
ARTICLE IN PRESS
Future Generation Computer Systems () –

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Autonomic metered pricing for a utility computing service
Chee Shin Yeo a, Srikumar Venugopal b, Xingchen Chu a, Rajkumar Buyya a,∗
a Grid Computing and Distributed Systems Laboratory, Department of Computer Science and Software Engineering, The University of Melbourne, VIC 3010, Australia
b School of Computer Science and Engineering, The University of New South Wales, NSW 2052, Australia

a r t i c l e i n f o

Article history:
Received 28 October 2008
Received in revised form
25 March 2009
Accepted 13 May 2009
Available online xxxx

Keywords:
Service pricing
Autonomic management
Advanced reservation
Quality of Service (QoS)
Utility computing
Cloud computing

a b s t r a c t

An increasing number of providers are offering utility computing services which require users to pay
only when they use them. Most of these providers currently charge users for metered usage based
on fixed prices. In this paper, we analyze the pros and cons of charging fixed prices as compared
to variable prices. In particular, charging fixed prices do not differentiate pricing based on different
user requirements. Hence, we highlight the importance of deploying an autonomic pricing mechanism
that self-adjusts pricing parameters to consider both application and service requirements of users.
Performance results observed in the actual implementation of an enterprise Cloud show that the
autonomic pricing mechanism is able to achieve higher revenue than various other common fixed and
variable pricing mechanisms.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The next era of computing is envisioned to be that of utility
computing [1]. The vision of utility computing is to provide
computing services to users on demand and charge them based
on their usage and Quality of Service (QoS) expectations. Users no
longer have to invest heavily in or maintain their own computing
infrastructure. Instead, they employ computing services offered
by providers to execute their applications. This commoditized
computing model thus strengthens the case to charge users via
metered usage [2], just like in real-world utilities. In other words,
users only have to pay for what they use.
The latest emergence of Cloud computing [3] is a significant step

towards realizing this utility computing model since it is heavily
driven by industry vendors. Cloud computing promises to deliver
reliable services through next-generation data centers built on
virtualized compute and storage technologies. Users will be able to
access applications and data from a ‘‘Cloud’’ anywhere in theworld
on demand and pay based on what they use. As more providers
are starting to offer pay-per-use utility computing services using
Cloud infrastructure, the issue of how to determine the right
price for users is now becoming increasingly critical for these

∗ Corresponding author.
E-mail addresses: csyeo@csse.unimelb.edu.au (C.S. Yeo),

srikumarv@cse.unsw.edu.au (S. Venugopal), xchu@csse.unimelb.edu.au (X. Chu),
raj@csse.unimelb.edu.au (R. Buyya).

providers. This is because pricing is able to regulate the supply
and demand of computing services and thus affects both providers
(who supply the services) and users (who demand the services)
respectively. When the right price is set, a provider can not only
attract/restrict a sufficient number of users to meet its revenue
target, but also provide computing services more effectively and
efficiently tomeet the service needs of users. Hence, the aim of this
paper is to justify the need for an autonomic pricing mechanism
that can set this right price for a provider. In particular, this
paper focuses on how a provider can charge commercial users or
enterprises which make heavy demands on computing resources,
as compared to personal users or individuals with considerably
lower requirements.
Currently, providers follow a fairly simple pricing scheme to

charge users — fixed prices based on various resource types.
For processing power (as of 15 October 2008), Amazon [4]
charges $0.10 per virtual computer instance per hour (h), Sun
Microsystems [5] charges $1.00 per processor (CPU) per h, and
Tsunamic Technologies [6] charges $0.77 per CPU per h. Instead of
charging fixed prices for these heavy users, we advocate charging
variable prices and provide guaranteed QoS through the use of
advanced reservations. Advance reservations are bookings made
in advance to secure an available item in the future and are used
in the airline, car rental, and hotel industries. In the context of
utility computing, an advance reservation is a guarantee of access
to a computing resource at a particular time in the future for a
particular duration [7].
Charging fixed prices in utility computing is not fair to both the

provider and users since different users have distinctive needs and

0167-739X/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2009.05.024

Please cite this article in press as: C.S. Yeo, et al., Autonomic metered pricing for a utility computing service, Future Generation Computer Systems (2009),
doi:10.1016/j.future.2009.05.024

http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:csyeo@csse.unimelb.edu.au
mailto:srikumarv@cse.unsw.edu.au
mailto:xchu@csse.unimelb.edu.au
mailto:raj@csse.unimelb.edu.au
http://dx.doi.org/10.1016/j.future.2009.05.024

ARTICLE IN PRESS
2 C.S. Yeo et al. / Future Generation Computer Systems () –

demand specific QoS for various resource requests that can change
anytime. In economics, a seller with constrained capacity can
adjust prices to maximize revenue if the following four conditions
are satisfied [8]: (i) demand is variable but follows a predictable
pattern, (ii) capacity is fixed, (iii) inventory is perishable (wasted
if unused), and (iv) seller has the ability to adjust prices. Thus,
for utility computing, providers can charge variable prices since:
(i) demand for computing resources changes but can be expected
using advanced reservations [7], (ii) only a limited amount of
resources is available at a particular site owned by a provider,
(iii) processing power is wasted if unused, and (iv) a provider can
change prices.
The main aim of providers charging variable prices is to max-

imize revenue by differentiating the value of computing services
provided to different users. Since providers are commercial busi-
nesses driven by profit, they need to maximize revenue. Profitable
providers can then fund further expansions and enhancements to
improve their utility computing service offerings. Charging vari-
able prices is also particularly useful for resource management
as it can result in the diversion of demand from high-demand
time periods to low-demand time periods [8], thus maximizing
utilization for a utility computing service. Higher prices increase
revenue as users who need services during high-demand time
periods are willing to pay more, whereas others will shift to using
services during low-demand periods. The latter results in higher
utilization during these otherwise underutilized low-demand pe-
riods and hence leads to higher revenue.
In general, fixed prices are simpler to understand and more

straightforward for users as compared to variable prices. However,
all users do not have the same need. Hence, it is not fair for all users
to be charged the same fixed price since not all users can afford the
same price. Fixed prices also do not allow price-sensitive users to
benefit from lower prices which they prefer to accept in exchange
of certain restrictions. Moreover, fixed prices do not permit a
provider to give specific incentives via differentiated pricing based
on distinct user requirements, which is the emphasis of this paper.
In this paper, we propose charging variable prices with advanced
reservations so that users are not only able to secure their required
resources in advance, but also know the exact expenses which are
computed during the time of reservation (even though they are
based on variable prices). This will continue to enable users to
perform budgetingwith known variable prices in advance as in the
case of fixed prices.
This paper proposes an autonomic pricingmechanism for a util-

ity computing service which automatically adjusts prices when
necessary to increase revenue. In particular, we highlight the
significance of considering essential user requirements that en-
compass application and service requirements. Pricing computing
resources according to user requirements benefits the utility com-
puting service since different users require specific needs to bemet
and are willing to pay varying prices to achieve them. The key con-
tributions of this paper are to:
– Consider two essential user requirements for autonomic
metered pricing: (i) application and (ii) service.

– Describe how metered pricing can be implemented in an
enterprise Cloud with advanced reservations.

