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Abstract— Data-intensive applications are growing at an 
increasing rate and there is a growing need to solve scalability and 
high-performance issues in them. By the advent of Cloud 
computing paradigm, it became possible to harness remote 
resources to build and deploy these applications. In recent years, 
new set of applications and services based on Internet of Things 
(IoT) paradigm, require to process large amount of data in very 
less time. Among them surveillance and object detection have 
gained prime importance, but cloud is unable to bring down the 
network latencies to meet the response time requirements. This 
problem is solved by Fog computing which harnesses resources in 
the edge of the network along with remote cloud resources as 
required. However, there is still a lack of frameworks that are 
successfully able to integrate sophisticated software and 
applications, especially deep learning, with fog and cloud 
computing environments. In this work, we propose a framework 
to deploy deep learning-based applications in fog-cloud 
environments to harness edge and cloud resources to provide 
better service quality for such applications. Our proposed 
framework, called EdgeLens, adapts to the application or user 
requirements to provide high accuracy or low latency modes of 
services. We also tested the performance of the software in terms 
of accuracy, response time, jitter, network bandwidth and power 
consumption and show how EdgeLens adapts to different service 
requirements. 

Keywords— Object Detection, Deep Learning, Fog computing, 
Cloud computing, Internet of Things 

I.  INTRODUCTION  
The cloud computing paradigm has provided users the “pay-

as-you-go” computation service which is an efficient alternative 
to owning and managing private data centers both for 
individuals and industries [1]. This Internet-based remote utility 
computing model becomes a problem for various latency-
sensitive applications like healthcare and surveillance which 
require real time results [2]. The emerging wave of IoT 
deployments are quickly shifting to application or services that 
are both resource hungry as well as require low response times. 
To solve this, the Fog computing paradigm has emerged which 
harnesses edge resources along with remote cloud resources as 
required [3]. Fog computing has gained significant importance 
due to its robustness and the ability to provide diverse response 
characteristics based on target applications. This new paradigm 
has facilitated and enhanced the mobility, privacy, security and 
latency of real-time applications [4]. 

Object detection and surveillance have become pervasive in 
modern digital society [5] with ubiquitous deployment of IoT 
enabled devices such as cameras everywhere. Autonomous 

video surveillance is a process of analyzing video sequences 
using object detection, segmentation and classification for 
various applications. Thus, object detection being a critical part, 
is an active area of research in computer vision. In the last few 
years there have been significant advances in the field of 
computer vision and deep learning which have made such object 
detection software much faster, accurate and precise. When such 
systems are deployed in real-life, they are still unable to perform 
well due to increasing data rates and poor system frameworks. 
Even with efficient models that are able to perform high 
resolution and high frame-per-second video analysis in very less 
time, the network overhead and transfer times of huge volumes 
of data renders these deployments useless. Fog computing seems 
to be a good solution to bring down the data transfer time 
significantly and hence improve the responsiveness and quality 
of such applications.  

There have been some works to adopt such deep learning 
applications to fog environments [6] but none of them provide 
framework for seamless integration of IoT-Fog-Cloud which 
can be deployed with engineering simplicity and adapt to the 
user and application requirements. The lack of such models or 
frameworks that integrate the power of high accuracy of deep 
learning models with the responsiveness of edge nodes 
motivated this work.  

In this work, we have developed a deep learning-based fog-
cloud deployable system, called EdgeLens, for real time object 
detection. Our framework uses Aneka service [7] and adapts to 
user and/or application needs to provide two modes in which the 
results are generated in high accuracy mode and other in low 
latency mode. The key contributions of this paper are: 

• A generic system architecture for development of deep 
learning applications in fog and cloud computing 
environments 

• A lightweight automatic object detection system using 
deep learning and Aneka which is called EdgeLens 

• Demonstrated and analyzed EdgeLens in terms of 
various performance parameters like accuracy, 
response time, network bandwidth and power 
consumption. 

