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Abstract—Workflows are a popular application model used for
representing scientific as well as commercial applications, and,
cloud data centers are increasingly used in the execution of work-
flow applications. Existing approaches to energy-efficient workflow
scheduling in cloud computing environments have primarily
focused on the optimization of server utilization. The majority of
works have ignored the impact of scheduling decisions on the data
center network (DCN). However, studies have revealed that the
DCN consumes 10-20% of the total data center power, and, this
percentage could rise much higher depending on the utilization
level of the data center. This paper proposes an energy-efficient
workflow scheduling approach (J-OPT) that jointly optimizes the
power consumption of servers and networking elements in cloud
data centers. J-OPT considers precedence constraints and data
dependencies among workflow tasks as well as communication
requirements among task instances in the formulation of topology-
aware scheduling decisions. The proposed approach is evaluated
using synthetic and real world workflow traces in a simulated
environment. Results of the experiments demonstrate that J-OPT
outperforms state-of-the-art algorithms in terms of total power
savings by 8% and 30% under high and low data center utilization
levels, respectively.

Keywords-energy efficiency; workflow scheduling; topology
aware scheduling

I. INTRODUCTION

Cloud computing has emerged as a defacto platform for
efficiently delivering computing services to consumers on a
pay-as-you-go basis. Due to the ever-increasing popularity of
the cloud computing paradigm, the number and scale of cloud
data centers have significantly grown over the last decade. With
the rapid expansion in the size of data centers, the power
consumed by datacenter elements has significantly increased
imposing a considerable strain on the environment as well as
on profit maximization goals of cloud providers [1]. It has
been estimated that the energy consumption of cloud data
centers in the worst case can reach 8000 TWh by 2030 [2].
Hence, significant research efforts have been rendered by both
academia as well as industry to devise energy-efficient resource
management and scheduling techniques for cloud data centers.

While servers are the major source of power consumption
in data centers, data center networks (DCNs) also account for
10%-20% of total power consumption. This percentage could
rise as high as 50% in data centers with energy-proportional
servers, under light job loading conditions [3].Therefore, en-
ergy consumed by datacenter networks and networking devices
that facilitate communications among hundreds of thousands
of concurrently executing instances is a non-trivial factor that

contributes to increasing the overall energy consumption of
data centers considerably. Furthermore, over-utilized network
devices lead to the creation of congestion hotspots resulting
in undesirable packet losses, and imbalanced use of network
links reduces the overall utilization of the data center networks.
Scheduling algorithms that are agnostic to the communication
patterns of underlying workloads are unlikely to be efficient at
exploiting the power savings that can be achieved by the joint
optimization of compute and networking elements in cloud data
centers.

Before the emergence of software-defined cloud data cen-
ters, joint optimization was a challenging task that was not
commonly adopted due to inherent complications associated
with the integrated consolidation process. With the emergence
of software-defined cloud data centers, this is no longer a
complicated task as all the data collected by monitoring tools
are available in real time at a centralized controller, and, the
decisions made by the analysis of integrated monitoring data
can be enforced on the physical devices through a software
layer [4].

The focus of this paper is on cloud workloads that can
be represented as Directed Acyclic Graphs (DAGs). Not only
scientific workflows but also a wide variety of batch workloads
and distributed applications can be modeled using the DAG
execution model [5]. Although a large body of literature on
workflow scheduling techniques in cloud environments exist,
only a few have considered energy efficiency as a primary
objective. Amongst the studies that have considered energy
efficiency as a primary objective, only a handful has attempted
to optimize the utilization of servers and networking elements
in an integrated manner.

Furthermore, a vast majority of the energy-efficient workflow
scheduling approaches proposed in the literature focus on the
problem of scheduling a single workflow or multiple workflows
that belong to a single user on a fixed or variable number of
virtual instances. With the growing popularity of multi-tenant
public cloud platforms [6], the need for advanced scheduling
techniques that are capable of satisfying diverse concurrent
resource requirements of workflows submitted by multiple
tenants in an energy-efficient manner has emerged.

Motivated by the aforementioned opportunities, we propose a
topology-aware scheduling algorithm that jointly optimizes the
utilization of computing and networking elements for energy-
efficient scheduling of workflows, in multi-tenant public cloud
platforms. To the best of our knowledge, this is the first



work to perform a thorough disaggregated analysis of the
power consumption behavior of workflow executions in cloud
computing environments.

