
1

Abstract: Most businesses today make use of spreadsheets for a
lot of their daily activities. Spreadsheets are useful tools which
enable quick analysis of data, and are within reach of every
person. Microsoft Excel is a widely used spreadsheet application
and provides a very easy-to-use system, which any user can
utilise to perform complex analysis on data without having to
learn programming. As businesses grow, the requirement for
more and more complex compute intensive analysis arises and
there is a need to improve the performance of the data analysis
process. To meet this requirement, we propose the use of grids as
they allow us to harness geographically distributed
computational resources for performing computations in parallel
in order to speed up the execution. This paper describes a method
to grid-enable Microsoft Excel, to execute spreadsheet
computations on enterprise and global grids.

I. INTRODUCTION

Spreadsheets are powerful business analysis tools [6] as they
are applicable in a wide range of areas including business,
science, education, engineering etc. A spreadsheet is readily
adaptable for problems that are iterative, recursive, or tabular
in conceptual format and enables users to tinker with values of
variables, constants, and step size and to explore the tempting
"what if?" type of questions in the problem-solving process.
Such parameter studies create numerous scenarios for
exploration leading to an exponential increase in processing
power requirements. These kinds of analyses take several hours
or even days of processing time on desktop computers with
regular spreadsheet applications. Such large-scale processing
requirements can be met by peer-to-peer/desktop/enterprise
[20] and global grids [17], as they allow harnessing
computational resources such as desktops, servers, clusters
which are distributed geographically.

Microsoft Excel is the leading spreadsheet application in
markets all over the world today with a 90% market share [19]
– not too long ago, Lotus 1-2-3 was considered the "standard"
spreadsheet. Excel and spreadsheets in general, are very useful
for applications in the business-financial domain such as risk
and portfolio analysis. They also find applications in
quantitative decision support systems in business planning.
There are a wide range of add-ons to Excel, due to its
popularity. These add-ins enable applications that include

1 Contact Author EmailID – raj@csse.unimelb.edu.au

Monte-Carlo simulations and statistical analysis, time-series
forecasting, real option analysis and the like Excel is also used
in the engineering domain with MATLAB plug-ins. A grid-
interface to Excel will help in extending this very useful
software from the desktop to enterprise and global grids as they
provide the benefits of improved job execution speed and result
in getting processing done faster. However, an application
needs to possess certain attributes to reap the benefits of grid-
enabling it. For example, an application needs to be very
resource and/or data-intensive. It should also be easily
parallelisable. Ideally applications which can be divided into
sub-tasks which can run independent of each other are well
suited to run on the grid, if each of these tasks, are reasonably
compute intensive such that the execution time of each task is
much more compared to the network transfer overheads. Such
coarse-grain applications are the ones which can gain
maximum benefit from the grid. On the other hand, day-to-day
spreadsheet applications involving trivial tasks, would only see
a decline in performance, if run on a distributed system.

In this paper, we present an approach to grid-enable Excel by
creating a plug-in, called ExcelGrid, which operates with grid
systems, based on service-oriented architecture, such as
Alchemi [12] and Gridbus broker [18] frameworks. The
ExcelGrid plug-in provides a front-end to a grid via Excel
spreadsheet and performs user-defined computations on
enterprise grids created using Alchemi and global grids built
using Gridbus coupled with Globus [7], UNICORE [11] and
also Alchemi technologies. It allows users to run jobs on
remote computers, using an easy-to-use GUI, and retrieve the
results via the standard Excel spreadsheet interface.

The contributions of this work include a) the use of service
oriented architecture (SOA) in design and development of an
open-source grid plug-in for Excel, b) the use of modern
technologies such as .NET, C#, web services and c)
development of scalable ExcelGrid framework that
transparently operates in both enterprise and global grid
environments. In addition, we believe that the release of
ExcelGrid as an open source software ensures its wider
adoption and encourages other emerging Grid middleware
developers to easily take advantage of it.

