size under mem-
ory quota M . Given that the upper bound is dependent on W
and M , we ascertain it subsequent to the determination of W
and M . In addition, we search for the optimal batch size with a
step of 16 to balance computational efficiency with precision.

b) Number of Workers W : Given the lower bound of batch
size Blower, the number of workers W is constrained by the
maximum global batch size Bg

max. Therefore, we narrow the
search range of W with the following upper bound:

W ≤Wupper =
Bg

max

Blower
(15)

c) Memory Quota M : As to the memory quota of func-
tions, we mainly consider the following two constraints.

First, for a given model and batch size, the memory quota
must be greater than the minimum executable memory. We de-
termine it through a profiler, and we provide a detailed descrip-
tion in Section VII. Second, the serverless platform imposes
limits on the memory quota for individual functions, which is
10240MB in AWS Lambda. Although the memory allocation
granularity is 1MB on AWS Lambda, we set the search step of
memory as 128MB, which speeds up the searching significantly
while only introducing a minor deviation in the results.

d) Number of Aggregators K: We search the number of
aggregators K, starting from W that represents ScatterReduce,
down to 1, indicative of AllReduce. The advantages of the
K-REDUCE stem from two factors: the reduction of communi-
cation overhead and the effective utilization of non-aggregators’
idle CPU. The optimal value for K is determined at the point
where the combination of these two benefits is maximized.

e) Batch Size of Non-Aggregators Bn: According to the
analysis in Section IV-B, the batch size of non-aggregators Bn

should meet the alignment constraint as follows:

Ttrain(B =Bn) = Ttrain(B =Ba) + Tagg (16)

In addition, same as the batch size of aggregators Ba, the choice
of Bn should meet the constraints of the executability under the
given memory quota M and global batch size with the given
number of workers W .

2) Two-Stage Search: Lemma VI.1 proves that with the
same configuration of parametersM ,W ,Ba, the minimum cost
of K-REDUCE is no more than that of ScatterReduce.

Lemma 1: minK∗CK-REDUCE ≤ CScatter−Reduce

Proof: As K-REDUCE further reduces the end-to-end
training time T with the optimal K∗, the billing of Lambda
service in K-REDUCE is no more than that of ScatterReduce
with the same M and W . Besides, the number of requests
of K-REDUCE in one-time communication is less than that
of ScatterReduce as K∗ ≤W , so the billing of S3 service in
K-REDUCE is also no more than that of ScatterReduce. In
summary, with the same configuration of parameters M , W ,
Ba, the minimum cost of K-REDUCE is no more than that of
ScatterReduce.

Based on the insight above, we divide the five parameters
into two sets: (1) M , W and Ba which are common dual-
level parameters in ScatterReduce; (2) K and Bn which are
introduced in K-REDUCE. Then, we divide the search of the
original problem into two sequential stages, each targeting a
separate set of parameters, thereby narrowing down the search
space efficiently. This two-stage search approach acts as a
pruning strategy, as it reduces the complexity by eliminating
the need to consider all possible combinations of parameters
simultaneously.

a) First Stage: In the first stage, we reformulate the opti-
mization problem to identify the common dual-level parameters
W , M , and Ba based on ScatterReduce as follows:

min
M,W,Ba

CScatter−Reduce

s.t. T ≤ Tcon

δ
Bg ≤Bg

max · δ (17)

Compared with ScatterReduce, the introduction of K-REDUCE
in the second stage not only reduces the end-to-end training
time but also increases the global batch size as we transform
several aggregators into non-aggregators and set a larger batch
size. Considering that, we relax the constraint on end-to-end
training time and tighten the constraint on global batch size with
a reduction factor δ (0< δ ≤ 1). We perform nested iterations
over the parameters W , M , and Ba in a sequential manner. For
a given W , we iterate over the M in decreasing order. Should it
occur that no parameter configurations meet the time constraints
under the current M , an early stopping mechanism is employed.
This mechanism halts further iterations over smaller M values
for the current W , thus avoiding unnecessary computations and
enhancing the efficiency of the search process.

