
EdgeLens: Deep Learning based Object Detection in Integrated
IoT, Fog and Cloud Computing Environments

Shreshth Tuli1,2, Nipam Basumatary1,3 and Rajkumar Buyya1

1CLOUDS Laboratory, School of Computing and Information Systems, The University of Melbourne, Australia
2Department of Computer Science, Indian Institute of Technology (IIT) Delhi, India

3Department of Computer Science, Indian Institute of Technology (IIT) Madras, India

Abstract— Data-intensive applications are growing at an
increasing rate and there is a growing need to solve scalability and
high-performance issues in them. By the advent of Cloud
computing paradigm, it became possible to harness remote
resources to build and deploy these applications. In recent years,
new set of applications and services based on Internet of Things
(IoT) paradigm, require to process large amount of data in very
less time. Among them surveillance and object detection have
gained prime importance, but cloud is unable to bring down the
network latencies to meet the response time requirements. This
problem is solved by Fog computing which harnesses resources in
the edge of the network along with remote cloud resources as
required. However, there is still a lack of frameworks that are
successfully able to integrate sophisticated software and
applications, especially deep learning, with fog and cloud
computing environments. In this work, we propose a framework
to deploy deep learning-based applications in fog-cloud
environments to harness edge and cloud resources to provide
better service quality for such applications. Our proposed
framework, called EdgeLens, adapts to the application or user
requirements to provide high accuracy or low latency modes of
services. We also tested the performance of the software in terms
of accuracy, response time, jitter, network bandwidth and power
consumption and show how EdgeLens adapts to different service
requirements.

Keywords— Object Detection, Deep Learning, Fog computing,
Cloud computing, Internet of Things

I. INTRODUCTION
The cloud computing paradigm has provided users the “pay-

as-you-go” computation service which is an efficient alternative
to owning and managing private data centers both for
individuals and industries [1]. This Internet-based remote utility
computing model becomes a problem for various latency-
sensitive applications like healthcare and surveillance which
require real time results [2]. The emerging wave of IoT
deployments are quickly shifting to application or services that
are both resource hungry as well as require low response times.
To solve this, the Fog computing paradigm has emerged which
harnesses edge resources along with remote cloud resources as
required [3]. Fog computing has gained significant importance
due to its robustness and the ability to provide diverse response
characteristics based on target applications. This new paradigm
has facilitated and enhanced the mobility, privacy, security and
latency of real-time applications [4].

Object detection and surveillance have become pervasive in
modern digital society [5] with ubiquitous deployment of IoT
enabled devices such as cameras everywhere. Autonomous

video surveillance is a process of analyzing video sequences
using object detection, segmentation and classification for
various applications. Thus, object detection being a critical part,
is an active area of research in computer vision. In the last few
years there have been significant advances in the field of
computer vision and deep learning which have made such object
detection software much faster, accurate and precise. When such
systems are deployed in real-life, they are still unable to perform
well due to increasing data rates and poor system frameworks.
Even with efficient models that are able to perform high
resolution and high frame-per-second video analysis in very less
time, the network overhead and transfer times of huge volumes
of data renders these deployments useless. Fog computing seems
to be a good solution to bring down the data transfer time
significantly and hence improve the responsiveness and quality
of such applications.

There have been some works to adopt such deep learning
applications to fog environments [6] but none of them provide
framework for seamless integration of IoT-Fog-Cloud which
can be deployed with engineering simplicity and adapt to the
user and application requirements. The lack of such models or
frameworks that integrate the power of high accuracy of deep
learning models with the responsiveness of edge nodes
motivated this work.

In this work, we have developed a deep learning-based fog-
cloud deployable system, called EdgeLens, for real time object
detection. Our framework uses Aneka service [7] and adapts to
user and/or application needs to provide two modes in which the
results are generated in high accuracy mode and other in low
latency mode. The key contributions of this paper are:

• A generic system architecture for development of deep
learning applications in fog and cloud computing
environments

• A lightweight automatic object detection system using
deep learning and Aneka which is called EdgeLens

• Demonstrated and analyzed EdgeLens in terms of
various performance parameters like accuracy,
response time, network bandwidth and power
consumption.