– Analyze the performance of various fixed and variable pricing
mechanisms through experimental results to demonstrate the
importance of autonomic metered pricing.
This paper is organized as follows: Section 2 discusses related

work. Section 3 examines economic aspects of a utility computing
service. Section 4 describes the implementation of metered
pricing using a service-oriented enterprise Cloud technology called
Aneka [9]. Section 5 explains the evaluation methodology and
experimental setup to assess the performance of various fixed and
variable pricing mechanisms with respect to the application and
service requirements of users. Section 6 analyzes the performance
results. Section 7 presents conclusions and future work.

2. Related work

Many market-based resource management systems have
been implemented across numerous computing platforms [10]
including clusters, distributed databases, Grids, parallel and
distributed systems, peer-to-peer, and the World Wide Web. To
manage resources, these systems adopt a variety of economic
models [11], such as auction, bargaining, bartering, commodity
market, bid-based proportional resource sharing, posted price, and
tendering/contract-net. In this paper, we examinemetered pricing
which is applicable in commoditymarket and posted pricemodels.
Recently, several works have discussed pricing for utility or

on-demand computing services. In particular, these works have
identified and addressed various distinguished features of utility
computing which is different from traditional pricing mechanisms
in economics. Price-At-Risk [12] considers uncertainty in the pric-
ing decision for utility computing services which have uncertain
demand, high development costs, and short life cycle. Pricingmod-
els for on-demand computing [13] have been proposed based on
various aspects of corporate computing infrastructure which in-
clude cost ofmaintaining infrastructure in-house, business value of
infrastructure, scale of infrastructure, and variable costs of main-
tenance. Another work [14] considers economic aspects of a util-
ity computing service whereby high prices denote higher service
level for faster computation. But, theseworks do not consider auto-
nomic pricing that addresses users’ application requirements (such
as parallel applications) and service requirements (such as dead-
line and budget).
Setting variable prices is known as price discrimination in eco-

nomics [15]. Sulistio et al. [16] have examined third degree price
discrimination by using revenuemanagement [8] to determine the
pricing of advanced reservations in Grids. It evaluates revenue per-
formance across multiple Grids for variable pricing based on the
combination of three market segments of users (premium, busi-
ness, and budget) and three time periods of resource usage (peak,
off-peak, and saver). Hence, it does not derive fine-grained variable
prices that differentiate specific application and service require-
ments of individual users.
Chen et al. [17] have proposed pricing-based strategies for

autonomic control of web servers. It uses pricing and admission
control mechanisms to control the QoS of web requests such as
slowdown and fairness. However, this paper focuses on high-
performance applications and user-centric service requirements
(deadline and budget).
In our previous work, we have presented Libra [18] as a

market-based solution for delivering more utility to users in
clusters compared to traditional scheduling policies. As Libra
only computes a static cost, an extension called Libra+$ [19]
uses an enhanced pricing function that satisfies four essential
requirements for pricing of resources to prevent workload
overload: (i) flexible, (ii) fair, (iii) dynamic, and (iv) adaptive. In
this paper, we propose an autonomic version of Libra+$ called
Libra+$Auto which is feasible as demonstrated through its actual
implementation in an enterprise Cloud.
Libra+$Auto has a number of pros compared to Libra+$ and

Libra. First, Libra+$Auto is able to automatically adjust pricing
parameters and hence does not rely on static pricing parameters
to be configured manually by the provider in the case of both
Libra+$ and Libra. Second, Libra+$Auto considers the current
workload across nodes when computing prices, whereas Libra+$
only considers the current workload within a node and Libra does
not consider any current workload at all. Third, Libra+$Auto can
exploit the budget limits of users to improve the revenue of the
provider by automatically adjusting to increase prices when there
are fewer available computer nodes and reduce prices when there
are more available nodes. Fourth, Libra+$Auto offers more precise

Please cite this article in press as: C.S. Yeo, et al., Autonomic metered pricing for a utility computing service, Future Generation Computer Systems (2009),
doi:10.1016/j.future.2009.05.024

ARTICLE IN PRESS
C.S. Yeo et al. / Future Generation Computer Systems () – 3

incentives to individual users which can promote user demand
and in turn improve revenue, since it dynamically changes prices
in a more fine-grained manner than both Libra+$ and Libra via
expected workload demand and availability of nodes. On the other
hand, Libra+$Auto has only one con compared to Libra+$ and
Libra, which is requiring more computation time to determine the
availability of nodes and adjust prices depending on the acceptance
of previous requests.

3. Economic aspects of a utility computing service

This section examines various economic aspects of a utility
computing service including: (i) variable pricing with advanced
reservations, (ii) pricing issues, and (iii) pricing mechanisms. We
consider a scenario wherein a provider owns a set of resources
that we term as compute nodes. Each node can be subdivided into
resource partitions and leased to users for certain time intervals.

3.1. Variable pricing with advanced reservations

The use of advanced reservations has been proposed to
provide QoS guarantees for accessing various resources across
independently administered systems such as Grids [7]. With
advanced reservations, users are able to secure resources required
in the future which is important to ensure successful completion
of time-critical applications such as real-time and workflow
applications or parallel applications requiring a number of
processors to run. The provider is able to predict future demand
and usage more accurately. Using this knowledge, the provider
can apply revenuemanagement [8] to determine pricing at various
times tomaximize revenue. Once these prices are advertised, users
are able to decide in advancewhere to book resources according to
their requirements and their resulting expenses.
Having prior knowledge of expected costs is highly critical

for enterprises to successfully plan and manage their operations.
Resource supply guarantee also allows enterprises to contemplate
and target future expansion more confidently and accurately.
Enterprises are thus able to scale their reservations accordingly
based on short-term, medium-term, and long-term commitments.
Users may face the difficulty of choosing the best price for

reserving resources from different utility computing services at
different times. This difficulty can be overcome by using resource
brokers [20] which act on the behalf of users to identify suitable
utility computing services and compare their prices.

3.2. Pricing issues

For simplicity, we examine metered pricing within a utility
computing service with constrained capacity and do not consider
external influences that can be controlled by the provider, such
as cooperating with other providers to increase the supply of re-
sources [21] or competingwith them to increasemarket share [22].
Price protection and taxation regulations from authorities and in-
flation are beyond the control of the provider. We assume that
users have to pay in order to guarantee reservations. Thus, a utility
computing service requires payment from users either at the time
of reservation or later depending on payment agreements so as to
reserve computing resources in advance.
We also assume that the execution time period of applications

will bewithin the reservation time period. In order to enforce other
scheduled reservations, a utility computing service will terminate
any outstanding applications that are still executing once the
time period of reservation expires. This implies that users must
ensure that time periods of reservations are sufficient for their
applications to be completed. Therefore, users may have to reserve
more time to protect their applications from forced termination if

Table 1
Pricing for processing power.

Name Configured pricing parameters

FixedMax $3/CPU/h
FixedMin $1/CPU/h
FixedTimeMax $1/CPU/h (12AM–12PM)

$3/CPU/h (12PM–12AM)
FixedTimeMin $1/CPU/h (12AM–12PM)

$2/CPU/h (12PM–12AM)
Libra+$Max $1/CPU/h (PBasej), α = 1, β = 3
Libra+$Min $1/CPU/h (PBasej), α = 1, β = 1
Libra+$Auto Same as Libra+$Min

they are uncertain whether their applications will take more time
to execute than estimated. Although this restriction is unfavorable
for users, users can try to minimize its impact by using runtime
prediction models [23,24] to estimate their application runtimes
more accurately. Users are also personally responsible for ensuring
that their applications can fully utilize the reserved resources. It is
thus disadvantageous to the users if their applications fail to use
the entire amount of reserved resources that they have already
paid for.

