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Abstract—Cloud-based enterprise search services (e.g., AWS
Kendra) have been entrancing big data owners by offering
convenient and real-time search solutions to them. However,
the problem is that individuals and organizations possessing
confidential big data are hesitant to embrace such services
due to valid data privacy concerns. In addition, to offer an
intelligent search, these services access the user’s search history
that further jeopardizes his/her privacy. To overcome the privacy
problem, the main idea of this research is to separate the
intelligence aspect of the search from its pattern matching aspect.
According to this idea, the search intelligence is provided by
an on-premises edge tier and the shared cloud tier only serves
as an exhaustive pattern matching search utility. We propose
Smartness at Edge (SAED mechanism that offers intelligence in
the form of semantic and personalized search at the edge tier
while maintaining privacy of the search on the cloud tier. At
the edge tier, SAED uses a knowledge-based lexical database to
expand the query and cover its semantics. SAED personalizes
the search via an RNN model that can learn the user’s interest.
A word embedding model is used to retrieve documents based
on their semantic relevance to the search query. SAED is generic
and can be plugged into existing enterprise search systems and
enable them to offer intelligent and privacy-preserving search
without enforcing any change on them. Evaluation results on
two enterprise search systems under real settings and verified by
human users demonstrate that SAED can improve the relevancy
of the retrieved results by on average ≈ 24% for plain-text and
≈ 75% for encrypted generic datasets.

Index Terms—Enterprise-search; Semantic; Edge; Context-
aware

I. INTRODUCTION

The expeditious growth of digitalization has been producing
a massive volume of data, known as big data, in both struc-
tured and unstructured formats. It is estimated that 95% of the
generated data is in the unstructured format, produced from
various sources, such as organizational documents, emails,
web pages, and social networks [1]. Cloud services have
been effective in relieving big data owners from the burden
of maintaining these data. Recently, cloud providers began
offering enterprise search services that enable data owners to
semantically search over their datasets in the cloud. For in-
stance, AWS has launched an enterprise search service named
AWS Kendra [2] that offers real-time semantic searchability
using natural language-based machine learning techniques.

Although the cloud services have been fascinating for big
data owners [3], there have been numerous privacy violation

incidents [4] during recent years that have made individuals
and businesses with sensitive data (e.g., healthcare documents)
hesitant to fully embrace the data management cloud services.
In one incident, confidential information of over three billion
Yahoo users were exposed [5]. In another incident, information
of over 14 million Verizon customer accounts were exposed
from the company’s cloud system [5].

Ideally, data owners desire a privacy-preserving cloud ser-
vice that offers semantic and personalized searchability in
a real-time manner, without overwhelming their resource-
constrained (thin) client devices (e.g., smartphones). A large
body of research has been undertaken on privacy-preserving
enterprise search services in the cloud [6], [7], [8], [9], [10]
whose goals are to protect user’s sensitive data from internal
and external attackers. However, most of these works fall short
in retrieving search results that are semantically relevant to the
context and user’s interest (i.e., personalized search) [10], [9].
In addition, these works often rely on the client device and
impose significant overhead on it to perform a secure query
processing or to encrypt/decrypt user documents.

To satisfy all of the aforementioned desires of a particular
user, our main idea in this research is to separate the intelli-
gence aspect of the enterprise search from its pattern matching
aspect. According to this idea, we propose to leverage on-
premises edge computing [11], [12] to handle the search
intelligence and user-side encryption. For that purpose, the
edge-based mechanism, called Smartness At Edge (SAED),
is developed to extract both contextualized and personalized
semantics from the search query and the user’s search history
as well.

Then, SAED feeds the cloud resources with proactively
augmented and encrypted search queries. In this case, the
high-end cloud resources are employed only to store encrypted
contents and to exhaustively perform pattern matching of the
fed query across the entire dataset.

Figure 1 provides a bird-eye view of the SAED mechanism.
On one end, it communicates with the client device(s) to
handle the security processing of the user contents and to
achieve search intelligence before feeding the query set to the
cloud tier. On the other end, SAED communicates with the
cloud tier where an existing enterprise search service (e.g.,
Kendra) works with the computing and storage services in the
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Fig. 1: Bird-eye view of SAED mechanism in a three-tier architecture
to facilitate smart and privacy-preserving enterprise search service.
SAED provides the secure search intelligence on the on-premises
edge resources. The high-end storage and compute resources on the
cloud tier are utilized by the existing enterprise search systems to
exhaustively carry out pattern matching on the entire dataset.

cloud to perform exhaustive pattern matching of the encrypted
query set on the uploaded dataset. Upon completion of the
pattern matching process, the set of resulting documents is
retrieved and ordered by SAED with respect to the user’s
interests. Ultimately, the ordered results are handed over to
the user’s device.

