
Vol.:(0123456789)

The Journal of Supercomputing (2025) 81:722
https://doi.org/10.1007/s11227-025-07216-8

An elastic reconfiguration strategy for operators
in distributed stream computing systems

Dawei Sun1 · Yinuo Fan1 · Chengjun Guan1 · Jia Rong2 · Shang Gao3 ·
Rajkumar Buyya4

Accepted: 17 March 2025
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2025

Abstract
Low latency and high throughput are crucial for distributed stream computing sys-
tems. Existing operator reconfiguration strategies often have poor performance
under resource-limited and latency-constraint scenarios. The challenge lies in the
elasticity of operator parallelism and reconfiguration of operators that balances per-
formance constraints and performance improvement. To address these issues, we
propose Er-Stream, an elastic reconfiguration strategy for various application sce-
narios. This paper discusses the Er-Stream from the following aspects: (1) We model
task topology as a queuing network to evaluate system latency, and construct a com-
munication cost model to formalize the reconfiguration problem; (2) we proposed an
elastic strategy for operator parallelism to rationally utilize the available resources
and reduce the processing latency of topology; (3) we proposed a reconfiguration
strategy for operators to reduce the communication cost, and set thresholds added to
control its trigger frequency; (4) we design and implement Er-Stream and integrated
it into Apache Storm. We evaluate key metrics such as latency, throughput, resource
usage, and CPU utilization in a real-world distributed stream computing environ-
ment. Results demonstrate significant improvements achieved by Er-Stream. In com-
parison with Storm’s existing strategies, it reduces average system latency by up to
30%, increases average system throughput by 1.89 times, lowers average resource
usage by 26.6%, and increases CPU utilization by 19.8%.

Keywords Operator parallelism · Elastic strategy · Operator reconfiguration ·
Distributed stream computing · Storm

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-025-07216-8&domain=pdf

 D. Sun et al. 722 Page 2 of 31

1 Introduction

1.1 Background and motivation

Distributed stream computing (DSC) systems play an important role in the era
of big data and are applied in a wide range of domains such as the Internet of
Things (IoT) [1], environmental inspection [2], and fraud detection [3]. As the
booming development of DSC systems, various stream computing frameworks
have emerged, such as Apache Storm [4], Apache Samza [5] Apache Flink [6],
Twitter Heron [7], and Apache Spark streaming [8]. Different application sce-
narios generate varied data processing requirements. Some application scenarios
prioritize resource utilization during transaction processing, aiming to process
transactions with minimal resources, such as internal log processing systems
within companies. Conversely, other scenarios demand stringent system latency
to ensure real-time performance even at the cost of higher resource consumption.
These scenarios include urban traffic detection, real-time recommendation, and
business monitoring [9]. Apache Storm, as a mainstream computing framework,
has been widely used in various domains in recent years [10]. Although exist-
ing DSC frameworks perform well in many application scenarios, there is ongo-
ing room for improvement, particularly in optimizing operator parallelism and
configuration.

High throughput and low latency are two crucial metrics to evaluate DSC sys-
tems [11]. Achieving low average resource usage and high CPU utilization are
primary objectives in designing and developing a DSC framework. Before being
processed by a DSC system, a stream application is modeled as a directed acy-
clic graph (DAGs) [12]. The DAG outlines the sub-tasks with data dependencies,
forming what is known as the task topology. Vertices in a DAG denote compu-
tations (operators) [13], while edges denote communication (data dependencies)
between vertices. Once the modeling phase is complete, each DAG is submit-
ted to the DSC platform and scheduled to run on one or more computing nodes.
In DSC systems, existing scheduling strategies usually rely on users configuring
the parallelism of operators for the DAGs. However, user-defined parallelism may
not be optimal for the current operators, potentially resulting in prolonged tuple
processing latency and reduced throughput. In addition, improper configuration
may lead to higher average resource usage and lower CPU utilization during data
processing.

Within the task topology, an operator can run one or more instances, with the
number of instances representing the operator’s parallelism. Dynamically deter-
mining this parallelism for each operator is crucial for enhancing performance
[14, 15]. In recent years, researchers have attempted to adjust operator parallel-
ism based on various parameters such as input and output rates of tuples [16].
Processing latency is a crucial parameter when evaluating DSC systems or frame-
works. Lengthy processing latency degrades the system’s timeliness, signifi-
cantly hampering real-time response. Since each operator’s parallelism may vary,
their impact on processing latency also differs. Therefore, identifying operators

An elastic reconfiguration strategy for operators in… Page 3 of 31 722

requiring parallelism adjustment becomes vital. A practical approach involves
prioritizing operators for parallelism adjustment by assessing each operator’s
impact on average processing latency within the task topology.

As data transmission occurs between upstream and downstream operators,
termed communication, communication cost is inevitable within the system. Usu-
ally, the topology tasks submitted to stream computing system are evenly dis-
tributed across nodes based solely on the total number of instances these tasks
have. This approach overlooks communication, performance, and load disparities
between nodes, making it difficult to fully utilize computing resources and com-
promising overall system performance during operation. In the default configura-
tion, instances run continuously unless explicitly terminated by the user. If the
user wants to change task configurations, they must first terminate the execution
and then reconfigure it, leading to prolonged latency due to the termination and
restart of execution. Studies have shown that the operator placement and sched-
uling problem in DSC systems is NP-hard [17]. Online scheduling strategies
[18–21] serve as a mainstream method for addressing these issues. Among them,
Aniello et al. [20] demonstrate awesome performance as a popular online sched-
uling strategy. However, online scheduling strategies still exhibit certain draw-
backs, notably the potential for resource overutilization or underutilization, which
can degrade the performance and response time of stream computing systems.

The scheduling of instances is closely related to the configuration of opera-
tors. In our previous work [35], we focused on optimizing the scheduling strategy
of DSC systems, which significantly improved latency. Building on this founda-
tion, we expand our research to address a critical issue in DSC systems: operator
reconfiguration. Our primary focus is on how to flexibly reconfigure operators to
further improve system performance.

In summary, existing reconfiguration strategies can be improved in the fol-
lowing aspects: (1) employing an elastic strategy for operator parallelism, (2)
adapting the system to function optimally in various application scenarios like
resource-limited or latency-constraint scenarios, and (3) implementing a proper
reconfiguration strategy for operators. To address the aforementioned issues, we
investigate an elastic reconfiguration strategy aimed at improving the perfor-
mance of DSC systems within resource-limited and latency-constraint applica-
tion scenarios. Our experiments demonstrate that employing this strategy leads to
improvements across various metrics including processing latency, CPU average
utilization, throughput, and overall resource usage of the system.

1.2 Contributions

Our contributions can be summarized as follows:

1. Modeling the task topology as a queuing network to evaluate system latency, and
constructing a communication cost model to formalize the scheduling problem.

 D. Sun et al. 722 Page 4 of 31

2. Introducing an elastic strategy for operator parallelism aimed at reducing process-
ing latency and increasing resource utilization in resource-limited and latency-
constraint scenarios.

3. Proposing a configuration strategy for operators to minimize communication
cost and implementing two thresholds to prevent node overload, determining the
execution of reconfiguration strategies for cost reduction.

4. Designing and implementing the system model of Er-Stream and integrating it
into Apache Storm, a mainstream DSC system.

1.3 Paper organization

The rest of this paper is organized as follows. In Sect. 2, we describe the models
of streaming application, resource limitation, latency constraint, and communica-
tion cost. In Sect. 3, we focus on Er-Stream and explain its system architecture and
implementation, the elastic strategy for parallelism of operators, and the algorithm
for operator reconfiguration based on the communication cost model. In Sect. 4, we
detail the performance evaluation of Er-Stream. In Sect. 5, we introduce the related
work on operator parallelism and operator reconfiguration. Finally, in Sect. 6, we
conclude the paper and discuss our future work.

