
Ephemera: Accelerating I/O-Intensive Serverless Workloads
with a Harvested In-memory File System

LINGXIAO JIN, ZINUO CAI, HAOXIN WANG, ZONGPU ZHANG, RUHUI MA, and HAIB-
ING GUAN, Shanghai Jiao Tong University, China
RAJKUMAR BUYYA, University of Melbourne, Australia

Serverless computing has gained popularity for its ability to shift the burden of server management from
developers to cloud providers, which allows providers to exercise greater control over resource management,
optimizing configurations to enhance efficiency and performance. The diversity of serverless computing
tasks, from short-lived, event-driven tasks to more complex workloads, highlights the growing importance of
efficient file I/O performance for I/O-intensive workloads. Our work stems from the observation of the under-
utilization of memory resources in serverless computing platforms and the potential efficiency improvement
of I/O operations using an in-memory file system. Based on this observation, we propose Ephemera, a
system designed to enhance ephemeral storage efficiency and memory utilization. Ephemera satisfies three
design goals: Transparent Memory I/O Integration, Heterogeneous Tasks Resource Synergy, and Harmonized
Cluster Workload Orchestration. Ephemera integrates three components: the Runtime Daemon, responsible for
managing a container’s in-memory file system; the Tenant Manager, facilitating memory configuration sharing
across containers; and the Cluster Controller, optimizing workload balancing. Our experiments demonstrate
that Ephemera significantly improves performance compared to traditional file systems for I/O-intensive tasks.
Ephemera cut down I/O processing time by 50% on average and achieves up to 95.73% optimization in specific
scenarios with negligible overhead.

Additional Key Words and Phrases: serverless computing, file system, resource harvesting

1 Introduction
Since the release of AWS Lambda1, serverless computing [16, 22, 29] has transformed from a novel
cloud computing concept into a widely recognized cloud computing paradigm by academic and
industrial communities. Serverless computing does not imply the absence of servers; instead, it
abstracts cloud computing into Functions as a Service (FaaS) and Backend as a Service (BaaS) [13].
Cloud tenants only need to encode their business logic as functions and organize them into
applications. In contrast, the cloud service providers are responsible for resource management,
load balancing, and other backend services. Compared to existing computing paradigms [23],
serverless computing relieves cloud tenants of underlying infrastructure management while still
obtaining highly reliable services. The development of serverless computing has continuously
addressed various bottlenecks, including cold starts [9, 18, 26], resource management [1, 22, 39],
heterogeneous hardware support [4, 5, 7], and workflow optimization [17, 27, 31].
Although serverless computing was initially designed for short-lived, event-driven tasks, the

types of functions supported by serverless computing services have become more diverse, including
big data analytics, machine learning model training, and inference. Compared to short-lived jobs,
these more complex job types involve common compute operations and require I/O operations
related to persistent storage. For example, serverless MapReduce [6] requires storing intermediate
results from the map phase for the reduce phase. During the training process of machine learning
models [12], the best-performance models need to be saved, while the initial stage of model
1https://aws.amazon.com/lambda/

Authors’ Contact Information: Lingxiao Jin, jinlingxiao1122@sjtu.edu.cn; Zinuo Cai, kingczn1314@sjtu.edu.cn; Haoxin
Wang, wanghaoxin@sjtu.edu.cn; Zongpu Zhang, zhangz-z-p@sjtu.edu.cn; Ruhui Ma, ruhuima@sjtu.edu.cn; Haibing Guan,
hbguan@sjtu.edu.cn, Shanghai Jiao Tong University, Shanghai, China; Rajkumar Buyya, rbuyya@unimelb.edu.au, University
of Melbourne, Melbourne, Australia.

, Vol. 1, No. 1, Article . Publication date: January 2025.

https://aws.amazon.com/lambda/

2 Lingxiao Jin, Zinuo Cai, Haoxin Wang, Zongpu Zhang, Ruhui Ma, Haibing Guan, and Rajkumar Buyya

inference [33] requires loading pre-trained models from disk into memory. The diversification of
job types presents new requirements for serverless computing platforms’ file system management
solutions.
This paper proposes an in-memory file system solution to utilize over-provisioned memory

resources to optimize I/O efficiency during function execution. Our idea stems from the observation
that users on serverless computing platforms often resort to resource over-provisioning to improve
the computational efficiency of functions. Specifically, AWS Lambda and OpenWhisk2 employ a
memory-centric resource allocation approach where the platform automatically allocates CPU
resources based on the amount of memory specified by the user. Therefore, users resort to memory
over-provisioning to access more computational resources. Although Aliyun Function Compute3
proposes resource decoupling to enhance flexibility in resource allocation, its constrained vCPU-to-
memory ratios still lead to memory over-provisioning. In addition, over-provisioning resources can
reduce operational complexity for less experienced users and effectively handle input-sensitive
functions.

However, it is not trivial to implement an in-memory file system for a serverless platform. Our
design needs to satisfy the following three design goals to meet the requirements of complex
serverless computing workflows. Firstly, we aim to achieve Transparent Memory I/O Integration,
with the challenge of seamlessly integrating this feature without requiring users to modify their
existing codebase. This intricate process entails intercepting I/O APIs and transforming disk-based
file access into memory-based operations while preserving backward compatibility with diverse
function execution environments. Secondly, we focus on Heterogeneous Tasks Resource Synergy,
which presents challenges due to the diverse memory requirements of different instances. Enabling
efficient memory sharing between heterogeneous instances like CPU-intensive or I/O-intensive
tasks is crucial to optimize resource utilization and enhance overall performance. Lastly, we empha-
size Harmonized Cluster Workload Orchestration, which addresses the challenge of maintaining
the in-memory file system’s efficacy at the cluster level. Balancing workload distribution across
cluster nodes is essential to prevent resource contention and ensure optimal performance of the
in-memory file system by avoiding assigning the same type of workload to a single node.
Therefore, we design Ephemera, a memory-optimized framework that leverages allocated but

unused memory for serverless computing functions to enhance I/O efficiency. To meet the aforemen-
tioned design goals, Ephemera consists of three components: a function-level Daemon, a tenant-level
Manager, and a cluster-level Controller. Firstly, the Runtime Daemon resides in each running func-
tion instance and achieves the conversion from the native file system to the in-memory file system
by intercepting I/O operations in the user’s source code, which is transparent to cloud tenants.
Secondly, to facilitate resource sharing among heterogeneous function instances, we introduce
the Tenant Manager, which allows dynamic memory sharing among different function instances
of the same tenant during execution. Besides, Managers for different tenants are isolated from
each other, ensuring data security between tenants. Lastly, to address the workload balancing issue
across different nodes in the cluster, we design the Cluster Controller, which dynamically adjusts
the selection of nodes and resource allocation during function runtime.

We implement a prototype of Ephemera in C and Python with 3000+ lines of code. We evaluate
each component by a self-built serverless cluster and analyze the application latency, I/O bandwidth,
and memory utilization. The results indicate that our system achieves a 50% reduction in file
operation latency compared to the traditional file systems, reaching an optimization of up to 95.73%.
In addition, our system can enhance memory utilization.

2https://github.com/apache/openwhisk
3https://www.aliyun.com/product/fc

, Vol. 1, No. 1, Article . Publication date: January 2025.

https://github.com/apache/openwhisk
https://www.aliyun.com/product/fc

Ephemera: Accelerating I/O-Intensive Serverless Workloads with a Harvested In-memory File System 3

256 512 1024 1792 2048 3008
Memory (MB)

1

2

3

4

La
te

nc
y

(s
)

Latency

1200

1400

1600

1800

C
os

t (
M

B*
s)

Cost

(a) Gzip Compression

256 512 1024 1792 2048 3008
Memory (MB)

1

2

3

4

5

6

7

La
te

nc
y

(s
)

Latency

1600

1800

2000

2200

2400

2600

2800

C
os

t (
M

B*
s)

Cost

(b) Pyaes

256 512 1024 1792 2048 3008
Memory (MB)

0.25

0.50

0.75

1.00

1.25

1.50

1.75

La
te

nc
y

(s
)

Latency

450

500

550

600

C
os

t (
M

B*
s)

Cost

(c) Linpack

Fig. 1. Evaluation on AWS Lambda

In summary, our contributions are highlighted as follows.
• We first discover an optimization opportunity for a memory-optimized file system on a
serverless computing platform. Our observation stems from the low utilization of memory in
serverless computing platforms and the potential improvement in file access efficiency with
a memory-based file system.
• We design Ephemera, a file system that leverages allocated but idle memory space to optimize
file access efficiency in FaaS platforms. Ephemera consists of three components: a cluster-level
Controller, a tenant-levelManager, and a function-level Daemon, forming a scalable computing
framework.
• We implement a prototype of Ephemera and conduct extensive experiments on it. Experiments
show that our approach reduces file operation latency by 50% on average, with optimizations
up to 95.73%.

2 Background and Motivation
2.1 Background: File System for Serverless Computing
Serverless computing represents an emerging paradigm within cloud applications, wherein tenants
(those who upload and pay for the function execution) employ high-level languages such as Python,
Go, or JavaScript to write functions that execute specific application logic [16]. This paradigm
operates on a “pay-as-you-go” billing approach, whereby tenants incur costs solely for the compute
time and resources allocated during function execution. Compared to traditional cloud computing
services, such as PaaS or IaaS, FaaS paradigm offered by serverless computing allows for more
flexible service provision, effectively meeting users’ demands.

Existing works [10, 15, 24, 28] have already considered how to design and optimize file systems for
serverless computing, providing support for I/O-intensive function types. The mainstream solution
is to offer configurable disk space for users to choose from, which is common in commercial
serverless computing platforms like AWS Lambda and Aliyun Function Compute, as well as
open-source serverless computing platforms. For example, AWS Lambda provides 512 MB of free
temporary and configurable storage of up to 10 GB. Users can perform disk operations for I/O-
intensive functions by reading from and writing to the “/tmp” directory. Aliyun Function Compute
has a similar file system support solution. Improving file I/O performance is crucial for serverless
computing, as it enables more efficient execution of I/O-intensive workloads, leading to faster
function invocations and reduced overall costs for serverless applications.

