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ABSTRACT
One of the major difficulties when applying Multiobjective
Evolutionary Algorithms (MOEA) to real world problems is
the large number of objective function evaluations. Approxi-
mate (or surrogate) methods offer the possibility of reducing
the number of evaluations, without reducing solution qual-
ity. Artificial Neural Network (ANN) based models are one
approach that have been used to approximate the future
front from the current available fronts with acceptable ac-
curacy levels. However, the associated computational costs
limit their effectiveness. In this work, we introduce a simple
approach that has comparatively smaller computational cost
and we have developed this model as a variation operator
that can be used in any kind of multiobjective optimizer.
When designing this model, we have considered the whole
search procedure as a dynamic system that takes available
objective values in current front as input and generates ap-
proximated design variables for the next front as output.
Initial simulation experiments have produced encouraging
results in comparison to NSGA-II. Our motivation was to
increase the speed of the hosting optimizer. We have com-
pared the performance of the algorithm with respect to the
total number of function evaluation and Hypervolume met-
ric. This variation operator has worst case complexity of
O(nkN3), where N is the population size, n and k is the
number of design variables and objectives respectively.

Categories and Subject Descriptors
I.2.m [Artificial Intelligence]: Miscellaneous—Evolution-
ary computing and genetic algorithms ; I.2.8 [Artificial In-
telligence]: Problem Solving, Control Methods, and Search—
Heuristic methods

General Terms
Algorithms
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1. INTRODUCTION
Multiobjective Evolutionary Algorithms (MOEA) are now

a well-established technique, both in terms of methodolo-
gies and algorithm development [10] [11] for tackling multi-
objective optimization problems. However, one of the major
difficulties when applying evolutionary algorithms to real-
world problems is the computational costs associated with
the large number of function evaluations necessary to ob-
tain a range of acceptable solutions. Often, the function
evaluations are time-consuming and are obtained by solving
numerical models using methods such as finite-differences
or finite-elements. The use of distributed systems, where
each fitness evaluation is performed on a separate processor,
does offer one approach for helping to reduce the computa-
tional time. Such models typically require a large number
of networked computers (scaling in size from local clusters
to full Grid deployment) and an adequate parallelization of
the numerical code [19] [26]. However, a parallel approach
per se does not necessarily reduce the number of function
evaluations.

The development of techniques enabling a reduction in
the number of function evaluations, without reducing so-
lution quality, is an important goal of MOEA research [18,
25]. An on-going challenge, therefore, is to develop good ap-
proximate methods that can be used to solve multi-objective
problems while considering the number of objectives and the
possible interaction between them.

The use of approximate (or surrogate) models when us-
ing evolutionary algorithms to solve single objective prob-
lems is well documented (see [17, 21] for a survey). Several
approaches have been used successfully to approximate ob-
jective functions in single objective optimization problems,
such as the Kriging/Gaussian Process [8], Radial Basis Func-
tion(RBF) [34] [27] [28] [29], Polynomial Regression [17] and
Artificial Neural Networks [21].

In the MOEA domain, there have been relatively few pa-
pers reporting the use of surrogate models. For example,
[12] and [22] have incorporated a Gaussian Random Field
Metamodel into the algorithm and [20] has adopted an ap-
proximation strategy. Gradient based and/or a directional
local search strategies have also been used as a surrogate
assisted MOEA for problems with differentiable objectives
[4, 7, 6, 3, 15].



Artificial Neural Networks (ANN) based approximate mod-
els have also been used with some success [13, 14, 1, 2, 32,
31]. Typically, the ANN model approximates the design
variables from the current front of the objective space by
treating the objective vectors as inputs to the ANN and the
design variables as output. Determining the best network
structure (specifically, the number of hidden layers) and the
total learning costs must be factored into the computational
costs of the model. Other techniques such as the Quadratic
Approximation Model [9] and Weighted Ranking Model [5]
have also been reported in the literature. Clearly, the bal-
ance between computational cost and convergence speed is
a major challenge that must be addressed.

In this study, we propose a novel approximation model for
MOEA, which has a comparatively smaller computational
cost than other surrogate models. We have developed this
model as a variation operator that can be used in any multi-
objective optimizer to speed up the search process by reduc-
ing the number of function evaluations and thus encourage
the evolving population to follow the right trajectory to-
wards a range of good trade-off solutions.

