
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MONTH 201X 1

HEADS-JOIN: Efficient Earth Mover’s Distance
Similarity Joins on Hadoop

Jin Huang, Rui Zhang, Member, IEEE , Rajkumar Buyya, Fellow, IEEE ,
Jian Chen Member, IEEE , Yongwei Wu, Member, IEEE

Abstract—The Earth Mover’s Distance (EMD) similarity join has a number of important applications such as near duplicate image
retrieval and distributed based pattern analysis. However, the computational cost of EMD is super cubic and consequently the EMD
similarity join operation is prohibitive for datasets of even medium size. We propose to employ the Hadoop platform to speed up the
operation. Simply porting the state-of-the-art metric distance similarity join algorithms to Hadoop results in inefficiency because they
involve excessive distance computations and are vulnerable to skewed data distributions. We propose a novel framework, named
HEADS-JOIN, which transforms data into the space of EMD lower bounds and performs pruning and partitioning at a low cost because
computing these EMD lower bounds has constant or linear complexity. We investigate both range and top-k joins, and design efficient
algorithms on three popular Hadoop computation paradigms, i.e., MapReduce, Bulk Synchronous Parallel, and Spark. We conduct
extensive experiments on both real and synthetic datasets. The results show that HEADS-JOIN outperforms the state-of-the-art metric
similarity join technique, i.e., Quickjoin, by up to an order of magnitude and scales out well.

Index Terms—Earth Mover’s Distance, Similarity Join, MapReduce, Bulk Synchronous Parallel

F

1 INTRODUCTION
The similarity join retrieves all the pairs of objects from
two datasets such that the similarity between the two
objects in every pair is high. The similarity measure
employed in the join predicate determines which data
objects are similar to each other and thus has a major
influence on the effectiveness of the join operation. The
Earth Mover’s Distance (EMD) is an attractive measure for
applications such as content-based image retrieval [20],
video-based gesture recognition [17], and near duplicate
detection [25]. Two examples are as follows.

Example 1. Given a set of copyright images and a set of
user-uploaded images, where images are represented as color
distributions, we can use similarity joins to detect potential
copyright infringement among the user-uploaded contents.
Here, the EMD is a better similarity measure than the ℓp
distances. This is because that the EMD can capture the
facts such as the orange dimensions are similar to the yellow
and the red dimensions; for ℓp distances, all dimensions are
independent and indistinguishable from each other.

Example 2. Given a set of mobile usage patterns, which are
represented as distributions of hourly usage counts (in a 24d
space), similarity joins can be used to figure out the similar

• Jin Huang, Rui Zhang, and Rajkumar Buyya are with the Depart-
ment of Information and Computing Systems, University of Mel-
bourne, Melbourne, VIC 3010, Australia. E-mail: {huang.j, rui.zhang,
rbuyya}@unimelb.edu.au

• Jian Chen (the corresponding author) is with the School of Software
Engineering, South China University of Technology, Guangzhou, China.
E-mail: ellachen@scut.edu.cn

• Yongwei Wu is with the Department of Computer Science and Tech-
nology, Tsinghua National Laboratory for Information Science and Tech-
nology (TNLIST), Tsinghua University, Beijing 100084, China. E-mail:
wuyw@tsinghua.edu.cn

users [1]. In this task, the EMD is better than ℓp because
it captures the underlying relations between the timestamps
(which are dimensions). For example, a call on 9am is similar
to a call on 10am (a morning working call) rather than a call
on 9pm (an evening family call).

Generally, the EMD incorporates the underlying cor-
relations between different dimensions in addition to
the difference on the same dimensions. For applications
where such correlations matter to the effectiveness, the
EMD is a more proper choice than distances that ignore
the correlations, e.g., the ℓp distances.

Specifically, the EMD defines the dissimilarity as the
minimal transformation cost between two data objects.
However, this minimization is a transshipment prob-
lem which has the complexity of O(n3 log n). In our
experiment on a machine with 2.8GHz CPU, a single
EMD computation on two histograms with 32 two-
dimensional bins (n = 32) consumes 50 ms, which is
about 25,000 times of the ℓ2 distance’s 0.002 ms on the
same histograms. In real applications, datasets may con-
tain hundreds of thousands or even millions of objects.
An EMD similarity join on them may take weeks to months
to complete on a single machine. To enable effective and
efficient EMD analysis in practice, leveraging a cluster of
shared nothing machine is a promising approach. This
is especially true as the emerging cloud computing tech-
niques have made such clusters both highly available
and unprecedentedly economical.

We propose to use the popular platform for a dis-
tributed cluster, Hadoop, to tackle this problem. We de-
sign our solutions based on the MapReduce [8] (MR), the
Bulk Synchronous Parallel [22] (BSP), and the Spark [27]
paradigms. All these paradigms can run upon a Hadoop

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MONTH 201X 2

cluster. There have been enormous efforts in implement-
ing join operations using MR [13], [15], [16], [21]. How-
ever, the state-of-the-art technique designed for metric
space similarity joins, i.e., Quickjoin [12], is inefficient for
EMD similarity joins in the parallel environment due to
the below challenges.

• Challenge 1: Existing techniques such as Quickjoin
require performing pruning and partitioning in the
EMD space, which is prohibitive.

• Challenge 2: Real-life data is usually skewed.
Quickjoin may have highly unbalanced workloads
in case of skewed data, which results in long com-
pletion time.

To overcome Challenge 1, we propose a novel frame-
work named Hadoop EArth mover’s Distance Similarity Join
(HEADS-JOIN1). Instead of pruning dissimilar pairs and
partitioning data objects in the EMD space, HEADS-JOIN
transforms data objects into the space of EMD lower
bounds, where the pruning and partitioning can be
performed based on the EMD lower bounds; these lower
bounds can be computed at a low cost in the transformed
low-dimensional space, which is much cheaper than
computing EMD in the original high-dimensional space.
Conceptually, HEADS-JOIN has three phases.