The rest of the paper is organized as follows: In section 2,
we review the literature on state-of-the-art approaches related
to the scope of this paper. In section 4, we formulate the
power model and energy optimization problem. In section
5, we present the proposed algorithm. Followed by this, we
present the performance evaluation of the algorithm in section
6. Finally, in section 7, we conclude the paper with a summary
and suggestions for future work.

II. RELATED WORK

The problem of workflow scheduling in cloud computing
environments has been extensively studied in a large number
of research studies [7]. Hence, we have limited the scope of
this literature review to focus on a set of selected workflow
scheduling algorithms that consider energy efficiency as a
primary objective. We have also reviewed a number of joint
host and network optimization algorithms which have not been
oriented towards a specific application type.

A. Energy Efficient Workflow Scheduling

Energy efficient workflow scheduling algorithms proposed
in literature can be broadly classified into two categories:
Meta-heuristic based algorithms and heuristic algorithms. For
instance, multi objective particle swarm optimization has been
used in a study by S. Yassa et. al. [8] to schedule workflows
considering the objectives of minimizing cost, execution time
and maximizing energy efficiency. DVFS technique has been
used in this study to minimize energy consumption. Mezmaz
et. al. [9] also used DVS techniques in a bi-objective study
aimed at minimizing makespan and energy consumption in task
scheduling. A bi-objective hybrid genetic algorithm has been
used in this study to achieve the conflicting goals. Although
scheduling algorithms based on meta-heuristics are capable of
attaining better solutions compared to list based and clustering
based algorithms, they are less appropriate for highly dynamic
cloud environments due to high computational costs and time
complexities.

A number of other heuristic algorithms have also been
proposed for energy efficient workflow scheduling. Zotkiewicz
et. al. [10] presented an energy and communication aware
scheduling strategy for SaaS applications in a cloud data
center by modeling the applications as dynamic workflows.
The proposed scheduling strategy operates with the objectives
of minimizing energy consumption and average makespan of
all submitted workflows. Although inter task communication
aspects are considered in this study, network awareness has
only been incorporated as a secondary condition used in the
event of a tie between multiple equally energy efficient servers.
In a study by M. Sharifi et. al. [11] with similar objectives, a
two phase solution (PASTA) has been proposed for scheduling
workflows with the objective of minimizing energy consump-
tion and the average makespan of all submitted workflows. In
the first phase tasks are ordered to minimize schedule length

and in the second phase the pre ordered tasks are reordered
such that they are executed on a set of computing resources
with the least power consumption. However, this study does
not extensively consider inter-task communication aspects in
scheduling decisions.

In a study by X. Xu et. al. [12] an energy aware resource
allocation has been presented in which task requests are always
allocated to the host with lowest baseline energy consumption.
This study relies on the assumption that all the instances of
a task should be scheduled on the same physical server to
minimize the cost of inter-task communication. While, this
approach would incur gains when all instances can be accom-
modated on a single server, it will fail to support workflows
with tasks which contains hundreds of thousands of parallel
instances. H. Chen et. al. [13] attempted to improve energy
efficiency by dynamically scaling up and down computing
resources based on the rate of arrival of workflows. Tasks are
assigned to computing resources that can meet the deadline
requirements with minimal resource wastage. This study relies
on the assumption that all the inter-machine communications
are performed without contention. This assumption does not
hold well in practice.

B. Topology Aware Energy Efficient Scheduling

DENS methodology introduced by D. Kliazovich et. al [14],
presents an energy efficient scheduling method with network
awareness which monitors the status of network elements
(switches, links) and incorporates their feedback to scheduling
decisions. This study considers the tradeoffs between consol-
idating workloads on to a minimum number of servers and
the resulting impact on hardware reliability of servers and the
possibility of the creation of hotspots in data center networks. In
a study with similar objectives by Cao et. al. [15], a scheduling
method which consists of three subroutines each of which
is solved by a different algorithm has been proposed. In the
first subroutine, VMs are sorted in the order of decreasing
computational resources and packed into a set of virtual hosts.
The assignments of VMs to virtual hosts are readjusted in the
second subroutine to minimize inter-host traffic and in the third
subroutine virtual hosts are mapped to physical hosts following
a greedy algorithm.