The rest of the paper is organized as follows. Section II 
presents related work towards deep learning – fog integration 
frameworks. Section III proves the background details of Aneka 
platform which was used to develop and deploy the framework. 
Section IV gives the design and architecture of EdgeLens with 
implementation in Section V. Section VI describes the 



experimental setup and the performance evaluation of the 
framework. Conclusions and future work are proposed in 
Section VII. 

II. RELATED WORK 
Chen et al. [8] modelled a smart surveillance architecture for 

detecting fast moving vehicles. The video obtained is processed 
on fog computing nodes such as smartphones, smart tablets, 
computers in police cars and other onsite devices with 
computation capabilities. But their model is only able to detect 
single vehicle at a time and not multiple target objects. Diro et 
al. [9] implemented a distributed attack detection scheme using 
deep learning. They used fog nodes for training models and 
implemented the attack detection at the edge of the fog network. 
The master node performs parameter sharing and optimization. 
Their experiments showed that distributed attack detection 
using deep learning model is better than centralized attack 
detection system. But they did not compare their deep learning 
model with other traditional machine learning algorithms such 
as SVM, decision trees and other neural networks.  

Li et al. [10] showed deep learning for smart industry with 
fog computing framework. Their model handles the large data 
obtained from sensors adopted in industrial productions to 
detect defects of the products by offloading the computation 
burden from central server to the fog nodes. They have used 
convolutional neural network (CNN) for the predictive analysis 
and also simultaneously indicated the defect type and its degree. 
Teerapittayanon et al. [11] proposed a distributed deep learning 
network (DDNN) model over a distributed computational 
hierarchy consisting of the cloud, the edge (fog) and the end 
devices. They showed that by processing more sensor data on 
end devices rather than offloading on the cloud, they achieved 
high accuracy and also reduced communication cost. But they 
performed all their experiments on binary Neural Network 
layers (NN) and didn’t consider the possibility of mixed 
precision or floating-point NN layers. Constant et al. [12] 
developed a prototype of smart gateway that performed the 
process of data conditioning, intelligent filtering, smart 
analytics and selective transfer to the cloud for long term 
storage and temporal variability monitoring. Thus, with smart 
gateways they introduced end-to-end interaction between the 
sensor devices and the cloud.    

A summary of comparison with related work is shown in 
Table 1. Our work provides a simplistic and lightweight 
distributed implementation of deep learning applications over 
integrated fog and cloud computing environments using IoT.  

III. BACKGROUND TECHNOLOGY - ANEKA 
To develop and deploy the proposed system, we leveraged the 
computing capabilities of edge and cloud resources using 
Aneka platform [7]. Aneka is a platform for developing and 
deploying applications on cloud infrastructure. It provides a 
runtime environment and APIs that allow developments of 
.NET applications that harness computation capabilities of 
public or private clouds [7]. The public cloud can comprise of 
Virtual Machines (VMs) provided by cloud service providers 
like Azure or Amazon Web Services. The private cloud can 
comprise of enterprise cloud VMs, fog or edge devices in the 
Local Area Network (LAN). The core components of the Aneka 
framework are designed and implemented in a service-oriented 
fashion. Aneka provides dynamic provisioning which is the 
ability to dynamically acquire resources and integrate them into 
existing frameworks and software solutions. Dynamic 
provisioning in provided in Aneka using two main services: 
Resource provisioning and Scheduler service. Aneka provides 
multiple programming models, such as Thread, Task and Map-
Reduce. The Task model, supported in Aneka, considers each 
job request as a task and distributed all tasks across various 
virtual resources available across private or public cloud. Thus, 
Aneka provides a seamless execution environment for 
efficiently integrating Edge and Cloud resources and gives a 
unified interface for data-intensive applications. EdgeLens uses 
the Aneka Task model to distribute object detection tasks across 
different fog and cloud resources. 

IV. SYSTEM ARCHITECURE 
An IoT based fog-cloud integration system architecture for 

object detection which can manage input images effectively to 
provide results in near real-time is shown in Figure 1. It 
integrates different hardware and software components and 
allows structured communication. 

A. Components 
The system has the following hardware components: 

1) Input Sensors: These include cameras and video-
cameras that may or may not be attached with the gateway 
device. 