3.3. Pricing mechanisms

We compare three types of pricing mechanisms: (i) Fixed,
(ii) FixedTime, and (iii) Libra+$. As listed in Table 1, each
pricing mechanism has maximum and minimum types which are
configured accordingly to highlight the performance range of the
pricing mechanism. Fixed charges a fixed price for per unit of
resource partition at all times. FixedTime charges a fixed price for
per unit of resource partition at different time periods of resource
usage where a lower price is charged for off-peak (12AM–12PM)
and a higher price for peak (12PM–12AM).
Libra+$ [19] computes the price Pij for per unit of resource

partition utilized by reservation request i at compute node j as:
Pij = (α ∗ PBasej) + (β ∗ PUtilij). The base price PBasej is a static
pricing component for utilizing a resource partition at node jwhich
can be used by the provider to charge the minimum price so as
to recover the operational cost. The utilization price PUtilij is a
dynamic pricing componentwhich is computed as a factor of PBasej
based on the availability of the resource partition at node j for the
required deadline of request i: PUtilij = RESMaxj/RESFreeij ∗PBasej.
RESMaxj and RESFreeij are the maximum units and remaining free
units of the resource partition at node j for the deadline duration
of request i respectively. Thus, RESFreeij has been deducted units
of resource partition committed for other confirmed reservations
and request i for its deadline duration.
The factors α and β for the static and dynamic components

of Libra+$ respectively, provide the flexibility for the provider
to easily configure and modify the weight of the static and
dynamic components on the overall price Pij. Libra+$ is fair since
requests are priced based on the amount of different resources
utilized. It is also dynamic because the overall price of a request
varies depending on the availability of resources for the required
deadline. Finally, it is adaptive as the overall price is adjusted
(depending on the current supply and demand of resources) to
either encourage or discourage request submission.
Fixed, FixedTime, and Libra+$ rely on static pricing parameters

that are difficult to be accurately derived by the provider to
produce the best performance where necessary. Hence, we
propose Libra+$Auto, an autonomic Libra+$ that automatically
adjusts β based on the availability of compute nodes. Libra+$Auto
thus considers the pricing of resources across nodes, unlike
Libra+$ which only considers pricing of resources at each node j
via Pij.

Please cite this article in press as: C.S. Yeo, et al., Autonomic metered pricing for a utility computing service, Future Generation Computer Systems (2009),
doi:10.1016/j.future.2009.05.024

ARTICLE IN PRESS
4 C.S. Yeo et al. / Future Generation Computer Systems () –

Algorithm 1: Pseudocode for adjusting β in Libra+$Auto.

βPrev← (
∑nprev
i=1 βi for previous request) / n ;1

maxNodes←maximum number of nodes ;2
foreach node i allocated to new request do3
freeNodes← free number of nodes for proposed time4
slot at this node i;
reservedNodes←maxNodes− freeNodes ;5
if freeNodes= 0 then6
freeNodes← 1 ;7

endif8
ratioFree←maxNodes / freeNodes ;9
if reservedNodes= 0 then10
reservedNodes← 1 ;11

endif12
ratioReserved← reservedNodes /maxNodes ;13
if previous request meets budget then14
βi← βPrev ∗ ratioFree ;15

else16
βi← βPrev ∗ ratioReserved ;17

endif18

endfch19

Algorithm 1 shows the pseudocode for adjusting β in
Libra+$Auto. First, the previous dynamic factorβPrev is computed
as the average of dynamic factors β at nprev number of allocated
compute nodes for the previous reservation request (line 1). Ini-
tially, when adjusting β for the first request, βPrev uses a default
value that is given by the provider. Themaximumnumber of nodes
is also assigned (line 2). Then, the free and reserved number of
nodes is determined for the proposed time slots at various nodes to
be allocated for the new reservation request (line 3–5). After that,
the new dynamic factor βi for the node i is updated depending on
the outcomeof the previous request.βPrev is increased to accumu-
late more revenue if the previous request meets the user-defined
budget, otherwise it is reduced (line 14–18). For increasingβPrev, a
larger increase is computedwhen there are fewer free nodes left for
the proposed time slot so as to maximize revenue with decreasing
capacity (line 6–9). Conversely, for reducing βPrev, a larger reduc-
tion is computed when there are more free nodes left for the pro-
posed time slot in order not to waste unused capacity (line 10–13).
Assuming that the previous reservation request wants to

reserve nprev number of nodes, it takes O(nprev) time to compute
the previous dynamic factor βPrev (line 1). In addition, it takes
O(nnew) time to compute the new dynamic factor βi at each node i
for nnew number of nodes required by the new reservation request
(line 3–19). When there is a maximum m number of nodes that
can be possibly allocated and searching through the entire data
structure containing all reserved time slots takes O(ts) time in the
worst case (depending on the type of data structurewhich is used),
it takes O((m − 1).O(ts)) time to determine the free number of
nodes for the proposed time slot at node i (line 4). Hence, adjusting
β in Libra+$Auto can take O(nprev + nnew.(m − 1).O(ts)) time in
the worst case.

4. System implementation

This section describes how metered pricing for a utility
computing service can be implemented using a.NET-based service-
oriented enterprise Cloud technology called Aneka [9]. Our
implementation in Aneka uses advanced reservations to guarantee
dedicated access to computing resources for required time periods
in the future.

4.1. Aneka: Enterprise Cloud technology

Aneka [9] is designed to support multiple application models,
persistence and security solutions, and communication protocols
such that the preferred selection can be changed at anytime
without affecting an existing enterprise Cloud. To create an
enterprise Cloud, the provider only needs to start an instance of
the configurable Aneka container hosting required services on each
enterprise Cloud node.
The purpose of the Aneka container is to initialize services and

acts as a single point for interaction with the entire enterprise
Cloud. To support scalability, the Aneka container is designed
to be lightweight by providing the bare minimum functionality
needed for an enterprise Cloud node. It provides the base
infrastructure that consists of services for persistence, security
(authorization, authentication and auditing), and communication
(message handling and dispatching).
The Aneka container can host any number of optional services

that can be added to augment the capabilities of an enterprise
Cloud node. Examples of optional services are information
and indexing, scheduling, execution, and storage services. This
provides a flexible and extensible framework or interface for the
provider to easily support various application models, including
MapReduce [25] which is often associated with Cloud computing
systems. Thus, resource users can seamlessly execute different
types of application in an enterprise Cloud.
To support reliability and flexibility, services are designed to

be independent of each other in a Aneka container. A service
can only interact with other services on the local node or other
nodes through known interfaces. Thismeans that amalfunctioning
service will not affect other working services and/or the Aneka
container. Therefore, the provider can easily configure andmanage
existing services or introduce new ones into a Aneka container.

