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a b s t r a c t

With rapid availability of renewable energy sources and growing interest in their use in the datacenter
industry presents opportunities for service providers to reduce their energy related costs, as well as,
minimize the ecological impact of their infrastructure. However, renewables are largely intermittent
and can, negatively affect users’ applications and their performance, therefore, the profit of the service
providers. Furthermore, services could be offered from those geographical locations where electricity
is relatively cheaper than other locations; which may degrade the applications’ performance and
potentially increase users’ costs. To ensure larger providers’ profits and lower users’ costs, certain
non-interactive workloads could be either: moved and executed in geographical locations offering
the lowest energy prices; or could be queued and delayed to execute later (in day or night time)
when renewables, such as solar and wind energies, are at peak. However, these may have negative
impacts on the energy consumption, workloads performance, and users’ costs. Therefore, to ensure
energy, performance and cost efficiencies, appropriate workload scheduling, placement, migration,
and resource management techniques are required to mange the infrastructure resources, workloads,
and energy sources. In this paper, we propose a workload placement and three different migration
policies that maximize the providers’ revenues, ensure the workload performance, reduce energy
consumption, along with reducing ecological impacts and users’ costs. Using real workload traces
and electricity prices for several geographical locations and distributed, heterogeneous, datacenters,
our experimental evaluation suggest that the proposed approaches could save significant amount of
energy (∼15.26%), reduces service monetary costs (∼0.53% - ∼19.66%), improves (∼1.58%) or, at least,
maintains the expected level of applications’ performance, and increases providers’ revenue along with
environmental sustainability, against the well-known first fit (FF), best fit (BF) heuristic algorithms, and
other closest rivals.

© 2021 Elsevier Inc. All rights reserved.
1. Introduction

Cloud computing offers utility-based services to IT users across
he world. Its impact is increased with the demand of computing
esources like CPU, storage access, network and applications for
usiness, consumer or scientific domain. The hosting of these
esources are provided by large datacenters. These datacenters,
n return, consume large amount of energy, yielding a high cost
or operation of these datacenters along with environment being
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affected by carbon footprints and green house gases (GHG) emit-
ted1 - i.e. work most closely and frequently with carbon-free energy
sources like solar and wind. This is achieved through the idea
of somehow shift the timing of many compute tasks (non-urgent)
to when low-carbon energy sources, like solar and wind, are most
plentiful. In 2016, it was projected that the world’s datacenters
utilized more than Britain’s total power utilization — 416.2 Ter-
awatt hours (TWh), essentially very higher than that of Britain’s
300 TWh (Zakarya and Gillam, 2017a). As, accounting for approxi-
mately 3% of the worldwide power supply and approximately 2%
of total GHGs, datacentres have almost same carbon emissions
as of the aviation industry (Shehabi et al., 2016). The energy
consumed by datacenters is approximately 205 TWh of electricity

1 https://www.businessgreen.com/news/4014320/
oogle-debuts-carbon-intelligent-computing-platform.
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sage in 2018, which is nearly 1% of all electricity consumed
orldwide, according to a new published report. The 205 TWh
hows a 6% increase in overall power usage since 2010, though
ompute instances for global datacenter raised by 50% within the
ame period of time. This increase in energy consumption is due
o the fact that there is an enormous increase in on-line services,
obile devices and users, on-line gaming, and IoT (internet of

hings) based devices.
Besides the above, Shehabi et al. (2016) also depicts that con-

eivably, due to migration of workloads, for the organization from
rivate clouds to the public clouds, datacenters energy utilization
ill conceivably stay unaltered till 2020. These sorts of issues can
e fathomed, mostly, through utilizing methods such as resource
llocation, workload placement, scheduling, and consolidation
.e. efficient resource management techniques (Lebre et al., 2019;
erma et al., 2015). Resource management strategies are depen-
ent over the already available technologies such as, virtualiza-
ion and containerization — container-based virtualization. They
re broadly utilized by cloud service providers to give resources to
aaS (Infrastructure as a Service) clients. Virtualization builds the
dea of a VM (virtual machine) whereas containerization portrays
he VM to as container; both running on virtualized servers.
Ms have been broadly utilized in public clouds, especially, the
tate-of-the-art in IaaS is broadly aware with the notion of VMs.
loud service providers such as Microsoft Azure, Google, and
mazon EC2 offer VM and container services to their clients and
onjointly execute applications (workloads/services) inside VMs
nd/or containers. Besides, different PaaS (Platform as a Service)
nd SaaS (Software as a Service) suppliers, such as Google App,
mail, are placed on top of IaaS where they execute all their
pplications and workloads inside VMs and/or containers.
The world is on track for perilous climate alter, having about

isplaced room to assist contamination within the mix of gasses
hat make up the air. In spite of a rise in clean, renewable energy
upplies in certain nations like the UK, Germany; and a fractional
ove from coal to natural gases in other countries, the worldwide
HG contamination still proceeds to rise — and at an expanding
ace within the most later a long time (Zakarya and Gillam,
019a). This alarms the need for energy-aware computation to
e taken into account on a priority basis without any negative
mpact on applications’ performance (Ferreto et al., 2011; Sharma
t al., 2019). The renewable energy has reached up to approx-
mately 54 TWh (3.3%) of the Britain’s total energy utilization
n 2010, having expanded consistently since 2005; and by ap-
roximately 15% from 2008 to 2009. We will expect, through
hese figures, more than a four times increment in the renewable
nergy utilization by 2020; in the event that approximately 15%
f the energy requirements are to be met from renewable energy
ources. The utilization of renewable energy will ought to rise by
17% annually to meet these objectives. A large proportion of
atacenter usage, a main source of energy consumption, today is
hrough the use of public clouds. Furthermore, it is estimated that
n 2021, approximately 53% of worlds’ all servers will be located
n the hyper-scale public cloud datacenters. This basically means
mazon Web Services (AWS), Google compute cloud, Facebook,
nd Microsoft Azure (Shehabi et al., 2016).
The problem with contracting energy is that it is sort of

heating. Whilst, renewable energy is probably being generated
omewhere, that may not be where your datacenter is located. A
otential option to fix this issue is to deploy renewable sources
f energy on the local grid providing power 24/7 a week; so
hat the datacenter can actually consume renewables at all times.
his is much more difficult because of the varying locations of
atacenters and unpredictable weather conditions (intermittent).
lbeit, some IaaS facilities are located in regions with abundant

enewables such as wind, solar and/or hydro while others are 1

2

not. The Google team began work to achieve 24/7 a week avail-
able renewables in 2018. Furthermore, their approach towards
carbon-intelligent computing2 offers ways to shift workloads to
times of day with peak renewable energy. It is drawing closer
to the development of its claim, or contacting to third parties,
sources for renewable energy that go specifically into the local
network. Google published an article about their approach which
incorporates a few interesting illustrations of the concept2. How-
ever, this is still not possible to switch all datacenter operations
to renewable; because in 2018, approximately 63.5% of electricity
generation in the United States was from fossil fuels such as
coal (US Energy Information Administration, 2019). Furthermore,
various regions offer different and varying prices for energy con-
sumption. These will make the resource providers to run user
workloads competitively for cheap energy sources and low prices
to increase their money savings and ecological impacts. However,
this should be optimized subject to network costs in terms of
latencies and workload performance i.e. execution times (trans-
lating to user bills). This needs further exploration, investigation
and research which is the focus of this paper (Liu et al., 2013).

In this paper, we investigate how workloads could be run
in geographically distributed cloud datacenters so that the en-
ergy cost can be minimized without any negative performance
impacts (Koronen et al., 2020). Moreover, how performance of
workloads would be affected when putting or migrating them
in locations with the least energy prices and higher availability
of the renewable source. Google has taken initiative to shift
workloads in their clusters according to time of the day; in order
to increase environmental sustainability. However, the details
of their approach are still not published. Moreover, to the best
of our knowledge, with the notable exception of Xu and Buyya
(2020), there is no study in current state-of-the-art datacenter
approaches that considers migrating workloads across different
clusters. Besides several limitations of our work, our findings
are of interest and noteworthy with respect to energy savings,
providers’ revenue, and performance gains. Following are the
major contributions of the research conducted in this paper:

– a placement policy ‘‘FillUp@LS’’ is suggested that puts ap-
propriate workloads on appropriate clusters, according to
energy sources and prices;

– a consolidation policy ‘‘FollowMe@Location’’ is proposed
that migrates workloads across different clusters, geograph-
ically distributed, offering variations in energy prices, in an
energy, performance, cost effective way;

– a consolidation policy ‘‘FollowMe@Source’’ is proposed that
migrates workloads across different clusters fuelled through
different energy sources, i.e. renewables, grid energy, etc.,
such that the workload performance is not affected, nega-
tively;

– we investigate the energy, performance and costs’ impacts
of both ‘‘FollowMe@Location’’, ‘‘FollowMe@Source’’ policies;
and how a combination of both these consolidation strate-
gies ‘‘FollowMe@LS’’ would affect the infrastructure energy
consumption, workload performance (execution times), and
users’ costs; and

– the proposed scheduler (placement plus consolidation) runs
in a distributed fashion — where the global scheduler com-
municates with several local schedulers in order to take
appropriate workload execution decisions.

The rest of the paper is organized as follows. In Section 2, we dis-
cuss the resource allocation, placement and consolidation prob-
lem in geographically distributed cloud datacenters along with

2 https://www.blog.google/outreach-initiatives/sustainability/
00-percent-renewable-energy-second-year-row/.

https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/
https://www.blog.google/outreach-initiatives/sustainability/100-percent-renewable-energy-second-year-row/


H. Ali, M. Zakarya, I.U. Rahman et al. The Journal of Systems & Software 175 (2021) 110907

v
t
p
a
t
d
o
c
t
i
t
e
t
r
i
w
s
r
o
a
r

2

s
t
a
w
n
D
w
t
b
e
n
g
w
i
o
w
m
n
b
l
b
t
c
a

m
m
f
o
u
p
i
a
i
2
a
i
s

m

t
h
w
t

E

t
a
e
t
m
p

C

ariations in electricity prices and sources of production. In Sec-
ion 3, we propose an allocation policy to put workloads on ap-
ropriate resources. Furthermore, we proposed two consolidation
pproaches i.e. ‘‘FollowMe@Location’’ and ‘‘FollowMe@Source’’
hat prefer to migrate workloads among geographically
istributed clusters according to electricity prices and sources
f production, respectively. Both policies are, then, combined to
ome across a third consolidation method i.e. ‘‘FollowMe@LS’’
hat take appropriate migration decisions to account for electric-
ty prices and sources of production, simultaneously. We describe
he simulation configuration, evaluation metrics, and different
xperimental parameters along with simulation models in Sec-
ion 4. We evaluate and validate the proposed policies through
eal workload datasets from Google, in Section 5 and demonstrate
ts efficiency in terms of energy, performance and, therefore, cost
ith respect to existing methods. In addition, Section 5.5 briefly
ummarizes our experimental outcomes, validity of the obtained
esults along with limitations. In Section 6, we offer an overview
f the related work. Finally, Section 7 summarizes the paper
long with several shortcomings, limitations, and proposes future
esearch directions.