2 Problem statement

Before formalizing the problem of reconfiguration and introducing our solution, we
first model the streaming application, resource limitation, latency constraint, and
communication cost within stream computing environments. For clarity, we sum-
marize the primary notations used throughout the paper in Table 1.

2.1 Streaming application

In data stream processing systems, the logic of a real-time application can be mod-
eled as a direct acyclic graph (DAG), DAG = (V(G), E(G)), V(G) = {v1, v2, ……, vn}
is the set of n vertices in the DAG graph, and each vertex represents an operator
called Spout or Bolt. The Spout is responsible for reading data from a data source
and sends the tuple to a Bolt. The Bolt encapsulates processing logic and conducts
specific data processing. Each operator can be parallelized into multiple instances
such as Vi = {vi1, vi2, ……, vik}, Vi1 represents the 1st instance of the ith operator.
E(G) = {e1,2 e1,3, ……, en-i,n} represents the set of directed edges. e1,2 represents the
data flow from upstream vertex v1 to downstream vertex v2. A sample DAG graph is
shown in Fig. 1.

After DAGs are submitted, the instances in an operator will be distributed to
the slots of nodes. The nodes in a cluster are defined as N = {n1, n2, …, ni,…, nN},
where ni represents the ith node in the cluster. The slots of each node are defined
as Slotj = {slotj,1, slotj,2, ……, Slotj,n}, where slotj,n represents the nth slot in the
jth node. In DSC systems, a node must contain at least one slot, and each slot can

An elastic reconfiguration strategy for operators in… Page 5 of 31 722

operate only one worker; however, a worker is capable of running multiple instances.
As is shown in Fig. 2, the arrows represent the direction of data streams. Node n1
contains a slot Slot1,1, which has a worker worker1,1, that in turn runs three instances:
v11, v12 and v42.

2.2 Resource limitation

In a DSC system, there are various dimensions such as memory, I/O, and CPU [32]
to measure resources on a processing node. In our test experiments, we monitored the

Table 1 Description of primary symbols used in Er-Stream

Symbol Description

vn nth vertex in a DAG
vik kth instance of the ith vertex
ni ith node in the cluster
minci Minimum resource requirement of ith operator
λ0 Average arrival rate of tuples
Li Impact of ith operator on the average processing latency
nmax Maximum resources set by user
Tmax Latency-constraint set by user
λi Average arrival rate of ith operator input tuples
μi Average processing rate of each instance in ith operator
cmax Maximum CPU resources
u Maximum CPU utilization of node
Ej jth instance running on node
E[Ti](S) Average processing latency of input tuples in entire queuing network
Ei,j Tuple transfer rate between ith and jth instances
Wi,j Tuple transfer rate between ith and jth workers
Uwi CPU usage of ith worker
Uni CPU usage of all nodes in the cluster

Fig. 1 A sample data flow
topology

 D. Sun et al. 722 Page 6 of 31

utilization of resources such as CPU, memory, and I/O. We found that memory usage
remained within a reasonable range, and I/O operations, due to features like data local-
ity and cache optimization, did not become performance bottlenecks. Consequently,
this paper focuses specifically on CPU resources.

In resource-limited scenarios, since the number of CPU resources is restricted,
maximizing CPU utilization becomes crucial to enhance system performance. Before
adjusting the parallelism of operators, the initial instances configuration needs com-
pletion. It is essential to ensure that each operator has the minimum required CPU
resources at runtime, which is calculated by Eq. (1).

where minci is the minimum resource requirement of ith operator, λi is average
arrival rate of ith operator input tuples, and μi is the average processing rate of each
instance in ith operator. Queue-related information can be measured using the open-
source code provided in [16], and information such as data stream transmission
and CPU usage can be collected through Storm’s built-in interfaces, IMetric, and
IMetricConsumer.

Next, we calculate the cumulative minci across all operators. The system can pro-
ceed with the subsequent adjustment of operator parallelism only if the total minci is
less than or equal to the maximum available resources. Conversely, if the total exceeds
the available resources, it indicates that the existing resources fail to meet the minimum
requirement for each operator, and thus, the system refrains from adjusting the parallel-
ism of operators. This condition is represented by Eq. (2).

(1)minci =
�i

�i

,

(2)
n
∑

i=1

minci ≤ cmax,

Fig. 2 Instance allocation of topology

An elastic reconfiguration strategy for operators in… Page 7 of 31 722

where the cmax represents the maximum available resources. At runtime, the CPU
resources available to each node cannot be ignored. The available CPU resources for
each node can be denoted by C = {cn1, cn2, …, cnN}, where cns is the available CPU
resource of sth node. For any node in the cluster, the executors on it need to satisfy
Eq. (3).

where u is the maximum CPU utilization of node, Ej is the jth instance running on
node, cEj

 is the CPU resources consumed by Ej, ns is sth node in the cluster.

2.3 Latency constraint

Assume the total tuple processing time in a DAG is Ttotal, it is calculated by Eq. (4).

where Treceive is the time taken for the tuple to transmit from the upstream operator
to the downstream operator, Tqueue is the time that the tuple spends in a queue await-
ing processing, Tprocess is the processing time of tuples by operator, and Tgenerate is the
time used to generate a new tuple after the current tuple is processed.

Each operator in the topology can be approximated as a queuing system, with
multiple such operators forming a queuing network. A topology containing one or
more Spouts and one or more Bolts conforms to the feature of an open-loop system.
Based on the above assumptions, we model the topology using open-loop Jackson
queuing networks and evaluate system performance based on the average processing
latency of the queuing network.

We model a topology as a Jackson network, in which each operator is regarded
as a queuing system [17]. For a single operator Si, the average processing latency of
input tuples E[Ti](Si) is calculated by Eq. (5).

where µi is the average processing rate of all instances in ith operator, E[Ti](Qi) is
the time for the input tuple to queue for processing in Si (Tqueue), while 1/µi is the
time required to process the input tuple by the executor of Si (Tprocess). The value of
E[Ti](Qi) is calculated by Eq. (6).

where ci is the number of instances in Si, mi is the resource utilization of Si, and k is
the probability that there are no tuples in the system in the stationary state. It is obvi-
ous that when mi ≥ 1, the maximum processing speed of ith operator cannot meet the
tuple arrival rate. In such cases, Tqueue will increase infinitely over time, and each

(3)
∑

Ej∈ns

cEj
≤ u ∗ cns,

(4)Ttotal = Treceive + Tqueue + Tprocess + Tgenerate,

(5)E[Ti](Si) = E[Ti](Qi) +
1

�i

,

(6)E[Ti](Qi)

{

k(cimi)
ci

ci!(1−mi)
2𝜇ici

, mi < 1

+∞, mi ≥ 1
,

 D. Sun et al. 722 Page 8 of 31

E[Ti](Qi) is bounded when λi < ci*µi. Values for mi and k are calculated by Eqs. (7)
and (8), respectively.

The average processing latency of the entire queuing network E[Ti](S) can be
obtained by the weighted average of the average processing latency E[Ti](Si) of each
operator, calculated by Eq. (9).

where λ0 is the average arrival rate of tuples entering the queuing network.
After that, the latency of the system is monitored by (9). Whenever the latency

exceeds the target latency-constraint set by the user, the system triggers its optimiza-
tion mechanism to reconfigure the parallelism of all operators until the user-defined
performance constraint is satisfied once more.

2.4 Communication cost

There are three distinct types of communication in the cluster: (1) between instances,
(2) between workers, (3) and between nodes, as depicted in Fig. 3. The communication
costs are significantly higher between workers and between nodes, compared to those

(7)mi =
�i

ci�i

,

(8)k =

(

ci−1
∑

l=0

(cimi)
l

l!
+

(cimi)
ci

ci!(1 − mi)

)−1

,

(9)E[Ti](S) =
1

�0

N
∑

i=1

�iE[Ti](Si),

Fig. 3 Communication cost of
topology

An elastic reconfiguration strategy for operators in… Page 9 of 31 722

between instances. Therefore, reducing inter-node and inter-worker communication
within the topology can significantly benefit the system’s performance. To optimize the
overall communication cost of the topology, it is necessary to convert inter-node and
inter-worker communication into inter-instance communication to the greatest extent
possible.