4.2. Resource management architecture
We implement a bi-hierarchical advance reservation mecha-

nism for the enterprise Cloud with a Reservation Service at a
master node that coordinates multiple execution nodes and an Al-
location Service at each execution node that keeps track of the
reservations at that node. This architecture was previously intro-
duced by Venugopal et al. [26]. Fig. 1 shows the interaction be-
tween the user/broker, themaster node and execution nodes in the
enterprise Cloud. To use the enterprise Cloud, the resource user (or
a broker acting on its behalf) has to first make advanced reserva-
tions for resources required at a designated time in the future.
During the request reservation phase, the user/broker submits

reservation requests through the Reservation Service at themaster
node. The Reservation Service discovers available execution nodes
in the enterprise Cloud by interacting with the Allocation Service
on them. The Allocation Service at each execution node keeps track
of all reservations that have been confirmed for the node and can
thus check whether a new request can be satisfied or not.
By allocating reservations at each execution node instead of

at the master node, computation overheads arising from making
allocation decisions are distributed across multiple nodes and thus
minimized, as compared to overhead accumulation at a single
master node. The Reservation Service then selects the required
number of execution nodes and informs their Allocation Services
to temporarily lock the reserved time slots. After all the required
reservations on the execution nodes have been temporarily locked,
the Reservation Service returns the reservation outcome and its
price (if successful) to the user/broker.
The user/broker may confirm or reject the reservations during

the confirm reservation phase. The Reservation Service then
notifies the Allocation Service of selected execution nodes to lock
or remove temporarily locked time slots accordingly. We assume

Please cite this article in press as: C.S. Yeo, et al., Autonomic metered pricing for a utility computing service, Future Generation Computer Systems (2009),
doi:10.1016/j.future.2009.05.024

ARTICLE IN PRESS
C.S. Yeo et al. / Future Generation Computer Systems () – 5

Fig. 1. Sequence of events between enterprise Cloud nodes for a successful reservation request.

Fig. 2. Interaction of services in enterprise Cloud.

that a payment service is in place to ensure the user/broker
has sufficient funds and can successfully deduct the required
payment before the Reservation Service proceeds with the final
confirmation.
During the execution phasewhen the reserved time arrives, the

user/broker submits applications to be executed to the Scheduling
Service at the master node. The Scheduling Service determines
whether any of the reserved execution nodes are available
before dispatching applications to them for execution, otherwise
applications are queued to wait for the next available execution
nodes that are part of the reservation. The Execution Service at
each execution node starts executing an application after receiving
it from the Scheduling Service and updates the Scheduling Service
of changes in execution status. Hence, the Scheduling Service can
monitor executions for an application and notify the user/broker
upon completion.

4.3. Allocating advanced reservations

Fig. 2 shows that the process of allocating advanced reserva-
tions happens in two levels: the Allocation Service at each execu-
tion node and the Reservation Service at the master node. Both
services are designed to support pluggable policies so that the

provider has the flexibility to easily customize and replace existing
policies for different levels and/or nodes without interfering with
the overall resource management architecture.
The Allocation Service determines how to schedule a new

reservation at the execution node. For simplicity, we implement
the same time slot selection policy for the Allocation Service
at every execution node. The Allocation Service allocates the
requested time slot if the slot is available. Otherwise, it assigns the
next available time slot after the requested start time that canmeet
the required duration.
The Reservation Service performs node selection by choosing

the required number of available time slots from execution nodes
and administers admission control by accepting or rejecting a
reservation request. It also calculates the price for a confirmed
reservation based on the implemented pricing policy. Various pric-
ing policies considered in this paper are explained in Section 3.3.
Available time slots are selected taking into account the application
requirement of the user.
The application requirement considered here is the task

parallelism to execute an application. A sequential application
has a single task and thus needs a single processor to run, while
a parallel application needs a required number of processors to
concurrently run at the same time.

Please cite this article in press as: C.S. Yeo, et al., Autonomic metered pricing for a utility computing service, Future Generation Computer Systems (2009),
doi:10.1016/j.future.2009.05.024

ARTICLE IN PRESS
6 C.S. Yeo et al. / Future Generation Computer Systems () –

Fig. 3. Configuration of enterprise Cloud.

For a sequential application, the selected time slots need not
have the same start and end times. Hence, available time slots
with the lowest prices are selected first. If there are multiple
available time slots with the same price, then those with the
earliest start time available are selected first. This ensures that
the cheapest requested time slot is allocated first if it is available.
Selecting available time slots with the lowest prices first is fair and
realistic. In reality, reservations that are confirmed earlier enjoy
the privilege of cheaper prices, as compared to reservation requests
that arrive later.
But, for a parallel application, all the selected time slots must

have the same start and end times. Again, the earliest time slots
(with the same start and end times) are allocated first to ensure the
requested time slot is allocated first if available. If there are more
available time slots (with the same start and end times) than the
required number of time slots, then those with the lowest prices
are selected first.
The admission control operates according to the service

requirement of the user. The service requirements examined are
the deadline and budget to complete an application. We currently
assume both deadline and budget are hard constraints. Hence, a
confirmed reservation must not end after the deadline and cost
more than the budget. Therefore, a reservation request is not
accepted if there is an insufficient number of available time slots
on execution nodes that endwithin the deadline and the total price
of the reservation costs more than the budget.

5. Performance evaluation

Fig. 3 shows the enterprise Cloud setup used for performance
evaluation. The enterprise Cloud comprises 33 PCs providing
dedicated access to computing resources through 1 master node
and 32 execution nodes located across 3 student computer
laboratories in the Department of Computer Science and Software
Engineering, TheUniversity ofMelbourne. Syntheticworkloads are
created by utilizing trace data.
We use Feitelson’s Parallel Workload Archive [27] to model

the reservation requests because trace data of Cloud applications
are currently not released and shared by any commercial Cloud
service providers. But, for a scientific research paper, it is extremely
important to have publicly accessible trace data so that our

experiments can be reproducible by other researchers. Moreover,
this paper focuses on studying the application requirements of
users in the context of High Performance Computing (HPC). Hence,
the Parallel Workload Archive meets our objective by providing
the necessary characteristics of real parallel applications collected
from supercomputing centers. Unfortunately, since the Parallel
Workload Archive is not based on paying users in utility computing
environments, it is possible that the trace pattern of these archived
workloads will be different from those with paying users.
Our experiments utilize 238 reservation requests in the last 7

days of the SDSC SP2 trace (April 1998 to April 2000) version 2.2
from the Parallel Workload Archive. The SDSC SP2 trace from the
San Diego Supercomputer Center (SDSC) in USA is chosen due to
the highest resource utilization of 83.2% among available traces to
ideally model a heavy workload scenario. The trace only provides
the inter-arrival times of reservation requests, the number of
processors to be reserved as shown in Fig. 4(a) (downscaled from a
maximum of 128 nodes in the trace to a maximum of 32 nodes),
and the duration to be reserved as shown in Fig. 4(b). Service
requirements are not available in this trace. Hence, we use a
methodology proposed by Irwin et al. [28] to synthetically assign
service requirements through two request classes: (i) Low Urgency
(LU) and (ii)High Urgency (HU). Fig. 4(b) and (c) show the synthetic
values of deadline and budget for the 238 requests respectively.
A reservation request i in the LU class has a deadline of high

deadlinei/durationi value and budget of low budgeti/f (durationi)
value. f (durationi) is a function representing the minimum budget
required based on durationi. Conversely, each request in the HU
class has a deadline of low deadlinei/durationi value and budget of
high budgeti/f (durationi) value. This is realistic since a user who
submits a more urgent request to be met within a shorter deadline
offers a higher budget for the short notice. Values are normally
distributed within each of the deadline and budget parameters.
For simplicity, we only evaluate the performance of pricing for

processing power as listed in Table 1 with various combinations
of application requirements (sequential and parallel) and request
classes (LU and HU). However, the performance evaluation can
be easily extended to include other resource types such as
memory, storage, and bandwidth. Both LU and HU classes are
selected so as to observe the performance under extreme cases
of service requirements with respective highest and lowest values
for deadline and budget. We also currently assume that every
user/broker can definitely accept another reservation time slot
proposed by the enterprise Cloud if the requested one is not
possible, provided that the proposed time slot still satisfies both
application and service requirements of the user.