. Problem description

Largely, cloud service providers (CSP) use various sources, as
hown in Fig. 1, to produce electricity that fuel their infras-
ructure, offices, cooling, and lighting devices etc. Furthermore,
single CSP may have different infrastructure or datacenters
hich are distributed over various geographical locations (e.g. the
otion of availability zones in the Amazon web service cloud).
ifferent energy sources and, as well as, geographical locations
ould have different prices for electricity at different times of
he day.3 Besides providing services at the edge level, CSPs would
e interested to run user applications energy, ecological and cost
ffectively. For example, renewables are: (i) intermittent and may
ot be available any time; or (ii) renewables are cheaper than
rid energy, as well as, environmental friendly. Therefore, certain
orkloads such as non-interactive (non-real time) tasks includ-

ng YouTube video processing, could be run, as appropriate, to
ptimize these objectives. For example, when renewables (solar,
ind) are at peak (time of the day), then, running workloads at
aximum can be more effective. Moreover, certain workloads,
on-interactive tasks, can be delayed for execution while taking
enefits from renewables. Similarly, electricity prices varies from
ocations to locations, particularly in the United States, that could
e of interest to CSPs in order to decrease their energy bills,
herefore, increase their profits and/or reduce users’ monetary
osts. This could be achieved through VM placement, scheduling
nd consolidation with migration policies.
To face and solve these challenges, the design and imple-

entation of an effective, and elastic scheduler and resource
anagement approach to monitor the whole infrastructure is dif-

icult, yet also essential. A scheduler is an integral and main part
f a resource management system which is responsible to sched-
le jobs/VMs on appropriate resources. Usually, the scheduling
roblem is assumed as a bin-packing issue which is NP-hard; and
s solved using numerous heuristic algorithms. Albeit, heuristics
re not optimal, but they are enough fast to reach a schedul-
ng decision. Other methods, such as backfilling (Tsafrir et al.,
007), are used to convert classical heuristics into approximate
pproaches. It is needed since collecting resource statistics makes
t conceivable to yield proper adaptation decisions both at: (i)
trategic level (e.g. the selection of one or more server where

3 https://datacenterfrontier.com/google-shifting-server-workloads-to-use-
ore-renewable-energy/.
3

it will be executing at certain geographic region) and dynamic
level (e.g. the resource reconfiguration, load-balancing, resource
scaling, migration, re-allocation and so on). Such decisions should
be taken in such a way that performance of the workloads is
not negatively affected — since performance loss will translate
to increased users’ monetary costs. Furthermore, other essential
objectives should also be guaranteed.

2.1. Problem formulation

The above problem can be assumed as a multi-objective op-
timization with focus to minimize energy bills, energy consump-
tion (more ecological and environmental friendly as less energy
consumption means low production), improve or, at least, main-
tain the expected level of performance, and reduce users’ service
costs. Note that, energy bill and energy consumption are directly
proportional to each other and can be assumed as a single ob-
jective. Moreover, performance, when considered as workload
execution time, is directly proportional to user’ service cost (pay
as you go) and can be assumed as a single objective. Furthermore,
lower execution times mean improved performance and lower
users; monetary costs — workload performance is an inverse of
the workload execution time. Thus, the multi-objective problem
is translated to an equivalent bi-objective optimization prob-
lem (Khan et al., 2020). The former objective can be denoted as
E while the latter one as C. Since, both objectives carry the same
goals i.e. minimization; therefore, their product can be assumed
as a single objective (Zakarya and Gillam, 2017a). Mathematically,
the single objective of our bi-objective optimization problem can
be written as:

minimize(E.C) (1)

subject to several constraints such as: (i) the workload perfor-
mance is not degraded; and (ii) each workload exactly runs at a
single location or datacenter at a particular time. Besides, other
constraints can also be available to form a multi-objective opti-
mization problem (Xu et al., 2016). We solve the problem using
the well-known heuristic techniques, such as First Fit (FF), Best Fit
(BF) and so on. The total energy cost E is computed through mul-
tiplying the energy price Eprice with the total energy consumption
(EC) of n hosts in a particular cluster. Furthermore, the EC relate
o real benchmarked values as described later in Section 4.2. The
ost and datacenter energy consumption is measured in kWh;
hile the energy price is measured in US dollars per kWh — thus
he unit of E translates to dollars.

= Eprice ×
n∑

host=1

EChost (2)

Similarly, the user monetary cost C is computed through mul-
iplying the service price (VMcost ) (depending on the VM type)
nd execution time (or runtime) T of the workload. The workload
xecution time is the sum of all tasks’ runtimes, which belong
o a particular workload or application. The workload runtime is
easured in hours; while the VM cost is measured in US dollars
er hour — thus the unit of C translates to dollars.

= VMcost ×

workload∑
task=1

Runtimetask (3)

Note that, workload runtimes is inversely proportional to the
workload performance i.e. lower performance values mean higher
runtimes, there, higher users’ monetary costs and vice versa.
In certain circumstances, performance may be more preferably
refer to response time e.g. real time cloud services (O’Loughlin,
2018); however, since users are billed based on their work-
load runtimes, therefore, we prefer this as a good performance

metric (O’Loughlin, 2018).
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Fig. 1. Distributed datacenters with various energy sources and locations (Khosravi, 2017).
Fig. 2. Distributed scheduling across various datacenters.
. Proposed FollowMe@LS technique

The above problem can be solved using heuristic techniques
hich are suggested to be more appropriate than optimal so-

utions, particularly, in large-scale online problems such as VM
lacement and consolidation (Tsafrir et al., 2007). Furthermore,
4

VM placement can be assumed as sub-part of the consolidation
with migration problem. During consolidation, a set of hosts
(under-utilized and over-utilized) are considered. Then, a list of
VMs are selected for migration from these hosts; Finally, the
selected VMs are placed on appropriate hosts. This section de-
scribes a VM allocation and a consolidation policy in order to
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eet various objectives criteria. VM placement and consolidation
ecisions are usually triggered by the scheduler that might be
centralized or distributed, as shown in Fig. 2. A scheduler, or
ore specifically, cloud scheduler is an essential element in the
loud broker which is responsible to manage all infrastructure
esources according to customers’ requirements and quality of
ervice (QoS). A single scheduler can be more appropriate as it
ill have the knowledge of all infrastructure but it suffers from
ingle point of failure (Khan et al., 2019c). A distributed scheduler,
t some additional cost of communication, could manage large
umber of heterogeneous resource more effectively.
In our proposed framework, each cluster (geographical dat-

center) is in control of a particular local scheduler. The local
cheduler is responsible to assign VMs to appropriate hosts in that
articular cluster; and have a monitoring module to gather re-
ource statistics such as utilization level. Each local scheduler has
n optimization module that can take intra-cluster re-allocation
ecisions based the statistics which are gathered by the monitor-
ng module and stored into a storage unit, preferably, a network
rea storage (NAS). On top of local schedulers, a global scheduler
s responsible to take appropriate workload placement and intra-
lusters migration decisions. Note that, the global scheduler uses
ata and statistics received from local schedulers in such affective
ecisions. Both schedulers use some kinds of VM placement and
onsolidation techniques in order to optimize various objectives.
single scheduler may take more appropriate workload alloca-

ion and migration decisions — as it has all statistics, knowledge
nd data of the clusters (Khan et al., 2019c); while a distributed
cheduler involves additional costs of communication. Forthcom-
ng sections describe the proposed policies for VM placement and
onsolidation.

.1. VM placement policy

When a VM request is received, the proposed allocation strat-
gy looks for a cluster that could run the VM on the lowest price
ased on energy source and/or electricity price for various loca-
ions. For example, if cluster A is fuelled through renewable while
luster B is using grid energy; then, cluster A is selected for the
lacement. Similarly, if electricity prices at location B′ (location of

cluster B) are lower than location A′ (location of cluster A); then,
cluster at location B′ (i.e. cluster B) is preferred for allocation. To
ensure further energy savings, most utilized hosts are allocated
first; in order to guarantee that fewer hosts are in use. The
process is repeated until an appropriate and economical host is
allocated to the VM. In case, the VM request cannot be allocated
due to non-availability of the required resources, it is added to
the wait queue for scheduling in the next allocation round. The
steps involved in the allocation process are described in Alg. 1.
For implementational simplification, we can use the power usage
effectiveness (PUE) as an evaluation metric to measure the energy
efficiency of a particular cluster in relation to electricity sources.
This means that a cluster with lower PUE than another cluster is
using green energy source to power its infrastructure.

From step 1 to 4, clusters are settled up for appropriate al-
location decisions through sorting them out on factors such as
energy price and source. These steps can be modified as per
the objective. For example, to account for both location and
energy sources i.e. ‘‘FollowMe@LS’’, steps 1, 2, and 3 should be
ignored; while to account for a single objective either step 2
(‘‘FollowMe@Source’’) or step 3 (‘‘FollowMe@Location’’) will re-
main while the others two steps i.e. 1, and 4 should be elimi-
nated or commented from the pseudocode. Very similar to these
approaches, the ‘‘FillUp@LS’’ VM placement policy can also be
considered as: ‘‘FillUp@Source’’ which only accounts for energy
sources; and ‘‘FillUp@Location’’ which only accounts for geo-
graphical locations offering cheap energy. Step 5 ensures that
5

Algorithm 1: FillUp@LS VM allocation policy
Input: Clusters list (C), Hosts list (H), Wait queue (W ), VMs

list (V )
Output: Price aware VM placement

1 sort C in increasing order of prices (locations and sources) ;
2 // for FollowMe@Source, sort C in increasing order of source
prices ;

3 // for FollowMe@Location, sort C in increasing order of
location prices ;

4 // for FillUp@LS and FollowMe@LS, sort C in increasing
order of source × location ;

5 ∀ clusters ∈ C , sort H ∈ clusters with respect to available
slots ;

6 for each vm ∈ V do
7 for each cluster c ∈ C do
8 for each h ∈ H do
9 if h is active and has enough resources to run the

vm then
10 allocate vm to h using an appropriate

placement policy;
11 break the loop and pick the next vm ∈ V ;
12 end if
13 end for
14 end for
15 if vm cannot be allocated to any active h ∈ H then
16 start a new h′ ∈ H and assign vm to h′;
17 else
18 ‘‘vm can not be allocated’’;
19 ‘‘add the vm request into W ’’;
20 end if
21 end for

all hosts in different clusters are sorted based on the available
capacity. This guarantees that few hosts are most utilized within
the cluster to reduce energy consumption. From step 6 to 14, each
VM is placed according to some sort of placement policy e.g. FF,
BF, FillUp, etc. If a VM cannot be placed on a switched on hosts
(h), then a new host (h′) is switched on and the VM is placed there
step 15 to 17). Unfortunately, if there is no appropriate host (step
8 to 21), then the VM is paced on to a waiting list (W ). VMs in
he waiting list are rescheduled periodically.

.2. VM consolidation policy

VM consolidation can be achieved through migration (Zakarya
nd Gillam, 2019a). During a migration, a VM is moved from one
ost to another host. If the VM is transparently being moved
hile the service inside the VM is running during the migration
uration, then the migration is called live (Ferreto et al., 2011).
sually, migrations are used to decrease the energy consumption
f datacenter resources through consolidating the workloads on
ewer hosts while switching off or turning unnecessary hosts
nto low power consumption mode. We, here, assume migrations
or the purpose of reducing energy consumption, as well as,
tilizing lower energy prices, if available. In the first round, we
dentify all clusters locations and energy sources that fuel them.
n the second phase, all under-utilized and over-utilized hosts
re marked, VMs are collected for migration, and a particular
llocation policy is used to place them where appropriate. The
teps involved in the consolidation process are described in Alg.
.
From step 1 to 5, appropriate clusters are identified based on

he energy price and source (PUE). Further, details of all hosts are



H. Ali, M. Zakarya, I.U. Rahman et al. The Journal of Systems & Software 175 (2021) 110907

(
a
t

F
b
t
c
t
a
o
t
w
w
f
t
V
l
p
a
b
e
c
a
t
c
1
g
r
2
p
m
d
r
p
i
v

F
w
o
c
d
t

F
w
e
t
p
p

F
p
n
a
c
b
a
‘
s

3

s
a
g
e
t

Algorithm 2: FollowMe@LS VM consolidation policy
Input: Clusters list (C), Hosts list (H), Energy sources (S),

Prices (P)
Output: Price aware VM consolidation

1 foreach cluster do
2 identify cluster energy sources S [ignore this step to

implement ‘‘FollowMe@Location’’];
3 identify cluster location and electricity prices P [ignore

this step for ‘‘FollowMe@Source’’];
4 gather cluster info, hosts statistics and workloads

details;
5 end foreach
6 foreach consolidation round do
7 platform.optimize(C,H) ;
8 L← all VMs that need to be migrated ;
9 foreach cluster do