2) Gateway: Different types of gateway devices exist which 
include mobile phones, laptops and tablets. These act as fog 
devices that collect the images from cameras and forward them 
to the Aneka Master node for detection. 

3) Aneka Master: This is the Aneka master container in fog 
environment, that takes job requests from the gateway device 

Work IoT Fog 
Computing 

Cloud 
Computing 

Deep 
Learning 

Performance Parameters 

Accuracy Response Time Jitter Power Network 
Bandwidth 

Chen et al. [8]          
Diro et al. [9]          
Li et al. [10]          

Teera et al. [11]          
Constant et al. [12]          

EdgeLens          
Table 1: A comparison of existing systems with EdgeLens 

 



and sends it to worker containers. It contains the dynamic 
provisioning, load balancing and scheduling models that helps 
in task distribution across the Aneka containers. 

4) Aneka Worker: The worker containers present in private 
cloud (fog environment) or public cloud (like Azure or Amazon 
Web Services) perform the computation task and comprise of 
the deep learning models for object detection. The fog nodes 
may comprise of Single Board Computers (SBCs) like 
Raspberry Pis. The task sent to the Aneka Master is forwarded 
to the Aneka Worker containers. 

B. Software Services 
The software components of the proposed system are: 

1) Fabric Services: These implement the fundamental 
opertions of the infrastructure of public and private clouds. 
These services include resource provisioning, failover 
mechanism for improved reliability, performance monitoring 
and hardware profiling. 

2) Foundation Services: These help in enhancing the 
application execution in the cloud and include resource 
reservaion, billing, monitoring and storage management. 

3) Gateway Interface:  This is the Graphical User Interface 
(GUI) at the gateway device that helps in configuring the 
sensors and indicating the address of the Aneka Master device. 

4) Deep Learning Module: This module performs the 
computation task and converting input image to resulting 
segmented and classified ouput image. More detailed 
description is given in Section V.C. 

C. Network Topology 
The topology of the proposed system follows Master-Worker 

fashion where there is a single Aneka Master container and 
multiple Worker containers in private or public cloud. The edge 
devices including the fog worker nodes and the gateway device 
are present in the same Local Area Network (LAN). The Aneka 

Master is also in a Virtual Private Network (VPN) to harness 
the cloud resources which might be Virtual Machines (VM) in 
a Cloud Data Center (CDC). 

V. DESIGN AND IMPLEMENTATION 

A. Pre-processing 
The proposed system allows users to configure the data 

processing in two modes: High-Accuracy mode or Low-
Latency mode. Based on the mode selected, the model adapts 
the resource distribution and input pre-processing. In the former 
mode, the model sends raw input image, without compression, 
to the Aneka Master container. In low-latency mode, the input 
image is scaled down in resolution so that the network latency 
and execution time is lower, but may compromise on the 
detection accuracy. The rescaling is performed by rescale.py in 
Master. 

B. Task Parallelism 
EdgeLens uses Aneka-Task model for distribution of 

workload across the Edge nodes and Cloud VMs. The task 
parallelism code was developed in C# using .NET framework. 
When the Aneka Master gets the input image after pre-
processing, it creates an Aneka Task and sends it to one of the 
workers for processing. At the Aneka worker container, the task 
invokes the Python based deep learning software yolo.py 
(discussed in Section V-C). The results after computation 
through the deep learning application is fetched by Aneka 
Master and forwarded to the Gateway device.  

C. Deep Learning Application - You Only Look Once (YOLO) 
YOLO (You Only Look Once) is a model for object 

detection [14] used in this framework. The task is to detect the 
location of objects in the image by creating bounding box about 
the objects and then classify them into different classes. 
Methods like Recurrent Convolutional Neural Network (R-
CNN) and its variations used in multiple steps to perform this 

 
Figure 1: Architecture of proposed system 



task. This turned out to be slow and each individual component 
had to be trained separately. But YOLO has an end-to-end 
architecture which does region proposal and classification 
simultaneously and thus provides faster results. 

