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ABSTRACT
Cloud elasticity provides the underlying primitives to dy-
namically acquire and release shared computational resources
on demand. Therefore, elasticity constantly takes adapta-
tion decisions to adjust the resource provisioning constrained
by quality of service and operating costs minimization. How-
ever, dynamic trade-offs for resource provisioning rarely con-
sider the value of the adaptation decisions under uncertainty.
Part of the problem stems from the lack of a utility-driven
model to reason about it. In this paper, we introduce the
concept of elasticity debt as an approach to reason about
elasticity decisions from a utility-driven perspective, where
we apply the technical debt metaphor in the context of cloud
elasticity. Moreover, we extended CloudSim as a proof of
concept to show that a debt-aware elasticity decision-making
can achieve a higher utility over time. We provide an elas-
ticity conceptual model that links the key factors to consider
when adapting resource provisioning and the potential debts
incurred by these decisions. We propose a new perspective
to value elasticity decisions in the uncertain cloud environ-
ment by introducing a technical debt perspective.

CCS Concepts
•Mathematics of computing→Approximation; •Networks
→ Cloud computing; •Computer systems organiza-
tion→Cloud computing; •Software and its engineer-
ing → Cloud computing;
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1. INTRODUCTION
Elasticity is a fundamental characteristic of cloud com-

puting aimed at an autonomous and timely provisioning and
releasing of shared resources in response to variation in de-
mands dynamically with time [39]. It promotes the advan-
tage of economies of scale [44] in the cloud, contributing a
drop in average computing resource cost [7]. Managing elas-
ticity calls for effective and efficient resource provisioning,
which is constrained by a trade-off between cost and qual-
ity of service. However, the trade-off can be judged from
different perspectives depending on its stakeholders: From
one side, a cloud customer aims to achieve an expected qual-
ity of service while minimizing operating costs for their de-
ployed services or applications, for example, by means of a
fine-grained pricing scheme [30]. On the other side, a cloud
provider intends to reduce their costs, for instance, by an ef-
ficient resource sharing and minimizing energy consumption
[14] of their infrastructure. These opposite perspectives tend
to contradict each other; for instance, the quality of service
required by the customer can be affected by resource con-
tention [32, 21] as a consequence of an interference between
services from different customers sharing the same resource.

Elasticity management can be realized as a self-adaptive
process [28, 21] that should autonomously match resource
supply with demand at any time avoiding under- and over-
provisioning states. The former can degrade the quality of
service and the latter can incur unnecessary costs. Neverthe-
less, provisioning for resources and consequent adaptations
must deal with uncertainty coming from different sources
such as workload variations, dynamic changes in quality of
service attributes (e.g. security, availability, performance)
and resources’ failures, whether they are physical or virtual.
As a consequence, if trade-off between elasticity constraints
in these decisions is not properly valued, it can accumulate
a waste of resources over the service lifetime threatening the
sustainability of the solution.



The novel contribution of this paper is a conceptual model
for elasticity and an economics-driven approach to reason
about elasticity decisions. The elasticity conceptual model
interconnects elasticity determinants (e.g. pricing scheme,
billing cycle, resource bundles granularity, spin-up time),
sources of uncertainty, conflicting elasticity constraints and
stakeholders to facilitate a systematic evaluation of elastic
adaptation decisions and their effects on elasticity. The
economics-driven approach uses technical debt analysis to
support elasticity management. In its original context, tech-
nical debt was introduced in [13] as a way to express a trade-
off between short-term benefits in taking immature, poor
and quick engineering decisions, that are suboptimal for
long-term value creation, at the cost of compromising long-
term objectives [41, 31]. Correspondingly, any additional
effort incurred in future developments as a consequence of
these decisions accounts as an interest on the debt. Simi-
larly, we argue that each resource adaptation in cloud elas-
ticity management may lead to debt (e.g. in the form of an
under- or over-provisioning state) as a result of short-term
decisions, an inadequate trade-off for an adaptation decision
under uncertainty, or due to a changing external condition
which makes the adaptation inappropriate in retrospect, and
we will refer to it as an elasticity debt.

