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Abstract. Emerging applications in healthcare, autonomous vehicles,
and wearable assistance require interactive and low-latency data analy-
sis services. Unfortunately, cloud-centric architectures cannot fulfill the
low-latency demands of these applications, as user devices are often dis-
tant from cloud data centers. Multi-Access Edge Computing (MEC) aims
to reduce the latency by enabling processing tasks to be offloaded to re-
sources located at the network’s edge. However, determining which tasks
must be offloaded to edge servers to reduce the latency of application
requests is not trivial, especially if the tasks present dependencies. This
paper proposes a Deep Reinforcement Learning (DRL) approach called
TPTO, which leverages Transformer Networks and Proximal Policy Op-
timization (PPO) to offload dependent tasks of IoT applications in MEC.
We consider users with various preferences, where devices can offload
computation to a MEC server via wireless channels. Performance eval-
uation results demonstrated that under fat application graphs, TPTO
is more effective than state-of-the-art methods, such as HEFT, Greedy,
and MRLCO, by reducing latency by 3.44%, 30.61%, and 19.17%, re-
spectively. In addition, TPTO presents a training time approximately
2.5 times faster than an existing DRL approach.

Keywords: edge computing · reinforcement learning · transformers

1 Introduction

Multi-Access Edge Computing (MEC), by complementing the cloud, can enable
an increasing range of IoT applications that produce vast amounts of time-
sensitive data requiring prompt analysis, such as in autonomous driving, health-
care, online video processing, and wearable assistance [4, 28]. In autonomous
driving, for instance, latency is a critical factor in ensuring the safety of passen-
gers and pedestrians. A minor delay in processing sensor data or making control
decisions can not only degrade the users’ quality of experience but also result in
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accidents or compromised safety. MEC provides computing services (e.g., base
stations, access points, and edge routers) that are closer to end-users, contribut-
ing to lower the latency of application requests, their energy consumption, and
the amount of data transferred to the cloud for processing [12].

Reducing the latency of IoT application requests requires offloading data
processing tasks to MEC servers, an activity that often poses significant chal-
lenges. Offloading tasks can free constrained resources of user devices, but on
the other hand, transferring data between the user devices and remote MEC
servers can impact the latency [23]. Moreover, according to research conducted
by Alibaba, around 75% of real-world applications have interdependent tasks,
commonly structured as a Directed Acyclic Graph (DAG), where the vertices
represent data sources, data sinks, end-users, and operators, and the edges rep-
resent data streaming from one operator to another [8, 20]. Trying to devise
efficient offloading decisions for these applications can often result in NP-hard
problems, which require sophisticated algorithms to address them effectively.

Several heuristics, meta-heuristics, and model-based approaches exist for of-
floading decisions in MEC, most of which are unsuitable to stochastic environ-
ments where resource availability is continuously evolving [7, 25]. MEC is also
stochastic when considering the number of applications, the number of tasks
in an application, their arrival rate, their dependencies, and their resource re-
quirements [3]. DRL with policy optimization is a promising approach to ad-
dress these challenges and design agents interacting with the environment to
learn an optimal policy, enhanced over time through trial and error [2]. DRL
agents can learn a stochastic policy without having preliminary information
about the environment, making them suitable for stochastic and complex sys-
tems like MEC [6,7, 9, 25,29].

We formulate the task offloading decision as a binary optimization prob-
lem and propose a solution, Transformer-PPO based Task-Offloading (TPTO),
which utilizes a combination of Markov Decision Process (MDP), Reinforcement
Learning (RL), and transformers [24]. While RL provides a learning mechanism
to optimize offloading decisions over time, the Transformer model enhances the
solution’s performance by enabling it to learn from previous tasks and apply
the knowledge to future offloading decisions. TPTO trains transformers for var-
ious MEC tasks and quickly adapts to new ones with less training time and
shorter latency. Our proposed approach features Bidirectional Encoder Rep-
resentations from Transformers (BERT) architecture incorporating multi-head
attention, layer normalization, and feed-forward fully connected layers. The pre-
dictions made by the transformer, provided to a Softmax function, act as the
actions that guide the training process in collaboration with the PPO algorithm.
This results in a more efficient and effective solution. To our knowledge, it is the
first work to apply BERT for offloading decisions in MEC environments. To val-
idate our approach, we carry out simulations using synthetic DAGs that reflect
real-world applications and network topologies with multiple wireless transmis-
sion rates. Our experimental results demonstrate our approach’s effectiveness in
optimizing the offloading problem.
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The main contributions of this paper are: A novel latency-aware task offload-
ing approach, TPTO, that leverages the transformer model and that quickly
adapts to stochastic MEC environments; and a new policy that jointly uses
transformers and PPO to determine the best action for task offloading – i.e., of-
floaded to the MEC server or processed locally to minimize end-to-end latency.