When desiging and analysing our model, we have con-
sidered the whole search procedure as a dynamic system
[23], which takes the available objectives values in the cur-
rent nondominated front as inputs and generates approx-
imated design variables for the next front as the output.
As such, this approach could be thought of as a form of
“Response Surface Approximation” [13]. The ANN tech-
niques described above are representative examples of this
technique. However, in our approach we have replaced the
ANN with a simple Linear Time Invariant system (LTI) [24,
23] and we attempt to model the system using the linear
least square method (a widely used approach in dynamic
system identification). We then use the model to approxi-
mate the next front from the current front and create the
so called “Mirage Solutions” [2]. The Mirage Solutions are
then used as input to the dynamic system to approximate
the corresponding design variables. The resulting solutions
(individuals) are then added to the current population of
the hosting optimizer. Although this sort of naive technique
does not guarantee a 100% correct mapping from objective
space to design variable space, this technique is capable of
approximating the solutions that resides in close vicinity of
the Pareto-front relatively quickly.

In the following sections of the paper, a brief introduc-
tion to multiobjective optimization problems and a general
framework for solving such problems is presented. Section
3.1 and 3.2 introduce the concept of dynamic system iden-
tification in MOEA. In section 3.3 we describe our model in
detail. This is followed by a description of the design of the
Pareto following operator and a discussion of computational
complexity. Section 4 presents experimental results. The
paper then concludes with a discussion of the findings and
future research directions.

2. MULTIOBJECTIVE OPTIMIZATION
In this section, we will focus on the background notion

suitable for a multiobjective optimization problem (MOP)
and the design of a general MOEA.

Figure 1: Representation of the decision variable
space and the corresponding objective space

2.1 Definitions
A multiobjective optimization problem (MOP) consists

of multiple criteria, more often conflicting, that need to be
optimized simultaneously. (See Figure 1) Formally, a MOP
can be defined as follows :
Find the vector, ~x∗ = [x1

∗, x2
∗ . . . xn

∗] which satisfies m
inequality constraints:

gi(~x) ≥ 0 i = 1, 2 . . . m (1)

hi(~x) = 0 i = 1, 2 . . . p (2)

and optimizes the vector function

~f(~x) = [f1(~x), f2(~x) . . . fk(~x)]T (3)

In other words, the aim is to determine from among the
set of all values which satisfy (1) and (2) the particular set
x∗

1, x
∗
2 . . . x∗

n which yields the optimum values of all the
objective functions. In MOP’s there is no single solution
rather we have to find all compromising (Pareto-optimal)
solutions. A solution ~x∗ ∈ Ω is Pareto-optimal if for every
~x ∈ Ω and I = {1, 2 . . . k} either,

∀i∈I(fi(~x) = fi(~x
∗)) (4)

or, there is at least one i ∈ I such that

fi(~x) > fi(~x
∗) (5)

The constraints given by (1) and (2) define the feasible
region Ω and any point ~x in Ω defines a feasible solution.

The vector function ~f(~x) is a function which maps the set
Ω into the set Λ which represents all possible values of the
objective functions.

For a given MOP ~f(x), the Pareto-optimal Set (P∗) is
defined as

P∗ := {x ∈ Ω|¬∃x′ ∈ Ω : ~f(x′) � ~f(x)} (6)

Here the sign � refers to Pareto-dominance. A vector
~u = (u1, u2 . . . uk) is said to dominate ~v = (v1, v2 . . . vk) (
denoted by ~u � ~v ) if and only if ~u is partially less than ~v,
i.e. ∀i ∈ {1, 2, . . . k} : ui ≤ vi ∧ ∃i ∈ {1, 2, . . . k} : ui < vi.

Our goal is to find the set of all Pareto-optimal solu-
tions and the corresponding objective values of this set is
defined as Pareto-front. The Pareto-front (PF∗) can be
mathematically defined as,

PF∗ := {~u = ~f = (f1(x) . . . fk(x))|x ∈ P∗} (7)



Figure 2: After nondominated sorting, individuals in each front are sorted with respect to one objective.
Individual (◦) is the same individual moving from front φ − 2 to front φ

2.2 A Typical Nondominated Sorting MOEA
A typical nondominated sorting MOEA employing an eli-

tist model has the following functionality: Firstly, the algo-
rithm starts with a randomly generated population Pt, and
then after evaluation, the individuals are sorted according
to the nondomination criteria and divided into φ fronts.