S. Vakilinia [16] proposed a joint optimization approach for
power minimization in large-scale multi-tenant cloud datacen-
ters taking into account the power consumption of servers,
network communications, VM migrations, heterogeneity of
servers and workloads as well as resource and bandwidth
constraints. They have modeled the optimization problem with
IQP (Integer Quadratic Programming). This work suggests that
rather than performing VM placement and migration in two
steps, higher efficiencies can be achieved by jointly considering
placement and migration decisions in each scheduling iteration.
A joint host-network optimization method for energy efficient
VM consolidation is presented in [17]. In order to achieve
the objectives of optimal server placement and network flow
routing, the VM placement problem is converted to a routing
problem and a single solution is developed to address both



Fig. 1: Fat tree network topology

requirements. All these approaches have focused on the general
problem of joint host and network optimization, and, they
have not considered the potential power savings achievable
through fine tuning the algorithms to suit the characteristics
and communication patterns of the underlying workloads.

The workflow scheduling algorithms reviewed in section
A have attempted to improve the energy efficiency of task
schedules with little or no consideration about the impact of
scheduling decisions on the data center network. In contrast,
we attempt to enhance overall energy efficiency by jointly
optimizing the utilization of servers as well as switches used
in workflow executions. Our method also differs from topology
aware resource allocation methods reviewed in section B, since
we take into account the distinct features of workflows in the
formulation of scheduling decisions.

III. PROBLEM MODELING

A workflow can be modeled as a Directed Acyclic Graph
(DAG) G = (V,E), where V = T1, T2, ..Tn is the set of tasks
and E is the set of edges which represent the data dependencies
among tasks in a workflow and the weight of an edge ei,j =
(Ti, Tj) represents the size of data to be transmitted from Ti to
Tj . The edge ei,j also represents a precedence relation between
tasks Ti and Tj such that Ti is the parent task of Tj and Tj
is the child task of Ti. Accordingly, the execution of Tj can
only start after the execution of Ti is completed. In this study,
we have considered a divisible task model in which a task is
composed of one or more instances which can be scheduled
to execute in parallel on one or more physical resources. The
execution of a task is considered to be complete when all the
instances of it has finished execution.

Fig. 2: Example workflows

The objective of this study is to schedule workflows in
an energy efficient manner by jointly minimizing the power
consumption of hosts, switches and links in the data center. In
this section we formulate the joint server and network power
optimization as a mono-objective optimization problem.

A. Power Model

Notations used in this paper for the formulation of optimiza-
tion problem is presented in table VIII. For the calculation of
power consumption of servers, we used the CPU utilization
based power model presented in [18]. Accordingly, power
consumption of server i is defined as shown in the following
equation.

P serveri =

{
P idlei + (P dynamici − P idlei ).ui, if ui > 0

0, otherwise
(1)

Idle power consumption is a constant factor which incurs
irrespective of the utilization level of a server and it can only be
eliminated by turning off the servers. Dynamic power consump-
tion of a server can be accurately computed by considering that
the CPU utilization and the power consumption of a server
follows a linear relationship [18].

The power model presented in [19] is used to compute
the power consumption of switches. This model computes the
power consumption of a switch as the sum of static power and
the port power based on the number of active ports as shown
in the following equation.

P switchk =

{
P statick + P portk .nk, if switch k is on
0, otherwise

(2)

B. Problem Formulation

The focus of this work is on system wide minimization of
energy consumed by servers and networking elements. Hence,
the optimization objective can be formulated as:



(a) Topology unaware scheduling (b) Topology aware scheduling

Fig. 3: A comparison of topology aware and unaware energy efficient workflow scheduling approaches

Table. I: Problem Notation

Notation Description
M Total number of servers

N Total number of switches

ui CPU utilization percentage of server i

P s
i
erver Power consumption of server i

P i
i
dle Idle power consumption of server i

P d
i
ynamic Peak power consumption of server i

P s
k
witch Power consumption of switch k

P s
k
tatic Power consumption of switch k without traffic

P p
k
ort Power consumption of each port of switch k

nk Number of active ports on switch k

Minimize:
M∑
i=1

P serveri +

N∑
k=1

P switchk (3)

Note that we have ignored the energy consumption of
external and internal communications among tasks from the
problem formulation since they are negligible in comparison
to the total power consumption of servers and switches [12].