2.2 Observation: Under-Utilization of Memory Resources
To validate the under-utilization of memory resources during the execution of functions on server-
less computing platforms, we select three representative functions from FunctionBench [14] and

, Vol. 1, No. 1, Article . Publication date: January 2025.

4 Lingxiao Jin, Zinuo Cai, Haoxin Wang, Zongpu Zhang, Ruhui Ma, Haibing Guan, and Rajkumar Buyya

0.1 0.2 0.5 1.0 2.0
vCPU (core)

12
8

25
6

51
2

10
24

20
48

M
em

or
y

(M
B)

26.75 X X X X

24.1011.32 X X X

X 11.80 3.73 X X

X X 3.98 1.71 X

X X 3.69 1.64 1.60

Latency Heatmap

0.1 0.2 0.5 1.0 2.0
vCPU (core)

12
8

25
6

51
2

10
24

20
48

M
em

or
y

(M
B)

3.18 X X X X

3.31 2.69 X X X

X 3.24 2.14 X X

X X 2.59 1.96 X

X X 2.95 2.13 3.67

Cost Heatmap

0

5

10

15

20

25

La
te

nc
y

(s
)

1

0

1

2

3

Co
st

 (C
U)

(a) Gzip Compression

0.1 0.2 0.5 1.0 2.0
vCPU (core)

12
8

25
6

51
2

10
24

20
48

M
em

or
y

(M
B)

14.83 X X X X

13.90 7.20 X X X

X 6.00 2.05 X X

X X 2.25 1.01 X

X X 2.12 1.18 0.90

Latency Heatmap

0.1 0.2 0.5 1.0 2.0
vCPU (core)

12
8

25
6

51
2

10
24

20
48

M
em

or
y

(M
B)

1.76 X X X X

1.91 1.71 X X X

X 1.65 1.18 X X

X X 1.46 1.17 X

X X 1.70 1.53 2.08

Cost Heatmap

0

5

10

La
te

nc
y

(s
)

1

0

1

2

Co
st

 (C
U)

(b) Pyaes

0.1 0.2 0.5 1.0 2.0
vCPU (core)

12
8

25
6

51
2

10
24

20
48

M
em

or
y

(M
B)

3.12 X X X X

2.98 2.70 X X X

X 2.14 0.69 X X

X X 0.50 0.24 X

X X 0.48 0.21 0.14

Latency Heatmap

0.1 0.2 0.5 1.0 2.0
vCPU (core)

12
8

25
6

51
2

10
24

20
48

M
em

or
y

(M
B)

0.37 X X X X

0.41 0.64 X X X

X 0.59 0.40 X X

X X 0.32 0.28 X

X X 0.38 0.27 0.32

Cost Heatmap

1

0

1

2

3

La
te

nc
y

(s
)

1.0

0.5

0.0

0.5

Co
st

 (C
U)

(c) Linpack

Fig. 2. Evaluation on Aliyun Function Compute

evaluate them on AWS Lambda and Aliyun Function Compute under different resource configura-
tions. The selected functions include gzip compression—evaluates file compression performance
using the gzip library, pyaes—measures the performance of AES encryption and decryption using
the pyaes library, and linpack—uses numpy to solve linear equations. These three functions require
a minimum memory of 77 MB, 40 MB, and 93 MB for execution, respectively. The first function is
I/O-intensive, while the latter two are CPU-intensive tasks.

AWS Lambda provides memory-centric resource configuration, allowing developers to set mem-
ory quotas, with vCPU allocated in proportion to the memory allocation. We sample memory
configurations ranging from 256 MB to 3008 MB, including allocating a complete vCPU when the
memory is set to 1792 MB. Fig. 1 illustrates the execution time and cost of the three applications
under different resource configurations on AWS Lambda. The price is calculated as the product
of execution time and memory. From the perspective of execution time, as the CPU capacity on
AWS Lambda is directly proportional to the allocated memory, the execution time decreases as
the memory increases. However, the rate of decrease diminishes after reaching 1792 MB. From
the cost perspective, the three applications exhibit the lowest cost at 1792 MB, 1024 MB, and 2048
MB, respectively. Therefore, regardless of whether the user’s execution goal is latency-optimal or
cost-optimal, the memory allocated by AWS Lambda to the functions is significantly higher than
the minimum required memory for the applications, which results in under-utilization of memory
resources.
Unlike AWS Lambda, Aliyun Function Compute decouples the allocations of memory capacity

and CPU with the ratio of vCPU size to memory size (GB) must be between 1:1 and 1:4. We sample
memory configurations ranging from 128 MB to 2048 MB and vCPU configurations ranging from
0.1 to 2. Fig. 2 illustrates the execution time and cost of three applications under different resource
configurations on Aliyun Function Compute. Due to the constrained vCPU-to-memory ratios in

, Vol. 1, No. 1, Article . Publication date: January 2025.

Ephemera: Accelerating I/O-Intensive Serverless Workloads with a Harvested In-memory File System 5

Read Latency Write Latency0

200

400

600

800

1000

1200

La
te

nc
y

(m
s)

OverlayFS Latency
tmpfs Latency
mmap Latency

(a) Latency

Read Bandwidth Write Bandwidth0

5000

10000

15000

20000

Ba
nd

w
id

th
 (M

B/
s)

OverlayFS Bandwidth
tmpfs Bandwidth
mmap Bandwidth

(b) Bandwidth

Fig. 3. Comparison of Memory-Based File Systems

cloud instances, certain configurations are unavailable and are denoted by X in the figure. The
configurations yielding minimum latency and minimum cost are highlighted with blue boxes.
Our analysis reveals that regardless of whether users optimize for latency or cost, the resulting
configurations lead tomemory over-provisioning.Moreover, the cloud provider’s practice of offering
multiple memory options for the same vCPU configuration may inadvertently encourage tenants
to allocate excessive memory resources.

2.3 Opportunity: In-memory Operations to Accelerate I/Os
To assess the impact of memory on file operation performance, we evaluate the effects of mmap,
tmpfs, and OverlayFS4on random disk I/O performance. OverlayFS is used as a baseline, which over-
laps multiple directory layers to form a unified file system view. Like other traditional filesystems,
OverlayFS utilizes the kernel’s page cache mechanism to buffer file data in memory, improving
read/write performance by reducing disk I/O operations. The mmap technique maps file contents to
memory address space, allowing applications to access file data as if they were memory operations
directly. On the other hand, tmpfs, as an in-memory file system, stores file data directly in memory.

The experiment uses Docker containers as the experimental environment to evaluate the perfor-
mance of random disk I/O operations, including latency and bandwidth. The results are shown in
Fig. 3. Due to the characteristics of the in-memory file system, tmpfs demonstrates advantages in
low latency and high bandwidth during random I/O operations. Compared to OverlayFS, tmpfs
showed an 8% improvement in read performance and a significant 28% improvement in write
performance. Different from traditional file operations, mmap leverages memory mapping to map
file contents directly into user space, allowing applications to read and write data without copying
between user and kernel space. Hence, mmap reduces the overhead of data movement between the
kernel and user space, significantly improving the performance of I/O operations. Compared to
OverlayFS, mmap showed a 63% improvement in read performance and a 69% improvement in write
performance.
Therefore, while traditional filesystems already benefit from page cache, leveraging memory

more aggressively through memory-based solutions can further improve file system performance.
Whether by directly storing file data through a memory file system or indirectly utilizing memory
resources through memory mapping techniques, both can effectively reduce file operation latency
and increase data processing speed.

4https://docs.kernel.org/filesystems/overlayfs.html

, Vol. 1, No. 1, Article . Publication date: January 2025.

https://docs.kernel.org/filesystems/overlayfs.html

6 Lingxiao Jin, Zinuo Cai, Haoxin Wang, Zongpu Zhang, Ruhui Ma, Haibing Guan, and Rajkumar Buyya

Cluster Controller

Function
Store

Profiler

Scheduler

Node

Tenant
Manager

 Deploy

 Invoke

1

2

34

Harvest Pool

Allocation Pool

Setup

Resource Configs

Function

Dummy Inputs

Deployment Stage

Invocation Stage

Function Runtime

Function

Runtime Daemon

Hook Library

In-memory
File System

 Intercept 5

6

 Monitor

Memory
Adapter Adjust

7

Fig. 4. EphemeraWorkflow

3 Design
3.1 Overview
We design Ephemera to enhance the efficiency of ephemeral storage access on serverless computing
platforms by leveraging each function runtime’s allocated but idle memory space. There are three
components in Ephemera from top to bottom: a cluster-level Controller, a tenant-level Manager, and
a function-level Daemon. The Controller resides at the core of the cluster and handles function
deployment and invocation requests. When developers deploy functions to the serverless computing
platform, the Controller conducts a trial to profile its execution pattern, including memory usage
and file I/O pattern. Upon receiving function invocation requests, the Controller schedules requests
based on the nodes’ workload conditions and functions’ profiled pattern to achieve workload
balance. Ephemera allocates a separate Manager for each tenant on each node in the cluster and
leverages a tenant-level memory-sharing mechanism, which enables dynamic sharing of memory
resources among different function instances of the same tenant to optimize resource utilization.
It maintains a memory resource pool and categorizes the execution instances on each node into
two groups: the harvest pool, which reclaims excess memory, and the allocation pool, which holds
instances waiting for available memory. The Daemon is integrated into each function runtime
and implements an in-memory file system by utilizing the idle memory within the runtime. The
Daemon dynamically adjusts the size of the in-memory file system based on the actual resource
usage of the runtime, thereby improving resource utilization efficiency.
Fig. 4 illustrates the overall workflow of Ephemera, including the function deployment and

invocation stages. During the function deployment stage, when receiving the tenant’s uploaded
source code or function image and resource configuration, i.e., CPU and memory limits, the profiler
in the Controller first ❶ evaluates the function’s execution patterns through multiple dummy
inputs provided by the tenant. During the function execution stage, when receiving an invocation
request, the scheduler in the Controller ❷ assigns the request to a node that can balance memory

, Vol. 1, No. 1, Article . Publication date: January 2025.