To identify the actual context of the query and to proac-
tively expand it to a set of contextually-related queries, we
leverage WordNet [13] that is a widely adopted knowledge-
based lexical database. However, contextualizing the query
cannot help in certain scenarios where the query is short and
ambiguous. For instance, considering jaguar as the search
query, it can be contextualized to both a car brand or a wild
animal. For this type of queries, identifying the user’s interest
can complement the contextualization and navigate the search
towards the semantics intended by the user (i.e., achieving
personalized search). For that purpose, SAED utilizes a recur-
rent neural network model to infer the user’s interest based
on his/her search history. Although proactive query expansion
(i.e., augmenting the user query to a set of queries) is vital
to capture the search semantics, not every element of the
expanded query set is equally relevant to the original query.
As such, SAED assigns a weight to each expanded query that
represents its semantic distance to the original query.

In summary, the contributions of the work are as follows:
• We develop the open-source SAED mechanism at the

edge tier that offers personalized semantic searchability
on existing cloud-based enterprise search services while
maintaining data privacy.

• We propose a method to extract the context of a given
search query that often appears in form of a short and
incomplete sentence.

• We design a method for proactive query expansion to
cover the search semantic with respect to its context.

• We develop a method based on a recurrent neural network
model to personalize the search via assigning a weight to
each expanded query.

• We evaluate the search accuracy and privacy of SAED via
plugging it to the existing cloud-based search services.

The rest of the paper is organized as follows. In Section
II, we discuss background study and related prior works.

Later, we provide the architectural details of SAED mechanism
in Section III. In Section IV, we discuss the pluggability
of SAED in the context of AWS Kendra. We discuss results
and performance analysis in Section V. Finally, Section VI
concludes the paper.

II. BACKGROUND AND PRIOR LITERATURE

Several research works have been undertaken in seman-
tic and/or privacy-aware search systems. Here, we introduce
some notable mentions and position the contributions of
SAED against them.

A. Cloud-Based Enterprise Search Services

Cloud-based enterprise search services, such as AWS
Kendra, offer semantic searchability, given that they are pro-
vided with the plain-text data. That means the semantic ability
comes with the cost of compromising the users’ data privacy
[10], [14], [5]. This is, in fact, the trapdoor that particularly
internal attackers can misuse to breach the confidentiality or
even the integrity of the users’ data. It is this type of attack
model that we try to make the cloud-based enterprise search
services resistant against. We note that, for encrypted datasets,
the current enterprise search services cannot offer anything
beyond naı̈ve string matching.

Even for plain-text datasets, our investigations revealed that
Kendra covers only ontological semantics in the search and
it falls short in providing context-aware and personalized
semantics. For instance, we tested Kendra to verify the ability
of capturing context-aware semantics by feeding soccer as
a query and in the result set, there were documents about
rugby. In another test, river bank query returned docu-
ments about commercial bank that indicates the lack of
context-awareness in the search.

Alternatively, SAED can offer context-aware and personal-
ized search while maintaining data privacy. It can be plugged
into any enterprise search service without enforcing any
change on them and enrich their semantic search quality by
incorporating context-awareness and personalization.

B. Semantic Representation of Query Keywords

Query expansion is a process to seek keywords that are
semantically related to a given query and fill the lexical gap
between the user queries and the searchable documents. One
of the widely-used methods of query expansion is Pseudo-
Relevance Feedback (PRF) [15], [16] that extends an unsuc-
cessful query with various related keywords and then re-ranks
the search results to increase the likelihood of retrieving rele-
vant documents. Although the PRF-based approach generally
improves the retrieval effectiveness, it is sensitive to the quality
of the original search results.

Latent semantic analysis [17], latent dirichlet analysis [18],
and neural-based linguistic models [16], [19] are some of
the query expansion methods that can obtain the semantic
representation of a given query. In these methods, vectors
are commonly referred to as word embeddings that represent
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Fig. 2: Architectural overview of the SAED system within edge tier and as part of the three-tier enterprise search service. SAED provides
semantic search via identifying the query context and combining that with the user’s interests. Then, Query Expansion and Weighting unit
of SAED, respectively, incorporate the semantic and assure the relevancy of the results. Solid and dashed lines indicate the interactions from
user to the cloud tier and from the cloud tier to the user respectively.

words into a low-dimensional semantic space, where the vicin-
ity of words demonstrates the syntactic or semantic similarity
between them [20]. However, pre-trained word embedding
models, such as Word2vec [20], always generate the same
vector representation for an input word, regardless of the
context in which the word has appeared in. Hence, if any
ambiguous keyword(s) present in a query, the underlying topic
of the query could not be detected.

WordNet [13] is one of the widely-used and lexically-
rich resources in English that is utilized to infer the sense
of ambiguous words in a given corpus. In WordNet, words
containing similar meanings are grouped into synonym sets,
whereby each set has a semantic and conceptual relationship
with the other sets. Song et al. [21] and Nakade et al.
[22] evaluate the effectiveness of utilizing WordNet for query
expansion in National Institute of Standards and Technology
(NIST) and Twitter datasets. They identify important key-
phrases of the query and use WordNet to obtain the relevant
synonym sets. Later, they utilize the synonym sets to construct
the expanded query. Nevertheless, in most of the prior research
on query expansion using WordNet (e.g., [23]), the elements
of the expanded query set are considered uniformly that
undermines the relevancy and ranking of the result set.