1) Transform data objects into spaces corresponding
to multiple normal lower bounds of EMD.

2) Divide the transformed spaces using a set of spe-
cially designed grids based on the characteristics
of the lower bounds and group the transformed
records into composite cells.

3) Compute the lower bound of the EMD between
every record and every cell; any ⟨record, cell⟩ pair
that has a lower bound of EMD greater than the
threshold is pruned. The remaining ⟨record, cell⟩
pairs will be partitioned and go through further
refinement steps.

To overcome Challenge 2, we propose to use a quantile
based grid technique and a cardinality based grouping
technique to balance the workloads of the refinement
steps in the third phase of HEADS-JOIN.

This paper extends our preliminary work [11], where
we proposed a MR based framework for EMD similarity
range joins. In this paper, we make the following extra
contribution.

• We further enhance the framework to incorporate
the upper bound and the centroid lower bound of
EMD (Section 3.3).

• We extend the framework proposed in the previous
work to handle top-k joins in addition to range joins
(Section 3.4).

• Observing that MR has overhead due to the lack
of synchronization within a job, we extend the
framework by designing algorithms for the BSP
(Section 4) and the Spark (Section 5) paradigms. The
extended framework is named HEADS-JOIN.

1. The ‘Hadoop‘ here indicates both Hadoop and Hadoop-alike
systems, e.g., Spark, as long as they are compatible to HDFS and YARN

• We re-implement all the algorithms using the latest
version of Apache Hadoop MapReduce, Apache
Hama, and Apache Spark. We conduct brand new
experiments on both real and synthetic datasets
and evaluate our proposed algorithms against the
state-of-the-art techniques in terms of both time and
communication cost (Section 7) .

The remainder of the paper is organized as follows.
Section 2 presents the preliminaries. Section 3, Section 4,
and Section 5 elaborate the algorithms designed for
MR, BSP, and Spark, respectively. Section 6 discusses
related studies. Section 7 gives the empirical results and
Section 8 concludes the paper.

2 BACKGROUND

We first present problem formulation and then briefly
describe the techniques that HEADS-JOIN is built on: the
EMD bounding techniques and the Hadoop computation
paradigms.

2.1 Earth Mover’s Distance and Problem Definition
In our problem, data objects are represented as his-
tograms and in the remainder of the paper we refer to the
histogram of a data object simply as a histogram. A histogram
h is represented as n bins. Each bin consists of a location
which is a multi-dimensional vector l⃗i and a weight
which is a nonnegative value wi. The EMD between a
pair of histograms is the minimum cost of transforming
one histogram to the other histogram, where the cost is
defined as the amount of weight moved times the ground
distance between bins that the weight is moved [18]. We
follow the literature [19], [24], [26] and focus on EMD
with the ℓ2 ground distance in this paper. Formally,

EMD(hα, hβ) = min
n∑
i

n∑
j

fi,jdi,j

s.t.∀i :
∑
j

fi,j = wi; ∀j :
∑
i

fi,j = wj ; ∀i, j : fi,j ≥ 0,

where di,j is the ground distance between the ith and the
jth bins, i.e., di,j = dℓ2(l⃗i, l⃗j). Computing EMD is solving
a special case of the Kantorovich-Rubinstein transship-
ment problem, where the transportation simplex method
provides the average-case time complexity of O(n3 log n).

We consider two variants of EMD similarity joins, i.e.,
range and top-k joins. Range joins retrieve all the pairs
with EMD smaller than a given threshold ϵ. Top-k joins
retrieve the k pairs that have the smallest EMD.

2.2 Bounds of EMD Employed in HEADS-JOIN

Bounds of EMD are useful for similarity joins since we
can avoid excessive cost in computing EMD by filtering
dissimilar pairs with lower bounds and identifying sim-
ilar pairs with upper bounds. Below we briefly describe
the bounds used in HEADS-JOIN; more details can be
found in [11].

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MONTH 201X 3

2.2.1 Normal Lower Bound

To compute the normal lower bound (normal-LB) be-
tween a histogram and a group of histograms, there are
five steps [19].

1) Projecting the original histograms to one-dimensional
histograms by timing the locations in the original
histogram to a random projection vector.

2) Constructing Cumulative Distribution Functions
(CDF) for the projected histogram.

3) Approximating the histogram CDF with a normal
distribution. The µ and σ for the normal CDF can be
easily computed by fitting the normal CDF to the
histogram CDF and the approximation error values
C are obtained by comparing the histogram CDF
with the normal CDF.

4) Transforming normal CDF to Hough normal space.
For a normal CDF Φ(µ, σ2), we transform it to a
record (m, b), where m = 1

σ and b = −µ
σ . Each

transformed record in the Hough normal space therefore
corresponds to one histogram in the original space.