10 for h in H do
11 if h is under-utilised | over-utilised then
12 mark appropriate VMs on h in cluster ;
13 add marked VMs to L ;
14 end if
15 end for
16 end foreach
17 end foreach
18 for vm ∈ L do
19 // abort migration if target host is not within the same

cluster (for intra-cluster migrations) ;
20 if targetHost.ClusterID ̸= sourceHost.ClusterID then
21 abort migration [for intra-cluster migrations];
22 end if
23 allocate vm using Alg. 1 ;
24 indicate allocation option i.e. source prices, location

prices or both ;
25 end for

gathered from the storage nodes. From step 6 to 17, these steps
are repeatedly run in each consolidation round (periodically).
These steps look for migration opportunities and all migratable
VMs are placed in a list. From step 18 to 25, all migratable
VMs are scheduled for placement using Alg. 1. Note that, Alg. 1
should be modified according to the desirable heuristic approach
such first fit (FF), best fit (BF), and FillUp (Zakarya and Gillam,
2017a). In a similar way, Alg. 2 should also be modified as per the
desirable migration policy. For example, step 2 must be ignored
for the implementation of the ‘‘FollowMe@Location’’ policy while
step 3 must be eliminated for the ‘‘FollowMe@Source’’ policy.
This is due to the fact that the ‘‘FollowMe@LS’’ policy accounts
for both: (i) variations in prices due to geographical locations;
and (ii) various energy sources like coal, renewables. The ‘‘Fol-
lowMe@Location’’ migration policy prefers to migrate VMs to
locations having the least energy costs. Furthermore, the ‘‘Fol-
lowMe@Source’’ migration policy prioritize migrations to clusters
operated for cheaper and renewable energy sources. From imple-
mentation point of view, this could be easily achieved through
sorting (as appropriate) the available hosts, having enough capac-
ity to accommodate the migratable VMs, based on their locations
and/or energy sources. Approximate and optimal algorithm can
also be added to the description of Alg. 1, for more affective,
energy, performance and cost-efficient VM allocation.

The above consolidation approach can migrate VMs either:
i) inside a particular cluster (among different hosts); or (ii)
cross several clusters (among various hosts which may belong
o different clusters). The former one is known as intra-cluster
6

migration while the latter one is called inter-clusters migration.
rom implementation point of view, intra-cluster migrations can
e assumed as a migration control policy – a check over the
arget host in Alg. 1; if the target host is not within the same
luster as the source host, then, the migration can be aborted and
he next migratable entity is selected from the list of all migrat-
ble VMs (Khan et al., 2019b). However, reducing the number
f migrations could leave the cluster resources more stranded;
herefore, may lead to lower energy efficiency. There are various
ays to reduce the number of stranded resources e.g. backfilling;
hich allows allocating VMs/jobs with certain characteristics to

ill the gaps. More formally, the scheduling heuristic can be op-
imized to account for these gaps through sorting out the list of
Ms in a particular order. The former one is most suitable for on-
ine problems while the latter one is most appropriate for off-line
roblems. In Section 6, we describe various scheduling heuristic
pproaches. The proposed allocation and migration policies can
e easily modified to account for a particular choice. In our
valuation, we perform both kinds simultaneously; as putting a
onstraint over the migration can reduce migration opportunities
nd, therefore, is less economical. Increased number of migra-
ions may mean lower performance because a VM migration
an reduce the running workload performance approximately
0% (Khan et al., 2019b). Besides performance degradation, mi-
rations also consume additional energy because two VMs are
unning for the duration of the migration (Zakarya and Gillam,
016). In our evaluation, we account for migration energy and
erformance costs both. Moreover, we also account for perfor-
ance variations (in applications’ runtimes) which may happen
ue to CPU architectural design, heterogeneity, co-location, and
esource interference, as described later in Section 4.3. In this
aper, the following three variants of the proposed VM consol-
dation policy are considered for the performance evaluation of
arious workload using empirical experiments.

ollowMe@Location: The ‘‘FollowMe@Location’’ puts or migrates
orkloads across different clusters, geographically distributed,
ffering variations in energy prices, in an energy, performance,
ost (EPC) effective way. This policy can be used to run the
elayed workloads and (non-interactive) cloud services at later
imes when prices in certain locations drops, dynamically.

ollowMe@Source: The ‘‘FollowMe@Source’’ puts or migrates
orkloads across different clusters fuelled through different en-
rgy sources, i.e. renewables, wind, gas, grid energy, etc., such
hat the workload performance is not affected, negatively. This
olicy is affective if there are cluster IaaS resources that are
owered using renewables; that could be intermittent.

ollowMe@LS: The ‘‘FollowMe@LS’’ combines the above two
olicies in order to account for geographical location prices (dy-
amically changes with respect to time, demand, and usage)
nd energy sources that run various geographically distributed
lusters. From VM placement point of view, we account for
oth i.e. ‘‘FillUp@LS’’; however, when migrating workloads then
ll three variants are considered in this paper. However, the
‘FillUp@LS’’ policy can be easily modified to account for just a
ingle objective i.e. location, price.

.3. Implementation methodology

Despite the large volume of research available on VM con-
olidation with migrations, there are only few software tools
vailable online that support consolidation and are used to design
eographically distributed clouds. In the literature, the earli-
st open-source implementation of server consolidation is En-
ropy.4 A second framework for VM management in private

4 http://entropy.gforge.inria.fr/.

http://entropy.gforge.inria.fr/
http://entropy.gforge.inria.fr/
http://entropy.gforge.inria.fr/
http://entropy.gforge.inria.fr/
http://entropy.gforge.inria.fr/
http://entropy.gforge.inria.fr/
http://entropy.gforge.inria.fr/
http://entropy.gforge.inria.fr/
http://entropy.gforge.inria.fr/
http://entropy.gforge.inria.fr/
http://entropy.gforge.inria.fr/
http://entropy.gforge.inria.fr/
http://entropy.gforge.inria.fr/
http://entropy.gforge.inria.fr/
http://entropy.gforge.inria.fr/
http://entropy.gforge.inria.fr/
http://entropy.gforge.inria.fr/
http://entropy.gforge.inria.fr/
http://entropy.gforge.inria.fr/
http://entropy.gforge.inria.fr/
http://entropy.gforge.inria.fr/
http://entropy.gforge.inria.fr/
http://entropy.gforge.inria.fr/
http://entropy.gforge.inria.fr/
http://entropy.gforge.inria.fr/
http://entropy.gforge.inria.fr/
http://entropy.gforge.inria.fr/
http://entropy.gforge.inria.fr/
http://entropy.gforge.inria.fr/
http://entropy.gforge.inria.fr/
http://entropy.gforge.inria.fr/


H. Ali, M. Zakarya, I.U. Rahman et al. The Journal of Systems & Software 175 (2021) 110907

c
O
S
b
K
a
t
s
p
i
f
p
i

a
a
E
t
t
a
e
m
c
f
g
a
t
s
p
t
o
m
a
w
t
p
p
t
(
t
f
a
i
d

i
N
o
m
t
b
t
s
a
p
—
c
d
s

I
l
l
d
o
i
a
a
c
t
e
a
u
V
t

4

i
p
e
p
t
l
h
e
t
c
f
M
t
t
c
a
s
U

louds called Snooze.5 A third open-source implementation of
penStackNeat,6 a framework for server consolidation in Open-
tack clouds. An overview of these consolidation systems can
e found in our previous studies (Zakarya and Gillam, 2017a;
han et al., 2019a). We believe that a discussion of such tools
nd implementation will help our readers to understand how
he proposed resource management techniques (allocation, con-
olidation through migrations) would be implemented in real
roduction cloud environments. These platform can be designed
n a private IaaS cloud that can be easily updated regarding dif-
erent VM placement, consolidation, and resource management
olicies. Unfortunately, it is very difficult to conduct experiments
n real public cloud, as the policies are not directly accessible.

The main requirement for the implementation of the proposed
lgorithms is that a full and functional real test-bed, which runs
hypervisor along with any cloud management tool [such as
ntropy, Snooze, OpenStackNeat], is available. Furthermore, for
hese systems, the global manager must be installed on a par-
icular server that runs on top of several local managers which
re running over servers connecting different clusters. Then, for
ach cluster the local manager does the same job of a global
anager connecting various servers (Tchana et al., 2016). The
onsolidation technique might be implemented in a distributed
ashion by running the consolidator part (i.e. VM selection al-
orithms) on every compute host and the other part (i.e. VM
llocation algorithm) on a separate controller host. The core of
he OpenStack lies in the compute module (Nova), which is re-
ponsible for VMs provisioning and management. During VMs
rovisioning, Nova uses Glance that is a repository for instance
ypes. The Nova scheduler is responsible for VMs placement
nto hosts that, by default, uses either: (i) the chance/random
echanism; or (ii) the filter & weight approach. This scheduling
pproach can be easily replaced with the proposed policy —
eight the available hosts with respect to slots available (utiliza-
ion), their energy consumption and performance. Nova compute
rovides key metrics such as: (i) hypervisor-based metrics [hy-
ervisor_load, current_workload, running_vms, vcpus_available]; (ii)
enant-based metrics [total_cores_used, total_instances_used]; and
iii) Nova server-based metrics [hdd_read_req]; that can be useful
o determine resource utilization, energy consumption and per-
ormance.7 External monitoring tools such as Zabbix,8 Ganglia9
nd DataDog10 can also be used to get usage data at specific
ntervals (e.g. 5 min) that the scheduler can use in VM placement
ecisions.
In a virtual platform, the hypervisor, that has access to all VMs,

s responsible to consolidate the workload (VMs) when needed.
ova and docker support both cold (off-line) and live migration
f VMs; and the migration approach can be located in the Nova
anager API. In order to implement the proposed approaches,

he code needs to be modified in two ways: (i) migrations can
e triggered automatically each after 5 min intervals; and (ii)
he data collected by the monitoring API can be used by the
cheduler to place migrated VMs to destination hosts. Beloglazov
nd Buyya (2015) proposed a framework based on the OpenStack
roject that is able to initiate VM migrations (global manager
controller node) based on the host utilization thresholds (lo-

al manager — compute node). The proposed framework has
ata collector APIs that are responsible to send compute nodes
tatistics to the global manager for VM migration and placement

5 http://snooze.inria.fr/.
6 http://openstack-neat.org/.
7 https://www.datadoghq.com/blog/openstack-monitoring-nova/.
8 https://www.zabbix.com/zabbix_agent.
9 http://ganglia.info/.

10 https://www.datadoghq.com/.
7

decisions. Another framework for software consolidation, which
closely resembles our proposed framework, has been suggested
in Tchana et al. (2016); where each host and the hosts with local
managers has a monitoring agent that gathers local statistics and
send them to the monitoring engine. The consolidation manager
runs periodically, on a separate host along with the monitoring
engine; collects data from the monitoring engine in order to
decide reconfiguration plans (migrations) and informs the local
manager (on each host) to take appropriate action. The price and
renewable models of our framework can be considered as part of
the consolidation manager; while energy and performance data
is collected on every host and stored on a shared storage.

4. Simulation configuration

We modelled and simulated geographically distributed clouds
in order to evaluate the performance of the proposed allocation
‘‘FillUp@LS’’ and consolidation ‘‘FollowMe@LS’’ policies. To en-
sure accuracy, plausible simulations were based on plausible and
realistic models and real workload traces. CloudSim (Calheiros
et al., 2011) is one of the most widely used simulators in the
cloud research community, which offer an easy way to model
distributed clusters. We consider real workload traces from the
Google cluster (Reiss et al., 2011) and Microsoft Azure (Cortez
et al., 2017). The former one is captured in a containerized plat-
form11 while the latter one comprises records of VM instances.12
n both datasets, each task (assumed as running part of a particu-
ar workload in a container or a VM) has certain characteristics
ike arrival or submission time, resource (CPU, memory, disk)
emand and actual usage, submitting user, and finish time. More-
ver, both datasets include seasonal aspects, burstiness, and other
mportant features that can be of interest. For our study, VM
rrival times (arrival rate), resource usage, and execution times
re very important. The execution time or runtime of each task is
omputed through subtracting its submission time from the finish
ime. Note that, in our simulations the arrival time of each VM
xactly matches the arrival of tasks in these datasets. Moreover,
s users pay for their resources based on their capacities and
sage time (PAYG — pay as you go model); thus, we believe that
M execution time can be a good performance metric for certain
ypes of cloud workloads or applications.