C. Privacy-Preserving Search Systems

In addition to plain-text data, searching is performed on
privacy-preserving data ensuring negligible chances of data
leakage. Therefore, various searchable encryption-based solu-
tions are adopted to facilitate search over such data.

Few works at the time of writing have combined the ideas
of semantic searching and searchable encryption. Works that
attempt to provide a semantic search often only consider
word similarity instead of true semantics. Li et al. [6]
propose a system which could handle minor user typos through
a fuzzy keyword search. Moataz et al. [24] use various
stemming approaches on terms in the index and query to
provide more general matching. Sun et al. [7] present a
system that used an indexing approach over encrypted file

metadata and data mining techniques to capture the semantics
of queries. This approach, however, builds a semantic network
only using the documents that are given to the set and only
considers words that are likely to co-occur as semantically
related, leaving out many possible synonyms or categorically
related terms. Woodworth et al. propose S3BD [10], a secure
semantic search system that could search semantically over
encrypted confidential big data. They expand their search
query by incorporating semantic data extracted blindly from an
ontological network.They do not consider context-aware query
expansion that created confusion for the search system while
processing ambiguous or multi-context keywords in a query.
To perform query processing in client devices, they end up
requiring additional computational overhead in the client tier.

III. SAED: SMART EDGE-BASED ENTERPRISE SEARCH
SYSTEM

A. Architectural Overview

In this part, we provide a bird-eye view of the SAED system,
that enables intelligent and secure enterprise search in the
cloud. The system is structured around three tiers, shown in
Figure 1, and explained as follows:

• Client tier (e.g., smartphone, tablet) contains a
lightweight application that provides a user interface for
uploading documents and to search over them in the
cloud. Datasets are either uploaded by the user or by the
organization that owns the data.

• Edge tier extracts representative keywords of the doc-
uments being uploaded to the cloud tier and builds an
index on the cloud tier. Upon receiving a search query
from the client tier, the SAED system on the edge tier
offers intelligence by considering the query semantics and
the user’s interest. The edge tier is located in the client’s
premises, hence, deemed as an honest and secure system.
To offer a secure enterprise search service, the edge tier
encrypts both the uploaded data and the search query.
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In addition, it decrypts the result set before delivering it
back to the client tier.

• Cloud tier contains numerous high-end servers that are
utilized for storing (encrypted) data and performing the
large-scale computation required to exhaustively search
against the index [9], [10]. The index can be clustered
based on the underlying topics of its keywords (please
refer to our prior works [10], [5] for further details).

In Figure 2, we depict the components of SAED and show
the interactions between them. At first, a user-provided search
query is received by the Query Handler that keeps track of the
user’s search history and initializes the Context Identifier unit
whose job is to extract the context and disambiguate the query
phrase. Then, according to the extracted context, the query
is proactively expanded by the Query Expansion unit and a
query set is constructed. To achieve the personalized search,
the Interest Detector unit of SAED leverages the user’s search
history to recognize his/her interest and weight each element of
the query set (i.e., expanded queries) based on its relatedness
to the user interest. Once the pattern matching phase is
accomplished on the cloud tier, the resulted documents are
returned to SAED on the edge tier. Next, the Ranking Unit
utilizes the assigned weights to order the retrieved documents
based on their relevance to the user’s interest and generates
a retrieved document list, denoted as Dθ, that is sent to the
user’s device. In the next parts, we elaborate on each unit of
the SAED system.

B. Query Context Identification

Identifying the context of a given search phrase is vital
to navigate the search to the semantics intended by the
user. Considering the example of cloud computing as
the search query, without a proper context identification the
returned document set can potentially include documents about
sky and climate, whereas, an efficient context identifier can
recognize the right semantic and navigate the search to the
topics around distributed, edge, fog, and cloud
computing. In fact, identifying the context helps the Query
Expansion unit to form a query set diversified around relevant
keywords that semantically represent the search query and
subsequently improve the relevancy of the results.

Prior context identification works (e.g., [25], [26], [19])
have the following shortcomings: first, they often assume
each keyword has the same importance in the query and
recognize the query context via averaging the embeddings of
its keywords. However, not all keywords in a query necessarily
help in identifying the context. For example, the keyword
various in various cloud providers does not bring
any significance to the context and can be eliminated. Second,
the embedding methods used by the existing works always
provide the same representation for a given keyword, irrespec-
tive of the underlying context. This is particularly problematic
for ambiguous keywords whose meaning vary based on the
query context. For instance, the embedding of cloud in
the aforementioned example should be different when it is
used along with the computing as opposed to when it

is used along with the weather in a given query. Third,
existing methods only consider the embeddings of the common
keywords, while discarding most of the name-entities (e.g.,
names and locations) that do not exist in the vocabulary of
Word2Vec [13], [27]. For instance, consider best selling
books of J.K. Rowling as the query; Book and Sell
are identified as the query context and J.K. Rowling is
discarded. However, our analysis suggests that the context of
a short query phrase often has contextual association with the
discarded name-entities.

To overcome the shortcomings and identify the actual con-
text of a given query, we propose to take a holistic approach
and extract the semantic across query keywords, proportionate
to the importance of each keyword. The main output of the
Context Identification unit is a set of keywords, denoted as C,
that collectively represent the context of the query.