6. Performance results

We analyze the performance results of seven various pricing
mechanisms (listed in Table 1) over one week with respect to
the application and service requirements of users. The three per-
formance metrics being measured are: (i) the accumulated rev-
enue of confirmed reservations in $, (ii) the current average price
of confirmed reservations in $/CPU/h, and (iii) the accumulated
number of confirmed reservations. The performance results of all
three metrics have been normalized to produce standardized val-
ues within the range of 0 to 1 for easier relative comparison. The
revenue (in $) of a confirmed reservation is the total sum of rev-
enue across all its reserved nodes calculated using the assigned
price (depending on the specific pricing mechanism) and the re-
served duration at each node. Then, the average price (in $/CPU/h)
of a confirmed reservation is computed to reflect the standard price
across all its reserved nodes.

Please cite this article in press as: C.S. Yeo, et al., Autonomic metered pricing for a utility computing service, Future Generation Computer Systems (2009),
doi:10.1016/j.future.2009.05.024

ARTICLE IN PRESS
C.S. Yeo et al. / Future Generation Computer Systems () – 7

(a) Number of processors (from trace).

(b) Duration (from trace) and deadline (synthetic).

(c) Budget (synthetic).

Fig. 4. Last 7 days of SDSC SP2 trace (April 1998 to April 2000) with 238 requests.

6.1. Fixed prices

Based on the configured pricing parameters of the four fixed
pricing mechanisms listed in Table 1, we can observe that
FixedMax charges the highest current average price, followed
by FixedTimeMax, FixedTimeMin, and FixedMin (Figs. 5(b), 6(b),
7(b) and 8(b)) FixedMax acts as the maximum bound of the
fixed pricing mechanisms by charging the highest price of
$3/CPU/h for processing power, while FixedMin acts as the
minimum bound by charging the lowest price of $1/CPU/h. The
remaining FixedTimeMax and FixedTimeMin falls within the
maximum and minimum bounds by charging the same price as
FixedMin ($1/CPU/h) for off-peak (12AM–12PM), and charging
either the same price as ($3/CPU/h for FixedTimeMax) or a
lower price ($2/CPU/h for FixedTimeMin) than FixedMax for peak
(12PM–12AM).

Given these current average price observations, one may in-
fer that FixedMax should always provide the highest accumu-
lated revenue (maximum bound), followed by FixedTimeMax,
FixedTimeMin, and FixedMin with the lowest accumulated rev-
enue (minimum bound). However, our performance results show
that this inference is only valid for three of our tested scenar-
ios (Figs. 5(a), 6(a) and 8(a)). For LU parallel application requests
(Fig. 7(a)), FixedTimeMin and FixedMin provide the highest ac-
cumulated revenue, instead of FixedMax and FixedTimeMax. This
is because both FixedMax and FixedTimeMax charge significantly
higher current average prices (45% and 0%–45% more than Fixed-
Min for FixedMax and FixedTimeMax respectively in Fig. 7(b)) that
mostly exceed the budget of LU parallel application requests, and
can thus only accept a lower number of requests (52% and 31%
less than FixedMin for FixedMax and FixedTimeMax respectively
in Fig. 7(c)). In contrast, both FixedMax and FixedTimeMax only
charge current average prices that are not more than 31% higher

Please cite this article in press as: C.S. Yeo, et al., Autonomic metered pricing for a utility computing service, Future Generation Computer Systems (2009),
doi:10.1016/j.future.2009.05.024

ARTICLE IN PRESS
8 C.S. Yeo et al. / Future Generation Computer Systems () –

Fig. 5. Sequential application requests: Low Urgency (LU).

than FixedMin for the other three scenarios (Figs. 5(b), 6(b) and
8(b)). This thus demonstrates the dilemma faced by providers on
how to set the best price for fixed pricing mechanisms in order to
achieve the best revenue performance across all various scenarios.
We nowdeterminewhether Fixed or FixedTime is a better fixed

pricing mechanism across all various scenarios. We first compare
FixedMax and FixedTimeMax based on their improvement in
revenue compared to FixedMin (shown in Table 2 for Figs. 5(a),
6(a), 7(a) and 8(a)) because they reflect the same price difference
of $2/CPU/h. FixedMax charges $3/CPU/h, while FixedMin charges
$1/CPU/h. Likewise, FixedTimeMax charges $1/CPU/h for off-
peak (12AM–12PM) and $3/CPU/h for peak (12PM–12AM), while
FixedMin charges the same $1/CPU/h for both off-peak and peak.
Table 2 shows that FixedMax has a significantly higher

standard deviation (SD = 58.01) of improvement in revenue
compared to FixedMin, which is about 2.5 times more than

Table 2
Improvement in revenue compared to FixedMin.

Pricing Sequential Parallel SD
LU HU LU HU

FixedMax 61% 26% −72% 33% 58.01
FixedTimeMax 36% 13% −18% 21% 22.76
FixedTimeMin 20% 7% 4% 19% 8.19
Libra+$Max −17% 70% −89% 43% 70.59
Libra+$Min 48% 24% −56% 24% 45.43
Libra+$Auto 24% 87% −8% 42% 39.65

that of FixedTimeMax (SD = 22.76). But, FixedTimeMin (which
charges $2/CPU/h for peak) has an even lower standard deviation
(SD = 8.19) than that of FixedTimeMax (SD = 22.76). This means
that setting the ideal price correctly for various time periods of
resource usage to satisfy different types of application and service

Please cite this article in press as: C.S. Yeo, et al., Autonomic metered pricing for a utility computing service, Future Generation Computer Systems (2009),
doi:10.1016/j.future.2009.05.024

ARTICLE IN PRESS
C.S. Yeo et al. / Future Generation Computer Systems () – 9

Fig. 6. Sequential application requests: High Urgency (HU).

requirements is not easy. Still, out of these four fixed pricing
mechanisms, the FixedTime mechanisms are easier to derive and
more reliable than the Fixed mechanisms since they support a
range of prices across various time periods of resource usage
and are observed to have less revenue fluctuations than Fixed
mechanisms respectively.
Table 3 shows the gap in revenue from the upper bound of

revenue. This upper bound is computed as the total budget of
requests which are accepted. Thus, pricing mechanisms can have
different upper bound values since they may not accept the same
requests. Defining this upper bound enables us to know how
optimal the pricing mechanisms are in terms of maximizing the
revenue out of the budget given by the user. Hence, it is better
to have a lower percentage gap in Table 3 since it means that
the pricing mechanism is able to achieve more revenue out of the
maximum budget.

Table 3
Gap in revenue compared to the upper bound.