b) Second Stage: In the second stage, with the speci-
fied Ba, W and M , we determine the parameters K and Bn

introduced by K-REDUCE. We iterate K from W to 1 and
for the current K, we can determine the corresponding Bn

by Equation 16. We repeat the two-stage search with different
reduction factors δ (i.e., 0.6, 0.7, 0.8, 0.9 and 1) and return the
parameters configuration with the minimum cost. As depicted
in Fig. 3, smaller models such as SqueezeNet are inclined to
choose lower values of K to avoid the issue of throughput
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degradation. Consequently, there exists a more substantial op-
timization opportunity for small models in the second stage,
which permits the choice of smaller δ. In contrast, larger models
generally exhibit a preference for higher values of δ.

c) Complexity Analysis: The complexity of the first stage
is in the order of O(p · q · l), where p=Wupper −Wlower + 1
denotes the cardinality of the search range of W , q denotes
the number of possible function memory sizes, which is equal
to Mmax−Mmin

Mstep
+ 1 and l denotes the number of possible batch

sizes, which is equal to Bupper−Blower

Bstep
+ 1. The complexity of the

second stage is in the order of O(W ), where W is the number
of workers identified in the first stage. Overall, by dividing
the search for five parameters into two sequential stages, we
reduce the complexity of the algorithm from O(p · q · l ·W )
to O(p · q · l +W ). Additionally, we adopt a parameter-range
pruning strategy and early stopping mechanisms in the first
stage, which further improves the efficiency of the algorithm.
In particular, the pruning-based heuristic algorithm identifies a
sub-optimal parameter configuration plan, as we narrow down
the search space of parameters. We validate the efficiency
and effectiveness of the pruning-based heuristic algorithm in
Section VIII-C.

VII. IMPLEMENTATION

We build a prototype for FasDL in Python(∼1.5k loc) to
realize the K-REDUCE atop AWS Lmabda, Amazon S3 and
Amazon ElasticCache.

We design a profiler to determine the workload-specific
and platform-specific coefficients. The workload-specific coef-
ficients include model size and training-related coefficients a,
b and m. Since the training-related coefficient is only related to
the characteristics of the model itself, the profiler conducts the
following steps by invoking a Lambda function to determine
them. The profiler evaluates the one mini-batch training time
of the given model under varying batch sizes and memory
quotas, subsequently using the method of least squares to fit
the coefficients based on the Equation 4. The platform-specific
coefficients are used to characterize the network capabilities
provided by the platform. According to Equation 2, with a
fixed memory quota, the throughput demonstrates an expo-
nential saturation relationship with the size of the payload.
The platform-specific coefficients include a set of throughput-
related coefficients p(M) and t(M), which are dependent on the
memory quota M . The profiler measures the upload and down-
load throughput between AWS Lambda and storage services
by transferring payloads of varying sizes under varying mem-
ory quotas. The test interval of the memory quota is 128MB,
which is consistent with the search step in the search algorithm.
Subsequently, it employs the least squares method to fit the
throughput-related coefficients under different memory quotas.

We follow the hierarchical invocation mechanism in Lamb-
daML [14] to handle the limited lifetime of the Lambda func-
tion. Although we implement FasDL on top of AWS prod-
ucts, it is platform-independent and can serve as a plugin
for other commercial or open-source serverless computing
platforms.

TABLE II
WORKLOADS

Model Dataset Model
Size(MB)

Training-related
Coefficients

a b m

BERT-Base CoLa 417.17 2344.97 2.37 1145.66

ResNet50 CIFAR10 97.49 37.19 12.48 -111.46

MobileNet CIFAR10 13.37 13.50 9.57 -92.88

SqueezeNet CIFAR10 4.71 2.16 22.60 -93.22

Fig. 9. Profiling and fitting of throughput between AWS Lambda and
Amazon S3.