Specifically, to eliminate unimportant keywords that do not
contribute to the semantic of query Q, the Context Identifica-
tion unit utilizes Yake [28], which is a unsupervised keyword
extractor that discards unimportant keywords of the query. The
remaining keywords (i.e., the trimmed query, denoted as the
Q′ set) are considered for context identification. To learn the
true semantic of Q′, the unit leverages the Lesk algorithm
[27] of WordNet to disambiguate each keyword q ∈ Q′. Lesk
algorithm works based on the fact that keywords in a given
sentence (query) tend to imply a certain topic. For keyword
q, Lesk can determine its true semantics via comparing the
dictionary definitions of q against other keywords in Q′

(i.e., Q′ − {q}). Let cq be the set of keywords representing
the context of q. Then, the context of Q is determined as
C = ∪∀q∈Q′cq . Lastly, the Context Identifier recognizes name-
entities from Q using WordNet and considers them as part of
the context, but in a separate set, denoted as N . The reason for
considering a separate set is that we apply a different treatment
on N and C in the other units of SAED.

ALGORITHM 1: Pseudo-code to detect the context of a given
query in the Context Identification unit of SAED.

Input : query Q
Output: C: set of keywords representing context of Q,

N : set of name-entity in Q
1 Function contextIdentification(Q):
2 Q′ ← extract keywords from Q using Yake alg.
3 foreach q ∈ Q do
4 if q ∈ Name-entity then
5 N ← N ∪ {q}
6 end
7 else
8 if q ∈ Q′ then
9 Eq ← define q based on Q′− q using Lesk alg.

10 c← extract set of keywords of Eq using Yake
alg.

11 C ← C ∪ c
12 end
13 end
14 end
15 return C,N
16 end
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Algorithm 1 provides a pseudo-code for identifying the
context of incoming query Q. The outputs of the pseudo-code
are two sets, namely C and N , that collectively represent the
context of Q. In Step 2 of the pseudo-code, Yake algorithm
is used to filter Q by extracting its important keywords and
generate the Q′ set. Name-entities of Q are identified by
checking against WordNet and form the set N (Steps 4–6).
Next, in Steps 8–12, for each keyword q ∈ Q′, the Lesk
algorithm is employed to disambiguate q and find its true
definition with respect to the rest of keywords in Q′. Important
keywords of the definitions form the context set (C) for Q.

C. Query Expansion Unit

The Query Expansion unit is in charge of proactively ex-
panding the query keywords based on their relevant synonyms
that are in line with their identified context. Neglecting the
query context and blindly considering all the synonyms, as
achieved in [25], [26], [19], [10], leads to finding irrelevant
documents. Accordingly, the unit leverages the context of Q
(i.e., C and N ) to only find the set of synonyms, denoted as
P , that are semantically close to the query context.

Word2Vec [20] is a shallow neural network model that can
be trained to generate vector representation of keywords, such
that the cosine similarity of two given keywords indicates the
semantic similarity between them. Accordingly, to proactively
expand each keyword q ∈ Q, the Query Expansion unit
instruments Word2Vec, pre-trained with Google News dataset
[29], to form the set of nominated synonyms, denoted as sq .
Let siq be a synonym of q (i.e., siq ∈ sq). Then, the similarity
of siq and the query context, denoted as sim(siq, C), is defined
based on the sum of similarities with each element of C, as
shown in Equation 1.

sim(siq, C) =
∑
∀Cj∈C

sim(siq, Cj) (1)

Then, siq is chosen as an element of P , only if it is
semantically close enough to the query context. To determine
the sufficient closeness, we consider sim(siq, C) to be greater
than the mean of the pair-wise similarity across all members
of sq (i.e., sim(siq, C) > µ∀q∀j(sim(sjq, C))). We note that
because the elements of C and N represent the context of Q,
they as well are added to P .

Algorithm 2 provides a high level pseudo-code for generat-
ing the expanded query set P . In Steps 2–7 of the pseudo-
code, the synonym set for each q is generated. Next, the
similarity between each word siq and C is calculated. The
similarity values are used to calculate the mean similarity of
all nominated queries in Step 8. In Steps 9–15, expanded query
set P is formed by including nominated synonyms whose
semantic closeness is greater than µ. Lastly, in Step 16, set P
is expanded by including context set and name-entities.

D. User Interest Detection

Detecting the user’s search interest is essential to deliver
personalized search. In SAED, interest detection is achieved
by analyzing two factors: (A) the user’s search history; and

ALGORITHM 2: Pseudo-code to expand query based on the
context in the Query Expansion unit of SAED
Input : Q, C,N
Output: P : the expanded query set

1 Function QueryExpansion(Q, C, N)
2 foreach q ∈ Q do
3 sq ← use WordNet to obtain synonym set of q
4 foreach siq ∈ sq do
5 sim(siq, C)←

∑
∀Cj∈C

sim(siq, Cj)

6 end
7 end
8 µ← calculate mean sim(sjq, C) across all q ∈ Q, ∀sjq ∈ sq

9 foreach q ∈ Q do
10 foreach siq ∈ sq do
11 if sim(siq, C) > µ then
12 Add siq to set P
13 end
14 end
15 end
16 P ← P ∪ C ∪N
17 return P
18 end

(B) the user’s reaction to the retrieved results of prior search
queries. This can be detected based on the results chosen by
the user or the time spent for browsing them.