IV. PROPOSED J-OPT ALGORITHM

Scheduling techniques that are agnostic to the impact of
resource allocation strategies on the DCN are less effective in
terms of total power savings that can be achieved by workload
consolidation. Aforementioned scenario is illustrated through
the simple example in Figure 3. Figure 3a and Figure 3b
illustrate possible outcomes of a scheduling iteration in which
workflows shown in Figure 2 are scheduled by a topology-
unaware and a topology-aware energy-efficient resource allo-
cation technique, respectively. This example demonstrates the
manner in which the topology-aware resource allocation tech-
nique achieves comparatively more power savings by putting
unused networking elements into dormant state.

The proposed topology-aware heuristic-based algorithm, J-
OPT aims to schedule precedence constrained tasks in an

energy efficient manner by jointly optimizing the utilization
of servers and networking elements.

A. Task Prioritization
Upon the submission of a new job, the computational as

well as communication requirements of the tasks are analyzed
and a rank is assigned to each task accordingly. The rank is
an indication of a tasks priority, and is applicable only within
the context of a job. If multiple ready tasks from the same job
falls into a scheduling iteration, they are ordered based on rank
and inserted into the global task queue. The scheduler respects
the insertion order of task queue when resource allocations
are made and operates in a FCFS (First Come First Serve)
basis to ensure fairness in multi-tenant environments. However,
the arrival order is disregarded if a task with a higher priority
arrives at the priority queue.

Task prioritization uses the concept of upward rank presented
in the well-known low complexity algorithm HEFT [20]. Al-
though, HEFT is a good algorithm with high performance,
it does not consider energy efficiency as an objective. In
each scheduling iteration, ready tasks of a job are ordered in
decreasing order of upward rank before being submitted to the
global task queue. The upward rank of a task is computed
recursively using the following equation:

ranku(Ti) = wi + max
Tj∈succ(Ti)

(ci,j + ranku(Tj) (4)

where wi is the average computation cost of task Ti and ci,j
is the average communication cost of edge ei,j = (Ti, Tj). For
the exit task (a task with no children), rank can be computed
as follows:

ranku(exit) = wexit (5)

The average communication cost of an edge ei,j can be
computed as follows:

ci,j = L+
datai,j

R
(6)

where L is the average communication start up time and R
is the average communication rate among servers and datai,j
is the amount of data to be transferred from task Ti to task Tj .



Algorithm 1 J-OPT
Input: PM : List of servers
Input: G(V,E): Data center network
Input: Ri: Total resource requirements of task Ti

Input: PMconn: List of hosts in which predecessors of task Ti with data
dependencies executed
Output: allocMap: Resource allocation map

1: subgraphList← ∅
2: subgraphList← NEIGHBOR-GEN(PM,PMconn, G(V,E))
3: for each PMcand ∈ subgraphList do
4: Order servers in PMcand in descending order of desirability score
5: while PMcand 6= ∅ do
6: P ← PM with highest desirability score in PMcand

7: for each r ∈ Ri do
8: if allocation(r, P ) is successful then
9: if P 6∈ PMconn then

10: PMconn ← PMconn ∪ P
11: Recompute desirability scores for remaining servers in

PMcand with equation 10
12: Ri ← Ri − r
13: PMcand ← PMcand − P

14: if Ri = ∅ then
15: return true
16: return false

B. Network Aware Resource Allocation

In this section we present the topology-aware resource al-
location technique used for mapping computing resources to
task instances. The data center network can be represented as
an undirected graph G(V,E) where V is the set of vertices
and E is the set of edges. The set of vertices represent both
servers as well as switches and the set of edges represent
communication links between pairs of switches and between
servers and switches.

Tasks in a workflow may have data dependencies giving rise
to inter-task communications and associated communication
costs. Furthermore, in the multi-instance task model considered
in this work, a single task may have multiple instances that can
be mapped on to one or more physical nodes and the instances
may be communicating with each other during the period of
execution.

To minimize the cost of communication, resource allocation
algorithm should attempt to place instances of the same task
on physical nodes that are as close as possible to each other in
terms of the number of network hops. The placement is further
complicated since it should be such that the aggregate distance
to physical nodes in which the predecessor tasks with data
dependencies executed is minimized. Accordingly, this resource
allocation problem reduces to a variant of the proven NP hard
problem in [21].