VIII. PERFORMANCE EVALUATION

A. Experimental Setup

We implement a prototype of FasDL on AWS Lambda,
adapting communication channels including both Amazon S3
[27] and Amazon ElasticCache Serverless [28]. We select
SqueezeNet, MobileNet, ResNet50, and BERT-Base as our
model workloads, using CIFAR-10 as the dataset for the first
three models, and the CoLA dataset for the BERT-Base model.
We employ the serverless adaptations of the AllReduce and
ScatterReduce introduced by LambdaML [14] and λDNN [12]
as the benchmark.

Before the evaluation experiments, we adopt the profiler
to obtain the training-related coefficients of four workloads
as shown in Table II and the communication throughput be-
tween the AWS Lambda function and storage services, such
as Amazon S3, as illustrated in Fig. 9. Then, we evaluate the
performance of FasDL as follows: Firstly, we assess the accu-
racy of the modeling (Section V) for both time and monetary
cost. Secondly, we validate the performance of the pruning-
based heuristic algorithm (Section VI), focusing on both ef-
ficiency and effectiveness of parameter configuration. Thridly,
we compare the performance of K-REDUCE (Section IV) with
AllReduce and ScatterReduce in LambdaML in terms of end-
to-end training time, monetary cost and convergence efficiency.
Finally, we compare the performance of different communica-
tion channel implementations and performance manifestations
between FasDL and standalone training.

B. Accuracy of Modeling

In this section, we verify the accuracy of the modeling
(Section V) adopted by the profiler and predictor. Firstly, we
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Fig. 10. Precision analysis of predictions for K-REDUCE.

TABLE III
COMPARISON OF DIFFERENT SEARCH STRATEGIES

Model Search
Strategy

Pred Cost
(USD)

Performance
Degradation

Search
Time(s)

Search
Speedup

BERT-Base Two-Stage 3.42
11.6%

32.1
4.8xBrute-force 3.02 155.0

ResNet50 Two-Stage 1.49
14.6%

290.5
9.1xBrute-force 1.30 2645.6

MobileNet Two-Stage 0.38
2.7%

83.1
11.4xBrute-force 0.37 954.6

SqueezeNet Two-Stage 0.104
6.1%

217.0
2.0xBrute-force 0.098 443.9

obtain the training-related coefficients of four workloads with
the profiler as shown in Table II and determine the parameter
configuration of K-REDUCE with the optimizer as shown in
Table IV. Then, with the parameter configuration, we carry out
the training following the K-REDUCE framework and record
the actual time and monetary cost. As shown in Fig. 10, we
compare the actual values with the predicted values yielded by
the predictor in terms of time and monetary cost. The prediction
errors for time and monetary cost are within 6%. The prediction
error primarily arises from inaccuracies in communication time,
which are caused by the fluctuation of function throughput.
Since the coefficients used by the predictor are fitted through
the least squares method from a limited and noisy dataset, it
consequently leads to the prediction error.

C. Efficiency and Effectiveness of Parameter Configuration

In this section, we measure the performance of the opti-
mizer that employs the pruning-based heuristic algorithm (Sec-
tion VI). Specifically, the optimizer narrows down the search
range of parameters with the parameter-range pruning and then
adopts the two-stage search to expedite the search process.
The parameter-range pruning reduces the overhead of the NP-
hard problem to an acceptable level and eliminates infeasible
parameter configurations due to limitations such as insufficient
memory for execution. For the two-stage search, we set up
a baseline that conducts a brute-force search after parameter-
range pruning. As Table III demonstrates, the two-stage search
increases the search speed for at most 11.4× compared with the
brute-force search. This high efficiency is achieved by dividing

the parameter configuration into two independent stages, which
significantly reduces the complexity of the algorithm. To val-
idate the effectiveness of the two-stage search, we define the
performance degradation as (

CostTwo-Stage

CostBrute-force
− 1)× 100%, which

is only 11.6%, 14.6%, 2.7% and 6.1% for the four workloads
respectively. We trade off a slight performance degradation for
a significantly improved search efficiency.