Let ∆′ represent the whole resulted documents that are sent
to the user and τ represent the documents where the user is
interested in. We have τ ⊆ ∆′. Accordingly, the user’s interest
can be derived from the topics of τ . The Interest Detector unit
uses an existing document classification model [30], operating
based on Naı̈ve Biased (NB) method, to determine the topics
of τ , denoted as tτ . We also perform majority voting on tτ to
find the user’s main interest. The process is repeated to store n-
prior search interests data of the user. The data is characterized
as sequential as it is harvested from each successful search.
By analyzing the user’s prior search interests, the edge tier
trains a recurrent neural network-based prediction model [31]
that can predict the user’s search interest. In case of SAED,
as the data does not contain long dependency and to keep
the model simple and to maintain real-timeliness, instead of
a stacked (i.e., deeper) model, we feed the harvested user-
specific historical search data to train a many-to-one vanilla
RNN model [32].

E. Weighting Unit

Once SAED learns the user interest, the next step to accom-
plish a context-aware and personalized enterprise search is to
determine the closeness of contextually-expanded queries (i.e.,
elements of P ) to the user’s interest. In fact, not all expanded
queries have the same significance in the interpretation of
the query. Accordingly, the objective of the Weighting unit
is defined as quantifying the closeness of each expanded
query to the user’s interest. Later, upon completion of the
search operation on the cloud tier, the weights are used by
the Ranking unit of SAED to prune and sort the result set.
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Prior weighting schemes (e.g., [9], [10], [19], [16], [26]) of-
ten use the word frequency-based approach (e.g., TF-IDF [10])
and discard the user interests. Alternatively, the weighting pro-
cedure of SAED quantifies the importance of each expanded
query p ∈ P based on two factors: (A) The type of p, which
means if it directly belongs to the context (C and N sets) or
is derived from them; and (B) The semantic similarity of p to
the user interest.

In particular, those elements of P that directly represent
the query context or name-entities (i.e., ∀p|p ∈ P ∩ (C ∪N))
explicitly indicate the user’s search intention, hence, weighting
them should be carried out irrespective of the user interest.
A deeper analysis indicates that name-entities that potentially
exist in a query represent the search intention, thus, biasing the
search results to them can lead to a higher user satisfaction. As
such, the highest weight is assigned to ∀p|p ∈ (P ∩N ). The
highest weight is determined by the domain expert, however,
in the experiments we consider it as ηmax = 1. We define the
contribution of q ∈ Q as the ratio of the number of keywords
added to C because of q (denoted Cq) to the cardinality of C.
Let ηp denote the weight of p ∈ P . Then, for those elements
of P that are in the query context (i.e., ∀p ∈ (P ∩ C)), ηp is
calculated based on the contribution of the query keyword q
corresponding to p. Equation 2 formally represents how ηp is
calculated.

ηp =
ηmax· |Cq|
|C|

(2)

The weight assignment for those p that are derived from
elements of C, as explained in Section III-C, (i.e., ∀p|p ∈
P−(C∪N)) is carried out via considering semantic similarity
of p with the user interest θ. That is, ηp = sim(p, θ).

F. Ranking Unit

Once the expanded query set P is formed, the cloud tier
performs string matching for each p ∈ P across the index
structure. We note that, if the user chooses to perform a secure
search, the elements of P are encrypted before delivered to the
cloud tier. In addition, in our prior works [5], we proposed
methods for the cloud tier to cluster the index structure and
perform the pattern matching only on the clusters that are
relevant to the query.

The cloud tier returns the resulted document set, denoted
as ∆, to the edge tier where the Ranking unit of SAED ranks
them based on the relevance and the user’s interest and
generates a document list, called ∆′ to show to the user.
For a document δi ∈ ∆, the ranking score, denoted as γi, is
calculated by aggregating the importance values of each p ∈ P
within δi and with respect to its weight (ηp). The importance
of p in δi is conventionally measured based on the TF-IDF
score [33]. Accordingly, γi is formally calculated based on
Equation 3.

γi =
∑
∀p∈P

(
ηp · TFIDF (p, δi)

)
(3)

The TF-IDF score of p in δi is defined based on the
frequency of p in δi versus the inverse document frequency of

p across all documents in ∆. Details of calculating the tf-idf
score can be found in [33].

Once the Ranking unit calculates the ranking score for all
δi ∈ ∆, then the documents are sorted in the descending order
based on their ranks and thus, the document list ∆′ are formed
with eachδi and displayed to the user.

IV. SAED AS A PLUGGABLE MODULE TO ENTERPRISE
SEARCH SOLUTIONS

The advantage of SAED is to be independent from the
enterprise search service deployed on the cloud tier. That is,
using SAED neither interferes with nor implies any change
on the cloud-based enterprise search service. SAED can be
plugged into any enterprise search solution. It provides the
search smartness on the on-premises edge tier and leaves the
cloud tier only for large-scale pattern matching. The whole
SAED solution reforms the enterprise search to be semantic,
personalized, and confidential services.