ExcelGrid: A .NET Plug-in for Outsourcing Excel
Spreadsheet Workload to Enterprise and Global Grids

Krishna Nadiminti, Yi-Feng Chiu, Nick Teoh, Akshay Luther, Srikumar Venugopal, Rajkumar Buyya1

Grid Computing and Distributed Systems Laboratory and NICTA Victoria Laboratory
Department of Computer Science and Software Engineering

The University of Melbourne
 ICT Building, 111 Barry Street

Carlton, VIC 3053, Australia

2

The rest of this paper is organised as follows. Section II
presents grid technologies whose programming interface has
been used in developing ExcelGrid plug-in. Section III
introduces our proposal, ExcelGrid and its architecture. Section
IV goes into further details of the design and implementation
of our system and in section V performance results of
ExcelGrid running on different grid middleware are presented.
A review existing work in the area of enhancing the
capabilities of Excel by providing extensions that enable
execution of processes on a grid is given in section VI. We
finally conclude in section VII with our plans for future work.

II. GRID TECHNOLOGIES

In the development of ExcelGrid we have used programming
interfaces provided by Alchemi and Gridbus Broker for
harnessing enterprise and global grids, we briefly describe
these two technologies.

A. Alchemi and .NET framework
Alchemi [12] is a Windows-based desktop grid computing
framework implemented on Microsoft .NET platform, and
developed at the University of Melbourne as part of the
Gridbus project, which provides the runtime machinery and the
programming environment which is required to construct

desktop grids and develop grid applications. It supports object-
oriented grid application programming and execution of cross-
platform applications via web services. The Microsoft .NET
Framework is an ideal platform for grid computing middleware
because it provides a powerful toolset that supports security,
remote execution, multithreading, cross-language development,
etc. The key features supported by Alchemi, are internet-based
clustering of desktop computers without a shared file system,
federation of clusters to create hierarchical, cooperative grids,
dedicated or non-dedicated (voluntary) execution by clusters
and individual nodes, object-oriented grid thread programming
model (fine-grained abstraction), and a web services interface
supporting a grid job model (coarse-grained abstraction) for
cross-platform interoperability (e.g. for creating a global and
cross-platform grid environment using a custom resource
broker component).

B. Gridbus Broker and Global Grids
The Gridbus data-service broker is a platform-independent
brokering framework, implemented in Java, which provides
brokering services for execution of jobs on various low-level
middleware systems like Globus, UNICORE. It hides the
complexity of the grid by translating parameter-sweep
applications into jobs that can be scheduled to be executed on

ExcelGrid Add-In

ExcelGrid Runner

GridClient

ExcelGrid Middleware

Global Grid
[Gridbus Broker]

Enterprise
Grid

[Alchemi]

UNICORE

Globus

Alchemi

Alchemi

Excel

Figure 1: Excel Grid Architecture.

3

resources (computer systems), managing them and collecting
the results of the execution when finished. The Gridbus broker
has the capability to locate and retrieve data from multiple data
sources, select the best resources based on users’ QoS
requirements, and also redirect output to appropriate storage
locations. The main features of the Gridbus broker [18] include
support for parameter-sweep model applications, simple,
extensible, middleware-independent architecture, service –
oriented, data-aware and economy capability, and platform –
independence (being based on Java it can be a standalone
application, or embedded within a Web application).

III. ARCHITECTURE

ExcelGrid is a user-level middleware system designed to
harness enterprise and global grids developed using Alchemi
and Gridbus broker which provide services to execute jobs on
resources that are grid-enables using various low-level
middleware technologies such as Globus, UNICORE and
Alchemi. ExcelGrid is designed to distribute compute intensive
jobs for execution on grids with the aim of achieving a
performance boost in job execution, using the parameter-sweep
model [2]. Multiple instances of a job are run in parallel on
different grid nodes, with different parameters.

The architecture of ExcelGrid is shown in Figure 1. The main
components of the ExcelGrid are the ExcelGridAddIn,
ExcelGrid Runner, and the GridClient.

A. ExcelGrid Components
The ExcelGrid Add-In forms the interface to Excel. It provides
access to the Excel application model. The AddIn component
appears as a menu option in the standard Excel “Tools” menu.
It is the connection between Excel and the ExcelGrid Runner
component. The ExcelGrid Runner forms the main GUI

(graphical user interface) as shown in Figure 2.. This is the
main interface to the user from which required options are
selected and job execution is initiated. It performs the functions
of preparing the jobs to be submitted to the grid framework,
based on the parameters input by the user. The runner also
provides feedback to the user about the status of job execution
on the grid.