Pricing Sequential Parallel SD
LU HU LU HU

FixedMax 31% 81% 23% 57% 26.36
FixedMin 75% 94% 43% 73% 21.08
FixedTimeMax 52% 87% 27% 64% 24.99
FixedTimeMin 63% 91% 33% 66% 23.75
Libra+$Max 21% 60% 14% 34% 20.27
Libra+$Min 41% 82% 26% 62% 24.46
Libra+$Auto 48% 49% 45% 52% 2.89

As listed in Table 3, all four fixed pricing mechanisms achieve
a much worse percentage gap for HU requests (57%–94%) than for
LU requests (23%–75%). But, FixedMin is the most optimal out of
them with the lowest standard deviation (SD = 21.08), followed

Please cite this article in press as: C.S. Yeo, et al., Autonomic metered pricing for a utility computing service, Future Generation Computer Systems (2009),
doi:10.1016/j.future.2009.05.024

ARTICLE IN PRESS
10 C.S. Yeo et al. / Future Generation Computer Systems () –

Fig. 7. Parallel application requests: Low Urgency (LU).

by FixedTimeMin (SD = 23.75), FixedTimeMax (SD = 24.99), and
FixedMax (SD = 26.36). This further reinforces that FixedTime
mechanisms are easier to derive andmore reliable for the provider
compared to Fixed mechanisms.

6.2. Variable prices

We analyze the three variable pricing mechanisms which are
based on Libra+$ as listed in Table 1: Libra+$Max, Libra+$Min,
and Libra+$Auto. Unlike the previously discussed four fixed
pricingmechanisms, Libra+$ considers the service requirement of
users by charging a lower price for a request with longer deadline
as an incentive to encourage users to submit requests with
longer deadlines that are more likely to be accommodated than
shorter deadlines. The difference in prices charged by Libra+$Max,
Libra+$Min, and Libra+$Auto is primarily dependent on the β

factor for the dynamic pricing component of Libra+$ as explained
in Section 3.3 — a higher β factor means that Libra+$ will charge
a higher price.
Table 1 shows that Libra+$Max and Libra+$Min has a β value

of 3 and 1 respectively, thus Libra+$Max always charges a higher
price than Libra+$ Min (Fig. 5(b), Fig. 6(b), Fig. 7(b) and Fig. 8(b)).
However, Libra+$Max only provides higher accumulated revenue
than Libra+$Min for HU requests with short deadline and high
budget (Fig. 6(a) and Fig. 8(a)). For LU requests with long deadline
and low budget (Fig. 5(a) and Fig. 7(a)), Libra+$Max instead
provides the least accumulated revenue out of all seven fixed and
variable pricing mechanisms, even though it charges the highest
prices at various times (Fig. 5(b) and Fig. 7(b)). This highlights the
inflexibility of static pricing parameters to maximize revenue for
different service requirements. In this case, β of Libra+$Max is set
too high such that requests are rejected due to low budget.

Please cite this article in press as: C.S. Yeo, et al., Autonomic metered pricing for a utility computing service, Future Generation Computer Systems (2009),
doi:10.1016/j.future.2009.05.024

ARTICLE IN PRESS
C.S. Yeo et al. / Future Generation Computer Systems () – 11

Fig. 8. Parallel application requests: High Urgency (HU).

On the other hand, Libra+$Auto is initially configured with the
same pricing parameters as Libra+$Min, but will automatically
adjust β based on the availability of compute nodes over time.
Since Libra+$Auto does not have a statically defined β value, it
has the flexibility to charge prices that are higher (Fig. 6(b)) or
lower (Figs. 5(b), 7(b) and 8(b)) than Libra+$Max and Libra+$Min.
In particular, Libra+$Auto is able to exploit the high budget of
users by automatically adjusting to a higher β to increase prices
and maximize revenue when the availability of nodes is low. This
can be observed for HU sequential application requests (Fig. 6(b))
wherein Libra+$Auto continues increasing prices to higher than
that of Libra+$Max and other pricing mechanisms when demand
is high such as during the later half of day 1, 2, 3, and 5.
Conversely, Libra+$Auto also adjusts to a lower β to decrease

prices when demand is low to accommodate users with lower

budgets. Thus, Libra+$Auto can continue to generate revenue, but
at a slower rate when demand is low (i.e., when there are more
unused nodes which will otherwise be wasted). This can again
be observed for HU sequential application requests (Fig. 6(b)),
when demand is low such as during the early half of day 2, 3, 5,
and 6, Libra+$Auto keeps reducing prices to lower than that of
Libra+$Max to accept requests that are not willing to pay more.
With this autonomic pricing feature, we can observe that

Libra+$Auto is able to generate the most highest (Fig. 6(a))
and second highest (Fig. 8(a)) revenue for sequential and
parallel applications of HU requests respectively. In particular,
Libra+$Auto is able to achieve these highest revenues by
accepting an almost similar number of HU requests as most other
pricing mechanisms for both sequential and parallel applications
(Figs. 6(c) and 8(c)). A similar number of HU requests are accepted

Please cite this article in press as: C.S. Yeo, et al., Autonomic metered pricing for a utility computing service, Future Generation Computer Systems (2009),
doi:10.1016/j.future.2009.05.024

ARTICLE IN PRESS
12 C.S. Yeo et al. / Future Generation Computer Systems () –

since nodes are less likely to be available for short deadlines. Thus,
it demonstrates that Libra+$Auto adjusts pricing by considering
the service requirements (deadline and budget) of users.
In addition, for sequential applications, we can observe that

Libra+$Auto accepts the least number of requests for both LU
and HU requests (Figs. 5(c) and 6(c)). But, for parallel applications,
Libra+$Auto is able to accept a higher number of requests
similar to most other pricing mechanisms (Figs. 7(c) and 8(c)).
This is because parallel applications need multiple nodes which
require a higher budget, compared to sequential applications
which only require a single node. Hence, the low budget leads
to a huge inconsistency in performance between sequential and
parallel applications for other pricing mechanisms due to the
inflexibility of static pricing parameters. However, Libra+$Auto
is able to progressively increase the accumulated revenue over
the 7-days period for parallel applications (Figs. 7(a) and 8(a)),
as compared to sequential applications (Figs. 5(a) and 6(a)). For
example, Libra+$Auto is still able to achieve almost the same
revenue as Libra+$Max even though Libra+$Max accumulates
more revenue much earlier from Day 2 to 5 (Fig. 8(a)). This is
because Libra+$Auto adjusts to a lower β at various times to
accommodate more requests with lower prices than Libra+$Max
to eventually fix the initial shortfall (Fig. 8(b)). Hence, unlike
Libra+$Max and Libra+$Min, Libra+$Auto can also automatically
adjust pricing based on application requirements, in addition to
service requirements.
As listed in Table 2, Libra+$Auto has a significantly lower

standard deviation (SD = 39.65) of improvement in revenue
compared to FixedMin, which is about 1.8 and 1.1 times less than
that of Libra+$Max (SD = 70.59) and Libra+$Min (SD = 45.43)
respectively. In fact, the standard deviation of Libra+$Auto is
also much lower than that of FixedMax (SD = 58.01) which
is a fixed pricing mechanism. Even though Libra+$Auto has a
higher standard deviation than that of FixedTimeMax (SD= 22.76)
and FixedTimeMin (SD = 8.19), Libra+$Auto is able to generate
considerably higher revenue for HU requests of both sequential
and parallel applications by differentiating both application
and service requirements of users, which is critical from the
perspective of a utility computing service.
Table 3 shows that Libra+$Auto is the most optimal out

of all seven pricing mechanisms across all various scenarios.
Libra+$Auto has the lowest standard deviation (SD = 2.89) of
gap in revenue compared to the upper bound, which is about
7.0 and 8.4 times less than that of Libra+$Max (SD = 20.27)
and Libra+$Min (SD = 24.46) respectively. Unlike the other six
mechanisms which have a wide range of percentage gap between
LU and HU requests, Libra+$Auto consistently maintains a narrow
range of percentage gap for both LU and HU requests (45%–52%).
This demonstrates that Libra+$Auto is able to adjust pricing
effectively to maximize revenue across all various scenarios.
However, Libra+$Auto is not themost optimal for each specific

scenario. Libra+$Auto is only the most optimal for HU sequential
application requests with the lowest percentage gap of 49%.
Instead, Libra+$Max is the most optimal for the other three
scenarios with the lowest percentage gap of 21%, 14%, and 34%
for LU sequential, LU parallel and HU parallel application requests
respectively. Hence, the current simple heuristic of Libra+$Auto
can be further enhanced to not only maximize revenue across all
various scenarios, but also for each specific scenario.