5) Grouping transformed records into diamond-shape re-
gion and computing the normal-LB. The transformed
records are grouped to a diamond-shape region
using lines with slopes of −tmin and −tmax. For
a record h and a region g, let h′ denote the the
projection of h on its nearest edge of g, t denote
the intersection between Φa and Φb, we have

EMD(h, hg ∈ g) ≥ LBnormal(h, g)

=

N(h, gN) + E(h, gN) if h dominates g

F (h, h′, argmin
g={gN ,gS}

dℓ2(g, h))

if h partially dominates g

min(F (h, gR, gN), F (h, gR, gS))

if h has no domination relationship with g

N(h, gS) + E(h, gS) if h is dominated by g

where,

F (a, b, c) =
1

2
(N(a, c) +N(b, a)−N(b, c)) + E(a, c),

N(a, b) =

|
∫ t

tmin
Φa −

∫ t

tmin
Φb|+

|
∫ tmax

t
Φa −

∫ tmax

t
Φb|

if tmin ≤ t ≤ tmax

|
∫ tmax

tmin
Φa −

∫ tmax

tmin
Φb|

if tmin > t or t > tmax,

E(a, b) =

{
Ca[t]− Cb[t] if Φb dominates Φa

Cb[t]− Ca[t] if Φa dominates Φb

gR = argmin
g={gW ,gE}

dℓ2(g, h),

where gN , gW , gS , and gE represent the northern,
western, southern, and eastern vertex of g, respec-
tively. The dominance relationship between h and g
is determined by the stochastic dominance between
their corresponding normal CDF.

The normal-LB can be computed at an O(1) cost since
i) two normal CDF with different σ only have one inter-
section; ii) there is a closed-form formula on integrating
normal CDF, i.e.,

∫ x2

x1
Φ(µ, σ2) = σ(x2Φstd(x2)+ϕstd(x2)−

x1Φstd(x1)− ϕstd(x1)), where Φstd and ϕstd are the CDF
and density function of the standard normal distribution
N (0, 1), respectively.

2.2.2 Dual Lower Bound
The dual lower bound (dual-LB) [26] is computed via
feasible solutions to the dual form problem of the opti-
mization in EMD. A feasible solution, denoted by Π,
is a set of variables satisfying the constraints of its
dual form problem, with a solution key, denoted by π,
computed by aggregating these variables. The feasible
solution can be computed by sampling the histograms.
Each feasible solution can transform a histogram to two
one-dimensional values λ and ρ, denoted as dual keys.
Given two histograms h and h′, two lower bounds can
be computed as (λh+ρh′) and (λh−λh′+π), respectively.

2.2.3 Centroid Lower Bound
Given that an ℓp distance is used as the ground dis-
tance, the centroid lower bound (centroid-LB) [18] is of
linear cost and is computed as the ground distance be-
tween the centroids of the two equal-weight histograms.
As we consider ℓ2 ground distance, the centroid-LB is
dℓ2(

∑
i wili,

∑
j wj lj), where we coin ωh =

∑
i wili as the

centroid key.

2.2.4 Reference Upper Bound
The reference upper bound (reference-UB) uses several
random reference histogram ĥ and the triangle inequal-
ity of metric distances to bound EMD between two
histograms. Since EMD is the minimum flow between
two histograms, we can compute a feasible flow between
two histograms as its natural upper bound. Formally,

UBĥ(hα, hβ) = F (hα, ĥ) + F (hβ , ĥ)

≥ EMD(hα, ĥ) + EMD(hβ , ĥ)

≥ EMD(hα, hβ),

where the feasible flow F (h, ĥ) can be easily computed
by first sorting the bins of the two histograms separately
on their weights, and then constructing flow from one
to the other following the descending order of weights
in a greedy manner.

2.3 Parallel Computation Paradigms in Hadoop
Hadoop2 is a massively popular distributed data pro-
cessing platform. It runs a cluster of commodity ma-
chines and assumes the CPUs as well as the main
memories are isolated on distributed machines while a
distributed file system (HDFS in this case) is available.
There are a number of different computation paradigms

2. Apache Hadoop, http://hadoop.apache.com

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MONTH 201X 4

available over the platform, among which MR, BSP, and
Spark have attracted a large number of users.

The MR paradigm [8] is designed to simplify parallel
batch processing on a cluster of commodity machines. It
involves a map and a reduce function. The map and
reduce functions are executed independently on the
machines referred to as the mappers and the reducers.
Briefly, the mappers process key-value pairs and shuffle
intermediate pairs to reducers. MR guarantees that in-
termediate pairs with the same key value are shuffled
to the same reducer. The reducers then aggregate values
based on the received pairs. A map-reduce procedure
corresponds to a MR job.

The BSP paradigm [22] is a generic computation
paradigm designed for parallel computation units. In
BSP, computations are executed on parallel workers in
the fashion of consecutive supersteps. In each superstep,
each worker first computes independently using the
local data, then sends messages to each other, and reads
messages sent to them in a synchronous barrier.

The Resilient Distributed Dataset (RDD) [27] consists
of a fault-tolerant dataset stored in a cluster of dis-
tributed machine and a set of distributed computation
interfaces that can be operated on this dataset. These
interfaces are inspired by the functional programming
concepts, e.g., map, reduce, filter, fold, etc., and
they are generic in the sense that both MR and BSP
(the restricted graph version) can be implemented us-
ing these interfaces. Apache Spark3 is the open source
implementation of RDDs, and it is fully compatible to
the Hadoop platform. In the remainder of this paper,
we use Spark and RDD interchangeably.

3 HEADS-JOIN ON MAPREDUCE

HEADS-JOIN employs the normal-LB to transform data
objects into the Hough normal space, divides the space
into grids, collects statistics on grouped records in the
cells, and then conducts pruning, partitioning, and re-
fining. With MR, this procedure is implemented using
three MR jobs. Below we briefly describe these jobs for
the range joins; for more details of each MR job involved,
please refer to our preliminary study [11]. At the end of
this section, we elaborate how HEADS- JOIN handle top-
k joins with some moderate modifications.

3.1 Job 1: Obtaining the Domain of Transformation
We apply p projection vectors, and therefore use p
different normal-LB in the later pruning. This job is
designed for obtaining the domains of the p transformed
Hough normal spaces. For each projection vector v, on
the mappers, the normal-LB technique is applied to
transform each histogram to multiple 2d records. One
reducer aggregates quantile values of each dimension of
a space, serving as i) the domain and ii) the base of grid
division.