The rest of the paper is organized as follows. Section II
presents related work towards deep learning – fog integration
frameworks. Section III proves the background details of Aneka
platform which was used to develop and deploy the framework.
Section IV gives the design and architecture of EdgeLens with
implementation in Section V. Section VI describes the

experimental setup and the performance evaluation of the
framework. Conclusions and future work are proposed in
Section VII.

II. RELATED WORK
Chen et al. [8] modelled a smart surveillance architecture for

detecting fast moving vehicles. The video obtained is processed
on fog computing nodes such as smartphones, smart tablets,
computers in police cars and other onsite devices with
computation capabilities. But their model is only able to detect
single vehicle at a time and not multiple target objects. Diro et
al. [9] implemented a distributed attack detection scheme using
deep learning. They used fog nodes for training models and
implemented the attack detection at the edge of the fog network.
The master node performs parameter sharing and optimization.
Their experiments showed that distributed attack detection
using deep learning model is better than centralized attack
detection system. But they did not compare their deep learning
model with other traditional machine learning algorithms such
as SVM, decision trees and other neural networks.

Li et al. [10] showed deep learning for smart industry with
fog computing framework. Their model handles the large data
obtained from sensors adopted in industrial productions to
detect defects of the products by offloading the computation
burden from central server to the fog nodes. They have used
convolutional neural network (CNN) for the predictive analysis
and also simultaneously indicated the defect type and its degree.
Teerapittayanon et al. [11] proposed a distributed deep learning
network (DDNN) model over a distributed computational
hierarchy consisting of the cloud, the edge (fog) and the end
devices. They showed that by processing more sensor data on
end devices rather than offloading on the cloud, they achieved
high accuracy and also reduced communication cost. But they
performed all their experiments on binary Neural Network
layers (NN) and didn’t consider the possibility of mixed
precision or floating-point NN layers. Constant et al. [12]
developed a prototype of smart gateway that performed the
process of data conditioning, intelligent filtering, smart
analytics and selective transfer to the cloud for long term
storage and temporal variability monitoring. Thus, with smart
gateways they introduced end-to-end interaction between the
sensor devices and the cloud.

A summary of comparison with related work is shown in
Table 1. Our work provides a simplistic and lightweight
distributed implementation of deep learning applications over
integrated fog and cloud computing environments using IoT.

III. BACKGROUND TECHNOLOGY - ANEKA
To develop and deploy the proposed system, we leveraged the
computing capabilities of edge and cloud resources using
Aneka platform [7]. Aneka is a platform for developing and
deploying applications on cloud infrastructure. It provides a
runtime environment and APIs that allow developments of
.NET applications that harness computation capabilities of
public or private clouds [7]. The public cloud can comprise of
Virtual Machines (VMs) provided by cloud service providers
like Azure or Amazon Web Services. The private cloud can
comprise of enterprise cloud VMs, fog or edge devices in the
Local Area Network (LAN). The core components of the Aneka
framework are designed and implemented in a service-oriented
fashion. Aneka provides dynamic provisioning which is the
ability to dynamically acquire resources and integrate them into
existing frameworks and software solutions. Dynamic
provisioning in provided in Aneka using two main services:
Resource provisioning and Scheduler service. Aneka provides
multiple programming models, such as Thread, Task and Map-
Reduce. The Task model, supported in Aneka, considers each
job request as a task and distributed all tasks across various
virtual resources available across private or public cloud. Thus,
Aneka provides a seamless execution environment for
efficiently integrating Edge and Cloud resources and gives a
unified interface for data-intensive applications. EdgeLens uses
the Aneka Task model to distribute object detection tasks across
different fog and cloud resources.

IV. SYSTEM ARCHITECURE
An IoT based fog-cloud integration system architecture for

object detection which can manage input images effectively to
provide results in near real-time is shown in Figure 1. It
integrates different hardware and software components and
allows structured communication.