Although, the original technical debt metaphor has been
expanded to other economics-driven topics such as software
architecture, cloud service selection, software testing, sus-
tainability design and software requirements [33]; to the best
of our knowledge, we are the first to introduce technical debt
in the context of cloud elasticity.

The remainder of this paper is structured as follows. In
sections II and III, we discuss the requirements for modelling
elasticity and we contribute to a conceptual model that sys-
tematically models and addresses elasticity debts. Section
IV evaluates our approach by means of a proof of concept
that extends CloudSim [11]. We use an illustrative scenario
to show the impact of factoring debt analysis in the elasticity
management process. Thereafter, we review related work in
section V. Finally, section VI presents our conclusions and
directions for future work.

2. AN ELASTICITY CONCEPTUAL MODEL

2.1 Elasticity Determinants
Elasticity is the enabler in cloud computing to support a

dynamic resource allocation on demand, which avoids over-
provisioning in the case of acquiring a fixed computing ca-
pacity in advance [20]. Cloud is essentially a utility-based
model, which is highly motivated by economies of scale, we
argue that elasticity should have economics-driven and debt-
aware adaptations in the heart of the elasticity management
process. This drives the need for evaluating elasticity re-
source management constrained by Quality of Service (QoS)
and operating cost.

The work in [28] describes elasticity as an adaptive pro-
cess and identifies two key aspects: accuracy, which is given
by the precision at scaling, and timing, which is the speed
at scaling outward or inward. Unlike scalability, which is
only a requirement to achieve elasticity, elasticity is also
concerned with the precision and dynamism at supplying
resources to match the demand [27]. However, the over-
and under-provisioning of these resources can imply a debt
in the process.

A prerequisite for dynamically identifying, tracking, valu-
ing and consequently managing debts in elasticity decisions
is an understanding of each of the elasticity determinants:

• Elasticity level refers to the layer where elasticity ac-
tions are adopted: application, infrastructure or plat-
form level [19]. An example of the application elastic-
ity level is [24]. This work manages elasticity at the
algorithm level, making the application aware of bud-
get availability or time constraints to produce different
outcomes accordingly. However, this is only applicable
in a limited scope where consumers would accept ap-
proximate outputs (e.g. data mining, multimedia ap-
plications). Infrastructure as a Service (IaaS) Amazon
EC2 [5] is an example of the infrastructure elasticity
level. It provides both an API and a mechanism named
Auto Scaling to define threshold-based rules to launch
or release a set of virtual machines (VMs) depend-
ing on conditions configured in terms of resource met-
rics whose values are delivered by a monitoring service
called CloudWatch. Finally, in the platform elasticity
level, the container or execution environment from a
Platform as a Service (PaaS) cloud supplies an embed-
ded controller for applications built and deployed on
these platforms [20, 45].

• Elasticity policy is defined by [19] as the interac-
tions required to perform resource provisioning; the
policy can be classified as manual or automatic. In
manual policy, the customer is responsible for moni-
toring and carrying out resource adaptations through
an API. On the other hand, in automatic policy, mon-
itoring and elastic adaptations are performed by the
application itself or by the cloud platform according
to a reactive, proactive or hybrid approach. A reac-
tive approach usually consists of threshold-based rules
which take actions depending on metric values (e.g.,
[25, 5]). On the contrary, a proactive approach aims
to predict resource demand to supply resources in ad-
vance by means of workload forecasting mechanisms
(e.g., [2, 26]). Hybrid approaches are ways to blend a
reactive with a proactive one; for example, the works
in [1, 29]. The former work shows nine different com-
binations to build a hybrid elasticity policy. Its results
reveal that the most efficient of those combinations is
a reactive controller to grow in resources with a proac-
tive one to shrink them back. In any approach, an
appropriate elasticity policy should cope with sudden
instability of resource demand to avoid resource thrash-
ing [15, 14], which is the consequence of unnecessary
opposite resource adaptation on presence of quick fluc-
tuations in the demand leading to degrade elasticity
in terms of cost and quality. From the existing alter-
natives to minimize this aftermath [14, 36], the most
common is to define a cooldown period during which
new elastic adaptations are avoided.