3. Apache Spark, http://spark.apache.com

We use the quantile values computed by the reducers
to conduct the grid division. These quantile values Q are
distributed to workers for further use by the following
job. Then the space can be divided into z2 grid cells.
As described in Section 2.2, lines with slopes of −tmax

and −tmin are used to conduct the division. In order to
cover the space domain, the grid is a minimum bounding
quadrilateral of the domain.

Lastly, for lower bounds that require global informa-
tion, e.g., the feasible solutions in the dual-LB, we can
use the cleanup phase to compute that information.
For the reference-UB, a small number of reference his-
tograms are sampled and distributed to workers for
further accesses.

3.2 Job 2: Computing the Approximation Errors

To prune dissimilar composite cells for a histogram, we
need to compute the normal-LB between them, which re-
quires the aggregated approximation error values for the
composite cells. We employ another MR job to aggregate
these values. In addition to the approximation errors,
we are also interested in two types of information. First,
we collect the cardinality of records in each composite
cell, which will be helpful for conducting load balancing
in the following job. Second, as we will employ both
the dual-LB and the centroid-LB to prune the potential
pairs, the lower bound key ranges for these two lower
bounds are also aggregated for each composite cell.
The aggregation is implemented as a simple job, which
applies the bounding techniques on mappers, uses the
composite cell as the ID, and aggregates all necessary
information on reducers.

3.3 Job 3: Pruning, Partitioning, and Refining

In this job, a mapper prunes the dissimilar composite
cells for each histogram and distributes the histogram
to different reducers based on the pruning results. The
reducers further prune candidate pairs using a chain of
lower bounds.

We use the centroid-LB as an example of plugging
lower bounds into pruning. The dual-LB is applied in
a similar way. The key range of centroid-LB is multi-
dimensional, i.e., same to the dimension of the bin
locations. Hence, the lower bound between a centroid
key and a range is the minimum distance between a
multi-dimensional point ωh, and a multi-dimensional
orthotope defined by ωmin and ωmax. A composite cell
G with [ωmin, ωmax] is pruned for histogram h if

LBcentroid = min{d(ωh, ωG), ωG ∈ [ωmin, ωmax]} > ϵ.

Before distributing records to different reducers based
on the composite cells, we try to organize the compos-
ite cells such that reducers are of similar amount of
workloads. We propose to group composite cells based
on the number of records in them and assign grouped
composite cells to reducers accordingly. This can be done

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MONTH 201X 5

by a simple algorithm. Given the number of groups, first
we sort the composite cell in a descending order on the
number of records in it, which is actually the byproduct
of Job 2. Then we assign composite cells one by one to
groups according to the sorted order. For each composite
cell, we assign it to the group who has the smallest
number of records so far. This simple solution may not
achieve the optimal results, i.e., the minimum standard
deviation on the workloads of all reduce tasks, it is
adequate for our problem since it computes roughly bal-
anced groups with negligible computational overhead.

The detailed steps are as follows. Before the map
function gets executed, the composite cells are grouped
based on the their numbers of records collected in Job 2.
In the map function, histogram h is first transformed to
(mh, bh) with its approximation error values Ch. Then
the dual and centroid keys of the histogram is com-
puted. Next, for each cell g ∈ G and each projection j,
LBnormal(h, g

j) is computed using the formula described
in Section 2.2 (cell vertexes can be computed based on
the domain and z). If this LBnormal(h, g

j) is greater than
or equal to ϵ, then g, and effectively G, are pruned for
the record. Additionally, a record should be refined with
records that lie in the same cell. Hence, for each cell
there are two types of records: the native ones who lie
in the cell and the guest ones who do not get pruned
for the cell using the lower bound. We use the flags
in or out to denote whether a record is native for the
cell. We further check any other bounds plugged into
the pruning procedure, and distribute the record to the
corresponding reducers if all the bounds fail to prune
that composite cell for the record. On reducers, a self join
is performed on the native records, while a nested-loop
join is performed between the native records and the
guest records. A chain of EMD lower bounds (discussed
in Section 6.1) are computed to further filter dissimilar
candidates. Additionally, the reference-UB is used to join
two histograms without computing EMD between them,
as discussed in Section 2.2.

3.4 Processing Top-k Joins

The difference between the range and the top-k joins is
that there is no priori threshold value to prune candi-
dates. Instead, such a threshold needs to be computed
and refined during the join procedure. To obtain an
initial threshold value, we again leverage Job 1. A small
portion (typically 100 records) of the datasets is sampled
in the map phase and the EMD of pairs among this sam-
ple is computed in the cleanup phase. The kth smallest
EMD values are distributed to workers.

When processing top-k joins, the reference-UB can
be employed to prune dissimilar composite cells for a
given histogram. The intuition is that for a histogram
h, if there are already more than k candidates with
upper bounds smaller than threshold value ϵ, then any
candidates with a lower bound greater than ϵ can be
pruned for this histogram. To implement this idea, in Job

Algorithm 1: Pruning by Upper Bound in Top-k Joins
Input: a histogram h, composite cells {G}, reference {href}
Returns: a set of un-pruned composite cells

1 G,U ← ∅, ϵh ←∞
2 foreach ĥ do
3 foreach G do
4 U ← U ∪ UBĥ(h,G, ĥ)

5 sort U
6 count← 0
7 foreach UB ∈ U do
8 if count ≥ k then
9 ϵh,ĥ ← UB

10 break

11 count← count+OG

12 if ϵh > ϵh, ĥ then
13 ϵh ← ϵh, ĥ

14 foreach G do
15 flag ← true
16 foreach g ∈ G do
17 flag ← LBnormal(h, g) ≤ ϵh

18 flag ← flag ∧ LBdual(h,G) ≤ ϵh
19 flag ← flag ∧ LBcentroid(h,G) ≤ ϵh
20 if flag then
21 G ← G