A. Components
The system has the following hardware components:

1) Input Sensors: These include cameras and video-
cameras that may or may not be attached with the gateway
device.

2) Gateway: Different types of gateway devices exist which
include mobile phones, laptops and tablets. These act as fog
devices that collect the images from cameras and forward them
to the Aneka Master node for detection.

3) Aneka Master: This is the Aneka master container in fog
environment, that takes job requests from the gateway device

Work IoT Fog
Computing

Cloud
Computing

Deep
Learning

Performance Parameters

Accuracy Response Time Jitter Power Network
Bandwidth

Chen et al. [8]
Diro et al. [9]
Li et al. [10]

Teera et al. [11]
Constant et al. [12]

EdgeLens
Table 1: A comparison of existing systems with EdgeLens

and sends it to worker containers. It contains the dynamic
provisioning, load balancing and scheduling models that helps
in task distribution across the Aneka containers.

4) Aneka Worker: The worker containers present in private
cloud (fog environment) or public cloud (like Azure or Amazon
Web Services) perform the computation task and comprise of
the deep learning models for object detection. The fog nodes
may comprise of Single Board Computers (SBCs) like
Raspberry Pis. The task sent to the Aneka Master is forwarded
to the Aneka Worker containers.

B. Software Services
The software components of the proposed system are:

1) Fabric Services: These implement the fundamental
opertions of the infrastructure of public and private clouds.
These services include resource provisioning, failover
mechanism for improved reliability, performance monitoring
and hardware profiling.

2) Foundation Services: These help in enhancing the
application execution in the cloud and include resource
reservaion, billing, monitoring and storage management.

3) Gateway Interface: This is the Graphical User Interface
(GUI) at the gateway device that helps in configuring the
sensors and indicating the address of the Aneka Master device.

4) Deep Learning Module: This module performs the
computation task and converting input image to resulting
segmented and classified ouput image. More detailed
description is given in Section V.C.

C. Network Topology
The topology of the proposed system follows Master-Worker

fashion where there is a single Aneka Master container and
multiple Worker containers in private or public cloud. The edge
devices including the fog worker nodes and the gateway device
are present in the same Local Area Network (LAN). The Aneka

Master is also in a Virtual Private Network (VPN) to harness
the cloud resources which might be Virtual Machines (VM) in
a Cloud Data Center (CDC).

V. DESIGN AND IMPLEMENTATION

A. Pre-processing
The proposed system allows users to configure the data

processing in two modes: High-Accuracy mode or Low-
Latency mode. Based on the mode selected, the model adapts
the resource distribution and input pre-processing. In the former
mode, the model sends raw input image, without compression,
to the Aneka Master container. In low-latency mode, the input
image is scaled down in resolution so that the network latency
and execution time is lower, but may compromise on the
detection accuracy. The rescaling is performed by rescale.py in
Master.

B. Task Parallelism
EdgeLens uses Aneka-Task model for distribution of

workload across the Edge nodes and Cloud VMs. The task
parallelism code was developed in C# using .NET framework.
When the Aneka Master gets the input image after pre-
processing, it creates an Aneka Task and sends it to one of the
workers for processing. At the Aneka worker container, the task
invokes the Python based deep learning software yolo.py
(discussed in Section V-C). The results after computation
through the deep learning application is fetched by Aneka
Master and forwarded to the Gateway device.

C. Deep Learning Application - You Only Look Once (YOLO)
YOLO (You Only Look Once) is a model for object

detection [14] used in this framework. The task is to detect the
location of objects in the image by creating bounding box about
the objects and then classify them into different classes.
Methods like Recurrent Convolutional Neural Network (R-
CNN) and its variations used in multiple steps to perform this

Figure 1: Architecture of proposed system

task. This turned out to be slow and each individual component
had to be trained separately. But YOLO has an end-to-end
architecture which does region proposal and classification
simultaneously and thus provides faster results.