.1. Evaluation metrics

We consider total number of migrations (intra-cluster and
nter-clusters), energy consumption (kWh), workload
erformance (execution time measured in minutes or hours),
nergy bills (in dollars), and user’ service costs (in dollars) as the
erformance evaluation metrics. The intra-cluster migrations are
hose which may occur among various hosts of a single, particu-
ar, cluster; while inter-clusters migrations may happen among
osts which belong to different clusters/datacenters. The total
nergy consumption of each host is the sum of energy consump-
ion of all VMs accommodated on that particular host. The energy
onsumption of each VM is computed, using Eq. (4), which is a
raction of the host’s benchmarked energy consumption values.
oreover, the workload performance is the sum of all VMs execu-

ion times that run the workload. Similarly, the energy bill refers
o the amount (in US dollars) of the total energy used; which is
omputed dynamically based on the geographical location, time,
nd energy prices (real benchmarked values in the US)13 – as
hown in Table 1. Finally, the service cost is the sum of amount (in
S dollars) of all VMs that run the given workload of a particular

11 https://github.com/google/cluster-data.
12 https://github.com/Azure/AzurePublicDataset.
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able 1
atacenters geographical locations, energy sources and prices.
Datacenter site Energy price (cents/kWh) Energy source (PUE)

DC1-Richmond Virginia 6.54 1.9
DC2-San Jose California 10 1.7
DC3-Portland Oregon 5.77 1.56
DC4-Dallas Texas 6.1 2.1

user on PAYG model — computed as shown in Table 3. We are
aware that there would other performance metrics; however, we
believe, execution time as a good performance metric; as cloud
users pay for their services based on their provisioned resources,
their capacities, and usage times (O’Loughlin and Gillam, 2014).

4.2. Experimental set-up

In order to evaluate the proposed algorithms, we modelled
geographically distributed IaaS cloud with 4 datacenter sites,
s shown in Table 1, and each cluster in different geographical
ocation have 2500, 3000, 4000, and 5000 heterogeneous hosts,
espectively. All datacenters are interconnected to each other
sing same network bandwidth i.e. 1 Gbps, but, having different
etwork distances i.e. communication costs. These costs matter,
n particular, during moving workloads among different clusters.
e assume that the global scheduler is aware of all these dis-

ances. Each datacenter has a unique PUE. The PUE values refer
o the work presented in Khosravi et al. (2017) which represent
he energy efficiency (source) of a particular cluster in a specific
eographic area. Note that, PUE is used here as notion to rep-
esent the source of energy which, in practice, is not essential.
hese hosts relate to 7 different architecture types (CPU models)
nd shown in Table 2. Furthermore, we assume electricity prices
t certain locations that reflect the real market prices in the
nited States.13 In reality, prices vary with respect to time of the
ay. However, for implementational simplification, we assume
hat these prices remains unchanged. The energy consumption of
hese hosts relate to real benchmarked values at various utiliza-
ion levels from the SPECpower.14 In order to account for peak
emand and burstiness of the workloads, the arrival time and
nter-arrival ratio of VMs exactly match the submission times and
nter-arrival rate of tasks in both real datasets; with the only
xception of VMs wait times in the queue. This means that the
lacement policy deals with unknown workloads (VMs); how-
ver, the consolidation policy runs over known VMs (reserved)
o pack them onto available servers in a more appropriate way.

The speed of each host is, then, mapped to millions of in-
tructions per second (MIPS) in order to be consistent with the
imulation platform i.e. CloudSim (Calheiros et al., 2011). Each
ost is modelled as virtualized which has the capability to run
everal VMs subject to the host’s capacity — also known as
he notion of VM density somewhere else (Zakarya, 2018b). The
erformance parameters for these various hosts running differ-
nt applications (benchmarked over real IaaS experiments) are
hown in Table 4. We assume different sizes of VMs (instance
ypes) as shown in Table 3 – that reflect Amazon Web Services
AWS) instance types; while their performance, in terms of ex-
cution times, on various hosts are shown in Table 4. Each VM
osts a particular user depending on the resource capacity and ge-
graphical location (Zakarya and Gillam, 2017a). To evaluate the
erformance of the proposed policies under this plausible simula-
ion environment, we use real cluster data traces from Microsoft
zure cloud (Cortez et al., 2017) and Google (Reiss et al., 2012).

13 https://www.eia.gov/electricity/.
14 www.spec.org.
8

For more realistic scenarios, these workloads were mapped to
different applications, using statistical methods, as described later
in Section 4.3. The former one is logged in a virtualized platform
while the latter one is logged in a containerized platform. Fur-
thermore, the former one consists of tasks with longer runtimes;
while the latter one consists of task with short durations. Each
workload consists of more than a million tasks and each task has
certain characteristics such as runtime, schedule time, resource
requirements etc. We further assume, that all tasks uses their
CPU resources using a built-in CloudSim model i.e. stochastic
utilization approach (Beloglazov and Buyya, 2012). As a whole,
we assume all tasks in a workload as a single application whose
execution time is the sum of all tasks’ execution times. Further,
we assume that each VM can run at most one task at a time.
These assumptions allow us to map application execution in a
cloud environment, and we believe that these are sensible ways
to carry out these in a simulated platform.

In order to optimize the states of various clusters and min-
imize the energy consumption, we assume that VMs are being
migrated: (i) inside a cluster (among hosts within a single, par-
ticular, cluster); and (ii) across several clusters (among hosts
that may belong to different clusters). Such events occur when
the resource utilization levels of hosts increases or decreases
some pre-defined threshold values. The former case avoids per-
formance degradation due to resource over-subscription and the
later one can switch off under-utilized hosts to save energy. We
assume that over-subscription does not happen due to ways and
constraints over VM placement i.e. a VM cannot be placed on a
host which does not have enough capacity to run it. For the later
one, we set a threshold of 20% i.e. if utilization level of a host de-
creases than 20%; then, all accommodated VMs or workloads on
this host are migrated to some other host. Moreover, if there are
rooms to run VMs on cheaper energy on a particular cluster; then,
appropriate VMs from other clusters are being migrated here.
The optimization module runs periodically each after 5 min in-
tervals and looks for migration opportunities. Furthermore, other
approaches, such as on-demand, can also be used to trigger mi-
grations and optimize the states of the datacenters. Very frequent
runs of the optimization modules may significantly affect the
total number of migrations, therefore, applications’ performance,
and infrastructure energy consumption.

4.3. Statistical models

This section describes how energy consumption of hosts/VMs
and performance of hosts/VMs are modelled for simulation pur-
poses. Furthermore, we also discuss how migration happens and
its impact on energy consumption and workload performance
degradation. These models are selected in such a way that a
plausible and realistic simulation platform can be developed to
ensure accuracy of the obtained results and outcomes.

Energy consumption: We use real benchmarked values from
SPECpower15 for the energy consumption of various servers, as
hown in Table 2. However, the energy consumption of each VM
s computed, using the linear power model, as given by Eq. (4):

VM =

(
Pidle
N

)
+WVM × (Ppeak − Pidle)× U (4)

where Pidle and Ppeak denote the energy consumption of a partic-
lar server when it is 0% and 100% utilized, respectively. Note
hat, the server energy consumption values were taken from
he SPECpower benchmarks that are noted at various utilization
evels i.e. 0%, 10%, 20%, 30%, and so on. Moreover, WVM is the

15 https://www.spec.org/power_ssj2008/.
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able 2
arious characteristics of hosts for Amazon’s cloud (simulated).
CPU model Speed (MHz) No of cores No of ECUs Memory (GB) Pidle (Wh) Pmax (Wh) Amount

DC1 DC2 DC3 DC4

E5-2630 2300 12 27.6 128 99.6 325
E5430 2830 8 22.4 16 166 265
E5-2620 2000 12 24 32 70 300
E5645 2400 12 28.8 16 63.1 200 2500 3000 4000 5000
E5-2650 2000 16 32 24 52.9 215
E5-2670 2600 16 41.6 24 54.1 243
E5540 2500 4 10 72 151 312
Table 3
Amazon different instance types and their characteristics.
Instance type No of vCPUs No of ECUs Speed (MHz)

MIPS
Memory (GB) Storage (GB) Reserved price (1 year) ($/h)

US East - N. Virginia

t2.nano 1 1 1000 0.5 1 0.006
t1.micro 1 1 1000 0.613 1 0.02
t2.micro 1 1 1000 1 1 0.013
m1.small 1 1 1000 1.7 160 0.044
m1.medium 1 2 2000 3.75 410 0.087
m3.medium 1 3 3000 3.75 4 0.067
d
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fraction of host resources allocated to a particular VM e.g. number
of cores or vCPUs; and N refers to total number of VMs on a
particular host. This model equally divide the idle power con-
sumption of a host among various VMs running on it; however,
more fair and approximate division may be possible (Khan et al.,
2020). The energy consumption of a VM migration is computed
according to the model presented in Liu et al. (2011) - energy
use is proportional to the amount of VM memory (VMdata) to be
moved from source to destination server; and is given by Eq. (5):

Emig = 0.512× VMdata + 20.165 (5)

The above model is validated for intra-cluster migrations; how-
ever, inter-clusters migration will usually take longer depending
on the network conditions. For the latter case, we compute the
migration time through dividing the VM data by the network
bandwidth (assuming constant). Later on, the time is translated
to energy consumption of the network plus source and desti-
nation hosts. To simulate VM migration across several clusters
(migration time and downtime), we integrated the migration
model used in VmigSim simulator16 in CloudSim (Calheiros et al.,
2011). The VmigSim simulator offers a realistic environment to
mimic on-line VM migration (pre-copy) in different rounds; using
various parameters for network, VM memory, page dirty rate,
etc. Further details on the migration modelling, approaches, cal-
culating durations and downtimes can be found in our previous
works (Zakarya and Gillam, 2019a; Khan et al., 2020).