Let Rj,k represent the size of the data flow between two communicating instances j
and k, E is the set of instances, lw

Ei
 is the worker where instance Ei is located, and ln

Ei
 is

the node where Ei is located. With these representations, the relationship between
instances is described by Eq. (10).

where Ih denotes high interconnection, Im denotes moderate interconnection, and Is
denotes slight interconnection between instances. Once the topology is submitted,
the total amount of data flow in the topology remains fixed without congestion, and
this is calculated by Eq. (11).

when the total data flow between nodes
∑

Is
Rj, k is at its minimum, and the total

data flow between workers
∑

Im
Rj, k is also minimized, the total data flow between

instances
∑

Ih
Rj, k reaches its maximum. We use CTm,n to represent the communica-

tion cost between node m and node n, which is calculated by Eq. (12).

where Bm,n represents the network bandwidth between node m and node n. If two
instances are on the same node, the communication cost between them is considered
negligible.

Due to the costs caused by DSC systems during resource scheduling or operator
reconfiguration, which cannot be ignored [33], we introduce a performance optimiza-
tion threshold referred to as Trimprove to determine whether a reconfiguration should be
performed. Trimprove is set by the user, and reconfiguration only occurs when Trchange
exceeds Trimprove, as described by Eq. (13).

Trchange is calculated by Eq. (14)

where Trold is the inter-node traffic before reconfiguration, Trnew is the inter-node
traffic after reconfiguration, and Trchange is the percentage of improvement on the

(10)

⎧

⎪

⎨

⎪

⎩

Ih, lw
Ei
= lw

Ek

Im, (ln
Ei
= ln

Ek
) ∧ (lw

Ei
≠ lw

Ek
),

Is, ln
Ei
= ln

Ek

(11)R =
∑

Is

Rj, k +
∑

Im

Rj, k +
∑

Ih

Rj, k,

(12)CTm,n =

� ∑

Rj,k

Bm,n
, ln
Ei
≠ ln

Ek
,

0 , ln
Ei
= ln

Ek
,
,

(13)Trchange > Trimprove,

(14)Trchange =
Trold − Trnew

Trold
,

 D. Sun et al. 722 Page 10 of 31

inter-node traffic after reconfiguration. A smaller Trchange value indicates more fre-
quent reconfiguration, resulting in higher reconfiguration cost.

Instance overloading or underloading can affect resource efficiency and system
performance [34]. During reconfiguration, it is necessary to consider potential over-
load issue on worker node. An overloaded worker node may cause a drastic increase
in the average processing time of jobs, leading to queuing of tuples until reaching the
final timeout. Therefore, it is necessary to set a threshold for the CPU utilization of
worker node. As per (3), if the reconfiguration outcome exceeds the CPU utilization
threshold of a node, the load will be redistributed to other nodes with lighter loads.

3 Er‑Stream: system architecture and implementation

Based on the discussion in Sect. 3, we propose an elastic reconfiguration strategy for
operators, Er-Stream. This strategy optimizes operator parallelism and minimizes
inter-node network communication costs in real time, guided by the data input rate.
As a result, Er-Stream ensures high throughput, low latency, improved CPU utiliza-
tion, and efficient resource usage within the system.

3.1 System architecture

To obtain real-time data generated during topology operations to support Er-Stream,
we have improved the original Storm system structure. Please note that Apache
Storm is merely the platform upon which our experiments are based; our strategy
is equally applicable to other stream processing frameworks such as Apache Flink,
Kafka Streams, and Apache Spark. This improved structure adds four custom mod-
ules: Data Monitor, Scheduler, Database, and Optimizer. Figure 4 illustrates Er-
Stream’s system architecture.

Data monitor is responsible for collecting information on CPU load for each
thread, data flow between executors, and the average tuple arrival rate and process-
ing rate of each operator within a specific time window.

To obtain the CPU load of each thread, the getThreadCpuTime method from
the ThreadMXBean class is used and then multiplied by the CPU frequency of the
working node. The data stream size transmitted between executors is determined
by counting the number of tuples sent by the upstream executor received by each
executor. The data stream transmission rate is computed by dividing the number of
recorded tuples by the time window size.

Scheduler reconfigures executor resources by calling the pluggable interface
IScheduler provided by Storm. It replaces Storm’s default scheduling algorithm and
executes the generated reconfiguration decisions. The IScheduler interface provides
two input parameters: Topologies, which contains information about the cluster’s
topology, and Cluster, which contains details about the cluster’s current state.

Database manages the storage of each operator’s configuration information,
the load information collected by the Data Monitor, and the size of the data flow

An elastic reconfiguration strategy for operators in… Page 11 of 31 722

between executors. This stored information serves as the data basis for determining
reconfiguration trigger conditions and executor assignment.

Optimizer calculates the optimal parallelism scheme for each operator based on
the average tuple arrival rate and processing rate of each operator acquired form the
Data monitor. Additionally, it reads parameters such as the maximum number of
executor and latency constraints defined in the configuration file for resource-limited
and latency-constraint scenarios.

3.2 Elastic strategy for parallelism

For different resource-limited and latency-constraint scenarios, we propose different
elastic strategies for adjusting operator parallelism.

In resources-limited scenarios, our approach aims to maximize system perfor-
mance by making effective utilization of available resources, with a specific focus

Fig. 4 Er-Stream’s architecture

 D. Sun et al. 722 Page 12 of 31

on reducing latency. An example of how Er-Stream adjusts operator parallelism
is shown in Fig. 5. The Wordcount topology contains three operators, one Spout
and two Bolt. The Spout is used to distribute data, Bolt1 splits data, and Bolt2 sta-
tistics data. The initial allocation assigns minimal required resources: Spout has 2
instances, while Bolt1and Bolt2 have 3 and 1 instances, respectively.

Er-Stream processing follows these steps: (1) Use the latency-constraint model
to calculate the average processing latency for input tuples across all operators. (2)
Sequentially allocate resources, prioritizing operators with the greatest impact on
the average processing latency of the entire topology. These two steps iterate until
all resources are assigned, and each assignment of resources adds an instance to the
operator. For example, Er-Stream observes that Bolt1, responsible for data split-
ting, lacks sufficient resources, causing delays in processing data from the Spout and
resulting in high tuple processing latency. Therefore, resources are added for Bolt1
to optimize latency. Finally, the operator parallelism scheme becomes 3:7:5 from
2:3:1, effectively minimizing latency.

In latency-constraint scenarios, optimizing resource utilization while meeting
latency requirements is important. Figure 6 illustrates the initial assignment of minimal
required resources to operators: Spout with 2 instances, and Bolt1 and Bolt2 with 3 and
1 instances, respectively. Er-Stream’s process follows these steps: (1) Use the latency-
constraint model to calculate the average processing latency for input tuples across all
operators. (2) Sequentially allocate resources, prioritizing operators with the greatest
impact on the overall processing latency. (3) Constantly check whether the user-defined
latency requirements have been met. These three steps iterate until the system latency
aligns with the latency constraint, adding an instance to an operator with each resource
assignment. Finally, the operator parallelism scheme adjusts to 2:5:4 from 2:3:1. Each
resource allocation maximizes current processing latency, allowing the system to meet
the latency constraint while utilizing minimal resources.