A job is a work unit which performs any computation, and has
a set of inputs and outputs. The input parameters for the job are
extracted from the spreadsheet. The GridClient component
attempts to connect to the grid middleware and submit the jobs
for execution. The data in the spreadsheet is converted into
appropriate job description formats for the grid, and jobs are
requested to be scheduled. The GridClient can communicate
with both enterprise and global grid frameworks. For enterprise
grids, the Job API provided by Alchemi is used. The user
selections are mapped to the job model of Alchemi to prepare
and schedule jobs on worker nodes. To interact with global
grids, GridClient communicates with the Gridbus broker. The
communication is using raw socket communication and a
protocol which describes the jobs and its parameters. All the
job parameters are passed as a single message which the server
splits to create the jobs. The Gridbus broker is used as a
standalone server application in this case, listening for
connections and providing brokering services for global grids.
The GridClient listens for return messages from this server,
and updates job status of scheduled jobs.

IV. DESIGN AND IMPLEMENTATION

Based on the architecture described in the previous section, we
decided to implement the ExcelGrid components using object-
orient design and development methodologies, using UML
tools and .NET languages like VB.NET and C#. The interface
to the Gridbus broker was implemented in Java. Figure 3
shows the interaction diagrams between the GridClient
(AlchemiClient / GridbusClient) and the grid frameworks.

The basic process involved the same steps for both cases. The
user initiates the execution, and the GridClient prepares the
jobs to be submitted to the framework. In case of Alchemi, the
jobs are submitted via the GJob API of Alchemi and call-back
events/functions are registered with the application object.
When the “JobFinished” or “JobFailed” events occur, the
information obtained is passed on to the ExcelGrid Runner
which updates the display in Excel and the progress form. In
case of the Gridbus broker the protocol is slightly different.
Since the broker is implemented in Java, and the GridClient in
C#.NET direct call-back communication is not possible. Hence
a simple socket based communication is used. Jobs are
submitted using a single long message which combines all the
parameters into a string. This message is received by the server
and split into separate jobs. These jobs are then scheduled on
the grid. The GridClient maintains a connection to the server
while the jobs are executed. The server polls the job status, and

Figure 2: ExcelGrid Runner GUI.

4

reports completion / failure messages with results or error
messages respectively. These messages then trigger events
from the GridClient which are captured by the
ExcelGridRunner to update the display.

Figure 4 shows the main classes in the ExcelGrid system. The
ExcelGridAddIn component contains the “Connect” class
which implements the Extensibility.IDTExtensibility2 interface.
Its main function is the connection between Excel and the
ExcelGridRunner component. By implementing the
IDTExtensibility2 interface, the add-in can be loaded in Excel
when it starts up, and forms an integral part of the Excel GUI.
The ExcelGridAddIn contains the classes shown in Figure 5.
The “Connect” class implements the IDTExtensibility2
interface, which involved implementing the methods –
OnConnection, OnDisconnection, OnAddInsUpdate,
OnStartupComplete, and OnBeginShutdown. These methods

are call-backs called by Excel when a certain event happens in
the GUI.

Microsoft Excel exposes an object model, which can be used to
programmatically control it. The object model is a collection of
classes and methods that serve as counterparts to the logical
components of Excel. For example, there is an Application
object, a Workbook object, and a Worksheet object, each of
which contain the functionality of those components of Excel.
This process of controlling Excel programmatically is called
Automation [9][10]. Using automation, various actions such as
invoking Excel, creating workbooks, adding and manipulating
data in a worksheet etc can be performed. Excel automation is
based on Microsoft’s COM (component object model)
technology. COM and .NET cannot natively communicate with
each other. However, a .NET feature called COM interop
provides callable wrappers to allow .NET and COM to
interoperate. A runtime callable wrapper (RCW) allows a

ExcelGrid AddIn ExcelGrid Runner GridClient Enterprise Grid Framework

User initiates process
PrepareJobs()

ExecJobs()

Submit jobs for execution

JobFinish(job) Event

JobFailed(error) Event

JobCompleted(results)

JobFailed(error) Update display with
results / error

Execute Jobs

ExcelGrid AddIn ExcelGrid Runner GridClient Global Grid Framework

User initiates process
PrepareJobs()

ExecJobs()

Connect to server

JobCompleted(result)

JobFailed(error)

JobFinished(result)

JobFailed(error) Update display with
results / error

Submit job descriptions

If (jobStatus = DONE)

Schedule job
execution and
Check status

Wait for results

If (jobStatus =
FAILED)

Figure 3: ExcelGrid Interaction diagrams.