The paper is structured as follows: Section 2 describes the problem and
presents a formulation. Section 3 presents TPTO, whereas Section 4 analyzes
and compares its efficiency against state-of-the-art techniques. Section 5 reviews
related work, and Section 6 concludes the paper and discusses future work.

2 Problem Description and Formulation

A real-time object detection system presents a typical example of an application
that requires computation offloading to MEC. In this scenario, a user device
often captures a video stream from a camera and aims to detect and recognize
objects from the video feed in real time. This scenario reflects applications in
facial recognition [25], pest bird detection systems [14], and the detection of
traffic signs [17]. The user device can carry out data pre-processing and execute
a lightweight object detection model locally, identifying some features, but the
type of computations it can perform will largely depend on the system status,
the resources available, and their constraints, or offload them to a MEC server.

An application A is a DAG G = (V,E) where each vertex v1 ∈ V represents
a task and each directed edge e(vi, vj) ∈ E is a dependence constraint in which
task vi must complete before task vj starts. Entry tasks are tasks without parent
tasks, whereas exit tasks or sinks are tasks without children. The computation of
task vi corresponds to the number of CPU cycles needed for its execution, given
by ci. Moreover, we define as dataupi and datadoi the amount of data required to
upload and download, respectively, task vi to/from a MEC server.

The computing capacity of a resource mj (user device or MEC server), de-
noted as csj , reflects its clock speed times the number of cores available in the
system. Similar to previous work [21,25], a user device is associated with a dedi-
cated Virtual Machine (VM) or container providing the computing and network
resources that an application requires. The VMs share the computing resources
equally, such that the capacity of a VM on a MEC server mj is csvm = csj/k,
where k is the number of users in mj . This approach ensures that each VM re-
ceives a fair and proportional share of the computing capacity, enabling efficient
utilization of the resources in the MEC environment.

The user device can execute a task locally or offload its computation to a
MEC server via wireless channels. A wireless channel’s uplink and downlink
transmission rates are rup and rdo. Three steps are required to offload a task vi
to a MEC server mj : first, the user device sends the task to the MEC server
via a wireless channel. Second, the MEC server executes the task. Finally, the
MEC server sends the execution results back to the user’s device. The overall
task latency depends on the task requirements and system status. Hence, the
time in uploading task vi to MEC server mj (t

up
i ) is the time to execute the task



4 N. Gholipour et al.

on the MEC server (texi ) and the time to download the data back to the user
device (tdoi ), and can be computed as:

tupi = dataupi /rup, texi = ci/csvm, tdoi = datadoi /rdo (1)

When offloaded to a MEC server, the overall end-to-end latency of task vi
represents the sum of the above times in (1). On the other hand, if a user device
executes a task vi locally, hence using resource mk (the user device), its latency
consists only of the task execution time (i.e. texi = ci/csk). In addition, for a
task vi scheduled for execution, we establish four task finish times, namely FTud

i ,
FTup

i , FTmec
i , and FT do

i , to denote the task finish time on the user device, on the
upload link, on the MEC server and the download link. If the task vi runs locally
on the user device, then FTup

i = FTmec
i = FT do

i = 0. Otherwise, FTud
i = 0 if

vi is offloaded to a MEC server.
Before scheduling a task vi, all preceding tasks (i.e., its parent tasks) must

already have been scheduled. In this way, we denote RTud
i , RTup

i , RTmec
i , and

RT do
i as the ready time, the earliest time that task vi can be executed on a re-

source (user device, upload link, MEC server, download link) so that the prece-
dence constraints are maintained. Therefore, for task vi, scheduled on the user
device, we can calculate its ready time as:

RTud
i = max

j∈parent(vi)
max

{
FTud

j , FT do
j

}
(2)

where parent(vi) is the set of parent tasks immediately before task vi. RTud
i

is the earliest time at which all the tasks preceding vi will have completed and
produced the results that vi requires. When a task vj preceding vi is scheduled
locally, then max{FTud

j , FT do
j } = FTud

j ; otherwise, when offloaded to the MEC

server, max{FTud
j , FT do

j } = FT do
j . Task vi can only start executing once vj has

freed the wireless download channel.
On the other hand, if that task vi is to be offloaded to the MEC server, then

its ready time on the upload channel (RTup
i ) is given by:

RTup
i = max

j∈parent(vi)
max

{
FTud

j , FTup
j

}
(3)

where RTup
i is the earliest time when vi can use the upload channel while meeting

precedence constraints. When a task vj preceding vi is scheduled locally, then
max{FTud

j , FTup
j } = FTud

j ; otherwise, when offloaded to the MEC server, then

max{FTud
j , FTup

j } = FTup
j . Task vi can only start execution once vj has freed

the wireless download channel.
The ready time of a task vi on a MEC server is:

RTmec
i = max

{
FTup

i , max
j∈parent(vi)

FTmec
j

}
(4)

where RTmec
i is the earliest time vi can execute on the MEC server while re-

specting precedence constraints. If a task vj preceding vi is scheduled locally,
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then FTmec
j = 0. Hence, maxj∈parent(vi) FTmec

j is the earliest time when all
offloaded tasks preceding vi have finished execution.

The earliest time for sending the results of task vi back to the user device is:

RT do
i = FTmec

i (5)

The offloading goal is to compute an offloading plan On = (o1, o2, . . . , on)
that minimizes the latency of an application DAG G(V,E), where n = |V | and
oi denotes the offloading decision for task vi. Before offloading, tasks are sorted
by priority, as discussed later, so that On−1, for example, represents the partial
offloading plan comprising all tasks from v1 to vn−1.

The optimization goal is, hence, to minimize the overall Application Latency :

ALOn
= max

[
maxve∈E(FTud

e , FT do
e )

]
(6)

where E is the set of exit tasks (i.e. tasks with no children). The equation consid-
ers the maximum task latency within a DAG to compute the overall application
latency. This maximum time represents the duration of the critical path of the
DAG, which is the longest path from a start task to any of the exit tasks.

Table 1. Notation used in this paper.

Notation Description

G(V,E)
Application DAG where V is the set of tasks and E the task
precedence constraints

vi ∈ V Computing task vi

e(vj , vi) ∈ E Precedence constraint, task vj must execute before vi can start

dataup
i , datado

i

Number of bytes to upload/download to/from a MEC server
when offloading task vi

rup, rdo Transmission rates of wireless uplink and downlink channels

csk, csvm Computing capacity of resource mk, and of a VM

tup
i , texi , tdoi

Time required for uploading, executing and downloading task vi
to MEC server mk

FTud
i , FTup

i , FTmec
i , FTdo

i

Finish time of task vi on user device, uplink channel, MEC
server, and downlink channel

RTud
i , RTup

i , RTmec
i , RTdo

i

Earliest time when task vi can use the user device, uplink
channel, MEC server, and downlink channel)

3 Transformer-Based Task Offloading Solution

This section presents our transformer-PPO based task offloading solution.

3.1 TPTO: Transformer-PPO based Task Offloading

In standard RL settings, an agent interacts with an environment, trying to learn
a policy to take actions that maximize the accumulated reward. An MDP, com-
monly used to represent RL problems [22], consists of a tuple (S,A, P,R, γ),
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where S represents the set of possible states; A represents the action space;
P (s′|s, a) denotes the probability of transitioning to state s′ when taking action
a under the current state s; R(s, a, s′) represents the immediate reward received
when transitioning from s to s′ by taking action a; γ is a discount factor. The goal
is to find a policy π(s) that maximizes the expected cumulative reward over time.
A policy network π(a|s, θ) takes the state s as input and outputs a probability
distribution over the actions a, where θ represents the neural network parame-
ters. Training the policy network involves finding the optimal parameters θ∗ that
maximize the expected cumulative reward, a process typically performed using
policy gradient algorithms that seek to maximize the expected return. TPTO
optimizes the policy network parameters using PPO [19]. During training, PPO
uses a batch of sampled trajectories to update the network weights. The following
describes the main elements of our MDP:

State S: A state comprises the task profile (CPU cycle requirements and
data sizes), the DAG topologies, the wireless transmission rates, and the status
of MEC resources. The status of a MEC resource depends on the offloading
decisions for tasks preceding vi. Hence, we can express the state combining the
encoded DAG and the partial offloading plan as:

S = {si|si = (G(V,E), Oi)} (7)

where i ∈ [1, |V |], G(V,E) represents the sequence of embedding tasks and Oi

is the partial offloading plan of task vi. We use the approach outlined in [25]
to convert a DAG into a sequence of embedding tasks. First, we assign a prior-
ity to each task that reflects the rank in the DAG and sort them in ascending
order. By representing each task as an embedding, we can capture the relation-
ships between tasks, including parent-child dependencies, used to optimize task
scheduling. To create a task embedding, we use three vectors. The first vector
embeds the current task index and the normalized task profile. The second vector
contains the indices of the immediate parent tasks, and the third vector contains
the indices of the immediate child tasks. If the number of parent or child tasks
is less than the length of the task vector, we pad the vector with -1. The size of
the parent/child task index vectors is limited to the length of the task vector.

Action A: As the scheduling for each task is a binary choice, executing the
task either on the user device or on a MEC server, the action space is A := 0, 1,
where 0 represents execution on the user device and, 1 represents offloading.

Reward function R: The objective is to minimize the total application
latency, defined in Equation 6. Hence, the reward function estimates the negative
increase in latency resulting from an offloading decision for a particular task:
∆ALOi = ALOi−ALOi−1 , where ALOi represents the total latency when taking
a given action for task vi and ALOi−1

represents the total latency the partial
offloading plan for the previous task.

Assume that π(ai|G(V,E), Oi−1) represents the likelihood of the offloading
plan Oi−1 given the graph G(V,E), we can compute π(On|G(V,E)) by using the
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chain rule of probability on each π(ai|Oi−1, G(V,E)) as follows:

π(On|G(V,E)) =

n∏
i=1

π(ai|Oi−1, G(V,E)) (8)

We use transformers to implement the policy. Transformers use an encoder-
decoder architecture to overcome various challenges of Recurrent Neural Net-
works (RNNs). Generally, the encoder comprises embedding, multi-head atten-
tion, residual connection and normalization, feed-forward networks, and softmax.
They primarily differ from prior architectures by including a self-attention mech-
anism to extract data dependency [24]. In TPTO, a transformer takes as input
the task embeddings of the sequence (v1, v2, ..., vn) of a DAG and generates a new
representation of the input sequence processed through a stack of Transformer
layers. Based on the Transformer’s output, the Actor generates corresponding
offloading decisions for each task (o1, o2, ..., on). The critic computes the value
function for each task. Separate, fully connected layers generate these outputs.

3.2 Implementing TPTO

As Figure 1 outlines, TPTO employs the transformer model and PPO to update
the policy network. First, the transformer receives an observation of the envi-
ronment and produces two results: the policy logits and the value function. The
policy logits are passed through a softmax function to obtain a proper prob-
ability distribution of the available actions. Next, the actor network takes the
transformer’s output and produces the final policy, which provides a probability
distribution for the available actions. Finally, the critic network takes the trans-
former’s output and generates the estimated value of the current state. The
advantage function captures the difference between the actual and estimated
return and the estimated value of the current state.

We use PPO as the policy optimization method. For a given learning task
T , PPO creates trajectories using a sample policy πθsam and updates the target
policy πθ over multiple epochs, where θ and θsam are the parameters of the
target and sample policies, respectively. At the initial epoch, θ = θsam. Then
the probability ratio rt(θ) at a time step t is:

rt(θ) =
πθ(at|st)

πθsam
(at|st)

(9)

where st = G(V,E), Ot. To update the actor’s policy, PPO uses a clipped sur-
rogate objective to avoid extensive policy updates:

LCLIP (θ) = Êt

[
min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)