Pt := {Fφ,Fφ−1, . . . ,F1}

Then, from the best front Fφ, mutation, crossover and other
genetic operators are applied to expand the population to
the next best front φ + 1 to create the next population
Pt+1. Different algorithms uses different techniques to ex-
pand this population to the next front. In this paper, we
have chosen NSGA-II as the base (or host) algorithm to
be combined with our Pareto following operator for illus-
tration purposes. NSGA-II uses nondominated sorting, an
elitist selection scheme and a crowding distance based se-
lection strategy and thus can provide a good spread of so-
lutions throughout an evolutionary run. It is important to
note, that our model can be plugged into any nondominated
sorting-based MOEA for numerical optimization problems.

3. THE MODEL

3.1 System Identification
In this subsection, we present the core idea behind the

design of our variation operator used to approximate the
individuals for the next front.

In any typical nondominated sorting MOEA, a number
of individuals are generated randomly, evaluated and then
sorted according to nondomination criteria. Figure 2 pro-
vides a schematic view of the the individuals in objective
space and design variable space after sorting.

Here, we are considering M individuals with n design vari-
ables and k objectives. Suppose, xp

i (φ) and fp

j (φ) denote the

ith design variable and jth objective value of an individual
p in front φ. If we sort the individuals in every front with
respect to one objective, we can assume that the pth indi-
vidual of each front as the same individual that is moving
from front φ−2 to φ. Here, decreasing values of φ represent
a worse front. Now if we could somehow extrapolate this
trajectory, we can infer that this individual will eventually
reach the next front φ + 1 (refer to Figure 2). Moreover, if
the distance between two consecutive fronts is small, then
we can also assume that this trajectory is piece-wise linear.

Considering only one individual p, we can also say that

this search algorithm takes xp

i (φ−1) as input and generates
xp

i (φ) as output. Instead of considering the search algo-
rithm as a procedure per se, let us consider it as a dynamic
system [23, 24] (with transfer function H), which takes the
series {xp

i (φ), xp
i (φ−1), xp

i (φ−2) . . .} as input and generates
{fp

j (φ), fp

j (φ−1), fp

j (φ−2) . . .} as output (refer to Figure 3).
Again, if we consider an inverse system (with transfer func-
tion H−1), then it will generate {xp

i (φ), xp
i (φ − 1), xp

i (φ −
2) . . .} as output when {fp

j (φ), fp
j (φ − 1), fp

j (φ − 2) . . .} is
input. Therefore, if we could somehow approximate the sys-
tem’s parameters, then we can easily approximate the design
variable of the next front xp

i (φ+1) (when fp

j (φ+1) is given
as input).

Our next task is to generate the so-called “Mirage Solu-
tions”fp

j (φ+1). Approximation of fp
j (φ+1) is quite straight-

forward since in any type of MOP, we have to maximize (or
minimize) multiple objectives. In the case of a minimization
problem, the objective value in the next front φ + 1 will be
smaller then that of the current front φ by some amount of
∆f . So for a minimization problem,

fp
j (φ + 1) = fp

j (φ) − ∆f (8)

The preceding discussions dictate that our Pareto following
variation operator depends on the following formulations:

• approximating the parameters of the dynamic system

• approximating fp
j (φ+1) from fp

j (φ) by choosing a suit-
able ∆f

• from fp
j (φ+1), approximate the design variable xp

i (φ+
1) of the next front φ + 1

3.2 Model Formulation
First we construct a simple model for the ith design vari-

able and jth objective:

xi(φ) + a0xi(φ − 1) = b0fj(φ) + b1fj(φ − 1) + ε(φ) (9)

Here, fj are input and xi are considered as output. There-
fore,

xi(φ) =
[
−xi(φ − 1) fj(φ) fj(φ − 1)

]





a0

b0

b1



 + ε(φ)

(10)



Figure 3: The forward and inverse dynamic system

Figure 4: Working steps of the Pareto following variation operator

Now, we can construct a matrix formation as:









xi(φ)
xi(φ − 1)
xi(φ − 2)

.

.

.
xi(2)










︸ ︷︷ ︸

y

=










xi(φ − 1) fj(φ) fj(φ − 1)
xi(φ − 2) fj(φ − 1) fj(φ − 2)
xi(φ − 3) fj(φ − 2) fj(φ − 3)

.

.

.
.
.
.

.

.