Fig. 5 An example of operator parallelism adjustment in resource-limited scenarios

An elastic reconfiguration strategy for operators in… Page 13 of 31 722

3.3 Elastic Strategy in resource‑limited or latency‑constraint scenarios

In resource-limited scenarios, we calculate the average arrival rate of operators’ input
tuples λi, and the average processing rate of each instance µi. Using the latency-con-
straint model, we derive the average processing latency E[Ti](Si) for each operator’s
input tuples. Resources are then allocated to the operator that impacts the entire topol-
ogy’s average processing latency the most. This process iterates until all resources are
allocated. The final outcome adjusts operator parallelism to minimize the topology’s
average processing latency for input tuples.

In latency-constraint scenarios, we calculate the values of λi and µi, along with
the average processing latency E[Ti](S) of the input tuples for all operators using the
latency-constraint model. Then, resources are assigned to the operator that has the
greatest impact on the average processing latency of the entire topology. Hence, the
latency decreases as the resources gradually increases until the latency constraint Tmax
is just met. Also, this resources assignment minimizes the number of instances, saving
the system’s computing resources.

The elastic strategy algorithm for operator parallelism in resource-limited or latency-
constraint scenarios is described in Algorithm 1.

Algorithm 1 Elastic strategy for operator parallelism in resource-limited or latency-
constraint scenarios.

Fig. 6 An example of operator parallelism adjustment in latency-constraint scenarios

 D. Sun et al. 722 Page 14 of 31

The algorithm’s input includes statistics within a time period T: λi, µi and the
maximum set of resources cmax, the set latency constraint Tmax, and the type of
scenario RL. We utilize a Boolean variable, RL, to represent the type of scenario.
If the value of RL is “Ture,” it indicates resource-limited scenarios; if RL equals
“False,” it signifies latency-constraint scenarios. Its output is the operator paral-
lelism scheme {c1, c2…cN} for each operator in resource-limited or latency-con-
straint scenarios.

Steps 1 to 6 initialize the number of resources ci assigned to all operators within
the topology. They round �i

�i

 up and assign a value to ci. Firstly, it satisfies the mini-
mum operating requirement minci for each operator, which can be calculated by (1).
Then, it sums ci to verify if it satisfies (2). If it does not satisfy, it means that the
minimum resources requirement cannot be met; no subsequent assignment will be
made.

Steps 8 to 15 are focus on resource-limited scenarios, iterate through all opera-
tors and record the operator that has the greatest impact on the average processing
latency of the entire topology after adding an instance to each operator and mark it
as maxS, and set the index of the operator to k. The impact of adding an instance to
an operator on the average processing latency of the entire topology Li can be calcu-
lated by (15).

where λi is the average arrival rate of operator input tuples, and [E[Ti](ci)-E[Ti]
(ci + 1)] is the reduction in the average tuple processing latency of the operator after
adding an instance to it. If the total resources assigned to the operators do not exceed
cmax, an instance is assigned to maxS each time to minimize the total processing time
of the entire topology.

Steps 18 to 25 are focus on latency-constraint scenarios, iterate through all opera-
tors and record the operator that has the greatest impact on the average processing
latency of the entire topology after adding an instance to each operator, and mark it
as maxS, and set the index of the operator to k. The impact of adding an instance to
the operator on the average processing latency of entire topology’s input tuple is Li.
Under the condition that the current system latency Ti is not less than Tmax, resources
are assigned to maxS each time to minimize the total processing time of all tuples.
The time complexity of Algorithm 1 is O(n*m), where n is the number of resources
and m is the number of operators.

3.4 Operator reconfiguration

The difference between the default task scheduling strategy and Er-Stream is evi-
dent in the topological logic structure and the physical structure. In Fig. 7a, the
default scheduling strategy of Storm uses a round robin method, evenly distributing
each operator to nodes based solely on the total number of operators. However, this
approach overlooks communication, performance, and load issues between nodes.
For instance, if two operators with high data transmission rates are assigned to dif-
ferent nodes, it may lead to increased system latency.

(15)Li = �i ∗ [E[Ti](ci) − E[Ti](ci + 1)]

An elastic reconfiguration strategy for operators in… Page 15 of 31 722

In contrast, Er-Stream employs a different approach by first categorizing and then
allocating tasks. As depicted in Fig. 7 (b), Er-Stream aims to place communicating
operators on the same node whenever possible. This strategy significantly reduces
communication costs between nodes and ultimately enhances system performance.

To prevent data processing timeouts caused by node overload, it is necessary to
set a CPU utilization threshold for nodes. When a node’s CPU utilization exceeds
the threshold, it stops accepting new operators, redirecting them to nodes with
lighter loads.

Following the configuration of operator parallelism in the topology, we initiate
operator reconfiguration and gather data transmission volumes between two opera-
tors stored in the database. By adding up the origin and destination operators that
are deployed on different nodes, we can capture overall cluster traffic. Information
collected includes: tuple transfer rate Ei,j between executor communicating with
each other within period T, tuple transfer rate Wi,j between workers, CPU usage Uwi
of a worker, and total CPU usage Uni of all nodes in the cluster. The reconfiguration
algorithm is divided into two phases.

In the first phase, Ei,j values are sorted in descending order. Sequentially, the two
instances i and j with the highest communication volume in the Ei,j sequence are
selected and placed into the worker with the lowest CPU utilization, maximizing the
distribution.

In the second phase, Wi,j are sorted in descending order. Consecutively, the two
Workers i and j associated with the largest communication traffic in the Wi,j sequence
are placed into the node with the lowest CPU utilization. These two phases iterate
until all instances and workers are allocated.

As the algorithm pursues an optimal solution each time, the final allocation
result is also the optimal solution to minimize network communication cost between

Fig. 7 Comparison between default task scheduling DefaultScheduler (a) and Er-Stream (b)

 D. Sun et al. 722 Page 16 of 31

nodes. It is important to monitor potential node overload issues during the alloca-
tion process. Once a node becomes overloaded, average job processing time sky-
rockets, resulting in queued tuples that eventually time out. Thus, setting a threshold
for worker node CPU utilization becomes necessary.

We use N = {n1, n2, …, nN} to denotes nodes in the cluster, while C = {cn1, cn2, …,
cnN} denotes the available CPU resources of these nodes. With u as the maximum
allowable CPU utilization for each node, it can be seen that for any ns ∈ N, the total
CPU resources occupied by instances running on the node should meet condition
(3). If the allocation result exceeds the CPU utilization threshold of the node, the
load will be redistributed to nodes with lower loads.

The reconfiguration strategy between nodes is described in Algorithm 2. The
input consists of statistics of time period T: Wi,j and Uni. Wi,j is the tuple transfer
rate between workers communicating with each other; Uni is the CPU utilization
of the nodes. The output is the optimal allocation scheme of {n1, n2…nN} for {w1,
w2…wN}.

Algorithm 2 Reconfiguration strategy between nodes.

Step 1 is to sort Wi,j in descending order to obtain the sequence DW. Steps 3 to
8 describe the reconfiguration strategy when neither worker i nor worker j is allo-
cated. Steps 9 to 26 describe the reconfiguration strategy when one of the workers
is assigned. This process involves traversing all nodes to find the solution that mini-
mizes the communication cost Int between nodes. Its time complexity is O(n*m),
where n is the number of worker pairs and m is the number of nodes.

The reconfiguration strategy between workers is similar to the reconfiguration
strategy between nodes, although the inputs and outputs differ. Specifically, the input
for the reconfiguration strategy between workers is tuple transmission rate between
communicating instances Ei,j, CPU utilization of workers Uwi, while the output is
the optimal allocation scheme {w1,w2…wN} for {e1,e2…eN}. The time complexity of
Algorithm 2 is O(n*m), where n is the number of instance pairs and m is the number
of workers.

Considering the system cost that influences system performance during operator
reconfiguration, we add a performance optimization threshold to determine whether
to perform reconfiguration based on the calculated reconfiguration scheme. We
set the inter-node traffic before scheduling as Trold, the scheduled inter-node traf-
fic as Trnew, Trchange as the percentage of traffic improvement between nodes after

An elastic reconfiguration strategy for operators in… Page 17 of 31 722

reconfiguration. Trimprove, set by the user, triggers operator reconfiguration only if
Trchange reaches at least Trimprove, as shown in Eqs. (12) and (13).