The image is divided into S×S grid and each cell is
interested in predicting 5+k (k is number of classes) quantities
which are probability (confidence) that this cell is indeed
contained in a true bounding box, width and height of bounding
box, center (x,y) of the bounding box and probability of the
object in the bounding box belonging to the kth class (k-values).
The output layer thus contains S×S×(5+k) elements. Now for
each cell the bounding box, its confidence and the object in it
are computed. Then the most significant bounding boxes and
the corresponding object label are retained. The YOLO model,
as shown in Figure 2, is implemented using CNN where the
initial layers extract the features from the image and then fully
connected layers predict the output probabilities and
coordinates. The network has 24 convolutional layers followed
by 2 fully connected layers. Alternating 1×1 convolutional
layers reduce the features space from preceding layers.

The YOLO model is extremely fast and simple [14] . It does
not require a complex pipeline as it detects the frame using a
regression mechanism. Each grid cell predicts bounding boxes
and their respective confidence scores. Each grid cell also
predicts conditional class probabilities. Using both class
probability map and bounding boxes with confidence score, it
makes the final prediction.

D. Android Interface
EdgeLens is built for android smartphones that act as

gateway devices. The application interface is shown in Figure
3. The interface was developed using MIT’s App Inventor [13].
This interface allows the user to set the network address of the
node running the Aneka Master container. The communication
of the input image received from the camera is achieved by
Aneka web-service. This service uses HTTP POST request to
send the image for computation. The Aneka Master then
decides which worker to send the image and forwards it using
the Aneka File Transfer Protocol (FTP).

VI. PERFORMANCE EVALUATION
To demonstrate the feasibility and efficiency of the proposed

framework, we developed and deployed it for object detection
in images in Fog-Cloud integrated computing environment.

A. Experimental Setup

The system setup for evaluation of the model is described
below and shown in Figure 4:

1) Gateway device: Samsung Galaxy S7 with Android 9, in
CLOUDS Lab at University of Melbourne, Victoria, Austalia.

2) Aneka Master: Dell XPS 13 with Inte® Core™ i5-7200
CPU @ 2.50GHz, 8.00 GB DDR4 RAM and 64-bit Windows
10, in CLOUDS Lab at University of Melbourne, Victoria,
Austalia.

3) Aneka Fog Worker: Dell Lattitude 5490 with Intel®
Core™ i7-8650U CPU @ 1.9GHz, 16.00 GB DDR4 RAM and
64-bit Windows 10, in CLOUDS Lab at University of
Melbourne, Victoria, Austalia.

Figure 2: Neural Network architecture of YOLO

Figure 3: Android Interface at gateway device

4) Aneka Cloud Worker: Microsoft Azure B1s Machine,
1vCPU, 1GB RAM, 2GB SSD, Windows Server 2016 in two
locations: Victoria, Australia and Virginia, USA.

The YOLOv3 implementation [15] was used with pre-
trained weights by training on the COCO dataset [16]. The
Aneka C# code invokes a Python module with this
implementation and was used to run the experiments.

During the experiments, data was sent with frequency of 10
images per minute. Data parameters were recorded using
Microsoft Performance Monitor [17] at the Master and the
Azure VM. To measure the network bandwidth consumption
Microsoft Network Monitor 3.4 [18] was used at the Aneka
Master node.

B. Detection Performance
To evaluate an object detection model, we used the mean

Average Precision (mAP) metric [19]. The Average Precision
(AP) is calculated as the area under the precision-recall curve
and mAP is the average AP values for all detection classes. To
compare the two operation modes in EdgeLens (high-accuracy
and low-latency), we evaluated the model on the PASCAL-

Visual Object Classes (VOC) Challenge dataset [20]. The mAP
of the two modes with a single worker node is shown in Figure
5. The detection and response speed of the two modes are
compared using the Frames per Minute (FPM) metric [19]
which indicates the number of images they can detect in a
minute is shown in Figure 6 for a single worker node. The
graphs show that the high-accuracy mode has higher detection
performance but is much slower than the low-latency mode.