.
xi(1) fj(2) fj(1)










︸ ︷︷ ︸

Φ

·





a0

b0
b1





︸ ︷︷ ︸

βij

+










ε(φ)
ε(φ − 1)
ε(φ − 2)

.

.

.
ε(2)










︸ ︷︷ ︸

ε

Or we can rewrite

y = Φ · βij + ε (11)

Here, βij denotes parameter of the dynamic system for ith

design variable and jth objective. βij can be approximated

using least squares. Let us denote β̂ij as approximated βij :

β̂ij = (ΦT Φ)−1

︸ ︷︷ ︸

pseudo-inverse

ΦT y (12)

So,

xi(φ) =
[
−xi(φ − 1) fj(φ) fj(φ − 1)

]
· β̂ij (13)

Now we have β̂ij , from equation 14 and 8 we can easily
approximate the ith design variable of the next front φ + 1 :

xi(φ + 1) =
[
−xi(φ) fj(φ + 1) fj(φ)

]
· β̂ij (14)

=
[
−xi(φ) fj(φ) − ∆f fj(φ)

]
· β̂ij(15)

3.3 The Pareto Following Variation Operator
Based on the description above, we now illustrate the func-

tionality of our Pareto following variation operator. A re-
quirement for using this variation operator, is that the pop-
ulation has been sorted into nondominated fronts (in fact,
there must be more than one front).

Now, let us suppose population P has M individuals.

P := {I1(~f1, ~x1), I2(~f2, ~x2), . . . , IM (~fM , ~xM )}

Each individual has k objectives and n design variables.
Therefore, individual p can be represented as

Ip(~fp, ~xp) = {{fp
1 , fp

2 , . . . , fp

k}, {x
p
1, x

p
2, . . . , x

p
n}}

If they are evaluated and sorted according to nondomina-
tion, φ fronts will be created, i.e.

P := {Fφ,Fφ−1, . . . ,F1}

So, individual p in front φ is represented as Ip(~fp(φ), ~xp(φ)).



Algorithm 1 Pareto Following Variation Operator(Pt,∆f)

Require: Parent population Pt is sorted with respect to non domi-
nation.

Pt := {Fφ,Fφ−1, . . . ,F1}

and individuals in Fφ,Fφ−1, . . . ,F1 are sorted again with re-
spect to one objective. Each front Fi has size mi and Fφ is the
best front. ∆f is the objective distance from current best front
to next approximating front.

Ensure: Creates kmφ number of approximated individuals of the
front Fφ+1

1: for all all objectives j such that 1 ≤ j ≤ k do

2: for all all individuals p such that 1 ≤ p ≤ mφ do

3: for all all design variables i such that 1 ≤ i ≤ n do

4: Construct matrix y from pth individuals from every front
Fφ,Fφ−1, . . . ,F1

5: Construct matrix Φ from pth individuals from every front
Fφ,Fφ−1, . . . ,F1

6: Calculate β̂ij := (ΦT Φ)−1ΦT y

7: Approximate f
p

j
(φ + 1) := f

p

j
(φ) − ∆f

8: xi(φ + 1) :=
[

−xi(φ) fj(φ) − ∆f fj(φ)
]
· β̂ij

9: xi(φ + 1) is the ith design variable of the new (p +

(j − 1)mφ)th approximated individual I
p+(j−1)mφ So,

x
p+(j−1)mφ
i (φ + 1) := xi(φ + 1)

10: end for

11: end for

12: end for

13: Returns new approximated population Fφ+1 with size kmφ

Where

~fp(φ) = {fp
1 (φ), fp

2 (φ), . . . fp

k (φ)}

~xp(φ) = {xp
1(φ), xp

2(φ), . . . xp
n(φ)}

If we consider the subpopulation at the ith front, Fi, has mi

individuals, then obviously,

Fi := {I1(~f1(i), ~x1(i)), I2(~f2(i), ~x2(i)), . . .

. . . , Imi(~fmi(i), ~xmi(i))}

Since decreasing values of φ represent a worse front, let us
suppose φ is the best front. Here, mφ is the size of front φ.

After all these introductory notations we can now proceed
to the design of the variation operator, which is described in
Algorithm 1. Figure 4 also illustrates the basic functionality
of the operator.

The procedure presented in Algorithm 1 can be easily
“plugged in” to any kind of multiobjective optimizer. We
have selected NSGA-II as a preferable candidate. After ap-
plying the nondominated sorting procedure on the mixed
population Rt in NSGA-II, we apply the Pareto following
variation operator to create the individuals from the next
approximated front Fφ+1. These new individuals are then
combined with the newly created individuals in the parent
population Pt (refer to line 6 and 7 of the Algorithm 2).