The workflow of Er-Stream is as follows: After the user submits the topology
to the system, Data Monitor collects information such as data transmission and
CPU load for each operator and then stores these data in Database. The optimizer
utilizes the information gathered by Data Monitor to generate parallelism config-
uration schemes for operators in real-time according to Algorithm 1. Finally, the
scheduler, using the information stored in the database, schedules instances based on
Algorithm 2.

4 Performance evaluation

In this section, we present the cluster environment, server hardware and software
parameter, and the system performance experiments conducted on Er-Stream in two
application scenarios: resource limited and latency constraint. The experiment com-
pares Er-Stream with two other algorithms: Storm’s default algorithm (Storm) and
the online scheduling algorithm (OnlineScheduler) proposed by [20]. According to
[36], four key aspects—system latency, system throughput, average CPU utiliza-
tion, and resource usage—are evaluated to assess the optimization effectiveness of
Er-Stream. The analysis of the results demonstrates its optimization capabilities. In
our experiments, we observed that the system stabilizes within 10 min, but to miti-
gate variability and ensure reliable results, a duration of 17 min was chosen for each
experimental group. To ensure the reliability of the results, each set of experimental
conditions was repeated more than 10 times. The average values and standard devia-
tions of key performance metrics, including latency, throughput, and resource utili-
zation, were calculated to provide a more reliable assessment.

4.1 Experimental environment and parameter setup

There are a total of 13 nodes configured in the computing cluster, with 1 node run-
ning Nimbus and Storm UI, 1 node running MySQL database, 1 node running Zoo-
Keeper to coordinate the communication between the master and slave nodes, and
the remaining 10 working nodes running Supervisor for business logic processing.
Each compute node is powered by an Intel(R) Xeon(R) X5650 CPU. For clarity, we
list the hardware configurations and the software configurations in Tables 2 and 3,
respectively.

The test cases selected by Er-Stream are WordCount and Top_N. WordCount
is a common test topology for counting the frequency of words in English text. It
consists of one Spout and two Bolts. The task topology of WordCount is shown in
Fig. 8. Spout sends data tuple, Bolt1 splits the text in data tuples according to spe-
cific regulations, and Bolt2 counts text in data tuples from Bolt 1.

Top_N is a common test topology consisting of one Spout and three Bolts for
counting the top N hotspots. The task topology of Top_N is shown in Fig. 9. The
Spout sends data tuples, while Bolt1 and Bolt2 are responsible for scoring, statistical

 D. Sun et al. 722 Page 18 of 31

analyzing, and data sorting. Bolt3 merges and sorts the data sent from the preceding
operators, and ultimately outputs the top N statistics.

We use the public dataset Alibaba Tianchi [37] as the data source for applications
in our experiments. The data stream rate fluctuates between 100 and 225 tuples/s,
aligning with the characteristics of data streams observed in real-world scenarios.

5 Performance results of latency

5.1 In resource‑limited scenarios

In DSC systems, latency refers to the time interval between when a tuple is sent by
the data source and when it is fully processed. The initial operator parallelism of
the WordCount topology is set to (3, 4, 8), with a maximum number of 15 available
Table 2 Hardware
configurations of the cluster

Type CPU cores
(vCPU)

Memory
(GB)

Bandwidth
(Mbps)

Disk (GB) Number

1 2 4 100 40 1
2 2 2 100 20 6
3 1 1 100 20 6

Table 3 Software configurations
of the cluster

Software Version

OS Ubuntu 20.04.5 64 bit
Apache storm Apache Storm-2.1.0
Apache zookeeper Apache-Zookeeper-3.4.14
JDK jdk-8u171-linux- × 64
Python Python-3.8.3
MySQL MySQL-5.7.0

Fig. 8 Task topology of Word-
Count

An elastic reconfiguration strategy for operators in… Page 19 of 31 722

executor resources, while the initial configuration of operator parallelism in Top_N
topology is set to (5, 4, 1, 4), and the maximum number of available executors in
this topology is 14. For a duration of 17 min, we test the latency of both algorithms
running the same topology and recorded the results through Storm UI.

The latency comparison in resource-limited scenarios for WordCount is shown
in Fig. 10. In terms of operator parallelism, both Storm and OnlineScheduler lack
optimization regarding operator parallelism and always maintain the initial number
of instances for each operator, while Er-Stream collects system data periodically and
assigns resources to each operator for increasing parallelism. Within the first minute
of system operation, due to the loading of the system profile and the enforcement
of the reconfiguration strategies, both Storm and Er-Stream incur relatively high
latency of 17.61 ms and 12.78 ms, respectively, while OnlineScheduler registers
high latency at 23.94 ms due to real-time monitoring data collection and scheduling
strategy computation. As the system runs for 5 min, the system latency gradually
flattens out; Storm and OnlineScheduler hold the system latency around 17 ms and
13 ms, respectively. In contrast, Er-Stream, at the 8th minute, adjusts operator par-
allelism to (3, 7, 5) based on system data. This adjustment momentarily increases
latency to 13.75 ms due to the need for parallelism reconfiguration. However, it rap-
idly decreases and stabilizes at 11.82 ms. After this adjustment, the system’s latency
reduces by 7.5% compared to the beginning, nearly 30% and 9.6% compared to
Storm and OnlineScheduler, respectively.

The latency comparison in resource-limited scenarios of Top_N is given in
Fig. 11. Storm initially incurs a relatively high latency of 27.54 ms, after which
the latency eventually stabilizes around 27 ms, while the latency of OnlineSched-
uler stabilizes around 22 ms. Er-Stream adjusts operator parallelism to (5, 4, 3,
2) at 8th minute and allocates more resources for the latency bottleneck operator.
This adjustment briefly increases the latency to 18.49 ms, followed by a rapid
decrease, stabilizing around 15 ms. After the parallelism adjustment, the latency
is reduced by approximately 44% and 32% compared to Storm and OnlineSched-
uler, respectively.

Fig. 9 Task topology of Top_N

 D. Sun et al. 722 Page 20 of 31

5.2 In latency‑constraint scenarios

The WordCount topology is initially configured with operator parallelism set at
(2, 7, 6), and the maximum number of available executors in this topology is fixed
at 15. When using Er-Stream, we set a maximum latency constraint of 20 ms.

The latency comparison in latency-constraint scenarios for Top_N is given
in Fig. 12. We selected the time frame from the 17th to the 33rd minute of the

Fig. 10 Latency comparison in resource-limited scenarios for WordCount

Fig. 11 Latency comparison in resource-limited scenarios for Top_N

An elastic reconfiguration strategy for operators in… Page 21 of 31 722

application’s runtime, as the system gradually stabilizes during this period,
allowing for a more accurate reflection of the latency characteristics of the three
schedulers. Storm exhibits relatively high latency of 48.79 ms due to the lack of
online parallelism and network communication cost by the 17th minute. Eventu-
ally, it levels off at around 38 ms by the 27th minute. OnlineScheduler reduces
latency by optimizing the network communication cost between nodes; latency
stabilizes around 22 ms. In contrast, Er-Stream, with its periodic operator par-
allelism adjustments and reconfiguration strategies, maintains consistent latency,
stabilizing at approximately 20 ms. The trends of latency for running WordCount
with three schedulers are similar to those of running Top_N with the same sched-
ulers in latency-constraint scenarios.

5.3 Performance results of throughput

5.3.1 In resource‑limited scenarios

In DSC systems, throughput refers to the number of tuples processed by the sys-
tem per second. We measure the throughput of the system under Storm, Onlin-
eScheduler, and Er-Stream configurations. Extracted throughput data include
measurements at the 5th, 10th, and 15th minutes.

