
Dynamic Adaptive Fault-Tolerance in Stream
Computing Systems under Resource Constraints

Zhaojun Wang1, Dawei Sun1*, Xuan Zang1, Atul Sajjanhar2

, and Rajkumar Buyya3

1 School of Information Engineering, China University of Geosciences, Beijing,
100083, China

wangzhaojuncn@gmail.com; sundaweicn@cugb.edu.cn
2 School of Information Technology, Deakin University, Waurn Ponds, Victoria, 3216,

Australia
atul.sajjanhar@deakin.edu.au

3 Quantum Cloud Computing and Distributed Systems (qCLOUDS) Lab, School of
Computing and Information Systems, The University of Melbourne, Grattan Street,

Parkville, Victoria, 3010, Australia
rbuyya@unimelb.edu.au

Abstract. In stream computing systems, fault tolerance and recovery
efficiency during task execution are core elements for ensuring system
performance. However, existing fault tolerance strategies often overem-
phasise global fault tolerance performance, leading to significant increases
in resource overhead and failing to achieve an effective balance between
resource costs and reliability. To address these issues, we propose a dy-
namic adaptive fault-tolerant strategy named Da-Stream. This paper
addresses the following aspects: (1) The high resource costs associated
with running both primary and backup copies simultaneously are anal-
ysed, and the impact of factors such as operator type, changes in data
stream size, and the strength of upstream/downstream dependencies on
the fault tolerance requirement level of operators is verified. (2) The
stream computing resource model and operator fault tolerance require-
ment level model are established to evaluate node CPU and memory re-
source utilisation, satisfy the resource constraints of the fault tolerance
strategy, and adaptively assess the fault tolerance requirement levels of
different operators. (3) Da-Stream classifies strategies based on factors
such as operator type, resource requirements, and dependencies, and dy-
namically adjusts the fault tolerance strategy at runtime by combining
resource usage, fault prediction, and historical scores. (4) Experimental
results show that compared with state-of-the-art methods, Da-Stream re-
duces fault recovery time by 24.3%, increases CPU utilisation by 18.7%,
increases memory utilisation by 12.2%, and reduces processing latency
by 36.8%.

Keywords: Adaptive fault tolerance strategy · Distributed stream com-
puting · Proactive backup · Resource constraints.



2 Dawei Sun

1 Introduction

Stream computing systems are increasingly being applied in fields such as big
data processing, real-time analysis, and financial risk control. In these scenarios,
the continuity and accuracy of data are of critical importance. Therefore, the
fault tolerance mechanism of stream computing systems has become a key factor
in ensuring system stability and reliability. Apache Flink, a popular distributed
stream computing framework, has been widely adopted in the industry due to its
robust fault tolerance capabilities[1, 2]. In addition to Flink, other mainstream
stream computing systems also provide their own fault tolerance mechanisms to
ensure the reliability and continuity of data processing. Spark[3] achieves end-to-
end semantics at least once through RDD lineage and checkpoint mechanisms,
and can achieve exactly once processing through idempotent sinks. Storm[4] uses
an ACK mechanism for message acknowledgement, while the Trident extension
enables support for higher-level semantics. In summary, each system continues to
optimise state persistence, efficient scheduling, and fault detection mechanisms,
driving fault tolerance mechanisms from static to adaptive, low-overhead, and
high-availability directions.

Although Flink’s fault tolerance mechanism has been widely applied in prac-
tical scenarios, it still faces numerous challenges when dealing with complex
stream computing tasks, including: frequent state preservation in high through-
put, low-latency scenarios results in significant performance overhead, state man-
agement lacks scalability in large-scale tasks and is prone to becoming a bottle-
neck, complex data flow topology structures that make fault tolerance handling
more difficult, the difficulty of balancing data consistency and processing la-
tency, and low recovery efficiency, which requires global rollback and lengthy
node recovery times.

Some researchers have explored fault-tolerance strategies in stream comput-
ing systems, which can be broadly categorised into active, passive, and hybrid
approaches. Active fault tolerance[5–9] improves recovery efficiency by main-
taining snapshots or backup copies during runtime, but often faces issues such
as high resource overhead, poor scalability, and suboptimal replica placement.
Passive fault tolerance[10, 11] relies on checkpoints or logs to restore the system
state after a failure. While it reduces resource consumption, it still faces a trade-
off between checkpoint frequency and performance, and its efficiency decreases
under resource-constraints conditions. Hybrid approaches[12, 13] combine both
strategies, using passive techniques under normal conditions and switching to
active recovery upon failure. This helps reduce recovery latency but increases
overall resource usage and lacks fine-grained replica configuration. To address
these issues, recent improvements have focused on optimising checkpoint trigger
conditions and intervals to reduce performance overhead, introducing incremen-
tal checkpoints and hierarchical storage to enhance state management scalabil-
ity, and exploring new fault-tolerance models to better support reliability and
consistency in complex topologies. More flexible consistency models have also
been proposed to balance latency and correctness. To achieve faster recovery,
region-based local restart mechanisms and enhanced active fault tolerance tech-



Da-stream 3

niques have been explored[14]. However, these methods still have shortcomings
in addressing the high resource costs required for improved fault tolerance, slow
recovery speeds for certain operations under faults, and the lack of adaptive
mechanisms that can adjust strategies based on real-time resource conditions
and operational state changes.