Figure 7 shows the variation in the detection results for the
two configurations of high accuracy and low latency. The input
is an image of a computer lab with dim lighting and is of size
4000×2192 pixels or 978 KB. For high-accuracy result the
image is considered as it is, but for low-latency result the image
is scaled down to 200×110 pixels of size 4.84 KB. The high-
accuracy output classifies most monitors, keyboards and chairs
correctly. The low latency output has significantly poor
detection result and does not detect many monitors or chairs and
even incorrectly classifies some of them.

C. Response Time
Fog different Fog scenarios, the average response times are

shown in 8. We see that the response time is low when the data
is sent to the fog nodes compared to when it is sent to cloud
container. This is expected because the data transfer time in the
LAN is much lower than the Internet to CDC. Also, for two fog
worker nodes, the average response time is lower because of a
greater number of resources for the tasks. For every case, we
can observe that the response time is much lower when in low-
latency mode compared to when in high-accuracy mode.

D. Jitter
Jitter is variation in latency and is an important measure for

many applications like surveillance. Figure 9 shows the jitter in
different cases. We see that jitter is highest when tasks are sent

(a) Input Image (b) High accuracy output (c) Low latency output

Figure 7: Input image and outputs in different configurations

Figure 8: Response time comparison

Figure 4: Experiment setup

Figure 5: mAP results

Figure 6: FPM results

to cloud VM and low when tasks sent to fog nodes. Also, jitter
is lower when there are two edge nodes compared to the case
with only one edge node. Jitter is lower for low latency mode
too.

E. Network Bandwidth Usage
The network bandwidth consumption for different cases is

shown in Figure 10. As expected, the network consumption is
very high when configured to run in high-accuracy mode
compared to when in low-latency mode. This is because in
high-accuracy mode ten 0.9 MB images are being sent every
minute but in low-latency mode ten 4.8 KB images are being
sent every minute.

F. Power Consumption
Figure 11 shows the total power consumption of all devices

in different scenarios. We see that the power consumption is
highest in the case when all tasks are sent to cloud VM. Power
consumption of fog nodes is very low and increases to almost
double when we have two edge nodes compared to the case with
only one edge node.

G. Discussion
Based on the experiments, we suggest that the proposed

approach can be used in the following settings based on the
target Quality of Service (QoS):

• For latency critical tasks that are lightweight where results
are not sensitive to accuracy, the low-latency mode should
be used with fog configuration.

• For tasks requiring very high accuracy but network and
energy are not limited high-accuracy mode must be used.
If tasks require very heavy computation then Cloud must
be used.

This work demonstrates capabilities of Aneka offering a
lightweight means to develop and test distributed deep learning
applications using Aneka with engineering simplicity and
robustness.

VII. CONCLUSIONS AND FUTURE WORK
We proposed a novel fog-cloud based deep learning

approach for object detection. Our system provides a
deployable framework for deep learning applications and
provides different modes (high-accuracy and low-latency) for
different target applications or user requirements. We used
Aneka platform service to deploy and test the effectiveness of
the proposed model. We compared different characteristics like
detection accuracy, response time, jitter, network and power
consumption for different fog scenarios and used the results to
suggest different modes of operation for different use cases.

As part of the future work, we plan to extend the system to
consider a given cost model to distribute and share resources or
pre-process/resize input images based on budget constraints of
the user. Also, currently the training of the model is done
separately on a single high-performance system and only
prediction is distributed. This can be distributed across different
edge nodes for distributed training. This can also require
development of other modules for ensembling or combining the
results from different trained neural networks. We will also
extend this framework to make it generic so that it can be used
for other deep learning applications in domains such as
healthcare, agriculture and weather forecasting.

The EdgeLens software is open-source and the code sources
and datasets are available at the GitHub repository
https://github.com/Cloudslab/EdgeLens.