In this work, we set SAED to work both with AWS
Kendra and S3BD. In the case of using AWS Kendra, the
Query Expansion unit sends the expanded query set P to
Kendra to search each keyword p against the dataset on
the Amazon cloud. The resulted documents are received by
SAED and ranked before being delivered to the client tier.
In the implementation, we only show top 10 documents from
the resulted list to the user. Similarly, we plugged SAED to
S3BD to perform confidential semantic search on the cloud.
Because S3BD maintains an encrypted index structure that
has to be traversed against each search query, the elements
of P had to be encrypted before handing them over to the
cloud tier. We also verified SAED when it is used along with
AWS Kendra where the dataset was encrypted. We noticed that
SAED can achieve smart search even when Kendra is set to
work with encrypted dataset. The performance measurement
and analysis of using SAED along with AWS Kendra and
S3BD are elaborated in the next Section.

V. PERFORMANCE EVALUATION

A. Experimental Setup

We have developed a fully working version of SAED and
made it available publicly in our Github1 page. To conduct
a comprehensive performance evaluation of SAED on the
enterprise search solutions, we developed it to work with both
S3BD [10] and AWS Kendra [2]. S3BD already has the query
expansion and weighting mechanisms, but we deactivated
them and set it to use the expanded queries generated by
SAED. In the experiments, the combination of SAED and
S3BD is shown as SAED+S3BD. Likewise, the combination
of SAED and AWS Kendra is shown as SAED+Kendra.

We evaluated SAED using two different datasets, namely
Request For Comments (RFC) and BBC that have dis-
tinct properties and volume. The reason we chose the RFC
dataset is that it is domain-specific and includes 4, 951 docu-
ments about the Internet and wireless communication network.

1https://github.com/hpcclab/SAED-Security-At-Edge
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TABLE I: Benchmark search queries developed for the RFC and
BBC datasets.

BBC Dataset RFC Dataset
European Commission (EC) Network Information (NI)
Parliament Archives (PA) Host Network Configuration (HNC)
Top Camera Phones 2020 (TCP) Data Transfer (DT)
Credit Card Fraud (CCF) Service Extension(SE)
Animal Welfare Bill (AWB) Transport Layer (TL)
Piracy and Copyright Issues (PCI) Message Authentication (MA)
Car and Property Market (CPM) Network Access (NA)
Rugby Football League (RFL) Internet Engineering (IE)
Opera in Vienna (OV) Fibre Channel (FC)
Windows Operating System (WOS) Streaming Media Service (SMS)

Alternatively, the BBC dataset is more diverse. It includes
2, 224 news documents in five distinct categories, including
politics, entertainment, business, sports, and technology.

To conduct a comprehensive evaluation, we used both
systematic metrics and human-based feedback as elaborated
in Section V-C. We deployed and experimented SAED on
a Virtual Machine (VM) within our local edge computing
system. The VM had two 10-core 2.8 GHz E5 Xeon processors
with 64 GB memory and Ubuntu 18.4 operating system.

B. Benchmark Queries

The datasets that we use to carry out the experiments are
not featured with any benchmark. Therefore, we required to
develop benchmark queries for the datasets before evaluating
the performance of SAED. We developed 10 benchmark
queries, shown in Table I, for each one of the two datasets.
The benchmark queries are proactively designed to explore the
breadth and depth of the datasets in question. In addition, some
of the queries intentionally contain ambiguous keywords to
enable us examining the context detection capability of SAED.
For the sake of brevity, we provide one acronym for each
benchmark query (see Table I). For each benchmark query,
we collected at most the top-20 retrieved documents. Then,
the quality of the retrieved documents were measured via both
automated script and human-based users.

C. Evaluation Metrics

We have to measure the search relevancy metric to under-
stand how related the resulted documents are with respect
to the user’s query and how they meet the his/her interests.
For the measurement, we use TREC-Style Average Precision
(TSAP) score, described by Mariappan et al. [34]. TSAP pro-
vides a qualitative score in a relatively fast manner and without
the knowledge of the entire dataset [10]. It works based on the
precision-recall concept that is commonly used for judging
text retrieval systems. The TSAP score is calculated based on∑N
i=0 ri/N , where ri denotes score for ith retrieved document

and N denotes the cutoff number (total number of retrieved
documents). Since we consider N = 10, we call the scoring
metric as TSAP@10.

To determine ri for retrieved document δ′i ∈ ∆′, we con-
ducted a human-based evaluation. We engaged five volunteer
students to judge the relevancy of each retrieved document. For

every search query, the volunteers labeled each retrieved docu-
ment as highly relevant, partially relevant,
or irrelevant. After performing majority voting based on
the provided responses for document i, the value of ri is
determined as follows:
• ri = 1/i if a document is highly relevant
• ri = 1/2i if a document is partially relevant
• ri = 0 if a document is irrelevant
We report TSAP@10 score to show the relevancy of results

for each benchmark query. In addition, mean TSAP score is
reported to show the overall relevancy across each dataset. As
we set the top 10 documents to be retrieved for each search,
the highest possible for TSAP@10 score can be 0.292 [34].