To address the limitations of static fault-tolerance mechanisms, recent studies
[15–20] have proposed adaptive strategies that dynamically adjust fault-tolerance
configurations based on system status. These methods aim to improve the bal-
ance between reliability and performance by modifying replica counts or check-
point intervals in real time. However, most of them rely on predefined rules or
model-driven adjustments that respond passively to system changes. For exam-
ple, adjustments are typically triggered only after detecting specific patterns
such as high load[15] or continuous failures[17]. While these approaches improve
flexibility over static schemes, they often fail to account for rapid shifts in input
rates, evolving operator states, or varying failure types. Moreover, some mod-
els, such as those based on reinforcement learning[16] or chaos engineering[19],
introduce additional overhead or training complexity, limiting their practicality
in real-time systems.

Therefore, fault tolerance strategies need to further consider changes in clus-
ter environments and operator states while controlling resource costs in order to
achieve low-cost, high-fault-tolerance performance and adaptive fault tolerance
methods. To this end, this paper proposes an adaptive fault tolerance strategy
under resource constraints. Our contributions are summarised as follows:

1. We verified the impact of operator types, data stream size, and upstream
and downstream dependency strength on failure recovery and fault tolerance
requirements, and analyzed the varying tolerance demands across different
operators.

2. Nodes are classified according to fault tolerance levels: high-level nodes use
an active snapshot-based fault tolerance mechanism and synchronise regu-
larly, while other nodes use incremental checkpoints to achieve passive fault
tolerance, balancing performance and resource usage.

3. The fault tolerance level of operators is dynamically adjusted based on pre-
dicted fault rates, data flows, and resource usage, and passive fault tolerance
performance is optimised using a dynamic checkpoint algorithm.

4. Experimental results on the WordCount topology task show that, compared
with existing fault-tolerant strategies, Da-Stream effectively improves the
overall performance and resource utilisation efficiency of the system.

2 Observation and Motivation

2.1 Observation

To understand the differences in fault tolerance requirements across various op-
erators in a stream processing system, we conducted experiments examining



4 Dawei Sun

the effects of operator type, data flow size, and upstream/downstream depen-
dency strength on fault recovery performance. We used a Twitter user behavior
dataset and implemented a Top-N streaming application, Top-N topology typi-
cally includes data source operators, window aggregation processing operators,
Top sorting processing operators, and output operators. Data flows from the
data source into the topology, where window operators group the data, per-
form statistical calculations and sorting based on keywords. Then, the first N
elements are retrieved from the calculated data in order. Finally, the output op-
erator sends the top N elements in terms of occurrence frequency to the external
storage system.

Operator Type. Operators differ in their recovery behavior due to their
functionality and internal state. Stateless operators such as map and filter
recover quickly by simply restarting threads. In contrast, stateful operators like
window and aggregation must reload large volumes of historical state data,
resulting in significantly longer recovery times. Figure 1 shows that recovery
times for stateful operators are noticeably higher, especially as the amount of
retained state increases.

Data Flow Size. We simulated failures every 5 minutes under varying data
rates (5k, 15k, 30k events/s) to assess how input stream volume affects recovery.
As shown in Figure 2, higher data rates lead to more state accumulation and
longer recovery times. This demonstrates that system performance deteriorates
when data throughput rises but the fault tolerance strategy remains static.

Dependency Strength. We also evaluated how the degree of upstream and
downstream dependencies affects recovery. Operators with stronger dependen-
cies i.e., those that rely on or feed multiple other operators tend to recover more
slowly due to the overhead of state synchronization and dependency manage-
ment. Figure 3 shows that Operator C (strong dependency) has the longest re-
covery time, followed by B (moderate), and A (weak). Recovery time for strongly
dependent operators also increases more sharply over time.

Fig. 1: Analysis of differ-
ent operator type.

Fig. 2: Analysis of differ-
ent data flow sizes.

Fig. 3: Analysis of depen-
dency strength



Da-stream 5

2.2 Motivation

These observations highlight significant variability in operator recovery behavior
based on statefulness, input data volume, and topological dependencies. Tradi-
tional fault tolerance strategies often treat all operators uniformly or rely on
static configurations, failing to account for such differences.

Operators with large state or strong dependencies not only recover more
slowly but also exert more pressure on the fault tolerance subsystem, meaning
failures in these operators have greater impact on system performance. Similarly,
operators processing high-throughput streams face faster state growth, making
them more vulnerable to failure and harder to recover.