Ephemera: Accelerating I/O-Intensive Serverless Workloads with a Harvested In-memory File System 7

Table 1. Intercepted APIs

API Name Description API Name Description

mkdir make directories read read from a file descriptor
open open and possibly create a file write write to a file descriptor
close close a file descriptor lseek reposition read or write file offset

requirements with memory configuration. After launching a function execution instance, the tenant-
level Manager on the node ❸ adds the instance to either the harvest pool or the allocation pool,
❹ allowing dynamic sharing of memory resources among different instances of the same tenant.
During function execution, the Daemon ❺ intercepts the function’s I/O requests, and ❻ forwards
them to the in-memory file system. The size of the in-memory file system can be dynamically ❼
adjusted based on the runtime’s resource usage during the function’s execution.

3.2 Runtime Daemon
FaaS platform allocates a separate runtime for each function invocation request, and we embed
a Daemon within each runtime to manage the function’s I/O requests during execution. Fig. 5
illustrates the architecture of the Daemon. The Daemon consists of three modules: a hook library to
intercept I/O requests for delegation, an in-memory file system to enable file operations in memory,
and a memory adapter to monitor memory usage and dynamically adjust the size of the in-memory
file system.

3.2.1 Hook Library. The hook library identifies and intercepts operations related to the file system.
It registers itself when the serverless function is first executed in the container. During the inter-
ception phase, the hook library validates the command type, verifying whether it is file-related.
TABLE 1 shows all intercepted APIs, and the hook library passes the parameters of file operations
to the in-memory file system after an interception.

3.2.2 In-memory File System. We design an in-memory file system to facilitate access to ephemeral
files on serverless platforms by leveraging each function instance’s allocated but idle memory. It
stores the memory limit for the container. Aside from the memory used for program execution,
the rest can be allocated for file storage to accelerate access. Similar to traditional file systems,
the in-memory file system maintains inode structure to record information for each directory or
file. File information is stored in inodes, which include the file’s name, open flags, file offset,
read-write locks, access timestamp, and the current storage location of the file, whether on disk or
in memory. With open flags in the inode, the in-memory file system reinforces protection for
read and write permissions.
A key feature of our in-memory file system is its reliance on mmap to manage file data at a file

granularity. The mmap operation maps a file into the process’s virtual address space, allowing direct
memory operations on file contents. This mechanism potentially reduces the overhead associated
with traditional read and write system calls, which must transition data between user space and
kernel space. In the in-memory file system, the inode of each file also stores a block of memory
space used to hold files mapped by mmap. The allocated space can be directly manipulated for read
and write operations in subsequent processes.
When a file is opened via open API, it is prioritized for storage in memory using mmap. When

using mmap to load a file into memory, it automatically retains parts of the file in memory based on
actual usage. Despite the performance benefits of memory mapping, it is not always appropriate

, Vol. 1, No. 1, Article . Publication date: January 2025.

8 Lingxiao Jin, Zinuo Cai, Haoxin Wang, Zongpu Zhang, Ruhui Ma, Haibing Guan, and Rajkumar Buyya

to store an entire file in memory—particularly if the file size is large or if the memory resource is
constrained. In such cases, the system can decide to place the file on disk to avoid the overhead of
excessive page swapping. The inode then marks the file’s location as being on disk, which informs
the core logic that subsequent read or write requests should be handled through conventional disk
I/O.
Based on the file’s storage location—whether in memory or on the disk—the logic center in

the in-memory file system invokes different processing logic. For files stored in memory, the
logic center manipulates the inode’s associated memory space, allocated via mmap, to perform file
operations directly within memory. This process may include modifying the inode’s metadata to
reflect changes in file size, offset, or other attributes due to these operations. Conversely, the system
relies on original API calls for disk operations for files stored on disk. Similarly, it updates the inode
to record any changes made to the file on disk. Ultimately, the in-memory file system returns the
processed results to the main program, completing the interception and processing of file system
operations.

3.2.3 Memory Adapter. Due to the memory limit set by the FaaS platform for each function runtime,
excessive memory allocation to the in-memory file system can potentially result in out-of-memory
failures. Therefore, we supplement a memory adapter module in the Daemon to facilitate dynamic
adjustment of memory resources within the runtime and resource adjustment with the Manager
for scaling instances. The memory adapter has three main functions. Firstly, it monitors the total
memory usage of the native serverless function and the in-memory file system. Secondly, when
it detects insufficient available memory, the memory adapter communicates with the Manager
to request additional sharable memory space or reclaim allocated memory. Finally, when the
memory limit available to the instance is determined, the memory adapter invokes a file-swapping
mechanism to ensure the smooth functioning of file operations.

To prevent memory overflow caused by introducing a memory file system, the memory adapter
incorporates a mechanism for swapping memory files with disk files, thus maintaining system
stability. The adapter continuously monitors the access status of files and adjusts their storage
location in memory based on their access timestamp. When a file is closed, the scheduler does not
immediately unload it to the disk. Instead, it remains in memory, with only the inode’s flag set to
zero to indicate its closure state. However, in cases of insufficient memory, the file with the smallest
timestamp, corresponding to the Least Recently Used (LRU) file, is removed from memory using
the munmap function. By setting the timestamp of closed files to zero, closed files are prioritized for
eviction.

3.3 Tenant Manager
Fig. 6 illustrates the architecture of the Manager, which is implemented for each tenant in each
node. Within the Manager, we design a tenant-level memory-sharing mechanism. To facilitate
efficient sharing, we introduce container pools that classify running instances based on their
operational patterns, thereby enabling effective memory sharing. Furthermore, we propose a
safeguard mechanism to mitigate potential memory shortages due to excess memory sharing
proactively.

3.3.1 Memory Sharing Mechanism. Sharing granularity is essential when considering the mecha-
nism of memory multiplexing, which ranges from fine-grained to coarse-grained levels. Existing
works have considered multiplexing mechanisms like single-function and single-workflow sharing.
The single-function sharing mechanism [30] allows memory sharing between instances of the same
function. However, since these instances typically have similar memory needs, they often concur-
rently experience excess or insufficient memory, making sharing ineffective. The single-workflow

, Vol. 1, No. 1, Article . Publication date: January 2025.

Ephemera: Accelerating I/O-Intensive Serverless Workloads with a Harvested In-memory File System 9

Runtime Daemon

Hook Library

 Intercept: read/write/...

Disk Storage

Function

In-memory File System File Attributes
file name
timestamp

storage location
open flags

...

Memory Adapter

 Y

Logic Center: huge file?

Idle Memory Execution Memory

inodeinode

inode

Memory Mapped File

File Attributes
inodeinode

 N

Monitor &
Adjuster

Warning
 Monitor

 Adjust

 munmap mmap

Fig. 5. Runtime Daemon Overview

Pool Entry Attributes
container ID
initial memory quota
adjusted memory quota
memory usage
Target Container List
Memory Amount List
...

Tenant Manager

Safeguard

Target Container List
harvest container ID1
harvest container ID2
...

Memory Amount List
harvest memory amount1
harvest memory amount2
...

Allocation Pool

ContainerA

Initial Memory Allocated Memory

Adjusted Memory
Pool Entry Attributes

Harvest Pool
ContainerB

Initial Memory
Pool Entry Attributes

Adjusted Memory Harvested Memory

Runtime Daemon

Share

Memory Sharing

Funciton
Store

Memory Usage
> Threshold？

Memory Shortage
Warning

 Y

 N

share

reclaim

t

container in

container out

share process

A

A

A

A

B

B

Fig. 6. Tenant Manager Overview

sharing mechanism [20, 21] enables memory sharing among instances in the same workflow but
fails to cover cases outside workflows. Due to a specific execution order, instances can’t share
memory concurrently within a workflow.

Instead, we adopt single-tenant sharing, which allows for memory sharing among all instances of
functions within the same tenant. This approach provides a wide range of sharable objects, enables
memory sharing between instances of different patterns, and accommodates instances running
concurrently. Within each node, the system adopts an isolation strategy to manage the resources of
multiple tenants. The system assigns a dedicated Manager for each tenant per node. The Manager
independently manages all function instances for that tenant. Such tenant-level isolation prevents
potential conflicts or security vulnerabilities related to data and applications, thus enhancing the
system’s overall security. Moreover, memory sharing follows a priority principle. Function instances
with more available memory gain higher priority during memory sharing. Harvesting memory
from these instances can avoid performance degradation by frequently retrieving memory from
many minor function instances. Conversely, when the system needs to allocate memory to existing
function instances, those requiring less memory are prioritized. This approach can ensure that as
many function instances as possible run efficiently, thereby maximizing user satisfaction.

3.3.2 Container Pool. The container pool is responsible for managing container memory allocation
and sharing. It categorizes containers based onmemory requirements and usage patterns to optimize
memory utilization. Based on the profiles from the Controller, if a container’s file size and memory
usage exceed the threshold of the memory limit, it is placed in the allocation pool, from which
additional memory allocations can be obtained from containers in the harvest pool. Conversely, if
a container’s file size and memory usage are below the threshold of the memory limit, it is placed
in the harvest pool, and its extra memory can be allocated to containers in the allocation pool.
Otherwise, the container is considered self-sufficient.
Each entry in the container pool records relevant vital attributes, including the container ID,

initial memory quota, peak memory usage within the container, maximum file size encountered, and
adjusted memory quota. Each entry has two lists to track memory allocations between containers
in subsequent memory-sharing mechanisms: one for storing target containers and another for
reallocating memory amounts to these target containers. In the harvest pool, these maintained
lists correspond to the containers receiving memory from this source and the harvested memory

, Vol. 1, No. 1, Article . Publication date: January 2025.

10 Lingxiao Jin, Zinuo Cai, Haoxin Wang, Zongpu Zhang, Ruhui Ma, Haibing Guan, and Rajkumar Buyya

amounts, respectively. Conversely, in the allocation pool, these lists represent the containers from
which memory is harvested and the allocated memory amounts.