Algorithm 1 operates with the local optimization perspective
of placing communicating instances of a particular workflow
on servers which are in close proximity such that the total
number of networking elements used during the execution of
a workflow is minimized. To achieve this, we introduce the
concept of a dynamically expanding set of servers (PMconn)
which is provided as an input to the algorithm. PMconn is
initialized with the set of servers in which predecessors of
the current task with data dependencies executed. PMconn

Algorithm 2 NEIGHBOR-GEN
Input: PM : List of all servers
Input: PMroot: A list of servers, the sub-graphs of which are to be
generated
Input: G(V,E): Data center network
Output: A list of neighbor subgraphs of servers in PMroot

1: currLevel← 1
2: subgraphList← ∅
3: Mark all H ∈ PM as unassigned
4: while currLevel < 3 do
5: for each P ∈ PMroot do
6: neighSubgraph← ∅
7: if P is unassigned then
8: neighSubgraph← {P}
9: for each unassigned H ∈ PM do

10: paths← getPaths(P,H, currLevel)
11: if paths 6= ∅ then
12: neighSubgraph← neighSubgraph ∪ {H}
13: Mark H as assigned
14: subgraphList← subgraphList ∪ neighSubgraph

15: currLevel← currLevel+ 1
16: for each unassigned H ∈ PM do
17: subgraph← subgraph ∪ {H}
18: subgraphList← subgraphList ∪ subgraph . append the

subgraph of all unassigned servers to subgraphList
19: return subgraphList

expands dynamically as more and more servers are selected
for satisfying the resource requests of a newly arrived task.

Next we introduce the concept of neighbor subgraph of a
server at a pre-defined hierarchical level in the DCN. Hierar-
chical level is defined in a topology specific manner and in
this study we have considered a fat tree topology [22] with 3
hierarchical levels (Rack, Pod and DCN) as indicated in Figure
1. For a particular server, the neighbor subgraph at level 1
constitute the set of servers on the rack in which the server
resides. Neighbor subgraph at level 2 includes the set of servers
located in the pod (group of racks) to which the server belongs.

Algorithm 2 is used to obtain the set of neighbor subgraphs
of the servers in PMconn at hierarchical levels 1 and 2
of the DCN. Depending on the topology of the data center
network, Algorithm 2 can be replaced with a more sophisticated
subgraph generation method. It should be noted that the sub-
graph generation overhead can be completely eliminated by
pre-computing the subgraphs of all servers at each hierarchical
level of the DCN.

Lines 3-15 of Algorithm 1 attempts to find an allocation that
can satisfy the total resource requirements of the current task by
iterating through the neighbor subgraph list (subgraphList).
In each iteration, the set of servers in a neighbor subgraph are
considered as the candidate server list (PMcand) for resource
allocation. The desirability score described in section C is
computed for each server in the PMcand list, and the server
with the highest score is selected first. The algorithm attempts
to assign as many resource requests as possible to the selected
server. With each successful allocation if the considered server
is not currently in PMconn, then it is added to PMconn.
Desirability scores are recomputed for remaining elements of
PMcand set per each new addition to PMconn.



C. Desirability Score

The desirability score is used to rank the servers by con-
sidering the power efficiency of a server based on its current
utilization and its physical location with respect to the set of
servers in PMconn . Performance per watt is used to determine
the energy efficiency of a server. Servers become most energy
efficient when they are operating close to maximum capacity
without being over-utilized [23]. Based on this observation, the
desirability score is designed to favor servers that are more
loaded compared to others without being over utilized.

It is also important that the server selection is not agnostic
to the impact of the new assignment on network utilization.
Hence, the new server additions to PMconn should minimize
the use of links and switches, such that energy savings can
be realized by putting the unused links and switches that do
not carry traffic into power saving mode. Accordingly, the
desirability score also aims to better align the traffic distribution
by favoring the selection of servers that minimize the aggregate
physical distance between the final PMconn list in terms of the
number of hops.