Therefore, generic fault tolerance methods are inefficient, they either waste
resources on low-impact operators or fail to adequately protect critical opera-
tors. These findings have led us to propose an adaptive fault tolerance strategy
that dynamically adjusts priorities based on operator type, runtime state size,
data flow rate, and dependencies. Such a strategy will simultaneously improve
recovery efficiency and overall resource utilisation.

3 System Models

We constructed an optimisation model based on the issues identified in the above
analysis, including a stream computing fault tolerance model, a resource model,
and an operator fault tolerance requirement level model.

3.1 Stream Computing Fault Tolerance Model

During the fault tolerance phase, we optimised the Flink architecture by combin-
ing active and passive fault tolerance strategies, adding fault prediction, resource
management, priority backup queues, and dynamic adjustment modules. The
fault prediction module uses historical fault data for global prediction, dynam-
ically adjusting checkpoint intervals and replica counts. The resource manage-
ment module evaluates and maintains idle resources. The priority backup queue
sorts replica order based on fault tolerance levels. The dynamic adjustment mod-
ule combines prediction results, node status, and resource conditions to optimise
fault tolerance strategies, balancing system latency and fault tolerance. Fault
prediction employs a linear regression model, with the process comprising three
stages: data preprocessing, model training, and fault prediction. First, input
data is standardised and time-sorted, with key features extracted for training.
Subsequently, a prediction function is constructed, which can be described as
(1).

y = W1X1 +W2X2 + · · ·+WnXn + b+ ϵ, (1)

where Xi are the feature variables, Wi are their corresponding weights, b is the
bias term, ϵ is the error term, and y represents the predicted failure probability
of the operator. The model is trained on historical data and optimized using
gradient descent to improve prediction accuracy.



6 Dawei Sun

3.2 Resource Model

The rationality of resource management and scheduling directly affects the fault
tolerance performance and resource utilization efficiency of stream computing
systems. Therefore, we propose a resource-scoring-based model to optimise re-
source allocation under resource constraints and ensure the fault tolerance re-
quirements of critical nodes. The system manages available resource nodes and
ranks them by utilisation rate to ensure efficient scheduling. The resource node
set is R = {R1, R2, · · · , Rn}, and each node has four types of resource attributes:
CPU, memory, disk I/O, and network bandwidth. The idle rate is calculated as
follows:

cpu_idlei =
cpui

total − cpui
used

cpui
total

, (2)

mem_idlei =
memi

total −memi
used

memi
total

, (3)

disk_idlei = 1−
Di

throughput

Di
max_throughput

, (4)

bw_idlei = 1− Di
used

Di
total

. (5)

Considering the dynamic fluctuations in resources, we introduce a weighted
decay mechanism to give higher weight to recent resource usage. Resource scores
are calculated as follows:

Qi(t) =

n∑
k=0

e−λk
(
w1 · cpu_idlei,k + w2 ·mem_idlei,k

+w3 · disk_idlei,k + w4 · bw_idlei,k

)
,

(6)

where λ controls the degree of influence of historical data, and w1,w2,w3,w4 is the
resource weight parameter. Nodes are sorted according to the Qi(t) value, and
nodes with high scores are prioritised for allocation to the main task. In addition,
to evaluate resource utilisation efficiency, we define the total CPU resource C
and memory resource M of the cluster, where the CPU of machine Ri in the
cluster is represented as CPU i

total and the memory is represented as MEM i
total.

We also define the CPU utilisation rate Ratecpu and memory utilisation rate
Ratemem, as follows:

C =

n∑
i=1

CPU i
total, (7)

M =

n∑
i=1

MEM i
total, (8)

Ratecpu =

∑n
i=1 CPU i

used

C
, (9)



Da-stream 7

Ratemem =

∑n
i=1 MEM i

used

M
. (10)

3.3 Operator Fault Tolerance Level Model

Traditional static single fault tolerance methods are difficult to adapt to the
diverse fault tolerance requirements and dynamic changes of different opera-
tors during task execution. To address this issue, we propose an operator fault
tolerance requirement hierarchy model that comprehensively assesses fault tol-
erance priorities based on factors such as operator type, resource consumption,
and upstream and downstream dependencies, thereby improving the overall fault
tolerance of the system. Operators are divided into two categories: computation-
intensive and data-intensive. The former has higher requirements for CPU and
memory and relatively higher fault tolerance levels, while the latter has lower
computational costs and weaker fault tolerance requirements. To quantify re-
source usage, the resource score Ri is defined as follows:

Ri = α · d
i
CPU

C
+ β · d

i
MEM

M
. (11)

In addition, different operator nodes have different upstream and downstream
dependency strengths in the topology, which affect the scope and cost of fault
recovery. The dependency strength Li of a node is defined as the ratio of its up-
stream and downstream dependencies to the maximum number of dependencies
in the task:

Li =
N i

pred +N i
succ

max
(
N j

pred +N j
succ

) . (12)

Calculate the fault tolerance requirement level Pi of the operator based on
the comprehensive operator type score Si, resource score Ri, and dependency
strength Li:

Pi = w1Si + w2Ri + w3Li, (13)

where Si is assigned as follows according to the operator type:

Si =


0.1, filteroperator,

0.5, aggregationoperator,

0.8, join/statefuloperator.