D. Comprehensive Analysis of K-REDUCE

To validate the performance of K-REDUCE (Section IV),
we conduct a comparative analysis of the K-REDUCE against
the ScatterReduce and AllReduce in LambdaML, focusing on
end-to-end training time and monetary cost and convergence
efficiency. In this section, we adopt S3 as the communication
channel.

1) Performance on Time and Cost: We verify the effective-
ness of the K-Reduce in optimizing training time and cost from
two perspectives.

a) Performance Comparison for the Optimization Prob-
lem: With respect to the optimization problem presented in Sec-
tion VI-A, which is to minimize cost under the given training
time and global batch size constraints, we compare the perfor-
mance of K-REDUCE with the ScatterReduce and AllReduce.
The constraints for four workloads and their parameter configu-
rations are shown in Table IV. For K-REDUCE, the parameters
K-Opt are provided by the two-stage search in Section VI-B,
while for ScatterReduce and AllReduce, the parameters Scatter-
Opt and All-Opt are determined through brute-force search,
respectively. For BERT-Base and ResNet50, no parameter con-
figuration meets the time constraints when using AllReduce
for communication. This is because for larger models, choos-
ing only one aggregator for aggregation results in excessively
high communication overhead. As illustrated in Fig. 11, given
the end-to-end training time constraints, K-REDUCE can sig-
nificantly reduce monetary cost compared to ScatterReduce
and AllReduce. More specifically, compared with ScatterRe-
duce, K-REDUCE shows a reduction of 39.0%, 26.7%, 25.8%
and 53.2% on monetary cost when training with BERT-Base,
ResNet50, MobileNet and SqueezeNet respectively. Compared
with AllReduce, K-REDUCE shows a reduction of 25.8% and
17.6% in monetary cost when training with MobileNet and
SqueezeNet. As K-REDUCE reduces communication time by
selecting the optimal number of aggregators K and acceler-
ates training through the unequal dataset partitioning scheme
alongside the Hybrid Asynchronous Parallel protocol, it overall
enhances the training performance. Consequently, as shown in
Table IV, under the same time constraints, the parameter con-
figuration of K-REDUCE requires fewer resources (i.e. number
of workers W and memory quota M ) than ScatterReduce and
AllReduce, thus reducing the monetary costs of deployment and
training.

b) Time and Cost Optimization Within Fixed Resources:
We then compare K-REDUCE to ScatterReduce and AllReduce
under the same resource configuration to verify the efficacy of
K-REDUCE in terms of time and cost. We denote Scatter-CP
and All-CP as ScatterReduce and AllReduce, respectively,
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TABLE IV
PARAMETER CONFIGURATION OF DIFFERENT COMMUNICATION PATTERNS

Model
Time

Constraint(s)
Global

Batch Size
K-REDUCE Scatter Reduce All Reduce λDNN

N M Ba K Bn N M B N M B N M B
BERT-Base 2500 640 10 10240 32 4 84 15 10240 32

No Fit
10 10240 32

ResNet50 8000 1024 7 1536 128 4 170 8 1664 128 2 3328 512
MobileNet 4000 512 3 1920 128 1 192 4 2048 128 4 1920 128 2 2304 256
SqueezeNet 3000 384 2 768 128 1 201 2 1792 128 3 640 128 2 768 192

Fig. 11. Comparison on end-to-end training time and monetary cost.

Fig. 12. Comparison on convergence efficiency.

each employing the common dual-level parameters (i.e., M , W
and B) shared with K-REDUCE (K-Opt). As shown in Fig. 11,
K-Opt demonstrates superior performance improvements
across all four models when compared to both Scatter-CP and
All-CP. On average, K-REDUCE outperforms ScatterReduce
by approximately 16.8% in terms of time and 28.3% in terms
of cost and it outperforms AllReduce by roughly 33.6% in
time and 31.4% in cost. With the fixed resource configuration,
K-REDUCE reduces the end-to-end training time in two
respects. On the one hand, K-REDUCE selects the optimal
number of aggregators K from the given workers, which
minimizes the communication time. On the other hand,
K-REDUCE utilizes the idle CPU resources of non-aggregators
during the aggregation step, thereby accelerating the model
training. With the reduction of the end-to-end training time,

the cost of Lambda decreases accordingly, as the billing of
Lambda is proportional to running time. Moreover, compared
to ScatterReduce, which involves all workers in aggregation,
K-REDUCE decreases the number of communication requests
by selecting fewer aggregators. Given that Amazon S3’s billing
for network usage is based on the number of requests, this
approach by K-REDUCE reduces the cost of network.