When a request triggers an invocation of a specific container, the Manager identifies its state to
determine the appropriate sharing strategy. Containers in the harvest pool donate their memory
to active functions, while containers in the allocation pool obtain additional memory from the
currently executing functions. Conversely, self-sufficient containers can start without the need
for external memory intervention. After the function execution, the Manager reevaluates the
containers’ states to ensure proper memory management. For containers in the harvest pool,
the system proactively reclaims memory previously allocated to other containers. Conversely,
containers in the allocation pool are instructed to return any excess memory received. Meanwhile,
self-sufficient containers undergo standard termination.

For instance, container A with insufficient memory and container B with excess memory arrive
sequentially. First, A is allocated to the allocation pool and executes with its initial memory quota.
Subsequently, container B arrives and is allocated to the harvest pool. Since container A requires
more memory, container B shares a part of its initial memory quota, denoted by the harvested
memory amount, with container A. Following this, the system updates container A’s target container
list with container B’s ID and the memory amount list with the allocated memory amount, i.e.,
the memory container B has shared with container A. Thus, both containers execute based on
their adjusted memory quotas. If container B finishes early, it will reclaim the memory allocated to
container A and update the relevant lists.

3.3.3 Safeguard. Due to variations in input size, node workload, and other factors during the
actual execution, memory usage may deviate from initial expectations. We propose a safeguard
mechanism to prevent programs from stopping due to out-of-memory failures. When the Manager
receives information about a memory shortfall detected by a Daemon, it forcibly reclaims allocated
memory from the container pool. Concurrently, the container is marked as non-reclaimable to
ensure that no additional memory allocations are taken from this container when other containers
are initiated.

3.4 Cluster Controller
Ephemera allocates a unique Controller to each tenant, facilitating a single-tenant shared memory
mechanism. In the deployment stage, the profiler in the Controller analyzes the function patterns.
During the invocation stage, the scheduler in the Controller dispatches the request to the optimal
node based on the function pattern and nodes’ workload.

3.4.1 Profiler. Through analysis, the profiler determines each function’s memory limit, memory
usage, and file usage. Recognizing that a function’s resource utilization may be related to the
input scale, the profiler calculates the upper limit of resource consumption during actual use to
prevent resource shortages. Based on several sets of dummy inputs prepared by the user, the profiler
executes functions in parallel, thereafter monitoring the memory usage and the size of accessed
disk files. The largest observed resource consumption scenario is selected and preserved as the
basis for subsequent workload balancing and the Manager’s division of container pools. The sum
of the memory usage and the size of the files accessed is the maximum upper limit of memory a
function may use since files can be stored in an in-memory file system to speed up access.

3.4.2 Scheduler. The scheduler leverages data derived from profiling and the current workloads
across various nodes to distribute function-packaged containers among these nodes using Algo-
rithm 1. Upon receiving a request, the scheduler first retrieves data previously analyzed for the task,
including the memory limit𝑇𝑙𝑖𝑚 and the maximummemory usage𝑇𝑚𝑒𝑚 . It then assesses the current

, Vol. 1, No. 1, Article . Publication date: January 2025.

Ephemera: Accelerating I/O-Intensive Serverless Workloads with a Harvested In-memory File System 11

Algorithm 1:Workload Balance Allocation
Input: Task: memory limit 𝑇𝑙𝑖𝑚 , max memory usage 𝑇𝑚𝑒𝑚 ; Node: node memory limit 𝑁𝑙𝑖𝑚 ,

memory allocation 𝑁𝑎𝑙𝑙𝑜𝑐 , and memory requirement 𝑁𝑟𝑒𝑞

Output: Optimal Node 𝑜𝑝𝑡𝑖𝑚𝑎𝑙𝑁𝑜𝑑𝑒

1 Function SelectOptimalNode(𝑡𝑎𝑠𝑘 , 𝑛𝑜𝑑𝑒𝑠):
2 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ← {}
3 for 𝑛𝑜𝑑𝑒 in 𝑛𝑜𝑑𝑒𝑠 do
4 if 𝑛𝑜𝑑𝑒.𝑁𝑙𝑖𝑚 ≤ 𝑛𝑜𝑑𝑒.𝑁𝑎𝑙𝑙𝑜𝑐 + 𝑡𝑎𝑠𝑘.𝑇𝑙𝑖𝑚 then
5 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠.𝑎𝑑𝑑 (𝑛𝑜𝑑𝑒)
6 end
7 end
8 if 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 is not empty then
9 𝑜𝑝𝑡𝑖𝑚𝑎𝑙𝑁𝑜𝑑𝑒 ← 𝑛𝑢𝑙𝑙

10 𝑜𝑝𝑡𝑖𝑚𝑎𝑙𝑆𝑐𝑜𝑟𝑒 ← −∞
11 for 𝑛𝑜𝑑𝑒 in 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 do
12 𝑠𝑐𝑜𝑟𝑒 ← −|𝑛𝑜𝑑𝑒.𝑁𝑟𝑒𝑞 + 𝑡𝑎𝑠𝑘.𝑇𝑚𝑒𝑚 − 𝑛𝑜𝑑𝑒.𝑁𝑎𝑙𝑙𝑜𝑐 − 𝑡𝑎𝑠𝑘.𝑇𝑙𝑖𝑚 |
13 if 𝑠𝑐𝑜𝑟𝑒 > 𝑜𝑝𝑡𝑖𝑚𝑎𝑙𝑆𝑐𝑜𝑟𝑒 then
14 𝑜𝑝𝑡𝑖𝑚𝑎𝑙𝑆𝑐𝑜𝑟𝑒 ← 𝑠𝑐𝑜𝑟𝑒

15 𝑜𝑝𝑡𝑖𝑚𝑎𝑙𝑁𝑜𝑑𝑒 ← 𝑛𝑜𝑑𝑒

16 end
17 end
18 𝑜𝑝𝑡𝑖𝑚𝑎𝑙𝑁𝑜𝑑𝑒.𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒 (𝑡𝑎𝑠𝑘)
19 return 𝑜𝑝𝑡𝑖𝑚𝑎𝑙𝑁𝑜𝑑𝑒

20 else
21 return null
22 end
23 End Function

workload on each node, which includes the node memory limit 𝑁𝑙𝑖𝑚 , total memory allocation
𝑁𝑎𝑙𝑙𝑜𝑐 , and total memory requirement 𝑁𝑟𝑒𝑞 within each node. Specifically, 𝑁𝑎𝑙𝑙𝑜𝑐 is the sum of 𝑇𝑙𝑖𝑚
for all tasks currently allocated to the node, and 𝑁𝑟𝑒𝑞 is the sum of 𝑇𝑚𝑒𝑚 for these tasks. Using this
information, the scheduler identifies candidate nodes that can accommodate the new task without
exceeding their memory limits. Once it has filtered out nodes that cannot accommodate the new
task, the scheduler then seeks to minimize the absolute difference between the node’s allocation
and requirement, i.e.,

��(𝑁𝑟𝑒𝑞 +𝑇𝑚𝑒𝑚) − (𝑁𝑎𝑙𝑙𝑜𝑐 +𝑇𝑙𝑖𝑚)
��, thereby balancing the supply and demand

of memory as effectively as possible. The primary objective of this approach is to minimize the
absolute difference between memory allocation and memory requirement without exceeding the
node memory limit, thereby ensuring an efficient and balanced distribution of workloads across
nodes.

4 Implementation
We implement the prototype of Ephemera efficiently (with around 3000+ lines of code). Specifically,
the Daemon is implemented in C because C makes it easy to manage memory manually, and the

, Vol. 1, No. 1, Article . Publication date: January 2025.

12 Lingxiao Jin, Zinuo Cai, Haoxin Wang, Zongpu Zhang, Ruhui Ma, Haibing Guan, and Rajkumar Buyya

Table 2. Experimental Testbed Configuration

Component Specification Component Specification

CPU device Intel Xeon Gold 6248R Number of sockets 4
Processor BaseFreq 3.00 GHz Threads 192 (96 physical cores)
Memory Capacity 512GB SSD Capacity 11TB
Operating System Ubuntu 22.04 LTS Docker version 24.0.7

Manager and Controller are implemented in Python due to Python’s simplicity and extensive
library support. Our system uses Docker5 as the application sandbox.

Function Runtime. Similar to OpenWhisk, we set up a proxy to receive request information,
which is then passed on to the launcher for the execution of the actual function. The launcher
initializes and executes user-defined functions in an isolated environment, managing input/output
and handling errors. The proxy communicates with the Manager through two pipes: one for
receiving requests or updates on memory limits, and another for returning results. The proxy
handles memory limit updates, modifying the pointer variable in the in-memory file system that
stores the memory limit. Similarly, the launcher also communicates with the proxy through two
pipes: one to receive requests and another to return results. Our setup ensures that the system
blocks when there are no requests in the pipe, thereby not consuming extra CPU resources.

In-memory File System. We utilize the mmap and munmap system calls to achieve access files in
memory. mmap enables the mapping of a file on disk into the process’s address space, allowing the
contents of the file to be read and written directly as if they were in memory. munmap can revoke
this mapping, ensuring the resources are correctly released.

Instruction Interception. We compile the hook library into a dynamic link library (DLL) and
register it when the launcher starts. By employing the method of function overriding, we replace
the standard C library’s file operation APIs, thereby achieving the capability to intercept these
operations.

Memory Monitoring. In the Daemon, the memory adapter polls /proc/[pid]/statm to monitor
memory usage. The /proc/[pid]/statm file in Linux systems provides detailed memory usage
information for a specific process, where [pid] represents the process ID. This file offers key
metrics, including total virtual memory, resident memory, shared memory, and code memory,
measured in pages. We use resident memory as the metric, which reflects the number of pages
currently in physical memory, including those mapped via mmap.

Memory Sharing. We employ the docker-update API from the Docker library to facilitate the
memory-sharing operation. The API enables the real-time update of memory configuration for
containers. We wrap the docker-update using Python code, allowing the Manager to invoke it
asynchronously.