]
(10)

where Ât is the advantage function at time step t, and Ê is the average expec-
tation over a set of samples in an algorithm that alternates between sampling
and optimization [19]. As the policy and value functions share most of their pa-
rameters, facilitating mutual training, we also employ the entropy coefficient to
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Fig. 1. Overview of TPTO.

compute the entropy bonus, added to the policy loss, to encourage exploration
in the policy space. The combined objective is, therefore:

LCLIP+V F+S(θ) = Êt

[
LCLIP
t (θ)− c1L

V F
t (θ) + c2S[πθ](st)

]
(11)

where c1 and c2 are coefficients, S[πθ](st) represents the entropy bonus, and
LV F
t (θ) is the squared-error loss: (Vθ(st) − V targ

t )2, where V is a state-value
function.

The advantage function at time step t, denoted by Ât, is calculated using
General Advantage Estimator (GAE) [18]. GAE is a specific type of advantage
function estimated as follows:

Ât =

n−t+1∑
l=0

(γλ)k [rt + γV (st+k+1)− V (st+k)] (12)

where λ is in the interval (0, 1) and determines the equation’s balance between
bias and variance. We can then use gradient ascent to maximize LCLIP+V F+S(θ).
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Algorithm 1 Transformer-PPO based task offloading

Require: Task distribution r(T ), learning rate α
Ensure: Updated policy parameters θ
1: Randomly initialize the parameters of the policy, θ;
2: for iterations k ∈ {1, 2, . . . ,K} do
3: Sample n learning tasks {T0, T1, . . . , Tn} from r(T );
4: for each task Ti do
5: Initialize θsam ← θ
6: Sample trajectory set S = (τ0, τ1, . . . , τn) from Ti using policy π(θsam);
7: Calculate the advantage estimates Â1, Â2, .., ÂT ;
8: Compute the policy gradient:
9: LTPTO

τsam (θsam) = ∇θsamLCLIP+VF+S(θsam)
10: end for
11: Update the policy network parameters θ using Adagrad optimizer with gradi-

ents computed by the TPTO loss function with trajectory set S for m steps:
12: θ ← θ + αLTPTO

τsam (θsam)
13: end for

Algorithm 1 outlines how TPTO performs the offloading decision and gener-
ates trajectories. First, the algorithm samples an n sized batch of learning tasks
τ and performs the training loop for each sampled learning task. Following the
completion of the training loop, the algorithm then updates the policy parame-
ters θ using gradient ascent θ ← θ+ βLTPTO using Adam optimizer [11], where
β is the learning rate of training loop.

4 Performance Evaluation

This section first outlines the experimental setup and the baseline algorithms.
Then it presents performance evaluation results.

4.1 Experimental Setup

We use simulation to assess TPTO’s performance as it provides a controllable
and repeatable environment. The simulation environment is similar to that de-
scribed by Wang et al. [25]. We consider a cellular network whose data transmis-
sion rate varies based on the user devices’ position. Also, a user device’s CPU
clock speed is 1GHz, denoted by f1. In contrast, each virtual machine in a MEC
host has four cores, each core running at 2.5GHz, represented by fs. Conse-
quently, offloaded tasks can simultaneously use all cores, resulting in a combined
CPU clock speed of 10GHz for each VM.

We consider latency under multiple scenarios to evaluate TPTO’s efficiency
comprehensively in dynamic environments. We use a synthetic DAG generator
tool3 to generate heterogeneous DAGs representing various real-world applica-
tions with distinctive structures and task profiles. The generator receives four

3 https://github.com/frs69wq/daggen

https://github.com/frs69wq/daggen


10 N. Gholipour et al.

1

23

45

67

89

1011

12

1314

15

12

345

678

91011

121314

15

1234

56789

1011121314

15

12345

67891011

12131415

Low fat and density High fat and density

Fig. 2. Examples of produced DAGs.

parameters: n, fat, density, and ccr. The n represents the number of tasks;
fat determines the DAG’s width and height; density sets the number of edges
between two levels of the DAG; and computation to communication ratio, ccr,
specifies the ratio between tasks’ communication and computation cost.

Table 2. TPTO’s hyperparameters.