• Elasticity methods are the deployment mechanisms
to provision or remove resources and according to [19]
can be categorized as replication, migration and re-
sizing. Replication or horizontal scaling is given by
adding or releasing VMs, containers or modules. Re-
sizing or vertical scaling consists in adding individual
capacities such as a single CPU to a running VM; how-
ever, is not addressed by most of cloud providers [14].



Migration consists in reallocating a VM from one phys-
ical machine to another intended to consolidate VMs
or to simulate resizing.

• Computing resource granularity is defined by the
bundles at which a fixed combination of capacities (e.g.
processing, memory, storage, networking / data trans-
fer) are restricted for acquisition of individual needs.
Some providers such as Google Compute Engine al-
lows to define custom machine types; however, they
take longer the first time are launched [43]. Another
issue to consider is how bundles’ capacities and pricing
are related, because their relation is not always linear
[42, 37]. Hence, overall cost is also determined by the
dynamic bundle selection over service lifetime.

• Spin-up time accounts for the delay between the time
a customer requests a resource until it is effectively
ready to be used. For some providers, experimental
evidence shows that spin-up time might take up to 10
minutes [9, 32] and it depends on several factors such
as cloud layer (IaaS or PaaS), type of operating sys-
tem, number of requested VMs, VM size and resource
availability in the region [20, 38]. Besides the spin-up
time, a dynamic resource provisioning can be affected
by the quota imposed by cloud providers to limit the
number of resource instances that can be acquired by
a customer in a single request [20], which might be
insufficient during a sustained fast growth or for high
performance applications.

• Resource pricing schemes are classified by [30] as:
pay-as-you-go, subscription and spot market. Pay-as-
you-go consists in a fixed price per billing cycle. For
example, Amazon EC2 offers an hour-based billing;
Google Compute Engine [22], a minute-based billing
but with a minimum charge of 10 minutes at launching
new VMs; or CloudSigma [12], a 5 minute-based billing
cycle. The length of the billing cycle may lead to a
partial usage waste [30], which is the extra time paid
for a released resource due to the billing cycle granular-
ity. Hence, a customer needs to analyse an appropriate
pricing scheme depending on workload pattern, volume
and type of job [43]. On the other hand, a provider
considers maintenance costs such as those at starting
or shutting down a VM and additional overheads re-
lated to a fine-grained pricing [30]. Subscription tends
to be deterministic as far as price is concerned. In case
the choice is informed by a deterministic projection for
the demand, the model can render a cheaper option.
However, subscription is not elastic because customers
subscribe beforehand for resources for a definite pe-
riod of time and the model might not be optimal if
the level of demand fluctuates, which is often the case
on open and multi-tenant environments such as cloud.
Nonetheless, it may be combined with a pay-as-you-
go scheme to handle the minimum expected amount
of jobs and reduce overall costs. Spot market can be
the cheapest alternative in some scenarios, where users
can bid for resources and get available resources when
their offers are higher than the spot price. However,
this scheme is only suitable for flexible jobs that are
not time critical and can cope with interruptions be-
cause these spot or preemptible instances [5, 22] are

terminated when the spot price exceeds the offer.

• Workload refers to the workload type (e.g. batch,
transactional, analytical, high-performance) and work-
load intensity behaviour, which is given by the pattern
(e.g. periodical, unpredictable) and volume of requests
arrival rates over time.