5

COM component (for example, an Office VBA object library)
to be used by .NET (for example, a Visual Basic .NET
application). After the .NET assemblies are generated, classes

and their members can be instantiated and invoked from Visual
Studio .NET as if the COM objects and members were
native .NET classes and members. The ExcelGridAddIn is

Figure 4: ExcelGrid UML diagrams.

6

a .NET component which interacts with Excel’s object model
using COM interop [13].

The ExcelGridAddIn invokes the ExcelGridRunner component
which is a standard Windows GUI application The
ExcelGridRunner obtains the currently running instance of
Excel, and communicates with it, via automation. The
ExcelGridRunner is the component which detects the user’s
actions in Excel, and takes input from the currently active
Excel sheet, and creates and runs jobs on the grid, by invoking
the AlchemiClient / GridbusClient classes in the “GridClient”
component. It contains the frmGClient class which is the GUI
component of ExcelGridRunner.

The class hierarchy of the ExcelGridRunner component is
shown in Figure 6. The ExcelGridRunner is built as a standard
Windows Application from the standard project template for
Windows Forms Application in Visual Studio.NET. It consists
of the frmGClient and frmProgress classes which form the GUI
components the user interacts with. The GSetting class
maintains stores user’s settings like server details, job
executables and input / output options selected in Excel and
stores them to disk so that they are available across different
runs / invocations of the program. The GSetting class uses the
Mappings class to store the mapping of file locations and
logical names of the job executables. The mainClass initiates
the execution of the ExcelGridRunner component.

The computation that needs to be done on the grid nodes is
represented as work units known as jobs. Each job has an
associated executable which is the program that executes on
the remote node. The job also has input and output parameters
which are represented by the GParameter class. A collection of
GParameter objects is passed to an object of type

GridbusClient / AlchemiClient (depending on the chosen grid
framework), in a GParamCollection object.

When the user initiates the execution process from the GUI,
input from the selected rows and columns is converted into
GParameter type objects, before being submitted as jobs to the
grid client. The GridClient (AlchemiClient / GridbusClient)
performs the actual communication with the grid framework.

The GridbusClient / AlchemiClient object passes messages to
the main grid node, for each job that is to be run on the grid,
and listens to events / messages from that node. On receipt of a
message / event this object then raises events to signal

completion / failure of threads and completion of the
application running on the grid, which are handled by the
frmGClient, which obtains the output and inserts it into Excel
using OLE automation.

Using the GridClient component, the executable job, as well as
the input parameters (which may include files) are all packed
and sent to the remote node. The results and output files are
received from the remote node. All this process is

Figure 5: ExcelGridAddIn class hierarchy

Figure 6: ExcelGridRunner Class Hierarchy.

7

automatically taken care of by the grid frameworks – Alchemi /
Gridbus broker.

From the ExcelGrid GUI the user can select which ranges of
cells contain the parameters that are used for each job on the
grid. The user can decide if each row should generate
parameters for a new job, or each column value should create a
new job. The user can also specify where the output needs to
be placed. The user should specify what executable contains
the computations that need to be performed on the selected
data. This executable can be given a friendly / logical name.
The logical name in the Excel sheet is used by ExcelGrid to
map to the actual executable on the disk.

V. PERFORMANCE EVALUATION

To evaluate the performance characteristics of job execution on
a grid when invoked via the ExcelGrid, we used a synthetic test
application that calculates mathematical functions based on the
values of two input parameters. The first parameter X is an
input to a mathematical function and the second parameter Y
indicates the expected calculation complexity in minutes plus a
random deviation value between 0 to 120 seconds—this creates
different parametric jobs similar to a real application. The
calculation complexity is the number of times the mathematical
function is executed per task.