7. Conclusion

This paper studies the performance of charging fixed and
variable prices for a utility computing service. Charging fixed
prices is simple to understand and straightforward for users,
but does not differentiate pricing to exploit different user

requirements in order to maximize revenue. Hence, this paper
emphasizes the importance of implementing autonomic metered
pricing for a utility computing service to self-adjust prices to
increase revenue. In particular, autonomic metered pricing can
also be straightforward for users through the use of advanced
reservations.With advanced reservations, users can not only know
the prices of their required resources in the future ahead, but are
also able to guarantee access to future resources to better plan and
manage their operations.
Through the actual implementation of an enterprise Cloud,

we show that a simple autonomic pricing mechanism called
Libra+$Auto is able to achieve higher revenue than other
common fixed pricing mechanisms by considering two essential
user requirements: (i) application (sequential and parallel) and
(ii) service (deadline and budget). The use of advanced reservations
enables Libra+$Auto to self-adjust prices in a more fine-grained
manner based on the expected workload demand and availability
of nodes so that more precise incentives can be offered to
individual users to promote demand and thus improve revenue.
Experimental results show that Libra+$Auto is able to exploit
budget limits to achieve higher revenue than other variable and
fixed pricing mechanisms by automatically adjusting to a higher β
to increase prices when the availability of nodes is low and a lower
β to reduce prices when there are more unused nodes which will
otherwise be wasted.
Our future work will involve conducting experimental studies

using real applications and service requirements of users which
can be collected by providers such as Amazon, Sun Microsystems,
or Tsunamic Technologies. We also need to understand how users
will react to price changes and when they will switch providers.
This knowledge can be used to derive more sophisticated models
to construct a more complex autonomic pricing mechanism that
considers more dynamic factors such as user response from
price changes and competition from other providers. A stochastic
model can then be built based on historical observation data to
predict future demand and adjust prices accordingly. In addition,
allowing the cancelation of reservations is essential to provide
more flexibility and convenience for users since user requirements
can change over time. Therefore, future work needs to investigate
the implication of cancelations for a utility computing service and
possible overbooking of reservations to address cancelations. It
may be possible to apply revenue management [8] to monitor
current cancelations, amend cancelation and refund policies, and
adjust prices for new reservations accordingly. The providers may
also require users to pay penalties or not be entitled to any refunds
for canceling reservations depending on specific booking terms
and agreements during the time of reservation.

Acknowledgments

We thank Chao Jin andKrishnaNadiminti for their helpwith the
use of Aneka.We alsowant to thank anonymous reviewers for their
constructive comments which helped to improve this paper. This
work is partially supported by research grants from the Australian
Research Council (ARC) and Australian Department of Innovation,
Industry, Science and Research (DIISR).

References

[1] C.S. Yeo, R. Buyya, M.D. de Assuncao, J. Yu, A. Sulistio, S. Venugopal, M. Placek,
Utility computing on global grids, in: H. Bidgoli (Ed.), Handbook of Computer
Networks, John Wiley and Sons, Hoboken, NJ, USA, 2007.

[2] M.A. Rappa, The utility business model and the future of computing services,
IBM Systems Journal 43 (1) (2004) 32–42.

[3] R. Buyya, C.S. Yeo, S. Venugopal, J. Broberg, I. Brandic, Cloud computing and
emerging IT platforms: Vision, hype, and reality for delivering computing as
the 5th utility, Future Generation Computer Systems 25 (6) (2009) 599–616.

Please cite this article in press as: C.S. Yeo, et al., Autonomic metered pricing for a utility computing service, Future Generation Computer Systems (2009),
doi:10.1016/j.future.2009.05.024

ARTICLE IN PRESS
C.S. Yeo et al. / Future Generation Computer Systems () – 13

[4] Amazon, Elastic Compute Cloud (EC2). http://www.amazon.com/ec2/, (Oct.
2008).

[5] Sun Microsystems, Sun Grid. http://www.sun.com/service/sungrid/. (Oct.
2008).

[6] Tsunamic Technologies, Cluster On Demand. http://www.tsunamictechnol
ogies.com/services.htm#COD (Oct. 2008).

[7] I. Foster, C. Kesselman, C. Lee, B. Lindell, K. Nahrstedt, A. Roy, A distributed
resource management architecture that supports advance reservations and
co-allocation, in: Proceedings of the 7th International Workshop on Quality
of Service, IWQoS 1999, IEEE Communications Society, Piscataway, NJ, USA,
London, UK, 1999, pp. 27–36.

[8] R.L. Phillips, Pricing and Revenue Optimization, Stanford University Press,
Stanford, CA, USA, 2005.

[9] X. Chu, K. Nadiminti, C. Jin, S. Venugopal, R. Buyya, Aneka: Next-generation en-
terprise grid platform for e-science and e-business applications, in: Proceed-
ings of the 3rd International Conference on e-Science and Grid Computing,
e-Science 2007, IEEE Computer Society, Los Alamitos, CA, USA, Bangalore, In-
dia, 2007, pp. 151–159.

[10] C.S. Yeo, R. Buyya, A taxonomy of market-based resource management sys-
tems for utility-driven cluster computing, Software: Practice and Experience
36 (13) (2006) 1381–1419.

[11] R. Buyya, D. Abramson, J. Giddy, H. Stockinger, Economic models for
resource management and scheduling in grid computing, Concurrency and
Computation: Practice and Experience 14 (13–15) (2002) 1507–1542.

[12] G.A. Paleologo, Price-at-risk: A methodology for pricing utility computing
services, IBM Systems Journal 43 (1) (2004) 20–31.

[13] K.-W. Huang, A. Sundararajan, Pricing models for on-demand computing,
Working Paper CeDER-05-26, New York University, Nov. 2005.

[14] J.P. Degabriele, D. Pym, Economic aspects of a utility computing service,
Technical Report HPL-2007-101, HP Labs, Bristol, Jul. 2007.

[15] B.P. Pashigian, Price Theory and Applications, Irwin/McGraw-Hill, Boston, MA,
USA, 1998.

[16] A. Sulistio, K.H. Kim, R. Buyya, Using revenue management to determine
pricing of reservations, in: Proceedings of the 3rd International Conference
on e-Science and Grid Computing, e-Science 2007, IEEE Computer Society, Los
Alamitos, CA, USA, Bangalore, India, 2007, pp. 396–404.

[17] Y. Chen, A. Das, N. Gautama, Q. Wang, A. Sivasubramaniam, Pricing-based
strategies for autonomic control of web servers for time-varying request
arrivals, Engineering Applications of Artificial Intelligence 17 (7) (2004)
841–854.