In order to achieve both aforementioned goals, we formulate
the desirability score as a bi-objective function which combines
server utilization efficiency and network utilization efficiency
with the use of a normalized weight factor (α) that indicates
which factor should be given more prominence for minimizing
overall energy consumption. The first term of the bi-objective
function is based on HEROS [23] which in turn is based on
DENS [14]. It is composed of the product of the server selection
function Hs(l) and communication potential function Q(u)
shown below:

Hs(l) = Ps(l) ∗ (1− γ.
〈1〉

〈(1 + exp− µ
maxls

(l − β.maxls)
(7)

where Ps(l) is the performance per watt of the server at load
l and the second term is a sigmoid function which is aimed at
preventing the over utilization servers. Following the reference
work [22], values 110, 0.9 and 1.2 were used for the coefficients
µ, β and γ in our experiments.

The communication potential is based on the actual link load
u and maximum link capacity Umax, and is defined as:

Q(u) = exp−(
2u

Umax
)2 (8)

The second term of the desirability score is the distance
function which is the aggregate total distance in terms of the
number of network hops from current server to the set of servers
in PMconn. It is defined as:

D(i) =

W∑
j=1

di,j (9)

where W is the total number of servers currently present in
PMconn of task Ti, and, di,j is the aggregate distance in terms
of the number of network hops between the current server and
the set of servers in which all instances of task Tj executed.

Finally, the desirability score which represents the desir-
ability of a server to be selected for scheduling one or more
instances of a task Ti is defined as:

α.
Hs(l).Q(u)

Hf
+ (1− α). (D(i) + ε)−1

Df
(10)

where Hf and Df are two factors introduced to normalize
the server selection function and distance function. ε is a very
small positive real number.

V. PERFORMANCE EVALUATION

We evaluated the proposed algorithm in a simulated envi-
ronment. For comparison purposes, we used three algorithms.
One is a baseline algorithm based on greedy first fit, which
does not attempt to improve either server utilization efficiency
or network utilization efficiency. The next algorithm is based
on the independent task scheduling algorithm HEROS [23].
HEROS is designed to perform a random server selection if
multiple equally desirable servers are among eligible candidates
for resource allocation with respect to a decision function. We
have adapted HEROS to cater to the requirements of workflows
and incorporated network awareness by extending the server
selection mechanism based on the physical location of the
server as suggested in [10] for tie-breaking. Accordingly, in
case of a tie, the server which is within a minimum hop
distance to servers in which predecessors of the current task
executed are selected from amongst the eligible candidates.
The extended algorithm is referred to as HEROS-DAG in this
paper. The third algorithm referred to as EnREAL is a state
of the art algorithm specifically formulated for energy-efficient
scheduling of workflows in cloud computing environments.

A. Simulation Environment

For conducting the experiments we used CloudSimSDN [24]
which is a simulation tool based on the widely used CloudSim
toolkit [25]. CloudSimSDN is specifically designed as a net-
work simulation tool which facilitates SDN features such as
dynamic network configuration, programmable controller and
so on. We have extended CloudSimSDN such that it can be
used as a software defined cloud environment in which SDN
controller can interact with resource scheduler for performing
scheduling decisions and related actions. Fat Tree topology [22]
was used for connecting servers in the simulated cloud data
center.

B. Datasets

We conducted two sets of experiments using two different
DAG workloads. In the first set of experiments we used a
number of well known scientific workflow benchmarks with
different resource requirements: Montage, CyberShake, Inspi-
ral, Epigenomics and SIPHT. We used the synthetic workflow
traces provided by Pegasus group which are generated using
traces from actual executions of scientific workflows [25]. For
evaluating the performance of algorithms we created a compos-
ite workload using the aforementioned scientific workflows. To



(a) Total energy consumption (b) Percentage improvement over the baseline algorithm (RandomFF)

Fig. 4: Energy consumption of scientific workflow executions

model the arrival pattern of the workflows we used a Poisson
distribution.

In addition to modeling scientific workflows, the DAG exe-
cution model can be used to model a wide variety of distributed
applications and batch workloads. The second experiment was
performed to evaluate the performance and suitability of J-
OPT for scheduling non-scientific DAG workloads. For this
experiment, we used a sample of 1000 workflows from work-
load traces extracted from a production cluster of Alibaba
cloud. Alibaba cluster traces do not include details related
to data dependencies among tasks in workflows. Hence, we
have conducted the experiments under the assumption that data
dependencies are prevalent among a parent task and a child task
in a workflow with a probability of 0.5.