We have tested the performance of job execution on Excel
using ExcelGrid on both Alchemi nodes and Gridbus nodes.
The ExcelGrid application was run from a laptop located at the
GRIDS laboratory at the University of Melbourne, Australia.
This client communicated with the grid framework installed on
the test bed machines. The test bed configurations and results
for each case are outlined below.

A. Enterprise Grids using Alchemi
An Alchemi enterprise grid consisting of five worker nodes
(Pentium IV desktop PCs) based in the GRIDS laboratory, at
the CSSE Department, Melbourne University was used. One of
the machines was designated as an Alchemi Manager node.

The node configurations used are shown in Table 1. Using the
application mentioned above five tests, with varying number of
nodes was performed using the Enterprise grid. 50 jobs were
run at the same complexity on a grid of 1,2,3,4, and 5 nodes.
Each node was running the Alchemi Executor v0.8 in
dedicated mode. The manager node was running from the
machine named Bart. The graph in Figure 7 shows the
improvement in performance with the increase in the number
of nodes in the grid.

B. Global Grids using Gridbus Broker and Globus
Middleware

For the Gridbus experiment the Belle analysis test bed data
grid, which has resources distributed around Australia
including Melbourne, Sydney and Canberra was used. These

systems are interconnected via GrangeNet (Grid and Next
generation Network) which is a multi-gigabit network
supporting grid and advanced communication services across
Australia. The test bed resources are shown in Table 2.
The belle system at the University of Melbourne was used to
deploy the broker, and the agents were dispatched to other
resources at runtime by the Gridbus broker.

Server Name Owner
Organisation Configuration Grid

Middleware

belle.cs.mu.oz.au

GRIDS Lab,
The
University of
Melbourne

IBM eServer
with 4 CPUs. Globus v.2.4

belle.anu.edu.au

Australian
National
University,
Canberra

IBM eServer
with 4 CPUs. Globus v.2.4

belle.physics.usyd.edu.au

The
University of
Sydney,
Sydney

IBM eServer
with 4 CPUs. Globus v.2.4

fleagle.ph.unimelb.edu.au
The
University of
Melbourne

Desktop PC
with 1 CPU Globus v.2.4

brecca-2.vpac.org VPAC
Melbourne

IBM 2 CPU
SMP server Globus v.2.4

Table 2: Test bed resources.

Alchemi Job Execution Performance

0

1000

2000

3000

4000

5000

6000

7000

8000

1 2 3 4 5

Number of nodes

C
om

pu
ta

ti
on

 T
im

e
(s

ec
s)

Figure 7: Enterprise Grid Performance variation with # of nodes

Executor Node Configuration

bart.cs.mu.oz.au Intel Pentium4 1.7Ghz CPU

lisa.cs.mu.oz.au Intel Pentium4 1.7Ghz CPU

pc356.cs.mu.oz.au Intel Pentium4 1.8Ghz CPU

rajpc3.cs.mu.oz.au Intel Pentium4 2.4Ghz CPU

rajpc5.cs.mu.oz.au Intel Pentium4 2.4Ghz CPU

Table 1: Alchemi Test bed resources.

8

Configuration Resources

1 belle.cs.mu.oz.au

2 fleagle.ph.unimelb.edu.au,
brecca-2.vpac.org

3
fleagle.ph.unimelb.edu.au,
brecca-2.vpac.org,
belle.physics.usyd.edu.au

4

fleagle.ph.unimelb.edu.au,
brecca-2.vpac.org,
belle.physics.usyd.edu.au,
belle.anu.edu.au

5

fleagle.ph.unimelb.edu.au,
brecca-2.vpac.org,
belle.physics.usyd.edu.au,
belle.anu.edu.au,
belle.cs.mu.oz.au

Table 3: Test bed resource configurations.

The performance tests aimed to determine the effect of
increasing number of grid nodes for a fixed job size and
number of jobs. The sets of resources used for the tests are
shown in Table 3. The findings of the performance evaluation
experiments are shown in Figure 8.

The graph shows the job execution performance of the grid
nodes when managed by the Gridbus broker. The computation
time versus number of nodes used in the test, is plotted, and we
see that as the number of nodes increases the time taken to
execute the jobs reduces, but the speed up is not linear.

VI. RELATED WORK

There has been a good amount of work going on in the area of
developing spreadsheet based applications and front-ends to
grid systems. Some of the work in this area is summarised in
Table 4.