2.2 Elasticity Constraints
We view cloud elasticity as a resource provisioning driven

by its determinants but constrained by a trade-off between
conforming an expected quality of service, specified in a
service level agreement (SLA), and minimizing operating
costs. Therefore, elasticity performance should be evalu-
ated in terms of both quality and costs as proxies for under-
and over-provisioning states, respectively. These conflicting
constraints are dynamically adjusted from the different per-
spectives of elasticity stakeholders (i.e. cloud provider and
cloud customer) and may contribute with a degree of uncer-
tainty in the environment by triggering sudden adaptations
to adjust resource provisioning in the cloud. For example, a
cloud provider, such as an IaaS provider, may cause resource
contention at making services dynamically share resources
as an attempt to minimize his operating costs; or a cloud
customer, such as a Software as a Service (SaaS) provider,
may also introduce uncertainty while dynamically adjusting
parameters for his quality of service attributes.

3. ELASTICITY DEBT

3.1 Technical Debt on Elasticity
Technical debt makes an analogy between releasing sub-

optimal software and going into a financial debt [23]. This
metaphor is used to describe trade-offs from expedient short-
term solutions that could deliver immediate gains, which
compromise long-term benefits that can relate to software
maintenance and evolution [31]. Similar to a debt in finance,
a technical debt can unfold opportunities if taken strategi-
cally, in which case is called intentional [10]. On the other
hand, an unintentional technical debt is a consequence of
inappropriate engineering decisions. In any case, if a de-
cision is not appropriately valued to deal with uncertainty,
its results may overcome their benefits. Hence, this requires
a reasoned decision-making that identifies the debt and its
sources, measure and manage it for value creation [3, 41]
in an attempt to avoid accumulating unnecessary technical
debt.

Similar to investments, the value of a technical debt can
be positive if it is intended to create value (e.g. adapting
decisions for imminent scenarios) or negative if it is taken to
reduce unwanted effects of previous decisions (e.g. adapta-
tion decisions for attenuating undesired consequences) [31].

Technical debt management in iterative development pro-
cess aims to achieve cost-effective, timely and quality soft-
ware [17], where each iteration gives the chance to opti-
mize for technical debt by either confining the negative debt
and/or taking positive debts. The strategy for reducing a
negative debt or taking a positive one essentially depends
not only on adopted strategy and correctness of decisions
under uncertainty but also on environmental changes such as
appearance of better technologies, new regulations, change
of critical business rules or rapid growth in the market, which
make these decisions appear as suboptimal retrospectively



Figure 1: A conceptual model of elasticity debt

[31, 10] and unsuitable for required adaptation and evo-
lution. Given the metaphor effectiveness to communicate
trade-offs by means of an economic valuation of decisions,
it has been widely applied in other software engineering dis-
ciplines [33, 8, 35, 3] such as software architecture, sustain-
ability design, software requirements, cloud service selection,
software documentation and testing.

Unlike traditional approaches for managing technical debt
in software engineering, we look at elasticity debts from a
runtime perspective. Specifically, we argue that elasticity
debt originates from suboptimal self-adaptive and manag-
ing decisions of elasticity. We attribute the debt to ill-
adaptations under a dynamic and uncertain context that
might affect the utility of the system. It can be also influ-
enced by the way we handle trade-offs, conflicting perspec-
tives and constraints. Additionally, as cloud computing is
highly motivated by economies of scale and elasticity is the
enabler for this property, we advocate that resource adap-
tation decisions should be valued from an economics-driven
approach that considers the trade-offs of compromising long-
term benefits for short-term gains when adapting resource
provisioning. In line with this, we posit that technical debt
should not be undermined when managing elasticity as it
can uncover hidden liabilities hurting the utility of the sys-
tem that if well managed it can be transformed into value.
The use of the metaphor can be effective in managing cloud
elasticity and valuing its adaptation decisions under uncer-
tainty by means of preventing debt or making debts visible.