The image is divided into S×S grid and each cell is 
interested in predicting 5+k (k is number of classes) quantities 
which are probability (confidence) that this cell is indeed 
contained in a true bounding box, width and height of bounding 
box, center (x,y) of the bounding box and probability of the 
object in the bounding box belonging to the kth class (k-values). 
The output layer thus contains S×S×(5+k) elements. Now for 
each cell the bounding box, its confidence and the object in it 
are computed. Then the most significant bounding boxes and 
the corresponding object label are retained. The YOLO model, 
as shown in Figure 2, is implemented using CNN where the 
initial layers extract the features from the image and then fully 
connected layers predict the output probabilities and 
coordinates. The network has 24 convolutional layers followed 
by 2 fully connected layers. Alternating 1×1 convolutional 
layers reduce the features space from preceding layers.  

The YOLO model is extremely fast and simple [14] . It does 
not require a complex pipeline as it detects the frame using a 
regression mechanism. Each grid cell predicts bounding boxes 
and their respective confidence scores. Each grid cell also 
predicts conditional class probabilities. Using both class 
probability map and bounding boxes with confidence score, it 
makes the final prediction. 

D. Android Interface 
EdgeLens is built for android smartphones that act as 

gateway devices. The application interface is shown in Figure 
3. The interface was developed using MIT’s App Inventor [13]. 
This interface allows the user to set the network address of the 
node running the Aneka Master container. The communication 
of the input image received from the camera is achieved by 
Aneka web-service. This service uses HTTP POST request to 
send the image for computation. The Aneka Master then 
decides which worker to send the image and forwards it using 
the Aneka File Transfer Protocol (FTP).  

VI. PERFORMANCE EVALUATION 
To demonstrate the feasibility and efficiency of the proposed 

framework, we developed and deployed it for object detection 
in images in Fog-Cloud integrated computing environment. 

A. Experimental Setup 

The system setup for evaluation of the model is described 
below and shown in Figure 4: 

1) Gateway device: Samsung Galaxy S7 with Android 9, in 
CLOUDS Lab at University of Melbourne, Victoria, Austalia. 

2) Aneka Master: Dell XPS 13 with Inte® Core™ i5-7200 
CPU @ 2.50GHz, 8.00 GB DDR4 RAM and 64-bit Windows 
10, in CLOUDS Lab at University of Melbourne, Victoria, 
Austalia. 

3) Aneka Fog Worker: Dell Lattitude 5490 with Intel® 
Core™ i7-8650U CPU @ 1.9GHz, 16.00 GB DDR4 RAM and 
64-bit Windows 10, in CLOUDS Lab at University of 
Melbourne, Victoria, Austalia. 

 
Figure 2: Neural Network architecture of YOLO 

 

   
Figure 3: Android Interface at gateway device 



4) Aneka Cloud Worker: Microsoft Azure B1s Machine, 
1vCPU, 1GB RAM, 2GB SSD, Windows Server 2016 in two 
locations: Victoria, Australia and Virginia, USA. 

The YOLOv3 implementation [15] was used with pre-
trained weights by training on the COCO dataset [16]. The 
Aneka C# code invokes a Python module with this 
implementation and was used to run the experiments. 

During the experiments, data was sent with frequency of 10 
images per minute. Data parameters were recorded using 
Microsoft Performance Monitor [17] at the Master and the 
Azure VM. To measure the network bandwidth consumption 
Microsoft Network Monitor 3.4 [18] was used at the Aneka 
Master node. 

B. Detection Performance 
To evaluate an object detection model, we used the mean 

Average Precision (mAP) metric [19]. The Average Precision 
(AP) is calculated as the area under the precision-recall curve 
and mAP is the average AP values for all detection classes. To 
compare the two operation modes in EdgeLens (high-accuracy 
and low-latency), we evaluated the model on the PASCAL-

Visual Object Classes (VOC) Challenge dataset [20]. The mAP 
of the two modes with a single worker node is shown in Figure 
5. The detection and response speed of the two modes are 
compared using the Frames per Minute (FPM) metric [19] 
which indicates the number of images they can detect in a 
minute is shown in Figure 6 for a single worker node. The 
graphs show that the high-accuracy mode has higher detection 
performance but is much slower than the low-latency mode. 