ACKNOWLEDGEMENTS
This work is supported by Melbourne-Chindia Cloud

Computing Research Network and Australian Research
Council. We would also like to thank Shashikant Ilager

Figure 11: Power comparison

Figure 9: Jitter comparison

Figure 10: Network bandwidth consumption comparison

https://github.com/Cloudslab/EdgeLens

(CLOUDS Lab, University of Melbourne) for his valuable
comments on improving the quality of the presentation of this
work.

REFERENCES
[1] Islam, S.M.R., Kwak, D., Kabir M.D.H., Hossain M. and Kwak K.S.: The

internet of things for health care: a comprehensive survey. IEEE Access.
3, 678-708 (2015).

[2] Afrin, Mahbuba, Md Redowan Mahmud, and Md Abdur Razzaque. "Real
time detection of speed breakers and warning system for on-road drivers."
2015 IEEE International WIE Conference on Electrical and Computer
Engineering (WIECON-ECE), pp. 495-498. IEEE, 2015.

[3] Tuli, Shreshth, Redowan Mahmud, Shikhar Tuli, and Rajkumar Buyya.
"FogBus: A Blockchain-based Lightweight Framework for Edge and Fog
Computing." Journal of Systems and Software (2019).

[4] Bonomi, Flavio, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. "Fog
computing and its role in the internet of things." MCC workshop on
Mobile cloud computing, pp. 13-16. ACM, 2012.

[5] Borji, Ali, Ming-Ming Cheng, Qibin Hou, Huaizu Jiang, and Jia Li.
"Salient object detection: A survey." arXiv:1411.5878 (2014).

[6] Abeshu, Abebe, and Naveen Chilamkurti. "Deep learning: the frontier for
distributed attack detection in fog-to-things computing." IEEE
Communications Magazine 56, no. 2 (2018): 169-175.

[7] Vecchiola, Christian, Xingchen Chu, and Rajkumar Buyya. "Aneka: a
software platform for .NET-based cloud computing." High Speed and
Large Scale Scientific Computing 18 (2009): 267-295.

[8] Chen, Ning, Yu Chen, Sejun Song, Chin-Tser Huang, and Xinyue Ye.
"Smart urban surveillance using fog computing." 2016 IEEE/ACM
Symposium on Edge Computing (SEC), pp. 95-96. IEEE, 2016.

[9] Diro, Abebe Abeshu, and Naveen Chilamkurti. "Distributed attack
detection scheme using deep learning approach for Internet of Things."
Future Generation Computer Systems 82 (2018): 761-768.

[10] Li, Liangzhi, Kaoru Ota, and Mianxiong Dong. "Deep learning for smart
industry: efficient manufacture inspection system with fog computing."
IEEE Transactions on Industrial Informatics (2018): 4665-4673.

[11] Teerapittayanon, Surat, Bradley McDanel, and Hsiang-Tsung Kung.
"Distributed deep neural networks over the cloud, the edge and end
devices." 37th IEEE International Conference on Distributed Computing
Systems (ICDCS), pp. 328-339. IEEE, 2017.

[12] Constant, Nicholas, Debanjan Borthakur, Mohammadreza Abtahi,
Harishchandra Dubey, and Kunal Mankodiya. "Fog-assisted wiot: A
smart fog gateway for end-to-end analytics in wearable internet of things."
arXiv preprint arXiv:1701.08680 (2017).

[13] MIT App Inventor software. http://appinventor.mit.edu/appinventor-
sources/. [accessed on 28-May-2019].

[14] Redmon, Joseph, Santosh Divvala, Ross Girshick, and Ali Farhadi. "You
only look once: Unified, real-time object detection." IEEE conference on
Computer Vision and Pattern Recognition, pp. 779-788. 2016.

[15] Redmon, Joseph, and Ali Farhadi. "Yolov3: An incremental
improvement." arXiv preprint arXiv:1804.02767 (2018).

[16] COCO Dataset. http://cocodataset.org/#home. [accessed on 31-May-
2019].