22 return G

2 mappers, for a histogram h and a reference histogram
ĥ, we compute a feasible flow, denoted as F (h, ĥ), and
aggregate the maximum flow for each composite cell and
each ĥ, denoted as F̄G,ĥ on the reducer. The maximum is
necessary as we are only interested in an upper bound
for all the records in the composite cell. In Job 3, the
upper bound of EMD between a histogram h and a
composite cell G can be computed by adding F (h, ĥ)
to the maximum flow F̄G,ĥ. For h′ ∈ G

UBĥ(h,G) = F (h, ĥ) + F̄G,ĥ

≥ F (h, ĥ) + F (h′, ĥ)

≥ F (h, h′) ≥ EMD(h, h′).

Algorithm 1 lists the steps involved in the pruning.
Given h and ĥ, among all the reference-UBs for different
G, we choose one value ϵĥ such that it is the smallest
value that guarantees there are at least k histograms in
the set of composite cells, each of which has reference-
UB not greater than ϵĥ. This essentially indicates that
for h there are at least k histograms which will have an
EMD not greater than ϵh,ĥ. Formally, let OG denote the
number of records in G,

ϵh,ĥ = argmin
ϵ

∑
G

{OG|UBĥ(h,G) ≤ ϵ} ≥ k.

Among all ϵh,ĥ for different reference histograms, we
select the minimum one ϵh, i.e., ϵh = minĥ{ϵh,ĥ} (line 12
to line 13). If a composite cell has any types of lower
bounds greater than ϵh, it can be pruned for h (line 14
to line 21).

To progressively refine the threshold value during the
computation, the reducers in Job 3 now maintain a heap
of k pairs of histograms with the smallest EMD values.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MONTH 201X 6

The largest EMD value in this heap is used to substitute
ϵ in the reduce phase of the algorithm.

It is clear that though top-k joins can be handled by
HEADS-JOIN with MR, the algorithm involves high la-
tency due to the lack of communication (synchronization
on the value of ϵ) during the pruning. If the dataset has
a skewed distribution, this may result to unsatisfactory
pruning results.

4 HEADS-JOIN ON BSP
The MR paradigm is widely adopted, yet it may not
be the best option for the EMD similarity join problem.
The MR based HEADS-JOIN algorithm faces the inherent
drawbacks of MR, i.e., the lack of communication during
each job. The BSP paradigm is a prominent alternative
on processing large scale datasets. It leverages the dis-
tributed main memory by default, and uses supersteps to
organize local computation and synchronous communi-
cations. Recent years have seen an wide adoption of this
paradigm on Hadoop4. In the following, we show how
to devise a HEADS-JOIN algorithm on BSP.

Similar to the three jobs in the MR counterpart, the BSP
algorithm has two conceptual phases, i.e., the preparation
phase and the pruning and refining phase.

1) Preparation phase. The input histogram datasets are
partitioned using the normal-LB and the quantile
based grid techniques. Complementary informa-
tion such as the aggregation errors, the number of
records in the composite cells, and the lower key
ranges are stored for later access.

2) Pruning and refining phase. The partitioned data is
pruned using multiple lower bound and upper
bound techniques. For the top-k joins, the threshold
predicate value ϵ is progressively refined and syn-
chronized throughout the consecutive supersteps.

In the following, we describe in details how these two
phases are implemented in the BSP algorithm.

4.1 Preparation Phase
The underlying idea is similar to Job 1 and Job 2 de-
scribed in Sections 3.1 and 3.2, respectively. However,
as the synchronous communication is available in BSP
in each superstep, there is no need to use two separate
BSP jobs to accomplish the task; one BSP job is employed
for the phase and it consists of five supersteps. This job
is the same for both the range and the top-k joins.

Algorithm 2 demonstrates the detailed procedure. In
BSP, the superstep procedure is iteratively executed
on parallel workers. Between two consecutive iterations,
all the workers wait (line 38) until all the messages are
delivered to the corresponding receiving workers. The
loop only terminates when all the workers have called
the procedure done. We use boolean values to organize
the five supersteps during the procedure (line 2). As
there are only five supersteps and all the operations are

4. Apache Hama, http://hama.apache.com

at most of linear cost to the input size, this BSP phase
is rather lightweight when compared with the second
phase.

To start, each worker reads a portion of the data
and applies the normal-LB transformation (line 5 to line
10). We process all the histograms in the first superstep
as there is no need for communications before all the
histograms have been processed. Then, each worker
sends the transformed data in each space to one worker
(line 11 to line 12), whom acts as the master worker
and uses the second superstep to aggregate the domain
and the quantile values (line 15 to line 16). Since there
are multiple spaces, multiple master workers are in-
volved. After all the domains and quantile values are
computed, these master workers send these values to all
the workers (line 17 to line 18). Next, each worker uses
the third superstep to assign the original input histogram
to the corresponding composite cell, aggregate locally
the number of records, the aggregation errors, the dual
key ranges, the centroid key ranges, and the maximum
feasible flows, for all the composite cells encountered
(line 20 to line 23). After all the input histograms are
processed, the aggregated information for the composite
cells are sent to one master worker (line 24), whom uses
the fourth superstep to compute the global aggregated
information for all composite cells (line 27 to line 29).
All the aggregated information is written out and the
messages on how the composite cells should be grouped
together (for load balancing) are sent to all the workers
(line 30 to line 31). In the last superstep, all the workers
use the grouping information to partition data and write
it out to the disk as the input for the second phase (line
34 to line 37).