In addition to the TSAP score, we measure Mean F-
1 score too to compare the search quality offered by the
SAED-plugged enterprise search solutions against the original
enterprise search solutions (i.e., without SAED in place). The
F-1 score maintains a balance between the precision and recall
metrics, which is useful for unstructured datasets with non-
uniform topic distribution.

D. Evaluating Search Relevancy

The purpose of this experiment is to evaluate the search rel-
evancy of enterprise search systems that have SAED plugged
into them and compare them against the original (unmodified)
systems. To evaluate the personalized search, we set (assumed)
technology as the user’s interest for both datasets. We note
that, in this part, the enterprise search solutions (S3BD and
AWS Kendra) are set to work in the plain-text datasets.

S3BD vs SAED+S3BD: Figure 3a shows the TSAP@10
score for the RFC and BBC datasets for the original S3BD and
SAED+S3BD. The horizontal axes in both subfigures show
the benchmark queries and the vertical axes show the search
relevancy based on the TSAP@10 score.

In both Figure 3a and 3b, we observe that for all queries in
both datasets, SAED+S3BD outperforms the S3BD system.
In addition, we observe that S3BD produces less relevant
results for the BBC dataset compared to the RFC dataset.
This is because, unlike the RFC dataset, in several cases,
the exact keywords of the benchmark queries do not exist
in the BBC dataset. The worst case of these issues has
occurred for the PCI query in S3BD, because its query
expansion procedure could not capture the complete semantics.
In contrast, SAED+S3BD is able to handle the cases where
the exact keyword does not exist in the dataset, thus, we see
that it yields to a remarkably higher relevancy.

Even if we consider PCI as an outlier and exclude that from
the analysis, in Figure 3a, we still notice that the TSAP@10
score of SAED+S3BD is on average 41.2% higher than S3BD.
Although the difference between S3BD and SAED+S3BD
is less significant for the RFC dataset (in Figure 3b), we
still notice some 17% improvement in TSAP@10 score. This
is because RFC is a domain-specific dataset and the exact
keywords of queries can be found in the dataset, hence, making
use of smart methods to extract the semantic is not acute to
earn relevant results. From these results, we can conclude that
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Fig. 3: Comparing TSAP@10 scores of SAED+S3BD and S3BD systems. Horizontal axes show the benchmark queries.

EC PA TC
P

CC
F

AW
B

PC
I

CP
M

RF
L

OV

W
OS

0.00

0.05

0.10

0.15

0.20

0.25

0.30

TS
AP

@
10

 S
co

re

SAED+Kendra
Kendra

(a) BBC dataset

NI

HN
C DT SE TL MA NA IE FC SM
S0.00

0.05

0.10

0.15

0.20

0.25

0.30

TS
AP

@
10

 S
co

re

SAED+Kendra
Kendra

(b) RFC dataset

Fig. 4: Comparing TSAP@10 scores obtained from SAED+Kendra versus AWS Kendra in searching benchmark queries.

SAED can be specifically effective for generic datasets where
numerous topics exist in the documents.

AWS Kendra vs SAED+Kendra: In Figures 4a and
4b, we report TSAP@10 score obtained from AWS Kendra
versus SAED+Kendra for BBC and RFC datasets, respec-
tively. Specifically, in Figure 4a (BBC dataset), a significant
improvement (on average 26.5%) is noticed in the TSAP@10
score of SAED+Kendra. However, unlike SAED+S3BD,
SAED+Kendra does not beat Kendra for all the queries. The
reason Kendra outperforms SAED+Kendra for AWB and CPM
queries is that SAED injects extra keywords and sends the
expanded query set to AWS Kendra. Then, Kendra returns
documents that are related to the queries and to the expanded
keywords. We realized that the Ranking unit of SAED oc-
casionally prioritizes documents that include keywords of the
expanded queries instead of those with the query keywords.

Similar to the S3BD experiment, we observe that the
relevancy resulted from Kendra and SAED+Kendra is less
significant for RFC. However, we still obtain around 12%
improvement in TSAP@10 score according to Figure 4b.

E. Relevancy of Privacy-Preserving Enterprise Search

To examine the efficiency of SAED for privacy-preserving
enterprise search systems, we conducted experiments using
encrypted BBC and RFC datasets. The encrypted datasets were

uploaded to the cloud tier and the expanded queries were also
encrypted and searched on the cloud tier via Kendra.

We use the TSAP@10 score, as shown in Figure 5a and 5b,
for the BBC and RFC datasets, respectively. Figure 5a in-
dicates that SAED+Kendra substantially outperforms Kendra
for all the benchmark queries. We can see that for encrypted
dataset Kendra cannot do anything except pattern matching
and returning documents that exactly include the encrypted
query. Therefore, searching for several queries (e.g., PA,TCP,
CPM, etc.) does not retrieve any documents. We notice that,
in both systems, the highest TSAP@10 score is in searching
EC. The reason is the high number of documents in BBC that
contain the exact phrase European commission.