Performance: As investigated in O’Loughlin (2018), workload
performance vary with respect to CPU platform i.e. similar work-
loads (applications) will run differently on same or different
VMs (instance classes) accommodated on servers having different
CPU architectures, as shown in Table 4. The mean (µ), standard
deviation (σ ), minimum (Min), and maximum (Max) runtimes
(performance) of three different applications are shown in Ta-
ble 4. The coefficient of variance (CoV) is computed through
dividing σ over the µ; the smaller ones denote lesser varia-
tions in runtimes. The benchmarked values denote a log-normal
distribution (O’Loughlin, 2018). Therefore, to represent CPU het-
erogeneity and host performance, we also assume that workload
runtimes on different hosts are log-normally distributed. From
implementation point of view, when VMs are being migrated

16 http://www.github.com/.
9

from one host to another; the increase or decrease in runtime
is computed from a log-normal distribution dataset. The pro-
cess comprises translating the remaining execution time of a
particular application running on a server (source) to equiva-
lent execution time on a destination server. This could be done
through the standard score (or more formally the z-score normal-
ization method) (Zakarya and Gillam, 2019a). The standard score,
as given by Eq. (6), is normally used to calculate the probability or
likelihood of a particular score (r) which occurs in the interior of
ifferent datasets (normally distributed), given its statistics like
ean (µ) and standard deviation (σ ). Furthermore, z-score also
rovides a way to relate more than one scores with may or may
ot belong to various datasets which are, essentially, normally
istributed.

score =
r − µ

σ
(6)

Eq. (7) could be utilized to compute the expected execution time
of a migrated application (workload), from the source server,
on the destination server given their distributions (usually nor-
mally distributed) along with their statistical means (µ, µ′) and
standard deviations (σ , σ ′) of source and destination servers,
respectively.

r − µ

σ
=

r ′ − µ′

σ ′
(7)

Note that, both r and r ′ denote the estimated runtimes of
he migrated application on the source and destination servers,
espectively. Furthermore, the left hand and right-hand sides of
q. (7) narrate to the standard scores of the source and desti-
ation servers, respectively. The above mathematics allows us
o predict the probable scores i.e. VM runtimes (translating to
he expected increase or decrease in applications’ performance
n the destination server) occurring within a dataset which is
ssentially normally distributed. Note that, the dataset consists
f the performance (runtime) dissimilarities due to resource,
orkload and/or platform heterogeneities, as shown in Table 4.
he above Eq. (7) can be rewritten as Eq. (8), in order to compute
he expected execution time (or workload performance - r ′) of the
igrated application on the destination server given its estimated

emaining execution time (r) on the source host:

′
= σ ′ ×

{
r − µ

}
+ µ′ (8)
σ
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Fig. 3. Mapping the Google data to real benchmarks (left) and plausible assumptions for choosing appropriate hosts (right) (Zakarya and Gillam, 2019a) [Povray
orkload performs best on E5430 and worst on E5645].
T
E
b
t
m
f
m
I
r
M
t
w
m
G
t
t
d
t
o
t
p
t
A
t

or log-normally distributed datasets, both r and r ′ should be
eplaced with log(r), log(r ′) subject to the mathematical def-
initions of both normal and log-normal distributions (Zakarya
and Gillam, 2019a). For log-normally distributed datasets, the
estimated execution time (r ′) can be calculated using Eq. (9):

r ′ = exp
(

σ ′ ×

{
log(r)− µ

σ

}
+ µ′

)
(9)

We are aware that there would be more effective ways to esti-
mate and predict the estimated or remaining runtimes of applica-
tions. Moreover, the overlaps which may exist in the performance
of multiple servers for similar applications can also be accounted
for. Methods like euclidean distance can be used to face and
deal with similar overlaps. However, we keep it simple and, thus,
assume no overlaps. These overlaps can be assumed as redundant
data and methods like the euclidean distance can possibly remove
these overlaps. However, this needs further investigation in order
to associate these redundant data points (runtimes) with an ap-
propriate CPU model instead of ignoring it at all. For example,
under what conditions/parameters a particular application will
essentially perform the same on two or more than two different
servers and vice versa. Application performance is very impor-
tant, in particular, when users pay for their resources using a
PAYG model. As, application runtimes play a major role in cloud
business economics (users pay for resource usage based on time);
thus, we believe that execution time can be a good and more ap-
propriate performance measurement unit to IaaS providers. The
above statistical model is used in our previous works (Zakarya
and Gillam, 2017a; Khan et al., 2019a) to account for increase or
decrease in the execution time of a migrated application on two
dissimilar CPU platforms. The means and standard deviations of
applications’ execution times are taken from real benchmarked
values, as shown in Table 4.

Furthermore, we assume a 10% performance degradation in
the workload of each VM which is being migrated intra-cluster
(Beloglazov and Buyya, 2012). From implementation point of
view, when a VM is migrated from one server to another then its
remaining execution time is increased with 10%. For inter-clusters
migration, an existing model (implemented in VmigSim simula-
tor) is used to compute the downtime which is, then, added to the
remaining runtime of the VM on the destination server. However,
to account for performance loss due to CPU heterogeneities, we
use the concept of z-score normalization and the law of log-
normal distribution, as described in our previous works (Zakarya
and Gillam, 2019a; Khan et al., 2020). For intra-cluster migration,
the downtime of each migrated VM is translated to an equivalent
10
degradation, as discussed in the above section. Besides these, VMs
competing for similar resources (when running same workloads)
while co-located on a single host may also suffer from severe
performance degradation (O’Loughlin and Gillam, 2016). How-
ever, to make it simple, we do not account for these costs in
our current work. Findings in O’Loughlin (2018) ascertain that
performance can be severely degraded which may be as high as
42%. Furthermore, when resources are over-subscribed or over-
load; then VMs may suffer from performance issues. However,
we assume no over-subscription; and the notion of VM density
i.e. each host can accommodate number of VMs with sum of
capacities less than the host entire capacity (Zakarya and Gillam,
2016), which does not result in over-load situations. In fact, our
allocation policy check the available capacities of a host before
assigning them to a VM. In case, resources are not enough, then
the allocation is rejected.

Applications: In order to make our simulations more realis-
tic, we mapped the Google (Reiss et al., 2011) and Microsoft
Azure (Cortez et al., 2017) workloads to certain benchmarked ap-
plications in a real IaaS cloud. To do so, we used the performance
values (means, standard deviations), as presented in O’Loughlin
(2018), of three real applications i.e. Bzip2, Stream, and Povray.
he authors suggest that performance of various instances in AWS
C2 cloud on similar CPU architecture significantly varies and can
e modelled as log-normally distributed. Furthermore, combina-
ion of various CPU models and instance types produces multi-
odal distributions. Since, the offered data is not enough to get

indings; therefore, we ran Monte-Carlo simulations to produce
ore data using the laws of normal and log-normal distributions.

n next steps, the actual benchmarked values (i.e. application
untimes) and tasks’ runtimes in both workloads i.e. Google and
icrosoft Azure, were put into appropriate multimodal distribu-

ions (log-normal). Finally, close similarities in the distributions
ere assumed as tasks which may belong to certain real bench-
arked applications on different CPU platforms (Zakarya and
illam, 2019a). For example, Fig. 3 (left-hand side) demonstrates
he actual benchmarked runtimes of the Povray application and
he tasks’ runtimes which belong to certain records in the Google
ataset. After normalizing these values, the Google tasks’ run-
imes were mapped to the performance of the Povray application
n appropriate hosts, as shown in Fig. 3 (right-hand side). Note
hat, Table 4 describes the performance parameters of three ap-
lications over different CPU platforms. Similarly, Fig. 4 mimics
he performance of the Stream application, mapped to Microsoft
zure cloud dataset, over different CPU architectures. Various dis-
ributions were converted onto the same scale and, then, mapped
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arious applications’ runtimes over different CPU architectures and instance types [696 MB input file to Bzip2 - Ubuntu 10.04 AMD desktop ISO file] (Zakarya and
illam, 2019a; O’Loughlin, 2018; O’Loughlin and Gillam, 2014) − for example, Bip2 on m1.small VM type performs better when hosted on E5507 while Povray
erforms worse on the same CPU; while on m1.medium VM type, both applications’ performance is the other way around (opposite); O’Loughlin (2018) suggests
hat these variations can be mapped to log-normal distribution.
Application type CPU model m1.small m1.medium

(µ) (σ ) Min Max CoV (µ) (σ ) Min Max CoV

E5430 445.1 14.33 425.35 482.1 0.032 211.30 10.43 204.71 238.2 0.049
E5-2650 470.24 13.03 443.48 518.92 0.028 223.40 3.84 217.81 233.51 0.017

Bzip2 E5-2665 241.3 1.18 237.97 245.2 0.005 – – – – −

E5645 510.07 10.51 487.95 543.8 0.021 244.71 2.90 240.9 254.11 0.012
E5507 620.87 28.46 578.03 715.72 0.046 312.92 14.91 295.91 332.01 0.048

E5430 693 3.0 687 701 0.004 196.21 15.03 174.56 245.86 0.077
Stream E5-2650 614 5.0 606 624 0.008 224.34 8.34 215.58 235.67 0.037

E5645 606 7.0 599 628 0.012 230.83 12.19 216.93 250.03 0.053
E5-2665 59.2 1.88 52.16 65.0 0.032 – – – – −

E5507 632 5.0 625 650 0.008 261.63 18.84 241.46 356.92 0.072
Povray E5540 623.9 3.2 612.5 636.8 0.005 241.1 2.9 231.9 250.7 0.012

E5-2630 128 2.0 120.5 134.2 0.016 – – – – −

X5560 525.5 0.6 524.4 526.8 0.001 – – – – −
Table 5
Execution times (seconds) of various applications on co-located VMs (Xu et al.,
2016).
Workload type CPU model Number of co-located VMs

2 4 6 8 10 12

Execution times

Grep E5620 13 14 16 21 31 36
E7420 20 22 25 29 38 44

Sort E5620 16 22 38 59 69 78
E7420 21 28 43 65 76 85

using a simple visualization methods through identifying the total
number of peaks, multi-modals, and thus CPU platforms and
architectures (Zakarya and Gillam, 2019a).

Apart from the above discussion, co-located VMs on a particu-
ar server may experience severe performance loss, specifically, if
he hosted virtualized applications compete for similar resources
also known as resource interference). Xu et al. (2016) empirically
valuated and observed that the performance loss is strongly
ependent on the total number of co-located VMs and the ap-
lication type they are executing on a particular server i.e. the
ore number of VMs co-located on the server, the worse will
e its performance and vice versa — as shown in Table 5. It
s also essential to account for such resource interference and
ontention costs among different servers. From an implementa-
ion point of view and in order to model performance variations
f various applications on different CPU platforms, we model:
a) resource interference as a simple regression line equation
ith respect to total number of co-located VMs on a particular
erver for certain types of applications — based on prior studies
n Xu et al. (2016, 2014); and (b) CPU platform heterogeneity
s log-normally distributed with respect to application runtimes
ased on prior research and findings (Zakarya and Gillam, 2019a;
’Loughlin, 2018). The above mathematical models were used to
esign a sensible, and realistic simulation environment i.e. Per-
icientCloudSim (Zakarya et al., 2020) which is available on the
itHub repository.17 Moreover, datasets were mapped to cloud
pplications using plausible assumptions. Similarly, resource and
pplication heterogeneities, in terms of performance degrada-
ion, were modelled using sensible ways to certain benchmarked
esults as demonstrated in prior studies (O’Loughlin, 2018).

17 https://github.com/mohd-zakarya/PerficientCloudSim.
11
Fig. 4. Mapping the Microsoft Azure data (Cortez et al., 2017) to real bench-
marks and plausible assumptions for choosing appropriate hosts [Stream
workload performs best on E5-2650 and worst on E5-2630].

5. Performance evaluation

The placement policy assign a given workload trace (assuming
inside a VM) to an appropriate host. The consolidation policy then
ensures to transform the cluster state to an ideal one — which
consume less energy due to fewer hosts in use. Consolidation is
achieved through VM migrations (Ferreto et al., 2011). Various
heuristic methods such as first fit (FF), best fit (BF), FillUp (Za-
karya and Gillam, 2016), are then used to see the impact of
allocation and consolidation policies over the energy consump-
tion, prices, profits, and workload performance. Albeit, heuristics
may not produce optimal results; however, they are demon-
strated quite fast and quick as compared to optimal algorithms,
particularly, for large-scale on-line problems (Ferreto et al., 2011).
Besides these, we also discuss two different approaches to migra-
tions: (i) intra-cluster — migrate VMs across different hosts that
belong to a particular cluster, only; and inter-clusters — migrate
VMs across different hosts that may belong to various clusters in
different geographical areas.