The InnerGrid Nitya system uses a proprietary API and
requires installation of the Excel connector (which is an Excel
Addin) on each computer, to use the features which are
available through the Excel “Tools” menu. It works on the
Windows platform (clients and servers). The InnerGrid Excel
connector allows the use of grid technology by distributing
costly spreadsheet calculations among corporate PCs
connected via an intranet, reducing the execution time and thus
scaling the computational capabilities [8].

The Platform Symphony Adapter for Microsoft Excel software
accelerates online and batch operations for business critical
financial services applications. This new feature greatly
enhances the processing speed of compute-intensive Microsoft
Excel spreadsheets by transparently distributing the
calculations to an allocated number of clusters. The result is
lower calculation times, an increase in server utilisation and
guaranteed trader service levels which in turn induces higher
trading revenues, profits and lower business risk. The Adapter
does not require any modifications to Excel, and is
implemented via XLL compiled add-ins. The Adapter works
on the Windows platform (clients and servers) [14].

ActiveSheets builds on a research tool called Nimrod [2],
which is a specialised parametric modelling system, by adding
a component based spreadsheet interface for specifying
computational experiments. These tools can be used to
distribute independent executions of a single simulation in
order to perform complex scenarios analysis. They manage the
generation of work, distribute the computation, and gather the
results. The output is often read back into a single spreadsheet
for analysis and visualisation after it has been returned from
the distributed computers. The mechanism for the parallel
evaluation of spreadsheets is based on the dataflow model of
computation [3][5].A custom function sends its arguments
together with a representation of the function to backend
computer for parallel evaluation [4] A table is used to store the
current state of the cell, which can be one of the following
states: unevaluated, under evaluation or evaluated. The
ActiveSheets system is described in detail in [1].

VII. CONCLUSION

Grid computing has proven to be extremely advantageous to
the executions of spreadsheets. Successful deployment of
ExcelGrid will be beneficial to data/compute intensive grid
computing such as drug designs and weather forecasting.
ExcelGrid is designed to provide extensions to Excel to add the
ability to execute custom and legacy jobs on a grid, without
requiring rewriting the applications for the grid. The familiar
GUI of Excel and the easy-to-use interface of ExcelGrid itself,
which is invoked via Excel, can make it a very powerful and
useful tool.

ACKNOWLEDGEMENTS

The work presented in this paper is partially supported through
the Australian Research Council Discovery Project Grant and

Gridbus Job Execution Performance

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1 2 3 4 5

No. of nodes within Global Grid

C
o

m
pu

ta
ti

on
 T

im
e

(s
ec

s)

Figure 8: Global grid job execution performance.

9

Storage Technology Corporation sponsorship of Grid
fellowship. We would like to thank Wendy Cameron for her
original implementation of a Java-based server working as an
interface to the Gridbus broker. We have extended this server
to create an interface between ExcelGrid and the Gridbus
broker.

REFERENCES
[1] D. Abramson, P. Roe, L. Kotler and D. Mather, “ActiveSheets: Super-

Computing with Spreadsheets”, 2001 High Performance Computing
Symposium (HPC'01), part of the Advanced Simulation Technologies
Conference, April 22-26, Seattle, Washington, USA.

[2] D. Abramson, R. Sosic, J. Giddy and B. Hall, “Nimrod: A Tool for
Performing Parametised Simulations using Distributed Workstations”,
The 4th IEEE Symposium on High Performance Distributed
Computing, Virginia, August 1995.

[3] L. Arvind and T. Ungerer, “Evolution of Dataflow Computers”,
Chapter 1, “Advanced Topics in Dataflow Computing”, Prentice Hall,
1991.

[4] G. Cheuk, ActiveSheets: Grid Computing with Spreadsheets, The First
Australian Grid Forum Workshop (OzGrid-1) Dec. 9-10, 2002,
Melbourne, Victoria, Australia.

[5] J. Dennis, “The Evolution of ‘Static’ Data-flow Architectures”,
Chapter 2, “Advanced Topics in Dataflow Computing”, Prentice Hall,
1991.