3.4 Algorithm Complexity
We now focus on the complexity of our algorithm. To

find the pseudo inverse in equation 13, we have used QR
factorization with the aid of the Householder transformation
[30]. The complexity of the algorithm largely depends on the
size of the matrix Φ in equation 11. Here we denote this time
(or front) steps as t and the initial “guess” of the dynamic
model starts with 2 time (or front) steps in equation 9. We
are doing QR factorization on matrix Φ whose dimension is
(|φ| − 1) × t. Here |φ| is the size of the best front φ. This
operation requires 2(|φ| − 1)t2 − 2/3t3 computations. So it

Algorithm 2 NSGA-II with Pareto Following Variation Op-
erator
Require: Randomly generated parent population Pt at generation t

with size M .
Ensure: After tmax number of iteration, population Ptmax will rep-

resent solution of the problem.
1: while t ≤ tmax do

2: Start with child population, Qt := ∅
3: Create mixed population, Rt := Pt ∪ Qt

4: F :=Apply Nondominated Sort on Rt, create φ number of
fronts. F := {Fφ,Fφ−1 . . .F1}

5: if φ > 1 then

6: Fφ+1 :=Pareto Following Variation(Rt,∆f)
|Fφ+1| = kmφ

7: Insert newly approximated population to Rt,
Rt := Rt ∪ Fφ+1

8: F :=Apply Nondominated Sort on Rt, create φ number of
fronts. F := {Fφ,Fφ−1 . . .F1}

9: end if

10: Pt := ∅ and i := 1
11: repeat

12: Assign crowding distance on Fi

13: Pt+1 := Pt+1 ∪ Fi

14: i := i + 1
15: until |Pt+1| + |Fi| ≤ M

16: Apply crowding distance sorting on Fi

17: Choose the first (M − |Pt+1|) individuals of Fi

18: Use selection, crossover and mutation to create child popula-
tion Qt+1 from Pt+1

19: end while

has a computational complexity of O(2(|φ| − 1)t2 − 2/3t3).
After the QR factorization, the upper triangular matrix

R has a dimension of t× t and the orthogonal matrix Q has
a dimension of (|φ| − 1)× t. After doing this, we are solving
the systems parameter βij in equation 13. This requires one
inversion on the upper triangular matrix R, one multipli-
cation on QT y and another multiplication on R−1QT y. So
equation 13 and 16 have an overall complexity of:

O(2(|φ| − 1)t2 − 2/3t3) + O((|φ| − 1)t)

+O(t3) + O((|φ| − 1)2t) + O(t2)

≈ O(2|φ|2t2)

Here, |φ| � t

From line 1 to 12 in Algorithm 1, βij is evaluated for nk|φ|
times. So the overall complexity of the variation operator
will be O(2nk|φ|3t2). Where n is the number of design vari-
ables, k is the number of objectives.

If we consider the complexity with N individuals in the
worst case, there will be only two fronts, where the best front
has N−1 individuals and worst one has only 1. In that case,
|φ| = N − 1. So the overall worst case complexity will be
O(2nk(N − 1)3t2) ≈ O(nkN3t2). Moreover, in our experi-
ment t = 3, and obviously in the worst case |φ| � t, so the
variation operator has the complexity of O(nkN3), which
largely depends on the population size. Actually, this added
complexity will not reduce the overall running time of the
host optimizer, since this operator can save extra objective
evaluation of the hosting optimizer by approximate mapping
of the future Pareto front to future design variables.

In this experiment we have used the Linear Algebra pack-
age Meschach 1.2b, [33] for matrix operations. In the next
section, we provided a comparison of the average running
time complexity (our algorithm with NSGA-II) in Table 1.