We define elasticity debt as the valuation gap between an
elastic adaptation decision and the optimal one. In case of
a strategic debt, the decision that appears to be suboptimal
in the current context aims to create the conditions to bet-

ter handle imminent cloud environmental changes or reduce
negative effects of the previous adaptation; and consequently
yield a higher utility when considerations take place. How-
ever, in case of an unintentional debt, the decision is inap-
propriate with ill consideration for elasticity determinants
or uncertainty in the environment.

For example, an elastic adaptation decision can take a pos-
itive debt, remaining slightly under-provisioned for a short
period of time, to avoid a number of undesired adaptations;
and thus to escape from thrashing and partial usage waste;
even though this decision affects the quality of service but
does not exceed the overall threshold specified in the SLA.
Another example can be a scenario where a negative debt
is taken to only partially reduce an over-provisioning pro-
duced by the previous adaptation because it is expected a
potential increase in resource demand.

Our conceptual model, depicted in figure 1, shows that
elasticity is driven by its determinants but constrained by
quality of service and operating cost as configured according
to the stakeholder perspective. Additionally, it shows that
elastic adaptation decisions can be influenced by uncertain-
ties that can come from multiple sources, such as: work-
load variations that deviate from expected patterns; unex-
pected resource failure; changes that relate to elasticity con-
straints, and/or QoS requirements. These can consequently
lead to resource contention, partial usage waste, under- or
over-provisioning. Therefore, we argue that valuing the util-
ity of these decisions can assist in predicting the debt they
imply on the system and its management through either
reactive, proactive or retrospective reasoning to avoid a dy-
namic accumulation of debt. The conceptual model and its
instantiation can make the debt related to elasticity explicit.



For example, the instantiation can help a decision-making
process to design algorithms that can better cope with the
dynamic demands in uncertain cloud environments to reduce
unnecessary adaptations or eliminating waste of resources.

3.2 Debt-aware approach
Our approach values elasticity debts introduced by each

adaptation decision. The valuation keeps a control on the
accumulated debts over time and their influence on the ag-
gregate utility. Adopting the aggregate utility function de-
fined in [40], we view that the overall satisfaction of a cloud
customer c, e.g. a SaaS provider, at executing a workload
w, composed of incoming requests, in an IaaS provider in-
frastructure is determined by 1:

Uc(w) = Re(x)∗xs−Pe(x)∗xf−
N∑
i=1

Cost(vmi)

∫ L

0

mi(t)dt,

(1)
where Re(x) and Pe(x) functions return the revenues and

penalties per request, respectively; xs and xf represent the
number of successful and failed requests, respectively, from
workload w with respect to defined in the SLA; and Cost(vmi)
function returns the cost of each of the N virtual machine
types corresponding to their mi launched instances over
the execution time. Based on this, every elasticity deci-
sion should be valued in terms of its support to a utility
maximization over time by minimizing penalties, i.e. meet-
ing quality expectations, and reducing operating costs, i.e.
provisioning a resource configuration that match expected
demand as close as possible.

To illustrate our approach, we build on the work of [18],
in which a scaling decision is taken based on the zone at
which the value of a monitored performance metric is lo-
cated, namely a black zone, where the decision is based
on performance valuations; gray zone, where the decision
is taken depending on economic valuations; and white zone,
where no scaling decision is considered. Likewise, as we can
see in figure 2, we have divided the decision space of a perfor-
mance metric in three kind of areas: (i) an upper and lower
reactive areas, where a quick decision is taken with a reac-
tive approach to avoid incurring in SLA violations or waste
of resources, respectively; (ii) an upper and lower debt-aware
areas, where a proactive adaptation is evaluated by reason-
ing with a technical debt approach; and (iii) a third zone,
where no resource adaptation is necessary.