5 Performance Evaluation
5.1 Experiment Setup

Environment. We evaluate Ephemera with practical workloads in the context of serverless com-
puting. TABLE 2 summarizes the configurations of the computing infrastructure. In our prototype
5https://www.docker.com/

, Vol. 1, No. 1, Article . Publication date: January 2025.

https://www.docker.com/

Ephemera: Accelerating I/O-Intensive Serverless Workloads with a Harvested In-memory File System 13

Table 3. Workloads and their I/O Intensity

Workload Name I/O Intensity Description

Micro Benchmark Dynamic Performs multiple file operations on two files of
the same size.

Sequential Disk I/O 96.34% Conducts multiple sequential read and write op-
erations on a 32MB file, emphasizing continuous
data access.

Random Disk I/O 94.23% Executes multiple random read and write opera-
tions on a 32MB file, highlighting non-sequential
data access.

Gzip Compression Dynamic Compresses and decompresses a file using gzip,
involving multiple read and write operations.

Image Processing 64.17% Reads an image, processes it to grayscale, and
writes the processed image back to disk.

MapReduce 87.84% Utilizes 2 Mappers to read files and count word
occurrences, writing results to disk, followed by
1 Reducer to aggregate Mapper outputs.

ML Inference 19.93% Uses a DNNmodel to recognize handwritten char-
acters, focusing on model inference operations.

Video Processing 62.12% Reads a video file, processes it to grayscale, and
writes the processed video back to disk.

Large Integer Factorial 0% Calculates the factorial of a number without file
operations.

system, function instances are assigned a Docker container as their runtime environment. The
hardware and software configuration provides a comprehensive environment for scrutinizing the
performance attributes of Ephemera in real-world scenarios.

Metrics. The performance metrics considered in this evaluation encompass application execution
latency, I/O bandwidth, I/O intensity, and memory utilization. Specially, I/O intensity refers to the
degree of I/O operations relative to the total execution time of an application. It can be measured by
combining the use of strace and /usr/bin/time. First, strace is used to record the proportion
of system calls related to I/O operations, denoted as 𝑝 . Then, time is used to capture the time spent
in kernel mode, 𝑡𝑘 , and user mode, 𝑡𝑢 . The I/O intensity is calculated as 𝑡𝑘×𝑝

𝑡𝑘+𝑡𝑢 .

Workloads. The serverless workloads we use for evaluation are listed in TABLE 3. In our micro-
benchmarks experiments, we design I/O-intensive functions to evaluate the effects of memory
limitations, file size usage, and file operation frequency on the in-memory file system. We then
employ three functions from FunctionBench [14] and four realistic workloads to further illustrate our
system’s performance. To evaluate the memory sharing mechanism, we treat the micro-benchmarks
functions as I/O-intensive tasks and use large integer factorial calculations as CPU-intensive tasks.
Finally, we similarly use these I/O-intensive and CPU-intensive tasks to evaluate the scheduler’s
performance as workloads.

, Vol. 1, No. 1, Article . Publication date: January 2025.

14 Lingxiao Jin, Zinuo Cai, Haoxin Wang, Zongpu Zhang, Ruhui Ma, Haibing Guan, and Rajkumar Buyya

Baseline. This evaluation entails a comparative analysis, pitting Ephemera against the Docker
with OverlayFS and the Docker with tmpfs. OverlayFS is a union file system commonly used in
containerization. It overlays a read-only base image (lower layer) with a writable layer (upper
layer) for runtime modifications. Reads check the upper layer first, then the lower. Read data is
cached for efficiency while writes are confined to the upper layer. Tmpfs is a temporary file storage
filesystem that keeps data in memory rather than on disk. When we start a Docker instance, we
use the –mount type=tmpfs command to mount a tmpfs. The memory space it can use is limited
by the memory configuration allocated to the Docker instance.

5.2 Micro-Benchmarks
We conduct performance evaluations by subjecting the system to diverse conditions, altering
memory constraints, file usage sizes, and the frequency of file operations. The Daemon starts
as part of the Docker runtime and subsequently runs along with the function instances in the
container.

5.2.1 Impact of Memory Limit. We evaluate the impact of memory limit on the latency of read
and write system calls. We run experiments of the memory limit from 32 MB to 256 MB on
Ephemera and compare with the same workload on the original OverlayFS and mounted tmpfs.
Fig. 7 illustrates the impact of memory limit on system performance. When the memory limit is
128 MB, which is sufficient to accommodate all files, the performance optimization of our system
relative to OverlayFS reaches 54.73%. Notably, when the memory limit is 64 MB, which is sufficient
to store only a portion of the files, but not all, our system achieves a performance optimization of
92.67%. Under conditions of severe memory scarcity, the performance of our system approximates
that of OverlayFS. This similarity arises because our scheduling mechanism, aiming to avoid
the performance degradation caused by frequent scheduling of large files between memory and
disk, refrains from storing files in memory and instead relies on traditional file system read-write
operations.

5.2.2 Impact of File Usage Size. We evaluate the impact of actual file usage size on the latency
of read and write system calls. We run experiments of file usage size from 32 MB to 160 MB on
Ephemerawith a memory limit of 150 MB and compare with the same workload on OverlayFS. Fig. 8
demonstrates that the system’s performance varies with the size of the files in practice. When the
memory capacity is adequate to accommodate all files, there is a significant improvement in system
performance. Particularly, when the memory can store some but not all files, the performance
optimization reaches 89.5%. Even when the memory can only hold a majority of a single file, and
scheduling operations are required, there is still a 41.72% performance enhancement compared to
OverlayFS.

5.2.3 Impact of File Operation Times. We evaluate the impact of file operation times on the
latency of read and write system calls. We run experiments of file operation times from 500 to
500000 on Ephemera and compare them with the same workload on an OverlayFS on a local disk.
Besides, each file operation is 8192 B, the same as the default buffer size. Fig. 9 elucidates that the
system’s performance advantage becomes more pronounced with an increasing number of file
operations. When the frequency of file operations is low, there is a modest improvement of 28.03%
in performance. However, as the number of file operations escalates, the performance enhancement
can reach up to 53.04%. This phenomenon occurs because establishing file mappings incurs a certain
time overhead, and the benefits of operating files in memory become more evident as the number
of operations increases.

, Vol. 1, No. 1, Article . Publication date: January 2025.

Ephemera: Accelerating I/O-Intensive Serverless Workloads with a Harvested In-memory File System 15

32 64 128 256
Memory Limit (MB)

0

25

50

75

100

125

150

175

La
te

nc
y

(s
)

x x 2.31 2.35

165.2

2.81 1.18 1.16

164.6

38.38

2.58 2.57

tmpfs Latency
Ephemera Latency
OverlayFS Latency

Fig. 7. Impact of Memory Limit

32 64 128 160
File Size (MB)

0

20

40

60

80

La
te

nc
y

(s
)

2.14 2.29
x x0.97 1.20 3.59

50.81

2.42 2.69

34.16

87.19tmpfs Latency
Ephemera Latency
OverlayFS Latency

Fig. 8. Impact of File Usage Size

500 5000 50000 500000
Operation Times

0.0

0.5

1.0

1.5

2.0

2.5

3.0

La
te

nc
y

(s
)

0.03 0.05
0.27

2.45

0.03 0.03
0.15

1.36

0.04 0.07

0.32

2.86tmpfs Latency
Ephemera Latency
OverlayFS Latency

Fig. 9. Impact of File Operation
Times

Read Latency Write Latency Read Bandwidth Write Bandwidth
0

100

200

300

400

500

La
te

nc
y

(m
s)

tmpfs Latency
Ephemera Latency
OverlayFS Latency

0

5000

10000

15000

20000

Ba
nd

w
id

th
 (M

B/
s)

tmpfs Bandwidth
Ephemera Bandwidth
OverlayFS Bandwidth

Fig. 10. Sequential Disk I/O Performance

Read Latency Write Latency Read Bandwidth Write Bandwidth
0

100

200

300

400

500

600

700

La
te

nc
y

(m
s)

tmpfs Latency
Ephemera Latency
OverlayFS Latency

0

2500

5000

7500

10000

12500

15000

17500

Ba
nd

w
id

th
 (M

B/
s)

tmpfs Bandwidth
Ephemera Bandwidth
OverlayFS Bandwidth

Fig. 11. Random Disk I/O Performance

5.2.4 Scalability. In Fig. 7, when the memory is set to 32MB and 64MB, Docker with tmpfs mounted
fails due to Out Of Memory (OOM), indicated by an X in the figure. Similarly, in Fig. 8, when the file
size increases to 128MB and 160MB, the approach using tmpfs cannot execute normally. Compared
to tmpfs, Ephemera can dynamically adjust the in-memory file size based on memory limits and
the size of the file being operated on, thereby avoiding OOM and achieving better scalability.

5.3 Benchmarks
We use FunctionBench[14] to evaluate Ephemera. FunctionBench is a popular testing repository
for serverless computing functions, capable of evaluating CPU, memory, disk, and network perfor-
mance. In FunctionBench, we extract three disk performance-related functions to demonstrate the
advantages of our system: the compression performance evaluation, the sequential read or write
performance evaluation, and the random read or write performance evaluation.

5.3.1 Random and Sequential Disk I/O Performance. In the random disk I/O performance evaluation,
the function operates on a 32 MB file. It starts by writing 8192 B of content, then randomly adjusts
the offset using lseek, and repeats this writing process 500000 times. Afterward, it reads 8192 B of
content, again using lseek to adjust the offset randomly, and repeats this reading process 500000
times. In the sequential disk I/O performance evaluation, unlike the random evaluation, the file is
read and written continuously until the end before lseek is used to move the offset back to the
start of the file. We set a memory limit of 150 MB to ensure enough space to store all files. It tests
the latency of writing to disk (disk latency) as well as the latency during the compression phase
(compress latency). A comparison of Fig. 10 and Fig. 11 shows that the performance of random
read-write operations is inferior to that of sequential read-write operations. Due to the prefetching
mechanism of the CPU cache, sequential read-write operations perform better than random ones,
even when files are operated on in memory. Although the latency for random read-write operations
increases, the relative performance improvement of the in-memory file system compared to the

, Vol. 1, No. 1, Article . Publication date: January 2025.