5.1. Experimental results

Table 6 describes the results which we get in the simu-

lated environment for various resource allocation and migration
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able 6
nergy consumption in kWh using the Google workload traces [the ‘+’ sign denotes performance improvements or energy efficiency while the ‘−’ sign represents
oss in performance or energy costs].
Management policy Energy consumption (kWh) Savings (%) Exe. time (h) Performance gain/loss (%) Number of migrations

DC1 DC2 DC3 DC4 Total

No migrations
FF 478.45 601.56 872.43 998.11 2950.55 0 617.99 0 0
BF 423.56 577.89 865.33 910.23 2777.01 5.88 616.84 +0.19 0
FillUp 401.02 546.8 843.9 849.86 2641.58 10.47 617.68 +0.05 0
FillUp@LS 468.56 290.6 1021.67 750.67 2804.81 14.2 615.82 +0.35 0

Intra-cluster migrations
FF 448.9 588.33 863.34 1004.09 2904.66 0 619.43 0 2934
BF 455.56 562.89 880.77 989.3 2888.52 0.56 619.02 +0.07 2459
FillUp 399.45 541.58 820.78 841.66 2603.47 10.37 618.03 +0.23 1902
FillUp@LS 349.59 286.8 1007.45 1045.7 2689.54 7.41 616.56 +0.46 3014
FollowMe@Location 502.06 284.55 1289.41 592.06 2668.08 8.14 621.73 −0.37 4367
FollowMe@Source 349.87 702.43 1288.77 503.67 2844.74 2.06 622.92 −0.56 3672
FollowMe@LS 481.34 282.88 1017.78 898.87 2680.87 7.7 622.01 −0.42 4703

Inter-clusters migrations
FF 437.78 579.32 844.79 997.64 2859.53 0 616.42 0 3248
BF 451.33 560.01 867.08 968.65 2847.07 0.44 617.82 −0.23 3898
FillUp 391.32 540.68 821.56 878.12 2631.68 7.97 615.98 +0.07 2996
FillUp@LS 344.68 299.76 997.34 1021.98 2663.76 6.85 615.05 +0.22 3247
FollowMe@Location 500.76 299.43 1201.78 601.54 2603.51 8.95 625.78 −1.52 4993
FollowMe@Source 343.67 700.98 1189.67 513.78 2748.1 3.9 624.87 −1.37 4610
FollowMe@LS 445.76 281.99 1005.43 901.65 2634.83 7.86 623.34 −1.12 5193
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techniques. When no migration is considered, then the place-
ment policy ‘‘FillUp’’ could save approximately 10.47% more en-
ergy, along with marginal improvement in workload performance
i.e. ∼0.05%, than the classical ‘‘FF’’ algorithm. However, when the
allocation is aware of the energy prices and sources; then, energy
savings increases (∼14.2%) along with performance further gains
∼0.35%). This demonstrates that workloads are largely placed in
C3 which has the lowest energy prices and PUE. Furthermore,
C2 is the most expensive one, therefore, placement is avoided
here. When migrations are taken into account, variations in
nergy savings across different approaches to placement and
igration policies is observed. Interestingly, if we migrate for
etter energy prices, then energy savings (8.14%) are greater than
f we migrate for greener sources (2.06%) instead. This trade-
ff can be adjusted through the proposed ‘‘FollowMe@LS’’ policy
ith an approximate savings of 7.7% more than the classical ‘‘FF’’
llocation policy. These savings are possible at essential loss in
orkload performance (0.37%–1.52%); that might be non-trivial

or certain kinds of application workloads. On average, the savings
ade by the proposed placement policy can be up to 15.26%,
ompared to the classical FF approach. Similar savings were also
bserved against the classical BF policy.
Furthermore, we observed that migrations can be expensive

nd it would be more economical not to migrate. This is in line
nd consistent with our previous findings in Zakarya and Gillam
2016). For example, for ‘‘BF’’ and ‘‘FillUp@LS’’ policies, migra-
ion could be approximately 4.02% and 6.24% expensive than no
igration approach, respectively. Similarly, intra-clusters migra-

ions are triggered more than intra-cluster migrations that could
ncrease energy savings as high as 3.4%. However, for more tight
acking (allocation policy i.e. ‘‘FillUp’’), and considering migration
osts; an approximate 1.08% loss in energy savings is expected in
ntra-clusters migrations, as well. Table 6 shows the total number
f migrations for both migration opportunities. Figs. 5 and 6
how the total infrastructure energy cost and users monetary
osts, respectively. Both figures demonstrate that ‘‘FollowMe@LS’’
alances the trade-off between moving workloads for sources and
rices. It is possible to modify the proposed policies further to
void expensive migrations in order to maintain user costs (Za-
arya, 2018b). Moreover, additional constraints in placement and
igration decisions, such as: (i) migrate only to a renewable with
he least energy prices; or (ii) migrate only if target hosts/clusters t

12
are more economical (energy, performance and cost-efficient);
and etc. This would certainly improve cost savings, in terms of
energy bills, while maintaining the expected levels of workload
performance.

5.2. Results discussion

In this section, we briefly describe the impact of various al-
location and migration policies in the infrastructure energy con-
sumption, given different prices and sources for energy. We also
ascertain how workloads would affect the evaluated metrics.
Table 7 shows various results which we obtained for another
workload trace, offered from Microsoft Azure cloud (Cortez et al.,
2017). These results are largely consistent with our previous
outcomes; however, different impacts on energy consumption
and performance can be seen very clearly. For example, when no
migration are considered, then the proposed placement approach
‘‘FillUp@LS’’ can save ∼15.26% energy along with 0.74% improve-
ents in performance. However, for migration scenarios, energy
fficiency is negatively impacted (−3.44%), albeit with trivial per-
ormance improvements (1.98%). This is possibly caused due to
he long-running behaviour of tasks in the workload type. Since,
f workloads run for longer, they will absolutely consume more
even if they are placed on to resources powered by renewables).
oreover, if workloads run for longer, then, migration opportuni-

ies are decreased; thus resulting in lower energy efficiency. This
s observed against the well-known classical heuristics such as FF,
F and FillUp.
Figs. 7 and 8 sketches a view of entire infrastructure energy

ill and service costs paid by the customer for this particular
orkload type. These results demonstrate that migrations might
e affective to decrease providers’ energy bills; however, this
as a negative impact on user costs i.e. service level agreements
SLAs). Violating SLAs may subsequently result in switching cus-
omers to other providers or, at least, penalties to the service
rovider. Both these options are not cost and revenue-effective
or cloud providers, in particular, public providers. Besides these,
nd without migrations, various placement policies can result
s various revenues for providers; and also customers. Again,
he savings achieved through affective placement policies are
ignificantly larger than the savings obtainable through migration

echniques. Note that, in Table 7, ‘‘FollowMe@Location’’ policy
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Fig. 5. Infrastructure costs — The corresponding PUE for each cluster was used to compute the energy used in non-computation infrastructure, such as cooling, and
ther facilities [left : no migration — right : with migrations].
Fig. 6. User monetary costs [left : no migration — right : with migrations].
able 7
nergy consumption in kWh using Microsoft Azure workload traces [the ‘+’ sign denotes performance improvements or energy efficiency while the ‘−’ sign represents
oss in performance or energy costs].
Management policy Energy consumption (kWh) Savings (%) Exe. time (h) Performance gain/loss (%) Number of migrations

DC1 DC2 DC3 DC4 Total

No migrations
FF 621.78 783.67 993.56 1289.1 3688.11 0 1107.43 0 0
BF 602.79 742.89 1002.56 1183.68 3531.92 4.23 1103.45 +0.36 0
FillUp 599.88 709.65 1012.43 1134.2 3456.16 6.29 1111.9 −0.4 0
FillUp@LS 683.5 512.46 927.9 1001.34 3125.2 15.26 1099.21 +0.74 0

Intra-cluster migrations
FF 598.43 790.34 901.4 999.87 3290.04 0 1121.89 0 2641
BF 575.22 701.45 973.59 1003.56 3253.82 1.1 1109.32 +1.12 2240
FillUp 644.98 700.22 990.49 1005.32 3341.01 −1.55 1112.67 +0.82 1684
FillUp@LS 600.45 655.89 1101.42 1045.54 3403.3 −3.44 1113.45 +0.75 2579
FollowMe@Location 534.68 510.53 1398.43 892.56 3336.2 −1.4 1108.11 +1.23 4290
FollowMe@Source 502.43 711.65 1267.89 703.21 3185.18 3.19 1107.3 +1.3 3543
FollowMe@LS 610.54 609.1 1288.76 738.87 3247.27 1.3 1110.9 +0.98 4401

Inter-clusters migrations
FF 554.08 757.04 870.07 960.09 3141.28 0 1120.5 0 2571
BF 550.05 670.37 928.39 909.02 3057.84 2.66 1102.8 +1.98 3863
FillUp 630.71 661.54 956.65 969.3 3218.2 −2.45 1111.56 +0.8 2964
FillUp@LS 563.19 586.32 1062.51 990.29 3202.31 −1.94 1106.49 +1.25 2820
FollowMe@Location 518.39 447.75 1369.88 813.88 3149.9 −0.27 1122.67 −0.19 4654
FollowMe@Source 480.13 668.66 1247.34 647.88 3044.02 3.1 1113.9 +0.59 4410
FollowMe@LS 591.9 544.28 1249.98 702.8 3088.97 1.67 1103.9 +1.48 5105
migrates the workloads to geographical area with lower energy
prices; that reduces energy efficiency; however, providers will
still pay more for higher energy consumption (due to longer
execution times i.e. performance degradation due to resource
heterogeneity and longer migration durations). On the other
hand, ‘‘FollowMe@Location’’ policy puts workloads on energy ef-
ficient clusters, which does not essentially indicates lower prices
13
and high revenues for customers and providers both, due to
existing trade-off between energy consumption and workload
performance. Therefore, through mixing ‘‘FollowMe@Location’’
and ‘‘FollowMe@Source’’, benefits of both approaches could be
achieved. For example, ‘‘FollowMe@LS’’ prefers to put or migrate
workloads to hosts/clusters that has the least product of energy
prices and renewables sources.
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Fig. 7. Infrastructure costs — The corresponding PUE for each cluster was used to compute the energy used in non-computation infrastructure, such as cooling, and
ther facilities [left : no migration — right : with migrations].
Fig. 8. User monetary costs [left : no migration — right : with migrations].
Fig. 9. Impact of various policies on energy consumption of different clusters — given different energy prices, sources and workloads [left : Google workload traces
right : Microsoft Azure traces].
Finally, Fig. 9 demonstrates the impact of various policies on
nergy consumption of different clusters given different energy
rices, sources and workloads. For placement policies, various
lacement options have different energy consumption values.
owever, different workloads have non-trivial impacts on the
nfrastructure energy consumption. This creates a further gap
or investigation, that what workload types should be run on
hich resources, or, geographical clusters. For example, certain
pplications e.g. real-time, might not be delayed for the avail-
bility of renewables in public clouds. Similarly, their migrations
o other geographical areas may also not be feasible due to
trict deadlines. Besides, it is a fact that long-running workloads
ver energy efficient clusters would consume more, subject to
oss in performance. In the same way, short-running workload
14
may frequently migrate (or trigger optimization of the datacenter
state frequently), which may consume more, subject to num-
ber of migrations and their costs (Zakarya and Gillam, 2019a;
Khan et al., 2020). However, energy efficiency and performance
would differ if workloads utilizes their resource (such as CPU,
memory, disk) differently. These workloads’ challenges will es-
sentially force service providers to think for other ways and
placement/consolidation policies in order to manage their infras-
tructure located in different geographical areas and powered by
various energy sources. These experiments and outcomes also de-
note the scalability of our approach in terms of large-scale hetero-
geneous systems, various workloads types and different parame-
ters. However, the complexity of the algorithms will essentially
increase with an increase in number of clusters (geographical



H. Ali, M. Zakarya, I.U. Rahman et al. The Journal of Systems & Software 175 (2021) 110907

l
s
p

5

‘
w
a
c
m
e
i
i
o
0
i
a
d
t
i
r
e
o
e
f
p
s
w
m
i
p
t
t
r
t
r
m

5

r
i
‘
c
w
e
b
t
w
o
a
i
p
t
s
t
t
T
t
o
p
c
1

i
c
i
e

a
c
i
t
V
w
d
s
V
o
a
o
C
b
t
s
h

ocations), hosts within these clusters and users or demand for
ervices. The time complexity (worst and average case) of the
roposed algorithms are further described in Section 5.4.