In debt-aware areas, before proceeding with a decision dec
to adapt a resource configuration that satisfies a demand
of resources dem, determined by incoming requests, each
alternative is valued in terms of the utility per request that
it may yield according to the function in 2:

V alue(dec, dem) = Re(x)− Pe(x)− ResCost(dec)

dem
, (2)

where the first two terms, Re(x) and Pe(x), are the func-
tions described in function 1, and the last term is the average
cost per requests as a result of dividing the cost of the re-
source provisioning configuration at adopting decision dec,
obtained from ResCost(dec), by the demand.

As we depict in algorithm 1, potential elastic adaptation
decisions to adjust resource provisioning in debt-aware ar-
eas are evaluated based on the estimated utility they may
achieve when handling the expected resource demand, within

Figure 2: Debt-aware areas for elasticity decisions

the next monitoring period, by means of function 2. In case
the most valuable of these alternatives is likely to yield more
value with its resource provisioning than keeping the current
resource configuration, the decision-making process will go
for that adaptation decision. However, this decision may ap-
pear as sub-optimal if evaluated under the instant demand
and therefore incur a potential elasticity debt. We estimate
this debt by comparing the present value of the current de-
cision and the new one to be adopted, i.e. the utility of
their corresponding resource provisioning to handle the cur-
rent resource demand. There is a debt if the value of the new
adaptation decision is lower than the current one; otherwise,
the decision is considered optimal.

4. EVALUATION
To evaluate our approach, we look at a globally accessed

multi-tenant SaaS survey application, where tenants after
subscribing to the service can design a survey, publish it
and collect its results for analysis. Simultaneously, multi-
ple surveys from different tenants run; depending on the
number of participants attracted, the service workload can
experience a sudden sharp of resource demand that should
be handled by the service infrastructure accordingly. The
service owner is a SaaS provider who processes incoming
HTTP requests, from tenants and participants, on the IaaS
provider infrastructure where the service is deployed. We
instantiate our elasticity conceptual model in figure 3, with
a scenario to represent a snapshot of a decision-making to
adapt a resource provisioning. In particular, the diagram de-
picts a configuration instance of elasticity determinants and
elasticity constraints as specified by the SaaS provider. The
scenario only looks at one quality attribute: performance in
terms of response time per request with a penalty of 100%
of its price in case of SLA violation. In line with this, the
CPU utilization is the metric based on which limits for re-
laxed, debt-aware and reactive limits are defined. In the
instantiation, we illustrate a proactive adaptation triggered
by a workload deviation when the monitored metric value
is in a debt-aware area. This adaptation decides to launch
new VMs incurring debt; the value of this decision is posi-
tive if proactively observed; whereas is negative if observed
reactively.



Algorithm 1 Elasticity debt algorithm

Input: upperDebtLimit, upperRelaxedLimit, // Upper
debt-aware limits

lowerRelaxedLimit, lowerDebtLimit, // Lower
debt-aware limits

currentDemand, expectedDemand // Resource demand
elasticityDebt // Accumulated debt so far

Output: scalingDecision, // Decision whether scale or not
debt // New debt incurred

Initialisation: A ← {scaleIn, scaleOut, noScale}, // set of
possible decisions

debt ← 0,
cpuUtil ← monitorCPU() // current CPU

utilization metric
1: if (cpuUtil > upperDebtLimit) then
2: scalingDecision ← scaleOut
3: else if (cpuUtil < lowerDebtLimit) then
4: scalingDecision ← scaleIn
5: else if (lowerRelaxedLimit ≤ cpuUtil ≤

upperRelaxedLimit) then
6: scalingDecision ← noScale
7: else if (upperRelaxedLimit < cpuUtil ≤ upperDebtLimit

OR lowerDebtLimit ≤ cpuUtil < lowerRelaxedLimit)
then

8: scalingDecision← argmaxx∈A V alue(x, expectedDemand)
9: if (scalingDecision 6= noScale) then

10: adaptationValue ← Value(scalingDecision, currentDe-
mand)

11: stayValue ← Value(noScale, currentDemand)
12: debt ← max(stayValue - adaptationValue, 0)
13: elasticityDebt ← elasticityDebt + debt
14: end if
15: end if