Figure 7 shows the variation in the detection results for the 
two configurations of high accuracy and low latency. The input 
is an image of a computer lab with dim lighting and is of size 
4000×2192 pixels or 978 KB. For high-accuracy result the 
image is considered as it is, but for low-latency result the image 
is scaled down to 200×110 pixels of size 4.84 KB. The high-
accuracy output classifies most monitors, keyboards and chairs 
correctly. The low latency output has significantly poor 
detection result and does not detect many monitors or chairs and 
even incorrectly classifies some of them. 

C. Response Time 
Fog different Fog scenarios, the average response times are 

shown in 8. We see that the response time is low when the data 
is sent to the fog nodes compared to when it is sent to cloud 
container. This is expected because the data transfer time in the 
LAN is much lower than the Internet to CDC. Also, for two fog 
worker nodes, the average response time is lower because of a 
greater number of resources for the tasks. For every case, we 
can observe that the response time is much lower when in low-
latency mode compared to when in high-accuracy mode. 

D. Jitter 
Jitter is variation in latency and is an important measure for 

many applications like surveillance. Figure 9 shows the jitter in 
different cases. We see that jitter is highest when tasks are sent 

    
(a) Input Image                        (b) High accuracy output                         (c) Low latency output 

Figure 7: Input image and outputs in different configurations 

 
Figure 8: Response time comparison 

 
Figure 4: Experiment setup 

 
Figure 5: mAP results 

 
Figure 6: FPM results 



to cloud VM and low when tasks sent to fog nodes. Also, jitter 
is lower when there are two edge nodes compared to the case 
with only one edge node. Jitter is lower for low latency mode 
too. 

E. Network Bandwidth Usage 
The network bandwidth consumption for different cases is 

shown in Figure 10. As expected, the network consumption is 
very high when configured to run in high-accuracy mode 
compared to when in low-latency mode. This is because in 
high-accuracy mode ten 0.9 MB images are being sent every 
minute but in low-latency mode ten 4.8 KB images are being 
sent every minute.  

F. Power Consumption 
Figure 11 shows the total power consumption of all devices 

in different scenarios. We see that the power consumption is 
highest in the case when all tasks are sent to cloud VM. Power 
consumption of fog nodes is very low and increases to almost 
double when we have two edge nodes compared to the case with 
only one edge node. 

G. Discussion 
Based on the experiments, we suggest that the proposed 

approach can be used in the following settings based on the 
target Quality of Service (QoS): 

• For latency critical tasks that are lightweight where results 
are not sensitive to accuracy, the low-latency mode should 
be used with fog configuration. 

• For tasks requiring very high accuracy but network and 
energy are not limited high-accuracy mode must be used. 
If tasks require very heavy computation then Cloud must 
be used. 

This work demonstrates capabilities of Aneka offering a 
lightweight means to develop and test distributed deep learning 
applications using Aneka with engineering simplicity and 
robustness. 

VII. CONCLUSIONS AND FUTURE WORK 
We proposed a novel fog-cloud based deep learning 

approach for object detection. Our system provides a 
deployable framework for deep learning applications and 
provides different modes (high-accuracy and low-latency) for 
different target applications or user requirements. We used 
Aneka platform service to deploy and test the effectiveness of 
the proposed model. We compared different characteristics like 
detection accuracy, response time, jitter, network and power 
consumption for different fog scenarios and used the results to 
suggest different modes of operation for different use cases. 

As part of the future work, we plan to extend the system to 
consider a given cost model to distribute and share resources or 
pre-process/resize input images based on budget constraints of 
the user. Also, currently the training of the model is done 
separately on a single high-performance system and only 
prediction is distributed. This can be distributed across different 
edge nodes for distributed training. This can also require 
development of other modules for ensembling or combining the 
results from different trained neural networks. We will also 
extend this framework to make it generic so that it can be used 
for other deep learning applications in domains such as 
healthcare, agriculture and weather forecasting. 

The EdgeLens software is open-source and the code sources 
and datasets are available at the GitHub repository 
https://github.com/Cloudslab/EdgeLens. 
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