4.2 Pruning and Refining Phase

In this phase, we conduct the actual pruning and the
refining. Each worker reads histograms assigned to a
particular group eG, and read the aggregated informa-
tion for all the composite cells, to prune composite cells,
i.e., other workers, from each histogram. As described
in Section 3, histograms in the same composite cell need
to be refined first. Then, we conduct histogram-worker
pruning. Given a histogram h, for each composite cell
group eG, we use the normal, the dual, and the centroid
lower bound to see if the h needs to be refined with the
histograms in that group eG. If so, the histogram is sent
to the worker that is responsible for refining eG. When
processing top-k joins, reference-UB can be employed to
prune G as described in Section 3.4.

A straightforward approach on organizing the super-
step procedure is to conduct the whole pruning in one
big superstep and then refine all the received histograms
with the input histograms. However, doing so disables
updating the joining threshold for a given k as more
histograms are processed. A better way is to progres-
sively perform the refinement between the received and
the input histograms. That is, we use finer supersteps

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MONTH 201X 7

Algorithm 2: Preparation BSP Job

1 bsp-setup
2 transformed, aggregated, partitioned, grouped← false

3 superstep
4 if ¬transformed then
5 M,B ← ∅
6 foreach h do
7 foreach j ← 1 to p do
8 CDFh ← {wh}, Lv̂j

9 Φ(µ, σ2)← CDFh

10 Mj ← 1
σ

, Bj ← −µ
σ

11 foreach j ← 1 to p do
12 send message Mj and Bj to worker j

13 transformed← true

14 else if ¬aggregated then
15 M,B ← read message
16 Qm, Qb ←M,B
17 foreach worker do
18 send message Qm, Qb to worker

19 aggregated← true

20 else if ¬partitioned then
21 Qm, Qb ← read message
22 foreach h do
23 Gh, Ch, λh, ωh ← h,Q

24 send message {(G,OG, CG, λG, ωG)} to master
25 partitioned← true

26 else if ¬grouped ∧ isMaster then
27 G,OG, CG, λG, ωG ← read message
28 eG ← G,OG, CeG ← CG, eG, λeG , ωeG ← λG, ωG, eG
29 write (eG, CeG , λeG , ωeG)
30 foreach worker do
31 send message eG to worker

32 grouped← true

33 else
34 eG ← read message
35 foreach h do
36 write (eG, h)

37 done

38 synchronize

and conduct the refinement after a certain number of
input histograms are sent. This could be beneficial in
terms of the memory and the network bandwidth usage
because at any given time, the number and the length
of messages sent are relatively small. Since the threshold
value can be sent to all the workers via messages, the
algorithm naturally supports the progressive refinement
on the threshold value such that all workers can use the
globally smallest threshold value.

The histogram-worker pruning may result in some
worker receiving no messages. This is undesired as the
synchronization in the superstep suggests all workers
cannot continue to the next superstep until the slowest
worker finished. Compared to refining the received his-
tograms with the input histograms, which possibly in-
volves EMD computations, the histogram-worker prun-
ing is substantially cheaper. We therefore allow workers
to wait on pruning (lightweight) instead of wait on re-
fining (heavy). Hence, each worker maintains a counter
for the messages sent and keep processing the input
until the counter reaches a predefined number batch.

After batch number of messages are generated, all the
messages destined to the same worker will be packed
into one single long message and sent accordingly. This
essentially incorporates the improvement of the CGM [9]
paradigm. There is a trade-off when choosing the proper
batch value: a large value produces fewer larger mes-
sages, yet it delays the refinement on the threshold value;
a small value produce more smaller messages which
may introduce race and contention over the network, yet
it aggressively refines the threshold value. The best value
is subject to various factors: the network bandwidth,
speed, the dataset distribution, etc; choosing which is
beyond the scope of this paper.

Algorithm 3 lists the detailed steps in this phase.
Again, we use three boolean values to indicate the three
different subtasks in the phase, i.e., refining histograms
in the same partition (line 6 to line 12), pruning and
sending histograms to other partitions (line 13 to line 38),
and refining histograms received from other partitions
(line 39 to line 46). In the first subtask, performing
self-joins on histograms within the same partition is
carried out independently. However, in the second sub-
task, the same number of sent messages may render
the processing rate different on different workers. For
example, if a worker X prunes many workers for many
histograms, X may end up finishing all pruning in
early supersteps. However, X cannot call done before
the last worker finishes pruning, since it is possible that
there are still histograms on the other workers which
need to be refined with histograms on X . Hence, a
variable guestDoneCount is maintained on every worker
for counting the number of workers that have com-
pleted pruning for all the histograms in the partition
assigned to them. When all the workers have reported
the completion of pruning, all the workers call done and
the loop is terminated. We cannot use Hout = ∅ as the
termination condition either, since it is entirely possible
that during some intermediate supersteps one worker
does not receive any incoming messages but still engage
in the refinement later on.

When processing top-k joins, additional messages are
sent to report to all workers the current known kth

smallest EMD threshold value (line 10 to line 11 and
line 45 to line 46). This way, all workers can always use
the globally smallest threshold seen so far.