Hyperparameter Value

Number of Layers 3
Num Attention Head 8
Dimension of Key Vector 1024
Dimension of Value Vector 1024
Dimension of FF network 512
Hidden Size 512
Dropout Rate 0.4
Policy Learning Rate 0.1
Valuefunc Learning Rate 0.01
Batch Size 100
Clip ratio 0.2
Activation Function Relu
Optimization Method Adagrad
Discount Factor 0.99
Entropy coefficient 0.5

To model the mobile network users’
diverse preferences, we generated 25
DAG datasets, each consisting of 100
DAGs with various fat and densities,
key parameters impacting the DAG
topology. Each DAG has 20 tasks, and
we pick the fat and density values
randomly from {0.4, 0.5, 0.6, 0.7, 0.8}.
These DAGs emulate a variety of user
preferences under different transmis-
sion data speeds. We randomly select
22 DAG sets as training datasets and
the remaining three as unseen testing
datasets with different DAG topolo-
gies. Figure 2 illustrates DAGs gener-
ated by the synthetic DAG generator,
varying fat and density values.

TPTO is implemented using Ten-
sorflow, with 3 layers of transformer encoders having 128 hidden units per layer
and layer normalization included. Table 2 summarizes the hyperparameters for
training TPTO. To ensure the robustness of the TPTO policy, we trained it us-
ing a range of transmission rates between 4Mbps to 22Mbps, with a step size of
3Mbps. To evaluate its performance on previously unseen transmission rates and
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topologies, we tested the trained policy on data rates of 5.5Mbps, 8.5Mbps, and
11.5Mbps, not seen during training, following a similar methodology as in [25]
with sampling 20 trajectories for a DAG on the dataset. In addition, as we aim
to assess how TPTO performs in different dynamic scenarios, the task data size
varies from 5KB to 50KB, while the CPU cycle requirements range from 107 to
108 cycles per task, as reported in [5]. Furthermore, the length of the parent/child
task indices vector is 12. By testing TPTO’s performance on these diverse sets
of DAGs, we aim to gain insights into its ability to effectively provision network
resources and meet the varying needs of mobile users.

4.2 Baseline Algorithms

We assess TPTO’s performance against three state-of-the-art algorithms:
MRLCO: this algorithm, proposed by Wang et al. [25], integrates meta

reinforcement learning and a Seq2Seq neural network. The approach focuses on
modeling task offloading using meta-reinforcement learning and an offloading
policy based on a custom Seq2Seq neural network.

HEFT based: this algorithm, based on the work by Lin et al. [13], involves
prioritizing tasks using the HEFT method and scheduling each task according
to its earliest estimated finish time.

Greedy: a greedy approach considers the estimated finish time of each task
to decide whether to assign a task to the user device or a MEC server.

4.3 Result Analysis

Figures 3(a) and 3(b) depict the average latency of simulation results during
training for TPTO and MRLCO. The results demonstrate that TPTO converges
faster than MRLCO while being more stable and general, mainly due to TPTO’s
ability to effectively capture the diverse preferences of mobile users through its
training on a wide range of network topologies and transmission rates. Figure
3(c) and 3(d) show the performance of HEFT and Greedy algorithms.

Table 3 summarizes the average latency of TPTO and the baseline algo-
rithms. TPTO outperforms heuristic and meta-learning algorithms for the var-
ious wireless transmission rates. Overall, the Greedy algorithm has the highest
latency, while TPTO achieves lower latency under various network conditions,
indicating its effectiveness in provisioning network resources to meet the needs of
mobile users. Moreover, distinct topologies reflect the diverse preferences of user
requests. Increasing the transmission rate can further reduce latency as offloaded
tasks traverse the wireless channels faster. Overall, the results show that TPTO
is a promising solution for optimizing network performance and enhancing user
experience in mobile networks. The results show that the TPTO achieves a
training time 2.5 faster than MRLCO. The transformer architecture of TPTO is
mainly responsible for this training time difference. Transformers are known for
their parallelizability and efficient utilization of self-attention mechanisms, which
can exploit the parallel processing capabilities of modern hardware architectures,
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Table 3. Average latency (ms) on multiple testing datasets.