2) Performance on Convergence Efficiency: Contrary
to AllReduce and ScatterReduce employing the Bulk Syn-
chronous Parallel protocol, K-REDUCE implements the Hybrid
Asynchronous Parallel protocol. We compare the training loss
and accuracy under the same cost conditions. As shown in
Fig. 12, with the constraints on the global batch size and the
fixed staleness of 1 in HAP (Section IV-B), the convergence
efficiency of the K-REDUCE is effectively guaranteed. In most
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Fig. 13. Comparison of different communication channel implementations
for minimized cost under time constraints.

cases, K-REDUCE shows a convergence performance that is
not only comparable to but often surpasses that of the other
mechanisms.

E. Comparison of Different Communication Channel
Implementations

To solve the lack of inter-function communication chan-
nels during distributed training on serverless platforms, there
are two common implementation strategies: storage-based and
server-based communication channels. FasDL adopts the for-
mer, utilizing cloud storage services, whereas λDNN adopts
a parameter server for parameter aggregation. With our pro-
filing and modeling, FasDL can accommodate different types
of storage services, including persistent storage services (e.g.
S3) and caching services (e.g. ElasticCache). In this section, we
first compare the performance of FasDL for persistent storage
services and caching services, using Amazon S3 and Amazon
ElasticCache Serverless respectively. Then, we compare FasDL
with λDNN to analyze the performance of different communi-
cation channel implementations.

1) Persistent Storage Service vs. Caching Service: Fig. 13
shows the minimized cost of FasDL with S3 and ElasticCache
under given training time and global batch size constraints.
Since the cost of ElasticCache is related to the size of the data
transferred, its overhead is much higher than S3 as the model
size increases. At the same time, due to the faster read/write
speed of ElasticCache, the communication time is less than that
of S3 in most cases. However, when training larger models (e.g.
BERT), ElasticCache is inferior to S3 in terms of both time and
cost. As shown in Equation 10, with substantial model sizes,
the cost of ElasticCache increases significantly with the num-
ber of workers. Therefore, the optimal parameter configuration
tends to involve fewer workers for training. Additionally, the
maximum configurable memory for Lambda functions limits
the batch size of workers, resulting in the global batch size not
fully exploiting the constraint, thus requiring more rounds of
communication.

2) Storage-Based vs. Server-Based Communication Chan-
nels: In this section, we compare FasDL with λDNN, which
adopts a server as communication channel. We follow the

Fig. 14. Comparison between FasDL and standalone implementations for
minimized end-to-end training time.

implementation of λDNN, using an m5.large EC2 instance
(equipped with 2 vCPUs and 8 GB memory) to serve as the
Parameter Server (PS) and conduct experiments under the same
optimization problem. The results are shown in Fig. 13. Similar
to ElasticCache, the network billing of EC2 instance is related
to the amount of data transferred, leading to similar charac-
teristics in terms of communication time and cost. Overall,
both S3 and ElasticCache implementations show superior cost
efficiency compared to λDNN, with a maximum cost reduction
of 78.13%. Additionally, compared to server-based implemen-
tations, cloud storage and caching services are pay-as-you-go
and serverless, further reducing costs and deployment overhead
for developers.