5 HEADS-JOIN ON SPARK

The BSP paradigm overcomes the lack of synchroniza-
tion problem, yet it has its own inherent disadvantages.
For example, it forces synchronization between each su-
perstep, essentially prolonging each superstep by always
waiting for the slowest worker. Moreover, it sends a
large number of messages over the network, which may
result in contention on certain workers. In this section,
we further explore the Spark (RDD) paradigm, which
has been demonstrated in existing studies to outperform
MR in many different tasks.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MONTH 201X 8

Algorithm 3: Pruning and Refining BSP Job

1 bsp-setup
2 eG, CG, λG, ωG ← HDFS
3 native, guest, final← false
4 OeG , guestCount, guestDoneCount← 0

5 superstep
6 if ¬native then
7 self-join all input h ∈ Hin

8 if topk then
9 ϵlocal ← kth smallest EMD to worker

10 foreach worker do
11 send message ϵlocal to worker

12 native← true

13 else if ¬guest then
14 M ← ∅
15 foreach h offset by guestCounter do
16 foreach eG do
17 flag ← false
18 foreach G ∈ eG do
19 eachF lag ← true
20 foreach g ∈ G do
21 if LBnormal(h, g) > ϵ then
22 eachF lag ← false
23 break

24 if LBdual(h,G) > ϵ ∨ LBcent(h,G) > ϵ then
25 eachF lag ← eachF lag ∧ false

26 flag ← flag ∨ eachF lag

27 if flag then
28 M ← (eG, h)

29 guestCounter ++
30 if guestCounter ≥ batch then
31 break

32 if guestCounter =
∑

G∈eG
|CG| then

33 guest← true
34 foreach worker do
35 send message (me, guestDone) to worker

36 if M ̸= ∅ then
37 foreach (eG, h) ∈M do
38 send message (eG, h) to worker responsible for eG

39 Hout, guestDoneCount, {ϵ} ← read message
40 if guestDoneCount = #ofworkers then
41 done

42 if topk then
43 ϵ← min({ϵ}, ϵlocal)
44 join Hin and Hout, update ϵ if topk
45 foreach worker do
46 send message ϵ to worker

47 synchronize

Spark supports equi-joins (joining records with the
same key) between two RDDs via its native interfaces.
However, these equi-join oriented interfaces cannot be
applied to the similarity joins where the predicate allows
arbitrary functions. Therefore, we need to implement
HEADS-JOIN using other interfaces defined on RDD
itself. Specifically, four major interfaces are involved:
map which applies a function to each record, groupBy
which merges records with the same specific value,
collect which transfers an RDD to a local collection
on a single machine, and reduce which aggregates all
records to obtain a single value. Among these interfaces,

Algorithm 4: The prep phase in Spark
Input: data: RDD
Returns: grids, error, bound, assignment

1 trn← data.map {h→ (M,B)}
2 grids← trn.map {(M,B)→ compute percentile }.collect
3 error ← data.map {h→ Gh}.groupBy (Gh){i.map
{h→ C}.reduce}.collect

4 bound← data.map {h→ Gh}.groupBy (Gh){i.map
{h→ λ}.reduce}.collect

5 native← data.map {h→ Gh,in}.reduce
6 guest← data.map {h, grids, error, bound→ Gh,out}.reduce
7 assignment← native, guest

map and groupBy generate new RDDs, while collect
and reduce convert RDDs to local value.

Similar to the BSP algorithm, we have two phases
for HEADS-JOIN on Spark: one for preparing the grids
(denoted as prep); and one for filtering and refining
(denoted as refine). For both range joins and top-k
joins, the procedure is largely the same, with top-k joins
having extra pruning to perform. In the remainder of
this section, we elaborate based on the range joins.

The goal of the prep phase is to 1) construct the grid
structures using multiple projection vectors, 2) aggregate
the error and bound values for each composite cell,
and 3) assign composite cells to workers based on the
workload estimation. Different from both the MR and
the BSP algorithms, here we estimate the workloads on
each worker using the product of the numbers of native
and the guest records, instead of the number of the native
records. Remind when refining, the workload contains
a self join on the native record and a nested loop on
the native and the guest records. As the number of
guest records is typically larger than the number of
native records, multiplying the number of guest records
with the number of native records should give a more
accurate estimation. To compute this estimation, we need
an extra step in the Spark algorithm to count the number
of guest records before shipping those guests records to
their destined workers. Thanks to Spark’s capability of
persisting intermediate RDD, this extra step will gener-
ate the pruning results that can be reused in the next
phase. This can be elegantly achieved as demonstrated
in Algorithm 4. Clearly, lines 1 to 2 accomplish the task
corresponding to Job 1 in the MR implementation; lines
3 to 5 accomplish the task corresponding to the Job 2.
Lines 6 and 7 are the additional step we take to improve
the estimation on the workloads, i.e., counting the guest
records for each composite cell and assigning composite
cells to groups based on the product of the native and
the guest records.

The refine phase then processes the output of the
prep phases. As demonstrated in Algorithm 5, this corre-
sponds to the Job 3 in the MR algorithm. Specifically,
line 1 finds the relevant composite cells by pruning
using the normal-LB, dual-LB, and the centroid-LB. Line
2 finds the worker responsible for each composite cell
and distributes the records to the corresponding workers
with the groupBy operation. Last, line 3 conducts the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MONTH 201X 9

Algorithm 5: The refine phase in Spark
Input: data: RDD, grids, error, bound, assignment
Returns: pair: RDD

1 cells← data.map {h, grids, error, bound→ Gh,in, Gh,out}
2 group← cells.map {G, assignment→ eG}groupBy (eG)
3 pair ← group.reduce {chained filtering and joining}

EMD join with a chain of pruning lower bounds as
described in Section 3.3.

6 RELATED WORK

6.1 Lower Bounds of EMD
Devising computationally cheap lower bounds for EMD
has received much attention from different fields. The
random projection technique [6] maps histograms to
one-dimensional space, the dimensionality reduction
technique [24] employs a reduction matrix and ground
distance adjustment to largely decrease the number of
bins, and the independent minimization technique [2]
relaxes the optimization constraint in computing the
EMD. Transformation based methods transform high-
dimensional histograms to lower dimension and per-
form a computationally cheap operation (rather than
EMD) on these transformed values to provide the lower
bound of the EMD. The normal-LB, the dual-LB, and the
centroid-LB belong to this family.