Topology
Sets

Algorithm
Wireless Transmission Rate

rup = rdo = 8.5Mbps rup = rdo = 11.5Mbps

1

HEFT 1064 835
Greedy 1033 837
MRLCO 846 760
TPTO 741 581

2

HEFT 1157 849
Greedy 1462 952
MRLCO 989 869
TPTO 1022 811

3

HEFT 1521 943
Greedy 1009 822
MRLCO 894 810
TPTO 900 719

resulting in a faster training process. These results underscore the potential ben-
efits of employing Transformer-based models for optimizing offloading decisions
in the MEC environment.

5 Related Work

This section reviews selected related work on task offloading in MEC.
Machine-Learning Offloading Approaches: Qu et al. present a frame-

work for IoT devices to offload computing tasks to Edge servers [16]. The work
uses deep meta-reinforcement learning to minimize energy consumption, task
computation, and transmission delays by dividing applications into sequential
workflows. The proposed framework, called Deep Meta Reinforcement learning
based Offloading (DMRO), includes an inner and outer loop. The former re-
lies on Q-learning, whereas the latter employs a meta-algorithm to learn the
initial parameters and adapt to changing environments, quickly converging to
optimal offloading solutions. The work of Huang et al. [10] proposes MELO, a
Meta-Learning-based computation Offloading algorithm for dynamic computa-
tion tasks in MEC. The system consists of one edge server and N wireless devices,
each with a prioritized task to execute. They applied binary offloading in which
the tasks run locally on a device or the edge server. The approach focuses on min-
imizing latency, communication, and computation delay. Yang et al. [27] tackle
joint offloading optimization and bandwidth allocation, modeled as a mixed-
integer programming (MIP) problem. The work proposes the Deep Supervised
Learning-based computational Offloading (DSLO) algorithm that considers task
delay and energy consumption. Furthermore, the authors enhance the conver-
gence speed of the algorithm by incorporating Batch Normalization (BN) into
two classical neural network architectures, CNN and DNN.
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(a) TPTO (b) MRLCO

(c) HEFT (d) Greedy

Fig. 3. Influence of wireless transmission rate and network topology on latency.

Optimization-based Offloading Techniques: The work of Nguyen et
al. [15] introduces a collaborative scheme for Unmanned Aerial Vehicless (UAVs)
to share workloads. The authors consider the task topology, which involves break-
ing down a task into multiple sub-tasks with dependencies and the power con-
sumption constraints of the UAVs in MEC. The authors use the discrete whale
optimization algorithm and the SCS solver in the CVXPY library to solve the
optimization problem, modeled as a mixed-integer, non-linear, and non-convex
problem. Abbas et al. [1] present classical approaches for optimal task offload-
ing in MEC environments. They use well-known meta-heuristics such as the ant
colony optimization algorithm, whale optimization algorithm, and Grey wolf op-
timization algorithm, adapting these algorithms to their problem. The goal is
to minimize the energy consumption of user devices and IoT and minimize re-
sponse time for task computation at MEC servers. A search-based meta-heuristic
model, introduced by Xu et al. [26], also handles task offloading and time allo-
cation in MEC. Considering computation rate and task execution latency, they
formulated the problem as a Mixed Integer Programming (MIP) and divided it
into sub-problems: offloading decision and resource allocation. They proposed
an “order-preserving policy generation method”, which works well in large net-
works. They also utilized a one-dimensional bisection search over the variable
associated with allocation time constraints.
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6 Conclusions and Future Work

This work proposed a distributed DRL-based approach called TPTO for optimiz-
ing offloading decisions in MEC. By leveraging transformers, TPTO seeks to min-
imize the latency associated with offloading tasks for DAG-structured user ap-
plications. We first introduced a latency model that optimizes the task execution
time, communication, and offloading in a MEC environment. This model serves
as the basis for the decision-making process in TPTO. Then, experimental re-
sults demonstrated the effectiveness of TPTO under various network conditions
and topologies. TPTO presents superior performance compared to three base-
line algorithms: MRLCO, HEFT, and Greedy. In addition, TPTO consistently
achieved the lowest latency, showcasing its ability to make efficient offloading
decisions. These findings highlight the potential of utilizing transformer-based
DRL approaches, particularly TPTO, in real-world MEC.

Future work will evaluate the scalability of TPTO to handle large-scale MEC
environments with many user devices and more complex task dependencies. We
will also consider multiple optimization criteria, including energy consumption,
execution cost, and latency, to enhance the decision-making process.
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