4.1 Experiment Setup
We developed a simulation tool by extending CloudSim

[11], a cloud simulation framework for cloud services and in-
frastructures, and its set of extensions available in CloudSimEx
project 1. In addition to the core functionality, we imple-
mented a load balancing mechanism and horizontal scaling
depending on automatic elasticity policies. Specifically, we
implemented two elasticity policies: (i) the proposed hybrid
elasticity policy with three decision areas and a debt-aware
decision valuation; and (ii) an entirely reactive elasticity pol-
icy. Our objective is to compare the aggregate utility they
can achieve.

For experimentation purposes, our SaaS survey applica-
tion will handle a workload that represents the arrival rate
of requests over time, as shown in figure 4. This work-
load corresponds to the 1998 World Cup website trace [6]
but scaled to last 72 minutes and to demand a controllable
amount of resources. We transformed the original workload
file into the Standard Workload Format to make it com-
patible with CloudSim. The simulation is simplified by as-
suming that a resource demand of a request, expressed in
millions of instructions per second (MIPS), is handled en-
tirely by instances of application servers, i.e. we are adapt-
ing the resource provisioning by launching or releasing in-
stances of application servers depending on their available
processing capacity in terms of MIPS. Using CloudSimEx,
we are calculating the infrastructure costs simulating the
pricing scheme of an n1-standard-1 machine type available
from Google Compute Engine in the US.

We ran a simulation with the reactive approach. Then, we

1https://github.com/Cloudslab/CloudSimEx

Figure 3: An instantiation of the conceptual model

compared its results with those obtained by the hybrid ap-
proach using the simulation parameters specified in table 1.
For simplicity, we used extrapolation with the least squares
method for workload prediction in the debt-aware area.

We carried out the experiments on a laptop running Win-
dows 10x64 operating system with 16GB RAM and Intel
Core i7-4500U CPU at 1.8GHz. The simulation for the re-
active and hybrid approaches took approximately 2 and 8
minutes, respectively.

4.2 Results
Figure 5 depicts the average CPU utilization over time,

VM provisioning over time and accumulated utility over
time for the reactive experiment when it processes the work-
load. We observed that accumulated utility faced three in-
flections at points where elastic adaptations were affecting
the utility. At the end of the execution, this experiment
achieved an aggregate utility of $70.4 with a SLA violation
of 9.5% of all handled requests.

Figure 6 illustrates the average CPU utilization over time,
VM provisioning over time and accumulated utility over
time for the debt-aware hybrid approach when it processes
the workload. It improved the aggregate utility of the pre-
vious experiment by a 3% and reduced the number of SLA
violations by a 7%. As it can be noticed in the accumulated
utility graph, the curve grows more smoothly yielding an
utility of $72.4 with an 8.8% of SLA violations on handled



Figure 4: Request arrival trace

Table 1: Simulation Parameters

Parameter Debt-Aware
Hybrid

Reactive

Upper debt limit 80% –
Upper relaxed limit 70% –
Lower relaxed limit 50% –
Lower debt limit 40% –
Upper threshold – 80%
Lower threshold – 40%
Quality constraint 90% of requests handled under 2.5s
Price per request 0.0015 USD
Penalty per request 200% of its price
n1-standard-1 VM
capacity

100 MIPS

VM cost per hour 0.115 USD

requests.
These results aim at showing that is possible for a SaaS

provider to achieve a higher utility when an elasticity debt
reasoning is incorporated in the elasticity decision-making
process.

4.3 Threats to Validity
Although the simulation can be extended to include more

quality of service attributes, we only considered one at-
tribute: performance. However, real services require adap-
tation based on a trade-off between multiple attributes (e.g.
availability, reliability, security).