16 Lingxiao Jin, Zinuo Cai, Haoxin Wang, Zongpu Zhang, Ruhui Ma, Haibing Guan, and Rajkumar Buyya

1 2 3 4 5 16
File Size (MB)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
is

k
La

te
nc

y
(m

s)

0

5000

10000

15000

20000

C
om

pr
es

s
La

te
nc

y
(m

s)

tmpfs Disk Latency
Ephemera Disk Latency
OverlayFS Disk Latency
tmpfs Compress Latency
Ephemera Compress Latency
OverlayFS Compress Latency

Fig. 12. Compression Performance

Image Processing MapReduce ML Inference Video Processing
0

50

100

150

200

250

La
te

nc
y

(m
s)

156.1 163.4

13.6

260.8

113.4 113.2

12.6

193.7

82.5

13.0 10.9

145.1

tmpfs Latency
Ephemera Latency
OverlayFS Latency

Fig. 13. Workloads Performance

original OverlayFS also rises, from an initial 55% to 62%. Hence, random read-write operations
more effectively highlight the advantages of the in-memory file system.

5.3.2 Compress Performance Evaluation. This function begins by writing to a file from oneMB to 16
MB, followed by frequent file reading using a compression algorithm, simultaneously compressing
and writing the compressed content to an archive. We set a memory limit of 64 MB to ensure
enough space to store all files. It tests the latency of writing to disk (disk latency) as well as the
latency during the compression phase (compress latency). Fig. 12 reflects that disk latency can
achieve an improvement of approximately 50%, while compress latency can reach about 81.8%. This
is because the implementation of the compression algorithm involves frequent file access, where
direct memory operations have an advantage.

5.3.3 Realistic Workloads. In the workloads of Image Processing, MapReduce, ML Inference, and
Video Processing, the performance of Ephemera, OverlayFS, and tmpfs is shown in Fig. 13. Compared
to OverlayFS, Ephemera achieves speed improvements of 47.2%, 92.0%, 19.9%, and 44.3%, respectively.
This is attributed to the acceleration of file operations by memory. Additionally, when compared to
tmpfs, Ephemera shows speed enhancements of 27.3%, 88.5%, 13.9%, and 25.1%, respectively. This
improvement is mainly due to the reduced overhead of context switching between user space and
kernel space achieved by mmap.

5.3.4 Impact of I/O Intensity. Comparing Fig. 13 and TABLE 3, a general trend emerges: the higher
the I/O intensity, the more significant the performance improvement of Ephemera. This aligns with
Ephemera ’s optimization for I/O operations; since it is not optimized for computation, it exhibits
more pronounced performance gains in scenarios with higher I/O intensity. However, it’s worth
noting that despite sequential disk I/O tasks having an I/O intensity 2.11% higher than random
disk I/O tasks, the performance optimization shown in Fig. 10 reaches 55%, which is lower than the
62% shown in Fig. 11. This indicates that while performance optimization is generally positively
correlated with I/O intensity, it is also influenced by the specific type of disk operation.

5.4 Effectiveness of Memory Sharing Mechanism
The Manager allocates tasks to either the harvest pool or the allocation pool based on the distinct
characteristics of the tasks and the memory configuration. It adjusts the memory limit upon function
initiation to facilitate memory sharing.

This section examines a CPU-intensive task that is allocated excess memory in pursuit of higher
computational power alongside an I/O-intensive task that needs more memory. The I/O-intensive
tasks are the same as the functions in §5.2. The CPU-intensive tasks are large integer factorial
calculations. The evaluation assesses the performance of the in-memory file system, both with and
without the activation of the sharing mechanism, and compares them to the original OverlayFS.
Fig. 14 demonstrates that enabling memory sharing has a negligible impact on CPU-intensive

, Vol. 1, No. 1, Article . Publication date: January 2025.

Ephemera: Accelerating I/O-Intensive Serverless Workloads with a Harvested In-memory File System 17

Ephemera System Ephemera System
without Sharing

Original System
using OverlayFS

0

5

10

15

20

25

30

35

La
te

nc
y

(s
)

10.80 10.78 10.66

1.40
3.20

32.90CPU-Intensive Task Latency
I/O-Intensive Task Latency

Fig. 14. Efficacy ofMemory SharingMechanism

Ephemera System Ephemera System
without Sharing

Single-functionn
Sharing

Single-workflow
Sharing

0

2

4

6

8

10

12

14

La
te

nc
y

(s
)

10.80 10.78 10.79 10.81

1.40

3.20 3.33 3.17

CPU-Intensive Task Latency
I/O-Intensive Task Latency

Fig. 15. Sharing Mechanisms Comparison

tasks but significantly benefits I/O-intensive tasks. Without the memory sharing mechanism, I/O-
intensive tasks utilizing the in-memory file system can achieve a 90.27% performance improvement
over OverlayFS. However, when the memory sharing mechanism is employed, I/O-intensive tasks
can harvest more memory from CPU-intensive tasks, leading to a performance increase of 95.73%.

5.5 Different Memory-sharing Mechanisms
We design experiments to demonstrate that the single-function sharing mechanism and the work-
flow sharing mechanism are not effective in sharing memory among different function instances.
For the single-function sharing mechanism, the container pool managed by the Manager only holds
different instances of a single function. We conduct experiments by running two I/O-intensive
tasks and two CPU-intensive tasks simultaneously. For the single-workflow sharing mechanism,
we design workflows that first execute the CPU-intensive task and then the I/O-intensive task. In
this case, the container pool managed by the Manager contains different function instances from
the same workflow. We sequentially execute the CPU-intensive task and the I/O-intensive task to
simulate the workflow for the experiment. Fig. 15 illustrates the latency of CPU-intensive and I/O-
intensive tasks for scenarios using the three sharing mechanisms or the scenario without the sharing
mechanism. The latency of CPU-intensive tasks is almost the same across all scenarios, while the
latency of I/O-intensive tasks shows performance improvement only in the single-tenant sharing
mechanism compared to the scenario without any sharing mechanism. Because the single-function
sharing mechanism only shares memory among different instances of the same function. Instances
of CPU-intensive tasks generally have surplus memory while I/O-intensive tasks suffer from insuf-
ficient memory, there is no memory sharing occurring between instances. In the single-workflow
sharing mechanism, CPU-intensive tasks in the harvest pool can share memory with function
instances running concurrently in the allocation pool. However, by the time I/O-intensive tasks
enter the allocation pool, the CPU-intensive tasks have already ended, thus preventing memory
sharing at that point.

5.6 Effectiveness of Ephemera’s Scheduling
The scheduler in the Controller determines the allocation of the task to nodes based on the nodes’
current workload, the task’s memory requirement, and the task’s memory configurations to achieve
optimal overall performance. For comparison, a workload-balancing algorithm that prioritizes
nodes with the most available memory as the optimal choice serves as the baseline. This section
employs six tasks arriving every second to simulate a real-world serverless computing request
environment, observing the workload distribution on nodes and the response latency of each task.
The task set consists of four I/O-intensive tasks and two CPU-intensive tasks from the same tenant,
distributed across two nodes, each with a total memory of 1024 MB. We launch two Managers on a
single machine to simulate two nodes.

, Vol. 1, No. 1, Article . Publication date: January 2025.

18 Lingxiao Jin, Zinuo Cai, Haoxin Wang, Zongpu Zhang, Ruhui Ma, Haibing Guan, and Rajkumar Buyya

Table 4. Node Workload Condition

Node1 Node2
Mem Req Mem Alloc Mem Usage Mem Req Mem Alloc Mem Usage

Ephemera 778 MB 750 MB 748 MB 262 MB 450 MB 262 MB
Baseline 1032 MB 600 MB 600 MB 8 MB 600 MB 8 MB

TABLE 4 indicates that our workload-balancing algorithmmore effectively balances the allocation
and usage of memory, enhancing the performance of I/O-intensive tasks without diminishing the
performance of CPU-intensive tasks. In the baseline configuration, Node One is exclusively occupied
by I/O-intensive tasks, each suffering from insufficient memory allocation; Node Two is solely
filled with CPU-intensive tasks, leading to significant memory wastage. Through our workload-
balancing method, it becomes possible for each I/O-intensive task to receive additional memory
allocations from CPU-intensive tasks. This results in a minimal memory waste of two MB on Node
one, because while the CPU-intensive tasks only consume four MB of memory, Docker imposes
a minimum memory requirement of six MB. Implementing this workload-balancing approach
facilitates an average performance enhancement of 44.92%. Our methods, utilizing a greedy strategy,
lack foresight regarding future events, thereby preventing some I/O-intensive tasks from receiving
sufficient memory, which could otherwise lead to further performance improvements.

5.7 Overhead of Ephemera
The overhead of the Runtime Daemon comes from the cost of monitoring memory. Using Ephemera
with CPU-intensive tasks incurs additional overhead without benefiting from the performance
optimizations provided by the in-memory file system. As shown in Fig. 14, when using Ephemera,
the latency of the CPU-intensive task decreases from 10.80 seconds to 10.66 seconds, with a
performance degradation of only 1.29%.

The overhead of the Tenant Manager comes from calculating the memory resource usage in the
container pool and determining whether to allocate the remaining memory or reclaim the required
memory. It also involves calculating the number of container instances allocated or reclaimed. We
define the overhead of the Tenant Manager as the average latency from when the Manager receives
an invocation request to when the Manager sends it to the container. We deploy a CPU-intensive
factorial computation task and an I/O-intensive random read-write task on a node to evaluate the
impact of different request frequencies on the overhead. As shown in Fig. 16a, when requests are
evenly distributed over one second, and the number of requests increases from 200 to 1000, there is
no significant change in the average latency, which remains at around six microseconds, which is
negligible.