The throughput comparison in resource-limited scenarios for WordCount is
given in Fig. 13. The throughput of the system using Storm is relatively stable,
and the overall average throughput is about 81 tuples/s. OnlineScheduler exhibits
a lower throughput than Er-Stream, recording approximately 85 tuples/s at the
5th minute. However, after periodically scheduling, the OnlineScheduler notably
enhances the system’s overall throughput, reaching 139.91 tuples/s by the 10th

Fig. 12 Latency comparison in latency-constraint scenarios for Top_N

 D. Sun et al. 722 Page 22 of 31

minute, demonstrating its effectiveness. But at the 15th minute, the throughput
drastically drops to 78.18 tuples/s, revealing instability. In contrast, Er-Stream
shows a steady increase in throughput over time, attributed to its strategic adjust-
ments in operator parallelism and reconfiguration strategies. The overall average
throughput under Er-Stream reaches 186.42 tuples/s. These experimental results
highlight the considerable performance enhancement achieved by Er-Stream.
Er-Stream consistently outperforms Storm and OnlineScheduler, with an overall
average throughput approximately 1.89 times higher than OnlineScheduler. The
trends of throughput for running Top_N with three schedulers are similar to those
of running WordCount with the same schedulers in resource-limited scenarios.

5.3.2 In latency‑constraint scenarios

The throughput comparison in latency-constraint scenarios is given in Fig. 14.
Storm experiences fluctuating throughput, registering 43.63 tuples/s at the 5th min-
ute, 54 tuples/s at the 10th minute, and 47.27 tuples/s at the 15th minute, with an
average throughput of 48.31tuples/s. Similar to the Storm, the OnlineScheduler
experiences fluctuations in throughput. However, owing to its optimization of inter-
node communication cost, OnlineScheduler achieves a throughput of 65.36 tuples/s
at the 10th minute. At 15th minute, its throughput drops to 58.18tuples/s. The over-
all average throughput of the system using OnlineScheduler is about 57.54 tuples/s.

Conversely, Er-Stream exhibits a substantial surge in throughput, reaching 98.18
tuples/s at the 10th minute, a notable optimization compared to others. By the 15th
minute, the throughput decreases to 60 tuples/s following the trend observed in oth-
ers. However, Er-Stream maintains a 26.9% and 25.2% higher throughput than Storm
and OnlineScheduler, respectively. The trends of throughput for running WordCount

Fig. 13 Throughput comparison in resource-limited scenarios for WordCount

An elastic reconfiguration strategy for operators in… Page 23 of 31 722

with three schedulers are similar to those of running Top_N with the same schedul-
ers in latency-constraint scenarios.

5.4 Performance results of average CPU utilization

5.4.1 In resource‑limited scenarios

The average CPU utilization comparison in resource-limited scenarios for Word-
Count is given in Fig. 15. Er-Stream registers the highest average CPU utiliza-
tion among the three. Upon investigating, we find that: the Storm’s task assign-
ment approach employs polling, leading to an excessive use of nodes, resulting
in their CPU utilization being limited to about 37%. This method underutilizes
resources. OnlineScheduler and Er-Stream algorithms aim to assign operators to
the same node, thus enhancing node CPU utilization and resource efficiency. Spe-
cifically, OnlineScheduler and Er-Stream exhibit CPU utilizations of about 46.3%
and 56.7%, respectively. The experiment indicates that Er-Stream improves CPU
resource efficiency.

5.4.2 In latency‑constraint scenarios

The average CPU utilization comparison in latency-constraint scenarios for
Top_N is given in Fig. 16. The data show that the average CPU utilization of
the Storm, OnlineScheduler, and Er-Stream is about 37.3%, 48.7%, and 55.4%,
respectively. The results demonstrate a relative improvement in CPU efficiency
with Er-Stream.

Fig. 14 Throughput comparison in latency-constraint scenarios of Top_N

 D. Sun et al. 722 Page 24 of 31

5.5 Performance results of resource usage

The resource usage comparison in latency-constraint scenarios for WordCount is
given in Fig. 17.

For the first 7 min, both the OnlineScheduler and the Er-Stream operate with
parallelism of operators set at (2, 7, 6). At the 8th minute, Er-Stream adjusts the
operator parallelism to (2, 5, 4) by collecting system data and calculating the
optimal parallelism, resulting in a 26.6% reduction in resource usage. Like Onlin-
eScheduler, Storm does not scale resources dynamically.

6 Related work

6.1 Operator parallelism

DSC systems require the optimization of operator parallelism and efficient
resource utilization to improve performance such as latency and throughput.
Some existing stream processing systems, such as Apache Storm, lack mecha-
nisms for setting operator parallelism, necessitating manual configuration by
users. However, improper configurations can significantly impact system perfor-
mance. Researchers have conducted numerous studies on operator parallelism,
proposing various effective methods.

For example, Tang et al. [22] proposed an elastic strategy called DRS + based
on Apache Storm for auto-scaling during resource scheduling. The strategy com-
bines resource auto-scaling and load reduction, introducing the RLA tradeoff
method to achieve a balance between resource consumption, system latency, and

Fig. 15 Average CPU utilization comparison in resource-limited scenarios for WordCount

An elastic reconfiguration strategy for operators in… Page 25 of 31 722

Fig. 16 Average CPU utilization comparison in latency-constraint scenarios for Top_N

Fig. 17 Resource usage comparison in latency-constraint scenarios for WordCount

 D. Sun et al. 722 Page 26 of 31

result accuracy. The strategy aligns with the real-time response characteristics
demanded by existing stream processing systems, achieving low resource con-
sumption and high utility.

In efforts to improve the utilization of underlying resources and manage var-
ying workloads, Cardellini et al. [23] designed and implemented resilience and
stateful task migration mechanisms. These innovations allow Storm to dynami-
cally adjust the number of executors at runtime, scaling them up or down as per
requirements.

Additionally, Li et al. [24] proposed two algorithms—the Min Latency and
Max Throughput algorithms—to calculate optimal operator parallelism for
achieving minimum latency and maximum throughput, respectively, while oper-
ating under resource constraints. Experiments in a cloud environment demon-
strated the effectiveness of these algorithms in resource allocation concerning
latency and throughput.

Auto-scaling of operators has emerged as an excellent method for DSC sys-
tems. In their work, Liu et al. [25] proposed the fast and accurate auto-scaling
method called QAAS. This method uses operator performance models to auto-
matically scale operator parallelism within Flink jobs. QAAS maintains job
stability despite load changes, minimizes the number of job adjustments, and
reduces data backlog by 50%. In addition, it achieves nearly double resource sav-
ings compared to the linear model.

In another study aimed at estimating resource utilization in stream processing
applications, Lombardi et al. [26] proposed a fine-grained model which supports
independent scaling of operator and resource. Their work introduced proposed
ELYSIUM, an elastic scaling framework for stream processing system. Addi-
tionally, the proposed ELYSIUM manages operator parallelism and resources.
This framework efficiently mitigates throughput degradation while conserving
resources.

All the aforementioned methods optimize operator parallelism and enhance
system performance; there are areas where further improvements can be made.
For instance, the method proposed by [23] emphasizes runtime CPU utilization
but overlooks other crucial parameter such as latency and throughput. To pro-
vide a comprehensive perspective, we conduct a comparison of our work with the
aforementioned methods, which is presented in Table 4 for clarity.

6.2 Operator reconfiguration

In DSC systems, operator reconfiguration and task scheduling are often interrelated.
Operator reconfiguration involves parallelizing computing tasks, while task schedul-
ing focuses on allocating these parallel tasks efficiently to available resources for
execution. By combining operator reconfiguration with task scheduling, DSC sys-
tems can achieve effective data processing and real-time computing.

Subsequently, we will introduce the following reconfiguration strategies and task
scheduling strategies, and analyze the merits of these works.