[6] Excel for Business Intelligence, September 9, 2003.
http://www.microsoft.com/office/previous/xp/business/intelligence/ex
cel.asp

[7] I. Foster and C. Kesselman, Globus: A Metacomputing Infrastructure
Toolkit, International Journal of Supercomputer Applications,
11(2):115-128, 1997.

[8] GridSystems, InnerGrid Nitya
http://www.gridsystems.com/pdf/IGFinancials01.pdf , May 11, 2004.

[9] How to automate Microsoft Excel from Visual Basic .NET, Microsoft
Knowledge
Base,http://support.microsoft.com/default.aspx?scid=http://support.mi
crosoft.com:80/support/kb/articles/Q301/9/82.ASP&NoWebContent=
1

[10] How to automate Microsoft Excel from Visual Basic, Microsoft
Knowledge Base,
http://support.microsoft.com/default.aspx?kbid=219151

[11] J. Almond and D. Snelling, UNICORE: Uniform Access to
Supercomputing as an Element of Electronic Commerce. Future
Generation Computer Systems 613(1999), 1-10.

[12] A. Luther, R. Buyya, R. Ranjan and S. Venugopal, “Alchemi: A .NET-
based Grid Computing Framework and its Integration into Global
Grids”, Technical Report, GRIDS-TR-2003-8, Grid Computing and
Distributed Systems Laboratory, University of Melbourne, Australia,
December 2003.

[13] P. Cornell, Creating Office Managed COM Add-Ins with Visual
Studio .NET, Microsoft Corporation June 6, 2002,
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnofftalk/html/office06062002.asp

[14] Platform Symphony, Platform Computing Press Releases,
http://www.platform.com/newsevents/pressreleases/prelease.asp?id=8
2, May 6, 2004.

[15] D.J. Power, "A Brief History of Spreadsheets", DSSResources.COM,
World Wide Web, http://dssresources.com/history/sshistory.html,
version 3.5, 10/04/2003. Photo added September 24, 2002.

[16] Private Grid, Netherlands, http://www.private-grid.nl/

[17] I. Foster and C. Kesselman (eds.). The Grid: Blueprint for a Future
Computing Infrastructure. Morgan Kaufmann: San Francisco, CA,
1999.

[18] S. Venugopal, R. Buyya and L. Winton, A Grid Service Broker for
Scheduling Distributed Data-Oriented Applications on Global Grids,
Technical Report, GRIDS-TR-2004-1, Grid Computing and
Distributed Systems Laboratory, University of Melbourne, Australia,
February 2004.

[19] J-Walk & Associates, The Spreadsheet Portal, Excel Section,
http://www.j-walk.com/ss/excel/, May 2004.

[20] A. Oram (ed.), Peer-to-Peer: Harnessing the Power of Disruptive
Technologies. O’Reilly Press, U.S.A., 2001.

Grid Plugins Description Remarks

ActiveSheets

A research mechanism for parallelising traditional
spreadsheets, ActiveSheets is a component based
spreadsheet interface for specifying computational
experiments. Implements a two stage evaluation process for
custom functions.

ActiveSheets works with Nimrod and Netsolve grid middleware
systems and provides parallelism at the spreadsheet function
level. Custom functions are used to encode the parallel
evaluation of multiple cells. ActiveSheets is not open-source
software.

InnerGrid Nitya
A technology from GridSystems company, that grid-enables
Excel, by distributing spreadsheet calculations among
corporate PCs, mainly targeted at financial markets.

This is commercial software and is not open-source. InnerGrid
Nitya works on enterprise grid systems.

Platform Symphony

Platform introduced the Adapter for Microsoft Excel which
aims to accelerates online and batch operations for business
critical financial services applications, by transparently
distributing the calculations to an allocated number of
clusters.

This is commercial software and is not open-source. Platform
Symphony is designed to operate on enterprise grids.

ExcelGrid

ExcelGrid is a grid front-end to Excel, developed at the
University of Melbourne, which enables users to run custom
jobs, on any grid system – Enterprise level grids or Global
grids.

ExcelGrid is open-source software that works with both
enterprise (Alchemi) and global grid frameworks (Gridbus
broker) and provides a job submission interface, which is
parallelism at the job-level. Custom and legacy jobs are grid
enabled to achieve parallel execution.

Table 4: Representative works in Spreadsheet processing on parallel/distributed systems.