[17] Mircosoft Windows performance toolkit. https://docs.microsoft.com/
enus/windows-hardware/test/wpt/. [accessed on 30-May-2019].

[18] Microsoft Network Monitor 3.4.
https://www.microsoft.com/enau/download/details.aspx?id=4865.
[accessed on 28-May-2019].

[19] Han, Junwei, Dingwen Zhang, Gong Cheng, Nian Liu, and Dong Xu.
"Advanced deep-learning techniques for salient and category-specific
object detection: a survey." IEEE Signal Processing Magazine 35, no. 1
(2018): 84-100.

[20] Everingham, Mark, Luc Van Gool, Christopher KI Williams, John Winn,
and Andrew Zisserman. "The pascal visual object classes (voc)
challenge." International journal of computer vision 88, no. 2 (2010):
303-338.

http://appinventor.mit.edu/appinventor-sources/
http://appinventor.mit.edu/appinventor-sources/
http://cocodataset.org/#home
https://docs.microsoft.com/%20enus/windows-hardware/test/wpt/
https://docs.microsoft.com/%20enus/windows-hardware/test/wpt/
https://www.microsoft.com/enau/download/details.aspx?id=4865

	I. Introduction
	II. Related Work
	III. Background Technology - Aneka
	IV. System Architecure
	A. Components
	1) Input Sensors: These include cameras and video-cameras that may or may not be attached with the gateway device.
	2) Gateway: Different types of gateway devices exist which include mobile phones, laptops and tablets. These act as fog devices that collect the images from cameras and forward them to the Aneka Master node for detection.
	3) Aneka Master: This is the Aneka master container in fog environment, that takes job requests from the gateway device and sends it to worker containers. It contains the dynamic provisioning, load balancing and scheduling models that helps in task di...
	4) Aneka Worker: The worker containers present in private cloud (fog environment) or public cloud (like Azure or Amazon Web Services) perform the computation task and comprise of the deep learning models for object detection. The fog nodes may compris...

	B. Software Services
	1) Fabric Services: These implement the fundamental opertions of the infrastructure of public and private clouds. These services include resource provisioning, failover mechanism for improved reliability, performance monitoring and hardware profiling.
	2) Foundation Services: These help in enhancing the application execution in the cloud and include resource reservaion, billing, monitoring and storage management.
	3) Gateway Interface: This is the Graphical User Interface (GUI) at the gateway device that helps in configuring the sensors and indicating the address of the Aneka Master device.
	4) Deep Learning Module: This module performs the computation task and converting input image to resulting segmented and classified ouput image. More detailed description is given in Section V.C.

	C. Network Topology

	V. Design and Implementation
	A. Pre-processing
	B. Task Parallelism
	C. Deep Learning Application - You Only Look Once (YOLO)
	D. Android Interface

	VI. Performance Evaluation
	A. Experimental Setup
	The system setup for evaluation of the model is described below and shown in Figure 4:
	1) Gateway device: Samsung Galaxy S7 with Android 9, in CLOUDS Lab at University of Melbourne, Victoria, Austalia.
	2) Aneka Master: Dell XPS 13 with Inte® Core™ i5-7200 CPU @ 2.50GHz, 8.00 GB DDR4 RAM and 64-bit Windows 10, in CLOUDS Lab at University of Melbourne, Victoria, Austalia.
	3) Aneka Fog Worker: Dell Lattitude 5490 with Intel® Core™ i7-8650U CPU @ 1.9GHz, 16.00 GB DDR4 RAM and 64-bit Windows 10, in CLOUDS Lab at University of Melbourne, Victoria, Austalia.
	4) Aneka Cloud Worker: Microsoft Azure B1s Machine, 1vCPU, 1GB RAM, 2GB SSD, Windows Server 2016 in two locations: Victoria, Australia and Virginia, USA.

	B. Detection Performance
	C. Response Time
	D. Jitter
	E. Network Bandwidth Usage
	F. Power Consumption
	G. Discussion

	VII. Conclusions and Future Work
	Acknowledgements
	References