(14)

4 Da-Stream: Architecture and Algorithms

According to the above analysis, we propose Da-Stream for adaptive fault tol-
erance. Da-Stream refines the strategies for different operator groups from mul-
tiple dimensions, such as operator type, resource requirements, and upstream
and downstream dependency strength. During operation, it also dynamically
adjusts the fault tolerance strategies for various operators based on factors such
as cluster resource utilisation, fault rate predictions, and historical scores.



8 Dawei Sun

4.1 System Architecture

Based on the Flink stream computing architecture, we designed and integrated
four major modules: resource management, dynamic fault tolerance adjustment,
fault prediction, and system monitoring, to enhance the system’s reliability and
adaptability, as shown in Figure 4. The resource management module is respon-
sible for real-time monitoring of cluster resource usage and optimises replica
allocation strategies accordingly. The dynamic fault tolerance adjustment mod-
ule dynamically assesses the fault tolerance level of operators and adjusts fault
tolerance strategies based on task importance, resource consumption, dependen-
cies, and predicted fault rates, the fault prediction module uses a linear regres-
sion model to estimate node fault probabilities, providing decision support for
fault tolerance mechanisms. The monitoring module continuously tracks system
runtime status, including resource usage, data flow, and slow tasks, and quickly
detects node anomalies through a heartbeat mechanism, triggering fault recov-
ery processes. Additionally, the system records historical operational data for
subsequent analysis.

Fig. 4: Architecture of Da-Stream

4.2 Fault Tolerant Methods under Resource Constraints

Traditional active fault tolerance ensures system continuity by configuring pri-
mary and backup replicas for operators and quickly switching between them in



Da-stream 9

the event of a failure. However, this method incurs significant resource overhead,
as the primary and backup replicas must process data simultaneously, increasing
communication costs and downstream deduplication pressure.

First, drawing inspiration from the checkpoint strategy of passive fault toler-
ance, we introduce an incremental checkpoint mechanism, periodically persisting
task state snapshots to RocksDB. Compared to full checkpoints, the incremental
approach effectively reduces data volume and write costs, particularly suitable
for tasks with large state sizes and frequent updates.

Second, we utilize cluster resources to enable proactive fault tolerance for op-
erators with stringent reliability requirements. Unlike conventional active-backup
approaches, the standby replicas do not engage in real-time computation during
normal operation. Instead, they establish upstream and downstream communi-
cation channels in advance and are promptly activated to take over tasks upon
a node failure. This design effectively reduces runtime resource overhead while
ensuring rapid recovery.

To ensure consistency between primary and backup states, the system adopts
a chained state replication mechanism. After each checkpoint is completed, the
primary replica synchronises the incremental state to the backup replica along
the chained structure. Each node can serve as a disaster recovery backup for its
preceding node and can directly take over the task in the event of a failure. After
recovery, the original primary replica joins the end of the chain and continues
synchronisation, forming a closed-loop structure that enhances system resilience
and consistency.

Additionally, to avoid delays and data loss caused by global state rollbacks,
a local replay mechanism based on offsets is designed. During normal operation,
the upstream records the offset of sent data and caches unconfirmed data. After
a failure, only data after the offset is replayed, reducing delays and ensuring
synchronisation with the downstream state.

To prevent duplicate data during primary-standby switching, downstream
operators must perform deduplication. We use a unique identifier method, where
upstream data is sent with a globally unique UUID, and the primary-standby
processing generates results with UUID-k. Downstream operators cache and
compare UUIDs to achieve deduplication. To control cache usage, we introduce
a FIFO replacement strategy to improve memory efficiency and processing ac-
curacy.

4.3 Node Fault Tolerance Strategy: Initialisation and Online
Adaptation

Initial Fault Tolerance Strategy The fault tolerance strategy for operator
nodes needs to balance real-time performance, reliability, and resource efficiency.
Therefore, we propose a node fault tolerance strategy classification method based
on multi-dimensional feature perception. By quantifying operator importance,
resource requirements, and upstream and downstream dependency strength, we
initialise the classification of operator nodes for fault tolerance strategies, di-
viding them into active fault tolerance and passive fault tolerance nodes. Input



10 Dawei Sun

all task nodes in the topology O = {O1, O2, . . . , On}, For each task node Oi in
O, calculate the backup priority of that node according to formula (13), sort
the set O in descending order, iterate through the sorted set, and if the backup
priority score exceeds the predefined threshold, update its backup strategy to
active backup and add the task node to the active backup node queue. Other-
wise, update its backup strategy to passive backup, and finally return the active
backup node queue Tactive.