The overhead of the Cluster Controller comes from the scheduler’s analysis of workloads across
different nodes. We define the overhead of the Cluster Controller as the average latency from
when the scheduler receives an invocation request to when the scheduler dispatches it to a specific
node. We evaluate variations in overhead by adjusting the number of nodes and the frequency
of requests. Fig. 16b shows that when the number of nodes is two and requests arrive uniformly
within one second, the average latency remains at two microseconds without significant changes
as the number of requests increases from 200 to 1000. Fig. 16c shows that when the number of
requests is 200, average latency increases as the number of nodes scales from 200 to 1000. When
the number of nodes reaches 1000, the average latency is approximately 418 microseconds, which
is still negligible compared to the function execution time. The overhead scales linearly with the

, Vol. 1, No. 1, Article . Publication date: January 2025.

Ephemera: Accelerating I/O-Intensive Serverless Workloads with a Harvested In-memory File System 19

250 500 750 1000
Invoke Times

0.0

2.5

5.0

7.5

10.0

Av
er

ag
e

La
te

nc
y

(
s) Latency

(a) Overhead of Tenant Man-
ager

250 500 750 1000
Invoke Times

0

2

4

Av
er

ag
e

La
te

nc
y

(
s) Latency

(b) Invoke Times Impact on
Controller Overhead

250 500 750 1000
Node Numbers

0

200

400

Av
er

ag
e

La
te

nc
y

(
s) Latency

(c) Node Numbers Impact on
Controller Overhead

Fig. 16. Overhead of Ephemera

number of nodes because of the need to check the current workload distribution across nodes.
More nodes result in higher overhead.

6 Discussion
Instruction Interception Capability of the In-Memory File System. As a prototype system, the

current in-memory file system can perform primary I/O operations, including file creation, reading,
and writing. Future research should focus on expanding the range of intercepted instructions to
support broader application needs to deploy EPHEMERA in practice. Additionally, the Daemon now
serves as a wrapper for function instances, providing interception interfaces for C language I/O
operations. This architecture allows for future expansion to accommodate various programming
languages.

Profiling for Input-sensitive Tasks. In the Serverless platform, several existing methods [3, 25, 35]
predict the actual execution effects of functions based on the input data, and these methods are
orthogonal to our approach. We can integrate these techniques to predict memory and file size
consumption based on real-time input data, thereby enabling a more precise and efficient memory-
sharing mechanism for Serverless functions.

Expansion of Memory-Sharing Mechanisms. The current memory-sharing mechanism of the
Tenant Manager is limited to single-node, which restricts the system’s scalability and flexibility. To
implement a more robust memory-sharing mechanism, future research could consider introducing
designs for multi-node systems, such as enabling cross-node memory access through remote direct
memory access (RDMA) technology [2, 11, 19]. Introducing this technology would allow the in-
memory file system to share and manage memory resources more effectively in a distributed
environment, thereby enhancing the overall performance and scalability of the system.

7 Related work
Serverless File System. To support generic tasks, serverless platforms need to allow connections

to file-based storage systems. Merenstein et al. [24] design the stackable file system F3, which
features locality-aware data scheduling, can distinguish between ephemeral data and data requiring
high durability, and transparently directs ephemeral data to node-local disks. Schleier-Smith et
al. [28] propose FaaSFS, a shared file system, which optimistically handles POSIX calls, utilizing
locally cached state and encapsulating cloud function file system interactions within a transac-
tion mechanism to restore consistency in the event of conflicts. RunD [15], a lightweight secure
container runtime, uses virtio-fs to support the read-only part of rootfs for sharing page cache
between host and guests and uses virtio-blk to support the writeable part of rootfs for high I/O

, Vol. 1, No. 1, Article . Publication date: January 2025.

20 Lingxiao Jin, Zinuo Cai, Haoxin Wang, Zongpu Zhang, Ruhui Ma, Haibing Guan, and Rajkumar Buyya

performance. Hattori et al. [10] introduce a runtime called Sentinel to mitigate the cold start latency
and memory usage with a read-only mount to the specified file system. Ephemera is one that not
only accelerates file access in single-containers but also enables multi-container memory sharing,
which is orthogonal to previous designs.

Tiered File System. Tiered file systems manage a hierarchy of heterogeneous storage devices,
placing data in storage devices that match the data’s performance requirements and the application’s
future access patterns. AutoTiering [34] manages the allocation and migration of virtual machine
disk files (VMDK) in all-flash multi-tier data centers. With the rise of Non-Volatile Main Memory
(NVMM), Zheng et al. [40] introduce a tiered file system named Ziggurat, which utilizes an efficient
migration mechanism, leveraging the characteristics of different storage devices to achieve high
migration efficiency. Zheng et al. [41] introduce TPFS, a tiered file system that integrates byte-
addressable persistent memory (PM) and slow disks to establish a storage system with performance
close to PM and substantial capacity. These efforts skillfully combine the characteristics of individual
storage media, such as the high performance of memory and the high capacity of disks. On top of
that, they also explore how to allocate content to the corresponding storage media more rationally.
These works can be used as underlying optimizations in conjunction with Ephemera, and to some
extent share similar characteristics with this paper’s use of free memory to optimize user memory
usage in serverless computing platforms.

Resource Harvesting. The inherent pre-allocation of resources in serverless computing results in
underutilization during idle periods, and resource harvesting is a prominent research direction to
tackle this inefficiency [8, 32, 36]. Yu et al. [35] propose Libra, a comprehensive provider-side solution
that safely and timely harvests idle resources to accelerate large-scale serverless function invocations
with varying inputs. However, Libra’s resource harvesting and acceleration rely on machine
learning models for estimating resource demands and timeliness. Zhang et al. [38] characterize the
serverless workloads and Harvest VMs on Microsoft Azure, and devise a serverless load balancer
capable of discerning evictions and resource variations within Harvest VMs. Freyr+ [37] is a
novel resource manager designed for serverless platforms. It conducts real-time monitoring of
each function’s resource utilization, dynamically harvesting idle resources from over-provisioned
functions, and accelerates under-provisioned functions by supplementing them with additional
resources. Ephemera changes the pattern of memory allocation from single-instance to single-tenant,
harvesting memory resources wisely to accelerate file access.

8 Conclusion And Future Work
In this paper, we propose Ephemera, a framework based on serverless computing to optimize the
efficiency of ephemeral storage access and memory utilization. Ephemera consists of three compo-
nents top-down: a cluster-level Controller, a tenant-level Manager, and a function-level Daemon. The
Runtime Daemon, using an in-memory file system, transforms file operations to memory-based for
I/O optimization. The Tenant Manager enables dynamic memory sharing with security. The Cluster
Controller dynamically adjusts workload and resources for optimal performance. Through proto-
type testing, Ephemera demonstrates an average 50% improvement in file access performance and
even 95.73% optimization in specific conditions. In the future, we consider enhancing the system’s
functionality and scalability by expanding instruction interception, integrating input-sensitive
profiling, and enabling distributed memory sharing.

References
[1] Mohammad SadeghAslanpour, Adel N Toosi, MuhammadAamir Cheema, andMohan Baruwal Chhetri. 2024. faasHouse:

Sustainable Serverless Edge Computing through Energy-aware Resource Scheduling. IEEE Transactions on Services

, Vol. 1, No. 1, Article . Publication date: January 2025.

Ephemera: Accelerating I/O-Intensive Serverless Workloads with a Harvested In-memory File System 21

Computing (2024).
[2] Wei Bai, Shanim Sainul Abdeen, Ankit Agrawal, Krishan Kumar Attre, Paramvir Bahl, Ameya Bhagat, Gowri Bhaskara,

Tanya Brokhman, Lei Cao, Ahmad Cheema, et al. 2023. Empowering azure storage with {RDMA}. In USENIX
Symposium on Networked Systems Design and Implementation. 49–67.

[3] Vivek M Bhasi, Jashwant Raj Gunasekaran, Aakash Sharma, Mahmut Taylan Kandemir, and Chita Das. 2022. Cypress:
Input size-sensitive container provisioning and request scheduling for serverless platforms. In Proceedings of the 13th
Symposium on Cloud Computing. 257–272.

[4] Vivek M Bhasi, Aakash Sharma, Shruti Mohanty, Mahmut Taylan Kandemir, and Chita R Das. 2024. Paldia: Enabling
SLO-Compliant and Cost-Effective Serverless Computing on Heterogeneous Hardware. In 2024 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). IEEE, 100–113.

[5] Zinuo Cai, Zebin Chen, Ruhui Ma, and Haibing Guan. 2023. SMSS: Stateful Model Serving in Metaverse With Serverless
Computing and GPU Sharing. IEEE Journal on Selected Areas in Communications (2023).

[6] Marcin Copik, Roman Böhringer, Alexandru Calotoiu, and Torsten Hoefler. 2023. Fmi: Fast and cheap message passing
for serverless functions. In Proceedings of the International Conference on Supercomputing. 373–385.

[7] Dong Du, Qingyuan Liu, Xueqiang Jiang, Yubin Xia, Binyu Zang, and Haibo Chen. 2022. Serverless computing on
heterogeneous computers. In Architectural Support for Programming Languages and Operating Systems.

[8] Alexander Fuerst, Stanko Novaković, Íñigo Goiri, Gohar Irfan Chaudhry, Prateek Sharma, Kapil Arya, Kevin Broas,
Eugene Bak, Mehmet Iyigun, and Ricardo Bianchini. 2022. Memory-harvesting vms in cloud platforms. In Proceedings
of the 27th ACM International Conference on Architectural Support for Programming Languages and Operating Systems.
583–594.

[9] Muhammed Golec, Guneet Kaur Walia, Mohit Kumar, Felix Cuadrado, Sukhpal Singh Gill, and Steve Uhlig. 2024. Cold
start latency in serverless computing: A systematic review, taxonomy, and future directions. Comput. Surveys 57, 3
(2024), 1–36.

[10] Joe Hattori and Shinpei Kato. 2022. Sentinel: a fast and memory-efficient serverless architecture for lightweight
applications. In Proceedings of the Eighth International Workshop on Serverless Computing. 13–18.