F. Comparison Between FasDL and Standalone Training

In this section, we compare the minimized end-to-end train-
ing time of FasDL with that of standalone training in the
serverless context, i.e.,, conducting local training using a single
Lambda function. Current serverless platforms impose maxi-
mum resource limits on individual functions, e.g., 10240MB
in AWS Lambda. We conduct standalone training using the
maximum resource allocation ,and for FasDL, we search for
the parameter configurations that minimize training time un-
der both S3 and ElasticCache implementations. As shown in
Fig. 14, since local standalone training does not incur com-
munication overhead, it outperforms FasDL in terms of both
training time and cost when the model is relatively simple (e.g.,
SqueezeNet). However, as models are getting more complex,
the maximum resource allocation for a single function becomes
a bottleneck, leading to training times that can be up to 5
times longer than those of FasDL. In summary, standalone
training in a serverless context can significantly reduce costs
due to the pay-as-you-go billing strategy. Nevertheless, the
resource limit of a single function remains a bottleneck for fur-
ther accelerating training time, especially for complex models
like BERT.

IX. RELATED WORK

a) Distributed Training of DNNs: There are three com-
mon parallel mechanisms in distributed training to handle the
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increase of the training data volume and the complexity of
deep learning models: data parallelism, model parallelism and
pipeline parallelism. Parameter server [29], [30] is the pio-
neering prototype of data parallelism with the training data
distributed among workers, which has been further developed
in subsequent works [31], [32]. It seeks to expedite the training
process, whereas model parallelism [33], [34], [35] is bene-
ficial where the model’s size exceeds the memory capacity
of a single machine. Recently introduced pipeline parallelism
[36], [37], [38], [39] combines the benefits of data and model
parallelism, achieving reduced training time for large-scale
models. FasDL optimizes the training procedure based on the
data parallelism since there is no peer-to-peer communica-
tion [1] between serverless functions while the communica-
tion overhead of the other mechanisms is more complex and
demanding.

b) Serverless-Based Communication Optimization: Be-
cause of the stateless nature of serverless functions, the lack of
peer-to-peer inter-function communication results in the over-
head of serverless runtime. FaaSFlow [40] implements an adap-
tive storage library to enable communication between functions
to bypass the external channel. Yu et al. propose Pheromone
[41] equipped with a data-centric function orchestration ap-
proach, supporting direct and efficient data exchange between
functions. These optimization techniques are orthogonal to
ours, which can boost FasDL’s performance with elaborate
design and consolidation.

c) Serverless-Based Training Optimization: Serverless
computing has arisen attraction from deep learning prac-
titioners [12], [13], [14], [42], [43], [44]. Among them,
several prototypes have been proposed as the baseline of fur-
ther research. Jiang et al. propose LambdaML [14] to con-
duct extensive characterization of serverless machine learning,
including communication patterns and synchronization proto-
cols. Many other improvement schemes [12], [13] have been
proposed to optimize the performance of training deep learn-
ing models on serverless computing frameworks from various
aspects. Compared with existing works, FasDL is designed
to be platform-independent, which means that it can be de-
ployed on other cloud platforms with similar serverless com-
puting capabilities, and even on platforms with GPU support
[45], [46].

d) Modeling and Configuration Optimization in
Serverless Computing: The emergence of the serverless
computing paradigm has brought about substantial shifts
in application deployment methodologies. Consequently,
numerous research has been directed towards achieving
predictable performance and optimal resource configuration
within this paradigm. Similar to our study, λDNN [12]
and Funcpipe [13] target the enhancement of performance
and predictability for distributed training tasks. Besides the
training tasks, a substantial amount of work [47], [48], [49]
is dedicated to optimizing the performance and resource
efficiency of distributed inference tasks within the serverless
framework. Moreover, some studies [50], [51], [52] have
ventured into modeling the performance and cost associated
with general serverless workflows.

X. CONCLUSION

We introduce FasDL, a novel architecture for optimiz-
ing distributed training workloads of deep learning models.
FasDL employs a novel K-REDUCE framework to increase
the computation-to-communication ratio and builds a com-
prehensive analytical module achieving predictable training
performance and automatic resource configuration. Extensive
prototype experiments on AWS Lambda demonstrate that
FasDL achieves predictable training performance within 6%
error, speeds up the training by up to 16.8% and reduces the
cost by up to 28.3%, in comparison to the state-of-the-art ar-
chitecture LambdaML with ScatterReduce.
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