After the node fault tolerance strategy classification is completed, the system
enters the fault tolerance strategy initialisation phase. Fault tolerance strategy
initialisation is divided into active fault tolerance initialisation and passive fault
tolerance initialisation. For active fault tolerance initialisation, the core processes
include resource assessment, replica allocation, and status synchronisation, with
specific details described in Algorithm 1. In step 1, we sort the activity fault-
tolerant node queue in descending order. In steps 2-5, for each resource node
Ri in the resource node set R, we calculate its resource score using formula (6)
and then sort them in descending order. Subsequently, for each task node Oi

in Tsourted, In steps 7-10, when the resources exceed the constraints, the replica
allocation stops, and other tasks are updated to passive standby replicas. In steps
11-16, we assign the resource node with the highest resource score as its active
standby copy. Tasks with higher priority have priority access to high-quality
resource nodes. A checkpoint mechanism is adopted to achieve fault tolerance
and prevent cluster resource overload.
Algorithm 1 Active Backup Initialization
Input: Active backup node list Tactive, Resource node list R
Output: Active backup mapping table B

1: Sort Tactive by Pi descending → Tsorted;
2: for each Ri ∈ R do
3: Calculate resource score Qi by Equation (6);
4: end for
5: Sort R by Qi descending → Rsorted;
6: for each task node Oi ∈ Tsorted do
7: if Remaining resources in Rsorted < AllClusterResource× 20% then
8: //Insufficient resources, stop allocating
9: break;

10: end if
11: Rj ← Rsorted.peek();
12: assignBackupResource(Oi, Rj);
13: B[Oi]← Rj ;
14: //Synchronize master and replica status
15: syncStateWithPrimaryBackup(O1

i , O2
i );

16: Rsorted.poll(Rj);
17: end for
18: return B

For passive fault tolerance initialisation using the checkpoint mechanism after
passive backup nodes are classified by nodes, the initialisation of the checkpoint



Da-stream 11

interval Ci needs to ensure fault tolerance while maximising execution efficiency.
We assume that the task execution cycle T is the total time required to complete
the task, which includes the task execution time Ttask, the checkpoint overhead
time Tcheckpoints, and the fault recovery time Trecover. as shown in equation (15):

Ttotal = Ttask + ncheckpoints · Tcheckpoints + fr · Trecover, (15)

where fr is the fault recovery probability, and ncheckpoints is the number of
checkpoints in the task cycle T . Due to the occurrence of checkpoint cycles, it
can be expressed as ncheckpoints = T

C . Task execution efficiency can be defined
as the ratio of task execution time to total task time,as described in (16).

f(C) =
Ttask

Ttotal
. (16)

To maximise execution efficiency, we differentiate formula (16) to obtain
f ′(C) = 0. Since T

C2 cannot be zero, therefore, maximising execution efficiency
involves minimising the impact of checkpoint overhead and fault recovery time
on execution time within the total time. This can be achieved by balancing the
checkpoint overhead time and fault recovery time to find the optimal initial
checkpoint interval Cinitial, which can be calculated using formula (17).

Cinitial =
T · Tcheckpoints

fr · Trecover
. (17)

Through this derivation, the optimal initial checkpoint interval Cinitial is
obtained to maximise the execution efficiency during task initialisation, thereby
completing the initialisation of passive fault tolerance.

Online Fault Tolerance Mechanism The probability of a system failure
recurring within a short period of time after an initial failure is high, and the
resource status of nodes (such as CPU and memory) also affects operational
efficiency and the risk of failure. Therefore, we propose a dynamic backup priority
strategy that dynamically adjusts the fault tolerance mode based on the resource
usage, failure probability, and data traffic of operators.The system monitors the
resource status and failure probability Fi of each operator node in real time.
When resource utilisation or Fi is high, the backup priority is increased and the
number of replicas is increased. If the resource pressure is low or Fi is low, the
number of replicas can be reduced or the checkpoint interval can be extended. In
addition, for high-traffic operators, the backup priority should also be increased
due to higher recovery costs.Based on this, we determine whether to adopt active
fault tolerance, passive fault tolerance, or adjust the checkpoint frequency based
on whether the new and old priorities exceed the threshold. The updated priority
queue is then output for scheduling in the next cycle.

For adaptive adjustment of fault tolerance strategies, the system regularly
evaluates and ranks resource nodes, prioritises the allocation of replicas to high-
priority operators that require active backup, and completes status synchroni-
sation and upstream and downstream connections to ensure that they can be



12 Dawei Sun

switched at any time. For other operators, the checkpoint interval is dynamically
adjusted based on resource utilisation, fault prediction rate, and the number of
slow tasks to optimise fault tolerance overhead and execution efficiency.To bal-
ance fault tolerance performance and resource consumption, the system reserves
some idle resources for active fault tolerance and the rest for fault recovery.