.3. Comparison with the closest rivals

Table 8 sketches a comparison of the proposed approach
‘FollowMe@LS’’ and state-of-the-art placement methods such as:
orkload shifting algorithm (WSA) (Xu and Buyya, 2020); energy
nd carbon efficient (ECE) VM placement (Khosravi, 2017); and
ost and renewable aware with dynamic PUE (CRA-DP) place-
ent (Khosravi et al., 2017). These methods account for en-
rgy prices and sources, but, migrations (both intra-cluster and
nter-clusters) are not explored. Our approach could save signif-
cant amount of energy (approximately 8.7%–16.9% more than
ther approaches), but, with non-trivial performance loss (0.24%–
.69%). Albeit, we observed performance gains in certain scenar-
os; however, the mean value is the worst due to large variations
mong various iterations — as denoted by the largest standard
eviation value i.e. 4.78. This degradation can be minimized fur-
her through incorporating some sort of migration control policies
n order to avoid costly migrations. For example, migrations of
elatively long-running VMs to more energy and/or performance
fficient hosts might be preferred due to their higher chances
f recovering their migration costs (Khan et al., 2019a). Larger
nergy savings will translate to higher profits, environmental
riendly resources, service reputation, and revenue for service
roviders; however, performance loss will have impact on user
atisfaction and providers revenues as well. Apart from these,
e observed that if migrations are reduced to only intra-cluster
ethodology; then, our approach outperform all these methods

n terms of various evaluation metrics i.e. energy efficiency,
erformance loss and user monetary costs. This is possibly due
o lower migration overheads (short distances) and higher oppor-
unities for consolidation (non-repeated migrations). Note that,
epeated migrations might be expensive that should be con-
rolled using appropriate mechanisms such as longer datacenter’s
econfiguration periods (non-frequent runs of the optimization
odule).

.4. Time and space complexity

In Alg. 1, initially all sources and locations are sorted with
espect to prices taking O(n2) time in the worst case while Ω(n)
n the best case. In this algorithm, the inner ‘for loop’ is for host
‘h’’ is within the outer ‘for loop’ for cluster ‘c’; therefore, its worst
ase complexity is O(n2). Since, the VM list is in outer main loop
hich executes for each placement decision i.e. the inner loop
xecutes. Therefore, the overall worst case execution time is given
y: T (n) = O(n) × O(n2) = O(n3). Usually, sorting takes O(n2)
ime in the worst case, but the incorporated nested three loops
ill also take O(n3) time, in the worst case. Usually, the number
f clusters or geographical locations are few enough and can be
ssumed as a constant; in which case, the average case complex-
ty of Alg. 1 will be O(n2). The best case occurs when the VM is
laced in the first attempt leading to Ω(n). After ignoring lower
erms, we have the time complexity equal to O(n3). In Alg. 2, from
teps 1 to 5 the worst case time complexity is O(n). From steps 6
o 17, we have time complexity of O(n3). For steps 18 to 21, the
ime complexity is O(n). As the higher time complexity is O(n3), so
(n) = O(n3). Again, assuming the number of clusters as constant,
he average case complexity of Alg. 2 will be O(n2). The best case
ccurs when a VM is placed in its first attempt in the optimization
hase. The best case complexity will be Ω(mn) as m is the best
ase for the optimization phase and n for the placement i.e. Alg.

. The time complexity of the proposed algorithms will definitely

15
ncrease with respect to workloads demand (number of users),
apacity, availability, and usage of the IaaS resources. However, it
s largely accepted, in the cloud scenarios, that heuristics are fast
nough than optimal algorithms.
Space complexity denotes the total amount of memory that an

lgorithm requires for obtaining the desired outcomes for a spe-
ific input parameters (Yavari et al., 2019). The space complexity
s strongly dependent, and exponentially increases/decreases, on
he arrival rate of the VMs. This is due to the fact that each
M requires significant amount of memory (instance images) as
ell as enough memory to store the dirtying pages subject to
ifferent workload types. In the proposed placement and con-
olidation algorithms, the dominant variables are the number of
Ms’ and hosts’ characteristics such as CPU and memory. No
ther details are much essential for all policies. Albeit, some
dditional memory is required for the power consumption model
f each host that is specified by eleven values from 0 to 100%
PU utilization with an increment of ten percent (SPECpower
enchmarks). Moreover, the space needed to optimize the state of
he datacenter during each consolidation round will need enough
pace depending on the number of migratable VMs, and eligible
osts. Therefore, in the worst case, each algorithm requires (n2

+

11n) additional units of memory. This exponentially increasing
space complexity makes it infeasible and very difficult to validate
the outcomes with huge numbers of simulated VMs, hosts and
different types of workloads (Moges and Abebe, 2019; Homsi
et al., 2019). In our previous work (Zakarya et al., 2020), we
have described similar situations, in detail; and how we were
able to conduct relatively large-scale simulated experiments on
a small system through increasing memory slots and clearing
heap space explicitly. Fig. 10 shows an exponential growth in
memory usage in proportional to increasing the number of hosts
and VMs. Note that, these values were obtained, in a single run,
of the Google workload traces on an eight core CPU of 2.8 GHz
and 16 GB of memory. The operating system overhead is also
indicated by a vertical line over the x-axis. The duration of the ex-
periment was 12 h and it has been observed that longer duration
may potentially increase the space complexity of the proposed
algorithms.

5.5. Summary of findings, results validity and limitations

In this paper, we proposed a placement policy ‘‘FillUp@LS’’ that
puts appropriate workloads on appropriate clusters, according to
energy sources and prices. Furthermore, three different consol-
idation policies ‘‘FollowMe@Location’’, ‘‘FollowMe@Source’’, and
‘‘FollowMe@LS’’ are proposed to migrate workloads, across geo-
graphically distributed clusters, in an energy, performance, cost
effective way. These scheduling policies run in a distributed fash-
ion — the global scheduler communicates with local schedulers to
take appropriate workload execution decisions. In Section 5.5, we
briefly explain our outcomes. talks over precision of the obtained
results and describes limitations of our work.

Major findings: Through empirical evaluation using real work-
load traces from public service providers, we observed the fol-
lowing major findings:

– consolidation techniques are usually expensive and have
negative impacts on the workload performance, and users’
monetary costs;

– better VM allocation approaches could be more energy, per-
formance, and cost-efficient than consolidating policies for
certain kinds of workloads;

– migrating workloads can be ∼15.26% energy efficient; how-
ever, ‘‘FillUp@LS’’ (allocation) can be ∼28.58% energy effi-
cient than the classical first fit policy;
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Table 8
Comparison with the closest rivals accounting for both intra-cluster and inter-clusters migrations [the ± sign denotes the standard
deviation across various runs −the lowest values are the best].
Approach Evaluation metric

Energy consumption (kWh) Performance (h) Users’ costs ($)

WSA (Xu and Buyya, 2020) 3689.54 ± 541.34 1099.8 ± 3.44 38.77
ECE (Khosravi, 2017) 3731.01 ± 202.7 1103.77 ± 0.75 42.54
CRA-DP (Khosravi et al., 2017) 3394.79 ± 186.93 1104.81 ± 2.91 41.40
FollowMe@Location 3267.65 ± 178.23 1109.21 ± 4.81 41.88
FollowMe@Source 3223.11 ± 121.89 1108.78 ± 4.21 41.55
FollowMe@LS 3099.33 ± 126.43 1107.45 ± 4.78 39.04
Table 9
Summary of the related work, closest to our work, with respect to various evaluation criteria [Exe. time refers to workload performance and Optimize denotes
consolidation].
Approach Methodology Platform Multi- Metric

Placement Optimize Renewables Migration clusters Energy Exe. time Price User costs CO2 footprints

Adnan et al. (2012) � � � �
Chen et al. (2016) � � �
Liu et al. (2012) � � � �
Neglia et al. (2016) � � � � �
Rossi et al. (2017) � � �
Toosi et al. (2017) � � � �
Beloglazov and Buyya (2015) � � � � �
Cheng et al. (2014) � � � �
Nguyen et al. (2017) � � �
Khosravi et al. (2017) � � � � � �
Goiri et al. (2013) � � �
Xu and Buyya (2020) � � � � �
Zakarya and Gillam (2019a) � � � � � �
FillUp@LS � � � � � � �
FollowMe@LS � � � � � � � � �
Fig. 10. Memory usage (%) with respect to increasing the total number of hosts and VMs.
– migrating only for the lowest costs i.e. ‘‘FollowMe@Location’’
or migrating to only renewable energy sources i.e. ‘‘Fol-
lowMe@Source’’ result in a trade-off among energy con-
sumption, workload performance, and users’ cost;

– migrating workloads using the proposed ‘‘FollowMe@LS’’
policy reduces approximately 23.89% energy consumption,
and ∼19.66% users’ costs while increasing ∼1.58% work-
load’s performance, compared to the ‘‘no migration’’ ap-
proach; and

– resource management policies produces different outcomes
which are strongly dependent on the workload type and
how these workloads uses the IaaS resources.
16
Results validity: As demonstrated in our previous studies (Za-
karya and Gillam, 2017a, 2019b), the developed version of the
classical CloudSim simulator can produce approximately 98.63%–
98.99% accurate and precise results as compared to a real IaaS pri-
vate cloud. The accuracy is computed using appropriate statistical
validation and verification approaches. The extended version of
the CloudSim simulator which was used in our experimentation
i.e. PerficientCloudSim was recently published in Zakarya et al.
(2020); and is publicly available online at the GitHub repository.
With this accuracy, it means that approximately ±1.01%–±1.37%
error is expected in our simulated outcomes. With this accuracy,
we can easily compute the expected errors in energy or per-
formance efficiencies of various resource management policies.
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or example, the resource management policy ‘‘FollowMe@LS’’,
hich is suggested approximately 23.89% more energy, 19.66%
ost effective, and 1.58% more performance efficient than the
‘no migration’’ technique, could potentially save approximately
3.89 [±0.24% to±0.33%] more energy, 19.66 [±0.12% to±0.27%]
sers’ costs, and is ∼1.58 [±0.016% to ±0.022%] more perfor-
ance efficient than the ‘‘no migration’’ approach. Note that, the
0.24–±0.33, ±0.12–±0.27, and ±0.016–±0.022 are approxi-
ately 1.01% and 1.37% of 23.89, 19.66, and 1.58, respectively.

imitations: The above model has two shortcomings. (I) Cloud
atacenters run heterogeneous applications with diverse resource
sage, including not only the CPU, but also the memory, the disk,
nd the network. Those subsystems apart from the processor
ave been also reported making up a noticeable part of the
otal power consumption depending on the workload (Bircher
nd John, 2012). In order to avoid models that are specific for
PU-intensive applications, the impact on the power consump-
ion of the rest of subsystems should be also considered. (II)
oreover, the VM CPU utilization is used to characterize the
M workload and to correlate the processor usage with the
ower consumption. However, the utilization is not the best
ndicator of the processor usage regarding its correlation with en-
rgy consumption, because applications with the same utilization
an have different processor energy consumption depending on
hat instructions they are executing, as reported by Kansal et al.
2010).

We are aware of few issues with the proposed framework.
irst, when more and more VMs interact with the proposed
cheduler and/or the consolidator then, due to delay in com-
unication or network congestion, the system response might
ecome slow. Slower response will essentially affect the system
erformance with respect to time and which may, subsequently,
ffect energy consumption, and users’ costs. This issue is more
ikely to arise with increase in number of VMs. Secondly, the data
aintained on each cluster node is a burden on it that keeps on
aintaining and calculating statistical information regarding re-
ource consumption, in addition, to performing its necessary task
f job execution. Further, it also needs to update its information
ith the data server e.g. network area storage (NAS). Imagine
undreds or thousands of cluster nodes which are updating their
nformation on NAS servers, periodically, which will itself gen-
rate a lot of traffic and, therefore, burden on the datacenter
etwork. Further research is needed to account for these impor-
ant issues. Besides these, in the United States the energy prices
ay vary with respect to usage and peak times. This research

s limited to static energy prices in four different regions, as
hown in Table 1. Further research and investigation is needed
hen these prices vary across different regions using an hourly
r other unknown usage time periods (day and night). A study
f robust deep learning based prediction techniques might be
seful to estimate the migration and runtimes of workloads; and
he heterogeneity of resources which can ensure workload inde-
endent energy, performance, and cost (EPC) aware resource/VM
llocation and consolidation in IaaS clouds. Besides these, several
ther limitations of current work and further discussion around
uture research are presented in Section 7.