Table 1: Runtime Comparison (With Population Size: 256)
Problems

Algorithm Criteria ZDT1 ZDT2 ZDT3 ZDT4 ZDT6
Hypervolume 3.01 1.50 14.42 7.52 1.59

NSGA-II Av. Time(sec) 39.78 39.44 39.70 42.20 44.47
Generation 200 200 200 200 400

With Pareto Hypervolume 3.01 1.50 14.57 7.52 1.59
Following Av. Time(sec) 24.86 22.37 20.02 32.03 39.20
Operator Generation 89 74 44 112 300
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Figure 5: Hypervolume (HV) vs Number of Exact
Function Evaluation for ZDT1
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Figure 6: Hypervolume (HV) vs Number of Exact
Function Evaluation for ZDT2
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Figure 9: Hypervolume (HV) vs Number of Exact
Function Evaluation for ZDT6
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Figure 7: Hypervolume (HV) vs Number of Exact
Function Evaluation for ZDT3
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Figure 8: Hypervolume (HV) vs Number of Exact
Function Evaluation for ZDT4

4. EXPERIMENTAL RESULTS
In order to evaluate the performance of our Pareto follow-

ing variation operator, a number of simulation experiments
were conducted using several well-known benchmark prob-
lems from [35]. These problems are the unconstrained bi-
objective problem set ZDT1, ZDT2, ZDT3, ZDT4, ZDT6.
All the problem parameters were same as original NSGA-II
implementation available at:
http://www.iitk.ac.in/kangal/codes.shtml.

The key hypothesis tested in this paper was that the inclu-
sion of the Pareto following variation operator with a base
optimizer (NSGA-II in this case) would increase the speed
of the hosting optimizer algorithm. Therefore, we have com-
pared the performance of the algorithm with respect to total
number of function evaluation and Hypervolume (HV) mea-



sure [11] [16]. The Hypervolume calculates the volume (in
the objective space) covered by the members of the known
Pareto front for problems where all objectives are to be min-
imized. This metric can give us both the convergence and
spread of solutions on the Pareto front. Obviously, an algo-
rithm with a large Hypervolume is desirable.

To measure the time complexity of our algorithm, we have
executed NSGA-II on each problem for the same number
of generations as indicated in its original implementation.
After convergence of the algorithm, we have collected the
Hypervolume measure for every problem. We then executed
our algorithm to measure the time taken to reach the same
Hypervolume. For the convenience of the time measure-
ment, the initial population size was 256 individuals for each
problem. We have repeated this process 30 times. The mean
running times are recorded. Details on running time com-
parison are given in Table 1. For all problems, the inclusion
of the Pareto-following variation operator significantly re-
duces the total number of exact function evaluations.

Figure 5 to 7 are provided to present the comparison of our
algorithm with NSGA-II for the ZDT benchmark problem
set. We have conducted all our experiments on Windows
XP machine with Pentium 4, 2.79GHz processor. From the
test results given in Figure 5 to 7 (averaged over 30 runs),
it becomes apparent that the Pareto following operator is
capable of saving extra function evaluations to reach the
same Hypervolume achieved by NSGA-II. In terms of run-
time analysis, our method is also capable of speeding up the
hosting optimizer up to average of 32.64%. Specially, for
problems ZDT1, ZDT2 and ZDT3, our model can speed up
the convergence time up to more than 10 seconds (Refer to
Table 1). Moreover, the choice of ∆f is problem dependant.
We have found different ∆f for different problems that can
generate a good approximated solution. Detailed enumer-
ated results have been omitted for clarity.

5. CONCLUSION AND FUTURE WORK
In this paper, we have designed and evaluated the effi-

cacy of a novel approximation model for MOEA, which has
a comparatively smaller computational cost than other sur-
rogate models. An important contribution of this work was
that our Pareto following variation operator can be used in
conjunction with any nondominated sorting MOEA.

The Pareto following variation operator, was developed
using a dynamic systems approach by taking only two time
steps (front steps) in equation 9. Here, we assumed that the
intra-front trajectory of an individual was piece-wise linear,
subsequently a Linear Time Invariant (LTI) model was suf-
ficient for approximation. There is obviously scope to in-
vestigate the relative worth of a non-linear dynamic system
model such as the nonlinear ARX and Hammerstein-Wiener
models [23]. This particular line of research is currently un-
derway. Recursive System Identification may also be a useful
approach to investigate. When solving equation 13, we have
used the Householder Transformation for QR factorization,
however this approach suffers from mathematical instability.
In the case of QR factorization, Singular Value Decomposi-
tion can also be used to assure more mathematically stable
solution to find βij .

Moreover, in this experiment, we have chosen the value of
∆f from empirical experimentations and its value is different
for different problems. Adaptive change in ∆f (using upper
and lower bound of objective values in current generation)
can be implemented to obtain more robust solutions. In the
future, we are going to focus on these issues.
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