Algorithm 2 Dynamic Active Backup Allocation
Require: Backup priority queue P ′ = {P ′

1, P
′
2, . . . , P

′
n}, dynamic adjustment coeffi-

cient α, idle resource node queue R′, task nodes O = {O1, O2, . . . , On}
Ensure: Updated backup strategy
1: while application not finished do
2: Update resource node queue R′

3: for each task node Oi ∈ O do
4: if backup strategy is active backup then
5: if Oi has no backup then
6: addToResourceQueueO′, Onew

7: else
8: continue
9: end if

10: else
11: CIn ← adjustCheckpointIntervalfr, Ucpu, Umem, Nslow, CIn−1

12: end if
13: end for
14: for each task node Oi ∈ Onew with active backup do
15: if R′ remaining resources < AllClusterResource× 20% then
16: break
17: end if
18: Rj ← R′.peek()
19: assignBackupResourceP ′

i , Rj

20: syncStateWithPrimaryBackupP ′
i , Rj

21: R′.pollRj

22: end for
23: updateCheckpointIntervalCIn
24: waitForNextCycle()
25: end while
26: return Updated backup strategy

As shown in Algorithm 2. In steps 3-4, first iterate through all operation
nodes to determine whether active fault tolerance is enabled. In steps 5-6, if no
replica has been assigned, add it to the pending allocation queue. If passive fault
tolerance is used, dynamically adjust its checkpoint settings in step 11. In steps
14-22, the system then allocates resources to pending nodes from the idle resource
queue in priority order, giving priority to high-priority tasks. When available
resources drop below 20% of total resources, allocation stops. After resource
binding is complete, the primary and backup replicas synchronise their states



Da-stream 13

and establish communication. In steps 23-24, the system updates the checkpoint
configuration and enters the next monitoring cycle, repeating the process until
the application ends.

Adaptive adjustment for passive fault tolerance. The algorithm dynamically
adjusts the checkpoint interval by sensing the task running status (including
fault rate, CPU and memory usage, and the number of slow tasks) to optimise
system performance while ensuring fault tolerance. The resource utilisation rate
is equal to the ratio of the resources used by the node to process normal data
to the total resources used by the running tasks, where the CPU utilisation rate
and memory utilisation rate are as shown in Equations (18) and (19).

Ucpu =
Ncpu

Tcpu
, (18)

Umem =
Nmem

Tmem
. (19)

At system startup, the initial interval CI0 is used. During runtime, the in-
terval is adjusted based on real-time status: when no faults occur, the interval
is appropriately extended using formula (20) based on the predicted fault rate
fr. If a fault occurs, the interval is shortened using formula (21) to increase the
recovery frequency.If CPU usage Ucpu exceeds the threshold Cconst, the inter-
val is increased according to formula (22) to reduce resource pressure. Similarly,
if memory usage Umem exceeds the threshold Mconst, the interval is adjusted
according to formula (23).If the number of slow tasks Nslow exceeds the thresh-
old M , extend the interval using formula (24) to mitigate its impact on the
system. Finally, the updated checkpoint interval CIn is written to the system
configuration for use in the next round of triggering.

∆in = CIn−1 · (1− fr), (20)

∆in = CIn−1 · fr, (21)

CIn = CIn−1 ·
(

Ucpu

Uconst

)
, (22)

CIn = CIn−1 ·
(

Umem

Mconst

)
, (23)

∆in = CIn−1 ·
(
Nslow −M

M

)
. (24)

5 Performance Evaluation

This section introduces the performance evaluation of the Da-Stream system.
First, we introduce the experimental setup, and then analyse its effectiveness
in terms of fault recovery time, resource utilisation, processing delay, and task
execution time.



14 Dawei Sun

5.1 Experimental Setup

The Da-Stream system is based on the Flink stream computing framework and is
deployed in a cluster environment running the CentOS 7 operating system. The
cluster consists of 15 compute nodes, with 1 node deployed for the Flink Job-
Manager, 2 nodes for HDFS and Zookeeper, and the remaining 12 nodes serving
as NodeManagers. All nodes have the same hardware configuration, including
a 2-core 2.4GHz CPU, 2GB of memory, and a 100Mbps Ethernet interface. We
use the Twitter user behaviour dataset and adopt the classic stream comput-
ing topology structure WordCount to evaluate system performance. WordCount
reads text from the data stream, counts the number of occurrences of each word,
and finally prints the results.The topology of WordCount is shown in the Fig-
ure 5. In the experiment, we compared Da-Stream with Flink’s checkpoint fault
tolerance strategy and the current state-of-the-art design scheme A-FP4S[20]. It
should be noted that while the experiments are conducted on the WordCount
topology, Da-Stream is equally applicable to other streaming topologies.