C. Experiment Results and Analysis

Figure 4a illustrates the normalized energy consumption in-
curred from the execution of the composite scientific workload.
Compared to the greedy baseline RandomFF, all other algo-
rithms have achieved significant savings in terms of total energy
consumption. This is the expected behavior since EnREAL,
HEROS-DAG, as well as J-OPT, incorporate multiple strategies
specifically designed for enhancing the energy efficiency of
scheduled workflows.

When analyzing the percentage improvements of the algo-
rithms by disaggregating total energy consumption into its
constituent components as depicted in Figure 4b, it can be
observed that J-OPT far exceeds EnREAL and HEROS-DAG
with respect to energy savings incurred from switch utilization.
J-OPT has been able to achieve nearly 80% improvement over
the switch energy consumption of greedy baseline, and 60%
and 30% improvement over that of EnREAL and HEROS-DAG
respectively while also reducing server energy consumption by
8%.

Although the importance of switch energy savings may ap-

pear less significant compared to total energy savings, it should
be noted that as servers become fully energy proportional, the
network energy consumption could rise as high as 50% of
total data center energy consumption under light job loading
conditions [3]. This is common in data centers since they are
typically over-provisioned to meet peak load. Figure 5a and
Figure 5b depict a comparison of the performance of algorithms
under a heavy and light job loading scenario, respectively.
Note that we have excluded the baseline algorithm’s energy
consumption from these comparisons since this situation occurs
when servers are fully energy proportional, which is not the
case with the baseline algorithm (RandomFF).

As illustrated in Figure 5b, in the light job loading scenario
network switches have consumed as much power as the servers
with EnREAL and HEROS-DAG. In contrast, the topology-
aware resource allocation strategy of J-OPT has been able
to reduce the power consumption of network switches by a
significant proportion, leading to an overall reduction of 30%-
40% in the total energy consumption compared to state-of-the-
art algorithms. Switch level network utilization is also reduced
by a factor of 2 and 3 compared to HEROS-DAG and EnREAL,
respectively.

Figure 6 depicts the results obtained with the application of
J-OPT and other comparison algorithms to a sample workload
containing 1000 workflows from Alibaba cloud traces. Note
that we have excluded EnREAL in this experiment since
it is specifically designed for scientific workflows, and, the
migration based resource allocation policy of EnREAL is less
appropriate for scheduling short spanned tasks in Alibaba work-
flows. As illustrated in Figure 6a, J-OPT has outperformed the
comparison algorithms in terms of total energy consumption.
As previously discussed, the significance of power savings
achievable with J-OPT would be even more prominent under
light job loading conditions.

The superiority of J-OPT in terms of minimizing switch level



(a) Heavy job loading state

(b) Light job loading state

Fig. 5: Energy consumption and switch level network utilization during different data center occupancy states for scientific
workflow executions

network utilization can be observed in Figure 6b. J-OPT has
been able to reduce the switch level network utilization by
over 70% compared to the other algorithms. This is because
the topology-aware resource allocation mechanism of J-OPT
attempts to place the tasks of a workflow in a group of
closely located servers. This, in turn, minimizes the number
of aggregate and core switches used during the execution of
workflows.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented J-OPT, a novel topology-aware
resource allocation technique for energy-efficient workflow
scheduling in cloud data centers. J-OPT operates with the
objective of minimizing total data center power consumption
by jointly optimizing the utilization of servers and networking
elements used in the execution of workflows. We have evaluated

J-OPT in a simulated environment using synthetic and real-
world workflow traces of scientific as well as commercial
applications, and, the results clearly demonstrate the effective-
ness of the proposed algorithm compared to state-of-the-art
approaches.

The proposed technique is designed to operate with hierar-
chical data center topologies, and, as a future work we intend to
adapt J-OPT to operate with other network topologies [26]. In
this study we have considered a homogeneous configuration so
that we can solely evaluate the gains that can be achieved by the
joint optimization of servers and networking elements in work-
flow scheduling. As a future work, J-OPT could be extended
and evaluated in a cloud data center with heterogeneous devices
[23]. Adaptation of J-OPT to cater to the requirements of
inter-cloud application brokering (provisioning and scheduling)
scenarios [27] is another interesting future direction. Brokering



(a) Total energy consumption (b) Switch level network utilization

Fig. 6: Performance of algorithms on a sample of 1000 workflows from Alibaba cluster traces

policies could be designed such that additional factors such as
the availability of renewable energy [28] are also considered.
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