Our work extends on CloudSim, a widely used simulation
tool that mimics the cloud environment. The simulation
nature of the work can carry threats to validity as the ex-
periments are not performed in a real cloud. Nevertheless,
the approach is justified: the simulation can better allows us
to carry worst and best case what-if analysis for the debt-
aware approach and can carry various runs that would be
difficult to observe their impact in real settings.

5. RELATED WORK
We created an elasticity conceptual model that relates fac-

tors to consider at valuing elasticity decisions with a debt-
aware approach to measure the potential impact on elas-
ticity performance. Our model was informed by the con-
cepts and requirements for modelling elasticity as described

Figure 5: Results of the reactive simulation

in Suleiman et. al. [43], Galante et. al. [20] and Jin et.
al. [30]. Inspired by the contribution of Li et. al. [34] to
value-oriented decisions in architectural technical debt, we
adopted an UML notation to represent our view of elastic-
ity and their debts. Another effort to understand and relate
elasticity concepts came from Dustdar et. al. [16], they
proposed a conceptual model with a multidimensional view
of elasticity (i.e. resources, cost and quality) with physical
and economic properties. Nonetheless, there is no mapping
to relate all these elasticity concepts. On the contrary, we
posit that elasticity focus on resource provisioning but con-
strained by operating costs and quality. Moreover, we made
a broader compilation of concepts and related them around
potential debts incurred through adaptation decisions.

The technical debt community has applied the metaphor
in different contexts to value software engineering decisions
under uncertainty in areas related to software architecture
[35], cloud service selection [4], software maintenance and
evolution [31] among others. For example, Alzaghoul et.
al. [3] used the metaphor to reveal and quantify debts in-
troduced by a potential service substitution, which may af-
fect the utility of a service composition in a cloud context.
However, different from previous works [33], we are the first
to introduce this metaphor to support decision-making in a
highly dynamic environment such a cloud elasticity and to



Figure 6: Results of debt-aware hybrid simulation

use the metric in runtime adaptive setting.
Fokaefs et. al. [18] presented an economics-driven ap-

proach to scale resources in the cloud; nonetheless, it was
purely reactive and only considered costs in the decision val-
uation to adapt the resource provisioning, excluding quality
considerations in terms of penalties due to SLA violations.
In another effort, Pandey et. al. validated their hybrid
planning approach [40] to support decision-making in self-
adaptive systems by means of an utility-based decision val-
uation. Although this work focused on planning for self-
adaptive systems, its experiments were devised for adapta-
tion scenarios in cloud elasticity, and performed a trade-off
between quick and optimal planning strategies but, differ-
ent from ours, without considering a potential debt incurred
at adopting apparently sub-optimal decisions in uncertain
environments.

6. CONCLUSIONS AND FUTURE WORK
Elasticity motivates the adoption of the cloud comput-

ing model because it enables the benefits from economies of
scale in the cloud. However, even though it is impossible to
achieve a perfect match between resource demand and sup-
ply, current resource provisioning mechanisms are usually
unaware of the value of their decisions when they perform a
resource adaptation, under uncertainty, to satisfy a resource

demand. Therefore, in this paper, we have introduced the
concept of elasticity debt as a new approach to reason about
elastic adaptations and value their decisions in terms of oper-
ating costs, quality and potentially incurred technical debt.
This debt accounts for the valuation gap between an elastic
adaptation decision and the optimal one.

We have presented an elasticity conceptual model based
on a technical debt approach that interconnect elasticity
concepts to show that resource adaptation decisions may
introduce a dynamic technical debt, which over time affects
the overall utility. Moreover, we shown that our approach
promotes a value-oriented perspective for elastic adaptation
decisions whose debt that can be observed reactively, proac-
tively or in retrospective. Our simulation results revealed
that a debt-aware elasticity can achieve a higher utility for
its stakeholder than a classic approach.

In our ongoing research, we will analyse the elasticity debt
from the perspective of an IaaS provider. Furthermore, we
will investigate mechanisms for reconciling customer and
provider perspectives for debt to inform elasticity manage-
ment.
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