The reported TSAP@10 scores for the RFC dataset in
Figure 5b shows a clear improvement in compared with the
BBC dataset. We observe that seven out of ten queries provide
an equal TSAP@10 scores in both systems. The reason that
makes Kendra competitive to SAED+Kendra is the exact
availability of the benchmark queries in RFC. However, for
HNC and FC, the exact query keywords are not present in the
dataset, hence, Kendra fails to find any results.

F. Discussion of the Relevancy Results

In Table II, we report mean F-1 and mean TSAP@10 scores
for the SAED-plugged enterprise search systems along with
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Fig. 5: Comparing TSAP@10 scores obtained from SAED+Kendra vs AWS Kendra systems in the encrypted domain.

their original versions upon utilizing the datasets both in the
plain-text and encrypted forms. From the table, we notice that,
regardless of the enterprise search system being employed, a
higher search relevancy is consistently achieved for the RFC
dataset as opposed to the BBC dataset.

The search relevancy is consistently improved when
SAED+Kendra is used and it provides on average of 23% im-
provement in mean F-1 score and 21% in the mean TSAP@10
score. Although original S3BD is the underperformer, using
SAED+S3BD improves its mean F-1 and mean TSAP@10
scores by on average of 40% and 32%, respectively.

BBC RFC

Systems Mean
F-1

Mean
TSAP@10

Mean
F-1

Mean
TSAP@10

S3BD 0.50 0.17 0.80 0.24
SAED+S3BD 0.82 0.25 0.92 0.28

Kendra 0.67 0.20 0.88 0.26
SAED+Kendra 0.90 0.27 0.93 0.28
Kendra (Encry.) 0.31 0.09 0.75 0.22

SAED+Kendra (Encry.) 0.73 0.22 0.90 0.27

TABLE II: Comparing the mean F-1 and the mean TSAP@10 scores
obtained from SAED-plugged enterprise search systems versus their
original forms. The highest resulted scores are shown in bold font.

In the encrypted domain, we notice that SAED+Kendra
offers a substantially higher (up to 130%) search relevancy
for BBC dataset. As the exact keywords of the given search
queries are not present in the encrypted form of BBC dataset,
AWS Kendra fails to perform semantic search, rather does only
a pattern matching, which makes it an underperformer for this
dataset. On the other hand, search relevancy is improved for
RFC dataset since mean F-1 and mean TSAP@10 scores are
improved by at least 20%. This is because, most of the queries
are present exactly in the dataset and Kendra retrieves most of
the relevant documents by relying only on pattern matching.

G. Evaluating the Search Time

Figure 6 presents the total incurred search time of the
experimented queries for each dataset. The search time is cal-
culated as the summation of the elapsed time taken by a query
to be processed (e.g., expansion, weighting) and turnaround

time until the result set is received. To eliminate the impact
of any randomness in the computing system, we searched
each set of experimented queries 10 times and reported the
results in the form of box plots. The figure indicates that
S3BD system has the highest search time overhead for both
datasets which could impact real-time searchability in case
of big data. SAED+S3BD incurs less query processing time
overhead compared to the original (unmodified) S3BD system.

On the other hand, AWS Kendra causes the lowest time
overhead for both datasets compared to SAED+Kendra.
SAED+Kendra causes around 4 times more time overhead
compared to original Kendra. However, in the prior set of
experiments, we determine that SAED+Kendra achieves a
substantially higher search relevancy for most of the queries
and, particularly, for datasets with privacy constraints.
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Fig. 6: Search time comparison among S3BD, Kendra,
SAED+S3BD, and SAED+Kendra systems.

VI. CONCLUSIONS AND FUTURE WORK

A context-aware, personalized, and privacy-preserving en-
terprise search service is the need of the hour for data
owners who wish to use cloud services. Our approach to
address this demand was to separate the search intelligence
and privacy aspects from the pattern matching aspect. We
developed SAED that achieves privacy and intelligence at
the edge tier and leaves the large-scale pattern matching for
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the cloud tier. SAED is pluggable and can work with any
enterprise search solution (e.g., AWS Kendra and S3BD)
without dictating any change on them. Utilizing edge com-
puting on the user’s premises preserves the user’s privacy
and makes SAED a lightweight solution. Leveraging recurrent
neural network-based prediction models, WordNet database,
and Word2Vec, SAED proactively expands a search query in
a proper contextual direction and weights the expanded query
set based on the user’s interest. In addition, SAED provides
the ability to perform semantic search while the data are
stored in the encrypted form on the cloud. In this case, the
existing enterprise search solutions just perform the pattern
matching without knowing the underlying data. Evaluation
results, verified by human users, show that SAED can improve
the relevancy of the retrieved results by on average ≈ 24% for
plain-text and ≈ 75% for encrypted generic datasets. There
are several avenues to improve SAED. One avenue is to cover
domain-specific and trendy keywords. Another avenue is to
make the SAED flexibly deployed on various devices. For
instance, when the user is on the move and does not have
access to the edge, SAED should shrink to the bare minimum
search intelligence and vice versa.
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