An elastic reconfiguration strategy for operators in… Page 27 of 31 722

In a study outlined in [21], researchers integrated load balancing, operator
instance collocation, and horizontal scaling into an optimization problem. This inte-
gration led to the development of ALBIC, a method focused on optimizing the col-
location of operator instances. ALBIC effectively maintains a balanced system load,
resulting in minimal runtime load. Additionally, it maximizes system configuration
without compromising load balancing or incurring significant adaptation costs.

Furthermore, Mao et al. [27] proposed Trisk, a control plane that supports mul-
tiple reconfigurations. Trisk supports generic reconfiguration based on task-centric
abstractions and encapsulates basic operations. This approach enables the descrip-
tion of reconfiguration through composed basic operations on abstractions, achiev-
ing a generic, efficient, and user-friendly reconfiguration process for DSC systems.

In recent years, swarm intelligence algorithms (SI) have found applications in
operator configuration and task scheduling. For example, Farrokh et al. [28] pro-
posed operator SP-Ant, a method for operator scheduling and reconfiguration based
on the ant colony algorithm. SP-Ant initially uses bin-packing algorithm for initial
configuration of operators. Then, an iterative process using the evolutionary ant col-
ony optimization algorithm explores and develops the best operator configuration
scheme by considering communication costs between operators.

Several researchers have optimized the scheduling problem using various meth-
ods. For instance, Li et al. [29] proposed the cost-efficient task scheduling algo-
rithm (CETSA) and the cost-efficient load balancing algorithm (LBA-CE). These
were designed to address certain issues existing in Flink’s default task scheduling
algorithm.

Online tuple scheduling demonstrates excellent performance. Huang et al. [30]
proposed POTUS, an online predictive scheduling method that reduces data stream
response time through distributed data stream direction. Li et al. [31] proposed
Hone, an online tuple scheduler specifically designed to balance queue backlogs

Table 4 Comparison of our
work with related works in
operator parallelism

Performance Related work Er-Stream

[22] [23] [24] [25, 26]

Increasing throughput ✗ ✗ ✓ ✗ ✓
Increasing CPU utilization ✓ ✓ ✗ ✗ ✓
Saving resource ✓ ✗ ✗ ✓ ✓

Table 5 Comparison of our work with related works in operator reconfiguration

Performance Related work Er-Stream

[16] [27] [28] [29] [30, 31]

Reducing processing latency ✗ ✓ ✓ ✗ ✓ ✓
Reducing communication cost ✗ ✗ ✓ ✓ ✗ ✓
Reducing scheduling cost ✗ ✓ ✓ ✓ ✗ ✓
Avoiding overload ✓ ✗ ✗ ✗ ✗ ✓

 D. Sun et al. 722 Page 28 of 31

among various tasks, reducing stragglers in DSP jobs and subsequently reducing the
end-to-end processing latency of tuples. While these mentioned operator reconfigu-
ration and scheduling strategies have successfully optimized one or more parameters
within DSC systems, some overlook aspects such as the methods to reduce commu-
nication costs at runtime. A comparison between our work and theirs is presented in
Table 5.

7 Conclusions and future work

In this paper, we tackle the challenge of enhancing system performance within
resource-limited and latency-constraint scenarios by introducing Er-Stream, an elas-
tic reconfiguration strategy for operators. Our work can be summarized as follows:

In terms of operator parallelism, we leverage the open-loop Jackson queuing
network to find operators which significantly impact the average latency. We prior-
itize allocating available resource to these operators to minimize latency across the
system.

To reduce communication cost, we place instances with the highest communica-
tion traffic on the same worker whenever possible. This approach is mirrored in the
assignment of workers to nodes, minimizing communication overhead.

To avoid unnecessary scheduling, we set two thresholds. The CPU utilization
threshold prevents worker and node overloads, while the performance optimization
threshold guides reconfiguration decisions, reducing unnecessary costs.

As part of future work, we will be focusing on:

1. Fluctuating Data Streams: Test Er-Stream in fluctuating data stream environments.
Our current tests were conducted in fixed-rate streaming settings, but real sce-
narios often involve significant data stream fluctuations. Studying how to predict
and adapt operator parallelism for such fluctuations is crucial.

2. Multidimensional Resource Consideration: While we have considered CPU
resources in this article, future efforts will involve expanding our model to encom-
pass memory and network bandwidth limitations. Adapting operator parallelism
based on these dimensions will enhance the reconfiguration strategy’s effective-
ness and adaptability.

Acknowledgements This work is supported by the National Natural Science Foundation of China under
Grant No. 62372419 and the Fundamental Research Funds for the Central Universities under Grant
No.265QZ2021001. This paper is a substantial extension of a short paper [35] presented at ICPADS
2023.

Author contribution Dawei Sun involved in conceptualization, methodology, validation, writing—origi-
nal draft, funding acquisition. Yinuo Fan took part in validation, writing—original draft, formal anal-
ysis. Chengjun Guan involved in methodology, investigation, writing—original draft. Jia Rong took
part in methodology, investigation, writing, data curation. Shang Gao involved in formal analysis, writ-
ing—review & editing. Rajkumar Buyya took part in methodology, writing—review & editing, funding
acquisition.

An elastic reconfiguration strategy for operators in… Page 29 of 31 722

Data availability No datasets were generated or analyzed during the current study.

Declarations

Competing Interests The authors declare no competing interests.

References

 1. Gonzalez-Guerrero P, Stan MR (2019) Asynchronous stream computing for low power IoT. In:
2019 IEEE 62nd international midwest symposium on circuits and systems (MWSCAS), pp
1135–1138 (2019). IEEE

 2. Juneja A, Das NN (2019) Big data quality framework: pre-processing data in weather monitoring
application. In: 2019 International conference on machine learning, big data, cloud and parallel
computing (COMITCon), pp 559–563. IEEE

 3. Imai S, Patterson S, Varela CA (2017) Maximum sustainable throughput prediction for data
stream processing over public clouds. In: 2017 17th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGRID), pp 504–513. IEEE

 4. Apache Storm, http:// storm. apache/ org/, last accessed 03 Dec 2023
 5. Apache Samza, http:// samza. apache. org/, last accessed 03 Dec 2023
 6. Apache Flink, http:// flink. apache. org/, last accessed 2023/12/03
 7. Twitter Heron, https:// github. com/ apache/ incub ator- heron, last accessed 03 Dec 2023
 8. Spark streaming. https:// spark. apache. org/, last accessed 03 Dec 2023
 9. Alghamdi MI, Jiang X, Zhang J, Zhang J, Jiang M, Qin X (2017) Towards two-phase scheduling

of real-time applications in distributed systems. J Netw Comput Appl 84:109–117
 10. Assuncao MD, Silva Veith A, Buyya R (2018) Distributed data stream processing and edge com-

puting: a survey on resource elasticity and future directions. J Netw Comput Appl 103:1–17
 11. Gedik B, Schneider S, Hirzel M, Wu K-L (2013) Elastic scaling for data stream processing. IEEE

Trans Parallel Distrib Syst 25(6):1447–1463
 12. Eskandari L, Mair J, Huang Z, Eyers D (2018) T3-scheduler: a topology and traffic aware two-

level scheduler for stream processing systems in a heterogeneous cluster. Futur Gener Comput
Syst 89:617–632

 13. Cardellini V, Lo Presti F, Nardelli M, Russo Russo G (2018) Optimal operator deployment and
replication for elastic distributed data stream processing. Concurr Comput: Pract Exp 30(9):4334

 14. Fang J, Zhang R, Fu TZ, Zhang Z, Zhou A, Zhou X (2018) Distributed stream rebalance for
stateful operator under workload variance. IEEE Trans Parallel Distrib Syst 29(10):2223–2240