Fig. 5: The instance topology of WordCount

5.2 System Performance Analysis

To evaluate the performance of the fault tolerance strategy in a real operat-
ing environment, the experiment simulated failures in Flink jobs in a variety of
ways, including using the kill command to forcefully terminate the TaskManager
process to simulate node crashes, embedding conditional statements and actively
throwing exceptions to simulate local failures during operator execution, and us-
ing tc and stress tools to simulate abnormal environments such as network packet
loss, latency, or resource overload. In the experiment, fault events were trig-
gered at predefined time points, and the system’s response process and recovery
duration were recorded using monitoring components such as Prometheus and
Grafana, enabling a comprehensive evaluation of the fault tolerance strategy’s



Da-stream 15

fault recovery capabilities. After considering implementation difficulty and con-
trol precision, the experiment ultimately adopted an exception method triggered
by conditions embedded in custom operators for operator-level fault injection,
simulating a fault every 5 minutes and starting the timer when the fault occurred
until the task resumed normal operation to measure the fault recovery time. As
shown in Figures 6, the results indicate that Da-Stream, which employs a low-
overhead active fault tolerance mechanism, can achieve rapid switching during
operator failures, with recovery speeds outperforming Flink checkpoint strate-
gies and A-FP4S. In the WordCount topology, Da-Stream reduced the average
recovery time by 24.3% compared to A-FP4S.

Fig. 6: Failure recovery
time on WordCount.

Fig. 7: CPU utilisation
on WordCount.

Fig. 8: Memory utilisa-
tion on WordCount.

In the Flink stream processing system, CPU and memory are critical re-
sources for task execution, directly affecting system energy consumption and
operational costs. To evaluate the resource utilization efficiency of different fault
tolerance strategies, we compared the CPU and memory utilization of Da-Stream
with Flink’s checkpoint mechanism and A-FP4S under normal task execution
conditions. As shown in Figures 7-8, the experimental results indicate that the
CPU utilisation of the three strategies increases with system load, enters a stable
phase, and then fluctuates, with short-term peaks occurring during fault recov-
ery or when computational complexity increases. Since Da-Stream configures hot
backup replicas for critical operators and utilises idle resources to synchronise
states, its CPU utilisation is overall higher than that of the other two strate-
gies.In terms of memory, Da-Stream periodically persists and synchronises the
state of high-fault-tolerance operators to backup copies, resulting in consistently
high memory utilisation. Therefore, Da-Stream achieves active fault tolerance
through asynchronous state synchronisation, effectively reducing the costs asso-
ciated with resource redundancy and improving the overall resource utilisation
of the cluster. Compared to the A-FP4S fault tolerance strategy, the CPU util-
isation and memory utilisation of the Da-Stream fault tolerance strategy are
18.7% and 12.2% higher, respectively.

Processing latency primarily refers to the time from data generation to com-
pletion of processing, encompassing all stages such as data transmission, compu-
tation, storage, and state updates. The experimental results are shown in Figures
9. Initially, the data stream rate was set to 5,000 tuples/s to simulate a low-load



16 Dawei Sun

scenario. After 30 minutes, the rate was increased to 10,000 tuples/s. During the
process, simulated failures were input once every ten minutes. Due to the impact
of Flink failures on data processing, processing latency increased. Da-Stream
used active fault tolerance to achieve fast switching under failure conditions and
combined a dynamic adjustment mechanism to maintain low processing latency
from start to finish. Compared to Flink, Da-Stream reduced processing latency
by 52.3% and compared to A-FP4S, it reduced processing latency by 36.8%.

Fig. 9: Processing latency on WordCount.

6 Conclusion

To address the shortcomings of existing fault-tolerant strategies in resource-
constraints environments, this paper proposes an adaptive fault-tolerant strat-
egy called Da-Stream. This strategy comprehensively considers task importance,
resource requirements, and the strength of dependencies between operators to
calculate the fault-tolerance requirement levels of each operator and classify
them into different fault-tolerance modes. By introducing a time-aware resource
model, it dynamically evaluates the idle resources in the cluster and prioritises ac-
tive fault tolerance support for operators with high fault-tolerance requirements,
while the remaining operators adopt a checkpoint mechanism. Additionally, Da-
Stream incorporates an adaptive adjustment mechanism that can update the
fault tolerance strategy in real time based on changes in resource usage and op-
erator characteristics, enabling flexible scheduling of resources and replica nodes.
This method effectively reduces fault recovery time, lowers processing latency
and execution overhead, and significantly improves resource utilization efficiency.
Experiments on the WordCount topologies demonstrate that Da-Stream outper-
forms the existing A-FP4S strategy in both system performance and resource
utilisation.



Da-stream 17

Acknowledgments. This work is supported by the National Natural Science Foun-
dation of China under Grant No. 62372419; and the Fundamental Research Funds for
the Central Universities,China under Grant No. 265QZ2021001.