[18] J. Sherwani, N. Ali, N. Lotia, Z. Hayat, R. Buyya, Libra: A computational
economy-based job scheduling system for clusters, Software: Practice and
Experience 34 (6) (2004) 573–590.

[19] C.S. Yeo, R. Buyya, Pricing for utility-driven resource management and
allocation in clusters, International Journal of High Performance Computing
Applications 21 (4) (2007) 405–418.

[20] S. Venugopal, R. Buyya, L. Winton, A grid service broker for scheduling e-
science applications on global data grids, Concurrency and Computation:
Practice and Experience 18 (6) (2006) 685–699.

[21] J.F. Kurose, R. Simha, Amicroeconomic approach to optimal resource allocation
in distributed computer systems, Institute of Electrical and Electronics
Engineers. Transactions on Computers 38 (5) (1989) 705–717.

[22] T.T. Nagle, J.E. Hogan, The Strategy and Tactics of Pricing: A Guide to Growing
More Profitably, 4th ed., Prentice Hall, Upper Saddle River, NJ, USA, 2006.

[23] W. Smith, I. Foster, V. Taylor, Predicting application run times using historical
information, in: Proceedings of the 4thWorkshop on Job Scheduling Strategies
for Parallel Processing, JSSPP 1998, in: Lecture Notes in Computer Science
(LNCS), vol. 1459/1998, Springer-Verlag, Heidelberg, Germany, Orlando, FL,
USA, 1998, pp. 122–142.

[24] J. Yang, I. Ahmad, A. Ghafoor, Estimation of execution times on heterogeneous
supercomputer architectures, in: Proceedings of the 22nd International
Conference on Parallel Processing, ICPP 1993, vol. 1, IEEE Computer Society,
Los Alamitos, CA, USA, Syracuse, NY, USA, 1993, pp. 219–226.

[25] C. Jin, R. Buyya, MapReduce programming model for.NET-based cloud
computing, in: Proceedings of the 15th International European Conference on
Parallel and Distributed Computing, Euro-Par 2009, Delft, The Netherlands,
2009.

[26] S. Venugopal, X. Chu, R. Buyya, A negotiationmechanism for advance resource
reservations using the alternate offers protocol, in: Proceedings of the 16th
International Workshop on Quality of Service, IWQoS 2008, IEEE, Piscataway,
NJ, USA, Enschede, The Netherlands, 2008, pp. 40–49.

[27] Parallel workloads archive. http://www.cs.huji.ac.il/labs/parallel/workload/,
Oct. 2008.

[28] D.E. Irwin, L.E. Grit, J.S. Chase, Balancing risk and reward in a market-based
task service, in: Proceedings of the 13th International Symposium on High
Performance Distributed Computing, HPDC13, IEEE Computer Society, Los
Alamitos, CA, USA, Honolulu, HI, USA, 2004, pp. 160–169.

Chee Shin Yeo completed his Ph.D. at the University
of Melbourne, Australia. His research interests include
distributed computing, services and utility computing,
energy-efficient computing, and market-based resource
allocation.

Srikumar Venugopal is a Lecturer in the School of Com-
puter Science and Engineering at the University of New
South Wales, Sydney, Australia. He received a Bachelors
in Computer Science and Engineering fromCochin Univer-
sity of Science and Technology (CUSAT), India in 2001, and
a Ph.D. fromUniversity ofMelbourne in 2006. His research
interests lie in resource allocation and scheduling in large-
scale distributed systems, data-intensive applications, and
computational economy mechanisms.

Xingchen Chu has about 9 years of experience with
software architecture, design, and development on a
variety of platforms, including Java, J2EE, C++ and
C#. Xingchen has a Master of Information Technology
degree from University of Melbourne. Xingchen has keen
interests in enterprise web development, Grid and Cloud
technology. He currentlyworks as a research fellow inGrid
Computing and Distributed Systems (GRIDS) Laboratory,
University of Melbourne. Xingchen Chu is originally from
China and now lives in Melbourne, Australia.

Rajkumar Buyya is an Associate Professor of Computer
Science and Software Engineering; and Director of the
Grid Computing and Distributed Systems Laboratory at
the University of Melbourne, Australia. He is also serving
as the founding CEO of Manjrasoft Pty Ltd., a spin-off
company of the University, commercialising innovations
originating from the GRIDS Lab. He has authored over
250 publications and three books. The books on emerging
topics that Dr. Buyya edited include, High Performance
Cluster Computing (Prentice Hall, USA, 1999), Content
Delivery Networks (Springer, 2008) and Market-Oriented

Grid and Utility Computing (Wiley, 2009). Dr. Buyya has contributed to the
creation of high-performance computing and communication system software for
Indian PARAM supercomputers. He has pioneered Economic Paradigm for Service-
Oriented Grid computing and developed key Grid technologies such as Gridbus
that power the emerging e-Science and e-Business applications. In this area, he
has published hundreds of high quality and high impact research papers that are
well referenced. The Journal of Information and Software Technology in Jan 2007
issue, based on an analysis of ISI citations, ranked Dr. Buyya’s work (published
in Software: Practice and Experience Journal in 2002) as one among the ‘‘Top 20
cited Software Engineering Articles in 1986–2005’’. He received the Chris Wallace
Award for Outstanding Research Contribution 2008 from the Computing Research
and Education Association of Australasia. He is the recipient of 2009 IEEE Medal for
Excellence in Scalable Computing.

Please cite this article in press as: C.S. Yeo, et al., Autonomic metered pricing for a utility computing service, Future Generation Computer Systems (2009),
doi:10.1016/j.future.2009.05.024

http://www.amazon.com/ec2/
http://www.amazon.com/ec2/
http://www.amazon.com/ec2/
http://www.amazon.com/ec2/
http://www.amazon.com/ec2/
http://www.sun.com/service/sungrid/
http://www.sun.com/service/sungrid/
http://www.sun.com/service/sungrid/
http://www.sun.com/service/sungrid/
http://www.sun.com/service/sungrid/
http://www.sun.com/service/sungrid/
http://www.tsunamictechnol
http://www.tsunamictechnol
http://www.tsunamictechnol
ogies.com/services.htm#COD
ogies.com/services.htm#COD
ogies.com/services.htm#COD
ogies.com/services.htm#COD
ogies.com/services.htm#COD
http://www.cs.huji.ac.il/labs/parallel/workload/
http://www.cs.huji.ac.il/labs/parallel/workload/
http://www.cs.huji.ac.il/labs/parallel/workload/
http://www.cs.huji.ac.il/labs/parallel/workload/
http://www.cs.huji.ac.il/labs/parallel/workload/
http://www.cs.huji.ac.il/labs/parallel/workload/
http://www.cs.huji.ac.il/labs/parallel/workload/
http://www.cs.huji.ac.il/labs/parallel/workload/
http://www.cs.huji.ac.il/labs/parallel/workload/

	Autonomic metered pricing for a utility computing service
	Introduction
	Related work
	Economic aspects of a utility computing service
	Variable pricing with advanced reservations
	Pricing issues
	Pricing mechanisms

	System implementation
	Aneka: Enterprise Cloud technology
	Resource management architecture
	Allocating advanced reservations

	Performance evaluation
	Performance results
	Fixed prices
	Variable prices

	Conclusion
	Acknowledgments
	References