[11] Jialiang Huang, MingXing Zhang, Teng Ma, Zheng Liu, Sixing Lin, Kang Chen, Jinlei Jiang, Xia Liao, Yingdi Shan,
Ning Zhang, et al. 2024. TrEnv: Transparently Share Serverless Execution Environments Across Different Functions
and Nodes. In Proceedings of the ACM SIGOPS 30th Symposium on Operating Systems Principles. 421–437.

[12] Jiawei Jiang, Shaoduo Gan, Yue Liu, Fanlin Wang, Gustavo Alonso, Ana Klimovic, Ankit Singla, Wentao Wu, and Ce
Zhang. 2021. Towards demystifying serverless machine learning training. In Special Interest Group on Management of
Data.

[13] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai, Anurag Khandelwal, Qifan Pu, Vaishaal Shankar,
Joao Carreira, Karl Krauth, Neeraja Yadwadkar, et al. 2019. Cloud programming simplified: A berkeley view on
serverless computing. arXiv preprint arXiv:1902.03383 (2019).

[14] Jeongchul Kim and Kyungyong Lee. 2019. Functionbench: A suite of workloads for serverless cloud function service.
In IEEE International Conference on Cloud Computing.

[15] Zijun Li, Jiagan Cheng, Quan Chen, Eryu Guan, Zizheng Bian, Yi Tao, Bin Zha, Qiang Wang, Weidong Han, and Minyi
Guo. 2022. RunD: A Lightweight Secure Container Runtime for High-density Deployment and High-concurrency
Startup in Serverless Computing. In Usenix Annual Technical Conference.

[16] Zijun Li, Linsong Guo, Jiagan Cheng, Quan Chen, BingSheng He, and Minyi Guo. 2022. The serverless computing
survey: A technical primer for design architecture. ACM Computing Surveys (CSUR) 54, 10s (2022), 1–34.

[17] Zijun Li, Chuhao Xu, Quan Chen, Jieru Zhao, Chen Chen, and Minyi Guo. 2023. DataFlower: Exploiting the Data-
flow Paradigm for Serverless Workflow Orchestration. In Proceedings of the 28th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, Volume 4. 57–72.

[18] Xuanzhe Liu, Jinfeng Wen, Zhenpeng Chen, Ding Li, Junkai Chen, Yi Liu, Haoyu Wang, and Xin Jin. 2023. Faaslight:
General application-level cold-start latency optimization for function-as-a-service in serverless computing. ACM
Transactions on Software Engineering and Methodology 32, 5 (2023), 1–29.

[19] Fangming Lu, XingdaWei, Zhuobin Huang, Rong Chen, MinyuWu, and Haibo Chen. 2024. Serialization/Deserialization-
free State Transfer in Serverless Workflows. In Proceedings of the Nineteenth European Conference on Computer Systems.
132–147.

[20] Ashraf Mahgoub, Edgardo Barsallo Yi, Karthick Shankar, Sameh Elnikety, Somali Chaterji, and Saurabh Bagchi. 2022.
ORION and the three rights: Sizing, bundling, and prewarming for serverless DAGs. In Operating Systems Design and
Implementation.

[21] Ashraf Mahgoub, Edgardo Barsallo Yi, Karthick Shankar, Eshaan Minocha, Sameh Elnikety, Saurabh Bagchi, and Somali
Chaterji. 2022. Wisefuse: Workload characterization and dag transformation for serverless workflows. Proceedings of
the ACM on Measurement and Analysis of Computing Systems 6, 2 (2022), 1–28.

, Vol. 1, No. 1, Article . Publication date: January 2025.

22 Lingxiao Jin, Zinuo Cai, Haoxin Wang, Zongpu Zhang, Ruhui Ma, Haibing Guan, and Rajkumar Buyya

[22] Anupama Mampage, Shanika Karunasekera, and Rajkumar Buyya. 2022. A holistic view on resource management in
serverless computing environments: Taxonomy and future directions. ACM Computing Surveys (CSUR) 54, 11s (2022),
1–36.

[23] Sunilkumar S Manvi and Gopal Krishna Shyam. 2014. Resource management for Infrastructure as a Service (IaaS) in
cloud computing: A survey. Journal of network and computer applications 41 (2014), 424–440.

[24] Alex Merenstein, Vasily Tarasov, Ali Anwar, Scott Guthridge, and Erez Zadok. 2023. F3: Serving Files Efficiently in
Serverless Computing. In Proceedings of the ACM International Conference on Systems and Storage.

[25] Arshia Moghimi, Joe Hattori, Alexander Li, Mehdi Ben Chikha, and Mohammad Shahrad. 2023. Parrotfish: Parametric
regression for optimizing serverless functions. In Proceedings of the 2023 ACM Symposium on Cloud Computing. 177–192.

[26] Shanxing Pan, Hongyu Zhao, Zinuo Cai, Dongmei Li, Ruhui Ma, and Haibing Guan. 2023. Sustainable serverless
computing with cold-start optimization and automatic workflow resource scheduling. IEEE Transactions on Sustainable
Computing (2023).

[27] Ali Raza, Nabeel Akhtar, Vatche Isahagian, Ibrahim Matta, and Lei Huang. 2023. Configuration and placement of
serverless applications using statistical learning. IEEE Transactions on Network and Service Management 20, 2 (2023),
1065–1077.

[28] Johann Schleier-Smith, Leonhard Holz, Nathan Pemberton, and Joseph M Hellerstein. 2020. A faas file system for
serverless computing. arXiv preprint arXiv:2009.09845 (2020).

[29] Hossein Shafiei, Ahmad Khonsari, and Payam Mousavi. 2022. Serverless computing: a survey of opportunities,
challenges, and applications. ACM Computing Surveys (CSUR) 54, 11s (2022), 1–32.

[30] Jovan Stojkovic, Tianyin Xu, Hubertus Franke, and Josep Torrellas. 2023. Mxfaas: Resource sharing in serverless
environments for parallelism and efficiency. In International Symposium on Computer Architecture.

[31] Weiguo Wang, Quanwang Wu, Zhiyong Zhang, Jie Zeng, Xiang Zhang, and Mingqiang Zhou. 2024. A probabilistic
modeling and evolutionary optimization approach for serverless workflow configuration. Software: Practice and
Experience 54, 9 (2024), 1697–1713.

[32] Yawen Wang, Kapil Arya, Marios Kogias, Manohar Vanga, Aditya Bhandari, Neeraja J Yadwadkar, Siddhartha Sen,
Sameh Elnikety, Christos Kozyrakis, and Ricardo Bianchini. 2021. Smartharvest: Harvesting idle cpus safely and
efficiently in the cloud. In Proceedings of the Sixteenth European Conference on Computer Systems. 1–16.

[33] Yanan Yang, Laiping Zhao, Yiming Li, Huanyu Zhang, Jie Li, Mingyang Zhao, Xingzhen Chen, and Keqiu Li. 2022.
INFless: a native serverless system for low-latency, high-throughput inference. InArchitectural Support for Programming
Languages and Operating Systems.

[34] Zhengyu Yang, Morteza Hoseinzadeh, Allen Andrews, Clay Mayers, David Thomas Evans, Rory Thomas Bolt, Janki
Bhimani, Ningfang Mi, and Steven Swanson. 2017. AutoTiering: Automatic data placement manager in multi-tier
all-flash datacenter. In IEEE International Performance Computing and Communications Conference.

[35] Hanfei Yu, Christian Fontenot, HaoWang, Jian Li, Xu Yuan, and Seung-Jong Park. 2023. Libra: Harvesting idle resources
safely and timely in serverless clusters. In Proceedings of the International Symposium on High-Performance Parallel and
Distributed Computing.

[36] Hanfei Yu, Hao Wang, Jian Li, Xu Yuan, and Seung-Jong Park. 2022. Accelerating serverless computing by harvesting
idle resources. In Proceedings of the ACM Web Conference.

[37] Hanfei Yu, Hao Wang, Jian Li, Xu Yuan, and Seung-Jong Park. 2024. Freyr+: Harvesting Idle Resources in Serverless
Computing via Deep Reinforcement Learning. IEEE Transactions on Parallel and Distributed Systems 35, 11 (2024),
2254–2269. doi:10.1109/TPDS.2024.3462294

[38] Yanqi Zhang, Íñigo Goiri, Gohar Irfan Chaudhry, Rodrigo Fonseca, Sameh Elnikety, Christina Delimitrou, and Ricardo
Bianchini. 2021. Faster and cheaper serverless computing on harvested resources. In ACM Symposium on Operating
Systems Principles.

[39] Hongyu Zhao, Shanxing Pan, Zinuo Cai, Xinglei Chen, Lingxiao Jin, Honghao Gao, Shaohua Wan, Ruhui Ma, and
Haibing Guan. 2023. faaShark: An end-to-end network traffic analysis system atop serverless computing platforms.
IEEE Transactions on Network Science and Engineering (2023).

[40] Shengan Zheng, Morteza Hoseinzadeh, and Steven Swanson. 2019. Ziggurat: A tiered file system for Non-Volatile
main memories and disks. In FAST.

[41] Shengan Zheng, Morteza Hoseinzadeh, Steven Swanson, and Linpeng Huang. 2023. TPFS: A High-Performance Tiered
File System for Persistent Memories and Disks. ACM Transactions on Storage 19, 2 (2023), 1–28.

, Vol. 1, No. 1, Article . Publication date: January 2025.

https://doi.org/10.1109/TPDS.2024.3462294

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Background: File System for Serverless Computing
	2.2 Observation: Under-Utilization of Memory Resources
	2.3 Opportunity: In-memory Operations to Accelerate I/Os

	3 Design
	3.1 Overview
	3.2 Runtime Daemon
	3.3 Tenant Manager
	3.4 Cluster Controller

	4 Implementation
	5 Performance Evaluation
	5.1 Experiment Setup
	5.2 Micro-Benchmarks
	5.3 Benchmarks
	5.4 Effectiveness of Memory Sharing Mechanism
	5.5 Different Memory-sharing Mechanisms
	5.6 Effectiveness of Ephemera's Scheduling
	5.7 Overhead of Ephemera

	6 Discussion
	7 Related work
	8 Conclusion And Future Work
	References