References

1. Li, H., Li, J., Duan, X., Xia, J.: Energy-aware scheduling and two-tier coordi-
nated load balancing for streaming applications in apache flink. Future Generation
Computer Systems 166, 107681 (2025)

2. Yasser, T., Arafa, T., ElHelw, M., Awad, A.: Keyed watermarks: A fine-grained
watermark generation for apache flink. Future Generation Computer Systems 169,
107796 (2025)

3. Qi, H., Huang, Z., Chen, Y., Zhang, Y., Gao, Y.: Streamlining trajectory map-
matching: a framework leveraging spark and gpu-based stream processing. Inter-
national Journal of Geographical Information Science 38(6), 1158–1178 (2024)

4. Zhang, Z., Jin, P.Q., Xie, X.K., Wang, X.L., Liu, R.C., Wan, S.H.: Online nonstop
task management for storm-based distributed stream processing engines. Journal
of Computer Science and Technology 39(1), 116–138 (2024)

5. Isukapalli, S., Srirama, S.N.: A systematic survey on fault-tolerant solutions for dis-
tributed data analytics: Taxonomy, comparison, and future directions. Computer
Science Review 53, 100660 (2024)

6. Martin, A., Brito, A., Fetzer, C.: Low cost synchronization for actively replicated
data streams. In: 2019 9th Latin-American Symposium on Dependable Computing
(LADC). pp. 1–10. IEEE (2019)

7. Heinze, T., Zia, M., Krahn, R., Jerzak, Z., Fetzer, C.: An adaptive replication
scheme for elastic data stream processing systems. In: Proceedings of the 9th ACM
International Conference on Distributed Event-Based Systems. pp. 150–161 (2015)

8. Li, H., Wu, J., Jiang, Z., Li, X., Wei, X.: Minimum backups for stream processing
with recovery latency guarantees. IEEE Transactions on Reliability 66(3), 783–794
(2017)

9. Bellavista, P., Corradi, A., Kotoulas, S., Reale, A.: Adaptive fault-tolerance for
dynamic resource provisioning in distributed stream processing systems. In: EDBT.
pp. 85–96 (2014)

10. Xu, C., Holzemer, M., Kaul, M., Markl, V.: Efficient fault-tolerance for iterative
graph processing on distributed dataflow systems. In: 2016 IEEE 32nd Interna-
tional Conference on Data Engineering (ICDE). pp. 613–624. IEEE (2016)

11. Jayasekara, S., Karunasekera, S., Harwood, A.: Optimizing checkpoint-based fault-
tolerance in distributed stream processing systems: theory to practice. Software:
Practice and Experience 52(1), 296–315 (2022)

12. Xu, H., Liu, P., Cruz-Diaz, S., Silva, D.D., Hu, L.: Sr3: Customizable recovery
for stateful stream processing systems. In: Proceedings of the 21st International
Middleware Conference. pp. 251–264 (2020)

13. Su, L., Zhou, Y.: Tolerating correlated failures in massively parallel stream pro-
cessing engines. In: 2016 IEEE 32nd International Conference on Data Engineering
(ICDE). pp. 517–528. IEEE (2016)

14. Cheng, Z., Tang, L., Huang, Q., Lee, P.P.: Enabling low-redundancy proactive fault
tolerance for stream machine learning via erasure coding: Design and evaluation.
Available at SSRN 4192493 (2024)



18 Dawei Sun

15. Zhuang, Y., Wei, X., Li, H., Wang, Y., He, X.: An optimal checkpointing model
with online oci adjustment for stream processing applications. In: 2018 27th Inter-
national Conference on Computer Communication and Networks (ICCCN). pp. 1–
9. IEEE (2018)

16. Zhang, Z., Liu, T., Shu, Y., Chen, S., Liu, X.: Dynamic adaptive checkpoint mech-
anism for streaming applications based on reinforcement learning. In: 2022 IEEE
28th International Conference on Parallel and Distributed Systems (ICPADS). pp.
538–545. IEEE (2023)

17. Jayasekara, S., Harwood, A., Karunasekera, S.: A utilization model for optimization
of checkpoint intervals in distributed stream processing systems. Future Generation
Computer Systems 110, 68–79 (2020)

18. Cardellini, V., Nardelli, M., Luzi, D.: Elastic stateful stream processing in storm.
In: 2016 International Conference on High Performance Computing & Simulation
(HPCS). pp. 583–590. IEEE (2016)

19. Geldenhuys, M.K., Pfister, B.J., Scheinert, D., Thamsen, L., Kao, O.: Khaos: Dy-
namically optimizing checkpointing for dependable distributed stream processing.
In: 2022 17th Conference on Computer Science and Intelligence Systems (FedC-
SIS). pp. 553–561. IEEE (2022)

20. Xu, H., Liu, P., Ahmed, S.T., Da Silva, D., Hu, L.: Adaptive fragment-based par-
allel state recovery for stream processing systems. IEEE Transactions on Parallel
and Distributed Systems 34(8), 2464–2478 (2023)