 15. Hesse G, Matthies C, Glass K, Huegle J, Uflacker M (2019) Quantitative impact evaluation of an
abstraction layer for data stream processing systems. In: 2019 IEEE 39th International Confer-
ence on Distributed Computing Systems (ICDCS), pp 1381–1392. IEEE

 16. Fu TZ, Ding J, Ma RT, Winslett M, Yang Y, Zhang Z (2017) DRS: auto-scaling for real-time
stream analytics. IEEE/ACM Trans Netw 25(6):3338–3352

 17. Nardelli M, Cardellini V, Grassi V, Presti FL (2019) Efficient operator placement for distributed
data stream processing applications. IEEE Trans Parallel Distrib Syst 30(8):1753–1767

 18. Zhang Z, Jin P, Wang X, Liu R, Wan S (2019) N-storm: efficient thread-level task migration
in Apache Storm. In: 2019 IEEE 21st International Conference on High Performance Comput-
ing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th Interna-
tional Conference on Data Science and Systems (HPCC/SmartCity/DSS), pp 1595–1602. IEEE

 19. Buddhika T, Stern R, Lindburg K, Ericson K, Pallickara S (2017) Online scheduling and inter-
ference alleviation for low-latency, high-throughput processing of data streams. IEEE Trans Par-
allel Distrib Syst 28(12):3553–3569

 20. Aniello L, Baldoni R, Querzoni L (2013) Adaptive online scheduling in storm. In: Proceedings
of the 7th ACM International Conference on Distributed Event-based Systems, pp 207–218
(2013)

 21. Madsen KGS, Zhou Y, Cao J (2017) Integrative dynamic reconfiguration in a parallel stream
processing engine. In: 2017 IEEE 33rd International Conference on Data Engineering (ICDE),
pp 227–230. IEEE

http://storm.apache/org/
http://samza.apache.org/
http://flink.apache.org/
https://github.com/apache/incubator-heron
https://spark.apache.org/

 D. Sun et al. 722 Page 30 of 31

 22. Tang K, Hao Z, Cai R, Fu TZ, Yang Y, Wang L, Winslett M, Zhang Z (2020) Drs+: load shed-
ding meets resource auto-scaling in distributed stream processing. In: 2020 IEEE 22nd Inter-
national Conference on High Performance Computing and Communications; IEEE 18th Inter-
national Conference on Smart City; IEEE 6th International Conference on Data Science and
Systems (HPCC/SmartCity/DSS), pp 292–301

 23. Cardellini V, Nardelli M, Luzi D (2016) Elastic stateful stream processing in storm. In: 2016
International Conference on High Performance Computing & Simulation (HPCS), pp 583–590.
IEEE

 24. Li W, Zhang Z, Shu Y, Liu H, Liu T (2022) Toward optimal operator parallelism for stream pro-
cessing topology with limited buffers. J Supercomput 78(11):13276–13297

 25. Liu S, Li Y, Yang H, Dun M, Chen C, Zhang H, Li W (2024) QAAS: quick accurate auto-scaling
for streaming processing. Front Comput Sci 18(1):181201

 26. Lombardi F, Aniello L, Bonomi S, Querzoni L (2017) Elastic symbiotic scaling of operators and
resources in stream processing systems. IEEE Trans Parallel Distrib Syst 29(3):572–585

 27. Mao Y, Huang Y, Tian R, Wang X, Ma RT (2021) Trisk: task-centric data stream reconfigura-
tion. In: Proceedings of the ACM Symposium on Cloud Computing, pp. 214–228

 28. Farrokh M, Hadian H, Sharifi M, Jafari A (2022) Sp-ant: An ant colony optimization based oper-
ator scheduler for high performance distributed stream processing on heterogeneous clusters.
Expert Syst Appl 191:116322

 29. Li H, Xia J, Luo W, Fang H (2022) Cost-efficient scheduling of streaming applications in Apache
Flink on cloud. IEEE Trans Big Data

 30. Huang X, Shao Z, Yang Y (2020) Potus: Predictive online tuple scheduling for data stream pro-
cessing systems. IEEE Trans Cloud Comput 10(4):2863–2875

 31. Li W, Liu D, Chen K, Li K, Qi H (2021) Hone: Mitigating stragglers in distributed stream pro-
cessing with tuple scheduling. IEEE Trans Parallel Distri Syst 32(8)

 32. Li H, Wu J, Jiang Z, Li X, Wei X (2017) Task allocation for stream processing with recovery
latency guarantee. In: 2017 IEEE international conference on cluster computing (CLUSTER), pp
379–383. IEEE

 33. Wang C, Meng X, Guo Q, Weng Z, Yang C (2017) Automating characterization deployment in
distributed data stream management systems. IEEE Trans Knowl Data Eng 29(12):2669–2681

 34. Kalavri V, Liagouris J, Hoffmann M, Dimitrova D, Forshaw M, Roscoe T (2018) Three steps
is all you need: fast, accurate, automatic scaling decisions for distributed streaming dataflows.
In: 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI 18), pp
783–798

 35. Sun D, Guan C, Fan Y, Rong J, Gao S (2023) A latency guaranteed scheduling strategy under
performance constraints in big data stream computing environments. In: 2023 International Con-
ference on Parallel and Distributed Systems (ICPADS)

 36. Karimov J, et al (2018) Benchmarking distributed stream data processing systems. In: 2018
IEEE 34th International Conference on Data Engineering (ICDE)

 37. Aliyun (2025) User behavior data from taobao for recommendation. [Online] Available at:
https:// tianc hi. aliyun. com/ datas et/ 649?t= 16797 27494 514. Accessed 22 Feb 2025

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

https://tianchi.aliyun.com/dataset/649?t=1679727494514

An elastic reconfiguration strategy for operators in… Page 31 of 31 722

Authors and Affiliations

Dawei Sun1 · Yinuo Fan1 · Chengjun Guan1 · Jia Rong2 · Shang Gao3 ·
Rajkumar Buyya4

 * Dawei Sun
 sundaweicn@cugb.edu.cn

 Yinuo Fan
 fanyinuocn@email.cugb.edu.cn

 Chengjun Guan
 guanchengjun@email.cugb.edu.cn

 Jia Rong
 jiarong@acm.org

 Shang Gao
 shang.gao@deakin.edu.au

 Rajkumar Buyya
 rbuyya@unimelb.edu.au

1 School of Information Engineering, China University of Geosciences, Beijing 10083,
People’s Republic of China

2 Department of Data Science and AI, Monash University, Clayton, VIC 3800, Australia
3 School of Information Technology, Deakin University, Geelong, VIC 3216, Australia
4 Quantum Cloud Computing and Distributed Systems (qCLOUDS) Laboratory, School

of Computing and Information Systems, The University of Melbourne, Parkville, VIC, Australia

	An elastic reconfiguration strategy for operators in distributed stream computing systems
	Abstract
	1 Introduction
	1.1 Background and motivation
	1.2 Contributions
	1.3 Paper organization

	2 Problem statement
	2.1 Streaming application
	2.2 Resource limitation
	2.3 Latency constraint
	2.4 Communication cost

	3 Er-Stream: system architecture and implementation
	3.1 System architecture
	3.2 Elastic strategy for parallelism
	3.3 Elastic Strategy in resource-limited or latency-constraint scenarios
	3.4 Operator reconfiguration

	4 Performance evaluation
	4.1 Experimental environment and parameter setup

	5 Performance results of latency
	5.1 In resource-limited scenarios
	5.2 In latency-constraint scenarios
	5.3 Performance results of throughput
	5.3.1 In resource-limited scenarios
	5.3.2 In latency-constraint scenarios

	5.4 Performance results of average CPU utilization
	5.4.1 In resource-limited scenarios
	5.4.2 In latency-constraint scenarios

	5.5 Performance results of resource usage

	6 Related work
	6.1 Operator parallelism
	6.2 Operator reconfiguration

	7 Conclusions and future work
	Acknowledgements
	References