. Related work

There is a huge amount of research going around to improve
nergy efficiency and performance for datacenters within the
loud research community. Energy efficiency for a datacenter
an be achieved using a three level optimization i.e., software,
ardware, and intermediate level, respectively (Zakarya, 2018a).
he primary two methods used earlier for energy efficiency are
M consolidation (Ferreto et al., 2011) and Dynamic Voltage
17
Frequency Scaling (DVFS) (Zakarya and Gillam, 2017a). More and
more approaches have incorporated these two approaches in a
dominant and significant way. Though, the drawback of these
methods discuss that they are not good in situations when data-
centers are overloaded. In overloaded datacenter scenarios, they
do not function as required to improve energy and performance
efficiencies due to the fact that an idle server still consumes 60%
of the peak power consumption (Deng et al., 2014). Therefore, the
saving made by CPU level approaches are far minimum than that
of server level (Zakarya and Gillam, 2017b).

The resource management of multi-cloud infrastructure, geo-
graphically distributed, is discussed in many approaches in earlier
works. A geographical-based load-balancing approach presented
by Liu et al. (2012) uses renewable energy which helps to reduce
the use of brown energy. An infrastructure presented by Toosi
et al. (2017) tries to balance web based application loads across
multiple datacenters where renewable energy is available and
aims to reduce overall cost of the electricity. A method for energy
and workload management is presented by Chen et al. (2016)
where aim is to reduce energy and operational costs of the net-
work. Another method presented by Adnan et al. (2012) focuses
on dynamic workloads’ deferral method targeted for multi-cloud
enabling dynamic electricity prices at various locations as well
as workload deadlines. A workload based scheduling method
proposed by Neglia et al. (2016) discusses Markov chains to
communicate workloads and renewable energy across geographi-
cally placed datacenters. These works presented targets to reduce
the overall electricity costs but there is no consideration given
to carbon footprints. Moreover, performance is not taken into
account. The work presented by us, in this paper, focuses to take
advantage of various scheduling and consolidation methods to
increase energy efficiency, workload performance, decrease user
costs etc.

In VM consolidation, the main aim is to consolidate VMs to
fewer hosts in context to resource utilization and energy con-
sumption — reduce energy consumption through increasing the
utilization levels of fewer hosts. This allows more active hosts
to run on low power and data is migrated from one host to an-
other host. VM consolidation based OpenStack method proposed
by Beloglazov and Buyya (2015) discusses energy efficiency. The
approach saves power while the QoS is intact, where multiple
heuristics are implemented based on VM consolidation. A com-
bination of DVFS and VM consolidation based energy efficient
cloud orchestrator is presented by Rossi et al. (2017). It allows
to enhance the balance between power savage and application’s
performance. A real time simulation show significant savage of
energy usage is observed by the presented orchestrator with
slight amount of additional cost. Through application of VM con-
solidation for energy efficiency, a balance between migration
time and energy usage specifically for datacenters placed in geo-
graphically distributed locations is achieved. A VM consolidation
based work presented by Nguyen et al. (2017) discusses usage of
multiple prediction based on local heuristics in order to enhance
cloud datacenter’s energy efficiency.

In current scenario, main focus and prediction is on resource
utilization in order to figure out optimal place for VM consol-
idation to highlight under loaded or over loaded hosts within
the datacenter. For distributed cloud infrastructure, a workload
based migration and placement method is proposed by Cheng
et al. (2014). It focuses on renewable energy availability while to
improve performance of the datacenters within the distributed
clouds. As compared with the work presented by us, it is only
focused on batch workload and there is no attention provided
towards carbon footprints. Cloud’s resource usage and reduction
in energy consumption for the datacenters can also be achieved
through Graphics processing units (GPUs) (Silla et al., 2016).
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n approach to analyse cluster equipped grouped together with
irtual GPUs at remote stations by Iserte et al. (2016) show that
se of GPUs helps to enhance resource usage and makes sure
hat energy constraints are met. The usage of GPUs in finance
ased application is presented by Varghese et al. (2015) which
how that application’s efficiency is obtained by using GPUs.
espite the work presented, our aim is to consider workloads
istributed across the datacenters geographically placed at differ-
nt time zones. The VM placement and consolidation mechanisms
hown in our work are easily applicable over such heterogeneous
nfrastructures.

There is a significant research available where energy usage
nd carbon footprints are considered for datacenters within the
loud. A VM placement method by Khosravi et al. (2017) discusses
nergy reduction and carbon costs for datacenters placed geo-
raphically but with the limitation that all the locations are re-
iding within the same country. A carbon footprint management
pproach by Doyle et al. (2013) discusses only load balancing but
onsideration over renewable energy is not focused. The Parasol
nd GreenSwitch scheme proposed by Goiri et al. (2013) takes
prototype system where dynamic scheduling is enabled for
orkloads and different energy sources are selected. Not like
he work presented in Xu and Buyya (2020), this work also
onsiders servers at the same location. In comparison to existing
ork presented, the approach in Xu and Buyya (2020), gives
orkload shifting in order to schedule workloads across various
atacenters. The main objective of their work is to minimize
verall carbon footprint as well as making sure that the average
esponse time of the requests is intact. Along with these, their
bjective is also focused on geographically placed datacenters at
ifferent time zones having various carbon concentrations as well
s renewable energy availability.
In Sheme et al. (2016), a new scheduling method for energy

ources is formulated to enhance usage of renewable energy, and
hen considers reducing energy obtained from conventional grid
nd battery backup. The dynamic method encompasses to use
rid power covering energy. The main advantage of this method
s that it is evidently realistic to ponder supply of energy to
datacenter from the grid, though it has limitation to imple-
ent dynamic power. On contrary, it is also tried to optimize
sage of battery by boosting low capacity of the batteries. The
iven algorithm gives high efficiency in case of renewable energy
eing efficiently and exhaustedly exploited by using workload
cheduling. Furthermore, Liu et al. (2012) integrates workload
anagement for datacenters by taking gains of efficiency made
vailable by changing demand which exploits variations in time
or electricity’s price, renewable energy availability, and efficient
ooling. There are two phases in the design i-e, first important
eature is integrating three main silos of datacenters: IT, power
nd cooling. Secondly, a mix of theory, modelling, and implemen-
ation. The core of the design is focused on optimizing cost solved
hrough workload management. The method depicts reduction
f grid electricity consumption by approximately 60% having no
mpact over the quality of service provided by the applications.

All these works have relatively ignored the performance as-
ect of the datacenters’ resources while moving or delaying work-
oads for later execution. Moreover, the impact of scheduling
olicies on datacenters’ costs is relatively unexplored in the dis-
ussed literature. For example, in Toosi et al. (2017), the focus
s on using renewable energy as a main source of energy for
atacenters. It helps to reduce energy costs of brown energy but
rings out challenges due to issues of highly discontinuous and
nstable condition of wind and solar energy. Similarly, in Chen
t al. (2016), the focus is on reduction of overall system en-
rgy cost of the system but it does not take into account the

eographical location and time zones with respect to different t

18
electricity prices. Furthermore, in Adnan et al. (2012), a load
balancing approach is implemented so that the energy cost is
reduced using different time zones and locations for electricity
prices using deferral method; but, it creates user dissatisfaction
over dynamic price changes. In Neglia et al. (2016), a mean field
method for load balancing among micro datacenters is used using
renewable energy; but, it does not cover other sources of energy
and their costs. Similarly, in Rossi et al. (2017), a DVFS-based
VM consolidation approach is used for utilization of performance
in order to reduce energy usage; however, in this approach re-
sources are still underutilized. Table 9 describes summary of the
related work. We believe, information in this table will help our
readers to quickly identify gaps for further research, investigation
and improvement.

7. Conclusions and future work

In this paper, we considered electricity sources and prices
while provisioning the most economical resources to execute
various applications and workloads in geographically distributed,
heterogeneous, cloud datacenters. Furthermore, we assumed that
various clusters are fuelled with different energy sources like
coal, renewables; and the electricity prices offered at different
locations vary with respect to time of the day and location to lo-
cation. We proposed a placement approach ‘‘FillUp@LS’’ that puts
workloads onto appropriate resources given the energy prices
and energy, performance, cost efficiencies of the geographical
clusters. Furthermore, we proposed three variants of the migra-
tion policy i.e. ‘‘FollowMe@Location’’, ‘‘FollowMe@Source’’, and
‘‘FollowMe@LS’’ that migrate workloads based on either energy
prices, datacenter PUE, and both, respectively. Experimental re-
sults, using real workload traces, electricity prices, show ∼15.26%
energy savings, ∼0.53%–∼19.66% reductions in service monetary
osts, and ∼1.58% improvements in applications’ performance,
gainst the FF heuristic algorithm. The estimated error in our
esults, due to simplification and simulation models, is suggested
o be ±1.01% to ±1.37% (Zakarya et al., 2020). Furthermore,
e observed that various applications and workloads may per-

orm quite differently, due to heterogeneity of IaaS resources,
nergy sources, and prices; therefore, leading to variations in
osts, revenues and energy consumptions.
We believe, the topic investigated in this research further

uggests investigation and deep analysis of public cloud work-
oads that are significantly different from private clusters and
istributed platforms (Feitelson, 2015). This is essential to justify
he ideas of: (i) delaying workloads for the availability of the
enewables; and (ii) shifting and migrating them to appropriate
ocations so that energy efficiency along with performance gains
nd higher profit can be obtained. In respect of (i), workloads
aving strict deadlines, and/or need quick response times (real-
ime applications or cloud services) cannot be delayed. However,
atch processing of certain applications could be delayed and
cheduled to run at later times; which might be beneficial with
espect to energy consumption, providers revenue, user’s costs,
nd ecological impacts. In respect of (ii), migration of workloads
hould account for certain aspects such as user’s location, mobil-
ty, impact on the workloads’ performance and, most importantly,
he energy savings and providers’ revenue achievable through mi-
rating them while accounting for their migration costs (Zakarya
t al., 2020). Besides workloads classification and prediction, dif-
erent approaches to design workloads placement policies, sched-
lers, and consolidators, such as single (centralized) and multiple
distributed and/or hierarchical — decentralized), also need fur-
her investigation for energy, performance, and cost efficiencies
n large-scale heterogeneous cluster environments.

Characterizing workloads will also need significant efforts over
he prediction mechanisms. However, a prediction system might
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uffer from at least one, and occasionally all, of the several issues
ncluding: (i) the need of considerable amount of memory and
omplex data structures to store the history of users’ jobs; (ii)
he need of a complex prediction approach; and (iii) significant
omputational and storage (storage area network) overheads for
aintaining the jobs history; and searching it for exact match
nd reaching an appropriate placement decision. However, Tsafrir
t al. (2007) demonstrated that a very simple predictor can do
n excellent job. For example, their outcomes obtained through
esigning a very simple prediction algorithm — the average run-
ime of the two most recently submitted (and terminated) jobs
y the same user; which is easy to implement and almost costs
o computational or storage overheads. The findings suggest that
he predictor’s successful capability is due to the fact that it only
ocuses on recent jobs (requiring less memory and storage capac-
ty), in contrast to the previously proposed prediction methods
hat have largely focused on similarity in terms of job numerous
haracteristics such as runtimes, resource requirements, submit-
ing users, workload types, and resource usage (Cortez et al.,
017; Calheiros et al., 2015; Tumanov et al., 2016; Amvrosiadis
t al., 2017). In the future, machine learning based prediction
echniques can be integrated with our proposal to trigger appro-
riate energy, performance, and cost effective workload place-
ent, resource allocation and migration decisions. Finally, more
ccurate and reasonable models for energy consumption, migra-
ions costs, performance loss (in particular co-located VMs that
ompete for similar resources) should be considered for further
esearch and investigation.
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