6.2 Processing Join Using Parallel Paradigms
As described in Section 2.3, three emerging computation
paradigms in Hadoop include MapReduce, BSP, and
RDD(Spark). We briefly review the related studies on
these paradigms.

On MapReduce, the join operations have been the
focus of many studies [5], [16], [15], [23], [13]. However,
effective pruning techniques such as prefix-filtering [23]
and inverted index [15] are not applicable in our problem
because they leverage the property of sparse dimension
in the data objects that is absent here.

On BSP [22], parallel join has been previously in-
vestigated [3]. Our study differs from the existing BSP
join solutions in that i) our solution is specifically
designed for the EMD similarity join, leveraging the
lower bound techniques of EMD; ii) our solution is
targeted to the Hadoop platform, where typically shared-
nothing clusters are used and a distributed file system
is available. Other closely related parallel frameworks
such as LogP [7] and CGM [9] further relaxes and
improves upon BSP. Specifically, LogP replaces the syn-
chronization barrier in BSP with a more constrained
point-to-point message passing mechanism, aiming at
limiting the network communication cost; CGM replaces
the synchronization with a global communication round
where all the information sent between two workers are
packed into one long message. As such improvement
focuses on the communication and does not affect the
computation, its enhancement is orthogonal to designing
the algorithms.

On Spark, thanks to its more general and expressive
interfaces than MR, those techniques designed for MR
may be applied (by simulating MR with map, groupBy,
and reduce in Spark). However, the design concern
may shift as Spark relies on the main memory on
distributed machines instead of HDFS, and it is more
flexible than MR when synchronization is needed. We
have leveraged this difference in our Spark algorithm of
HEADS-JOIN with the more effective estimation on the
workloads of workers (as described in Section 5. Recent
studies on Spark focuses on streaming processing [28]
and graph processing [10], which extends the interfaces
of Spark to support more domain specific tasks.

6.3 State-of-the-Art Metric Space Similarity Join
Quickjoin [12] divides the space using pivot points such
that data objects are assigned to nearest pivot to form
multiple clusters. The data objects in the margin of
clusters may have small distances hence should also be
joined to guarantee the completeness. MRSimJoin [21] is
the MR implementation. In MRSimJoin, mappers sample
the pivots and assign data objects to clusters and then re-
ducers join the records in the same cluster and the same
margin. We implemented a Quickjoin algorithm using
BSP. Briefly, the pivots are sampled in a superstep and
sent to all workers, using which they prune histograms
from regions, and each worker is responsible for refining
histograms distributed to a region.

The major problem of Quickjoin is the excessive num-
ber of distance computations since each data object needs
to find its nearest pivot. The lower bounds of EMD
cannot be integrated into this procedure since i) most
lower bounds are not metric; ii) even a metric lower
bound may not preserve the locality of EMD, i.e., for an
object, its nearest pivot in terms of the lower bound is
not necessarily its nearest pivot in terms of EMD. Fur-
thermore, the parallel implementation of Quickjoin can
be vulnerable to skewed data distribution. For example,
in MRSimJoin if a reducer receives a large number of
objects, it further samples pivots and partitions those
objects. This is inefficient in our problem as it introduces
more EMD computations.

7 PERFORMANCE EVALUATION

We present our experimental study in this section. Please
note the figures in this section are presented in colors.

7.1 Environment and Methods
We conduct all the experiments on a research cloud
platform with OpenStack. Up to 16 virtual machine
instances are employed, each of which equips with four
2.8GHz virtual cores and 16GB memory. The network
bandwidth between virtual machines is up to 600Mbps.
The JDK version is 1.8.0. We use Hadoop 2.6.0 (YARN
and HDFS) and leverage YARN to manage the resource
allocation for all the three paradigms.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MONTH 201X 10

We have three algorithms of HEADS-JOIN on differ-
ent computation paradigms, i.e., MR, BSP, and Spark,
denoted as mh, bh, and sh, respectively. The MR algo-
rithm is implemented over Apache Hadoop MR 2.6.0
with Java 1.8, the BSP algorithm is implemented over
Apache Hama 0.7.0-SNAPSHOT with Java 1.8, and the
Spark algorithm is implemented over Apache Spark 1.3.0
with scala 2.11.3. We fixed several bugs in Hama when
interacting with YARN so that all three algorithms can be
managed and scheduled by YARN. We also implement
Quickjoin over the three paradigms, denoted as mq, bq,
and sq, respectively. Additionally, we implement a naive
block nested loop join (BNL) over Spark, denoted as sb,
which should serve as the upper bound of performance
for both HEADS-JOIN and Quickjoin.

To compare the seven methods, we focus on the
elapsed time which includes both the CPU time and the
cost of file system IO as well as network IO. Since the
EMD similarity joins are rather computation-intensive,
the CPU time constantly dominates the overall cost
in all our experiments. Moreover, the elapsed time is
also the main indicator for the real economical cost
on a commercial cloud platform such as Amazon Web
Services or Microsoft Azure. For two BSP methods, we
additionally report the number of messages exchanged.

7.2 Datasets and Configurations

We report the performance of all the methods on three
datasets, among which the MIRFlickr dataset [14] and
Million Songs [4] dataset are real and the other one
is synthetic. For the MIRFlickr dataset, we use various
CBIR features, such as the MPEG-7 color descriptors and
edge descriptors. Since the relative performance gain
is quite consistent over different features, we show the
results on MIRFlickr with Color Layout Descriptor and
denote the feature dataset as A. For the Million Songs
dataset, we use the timbre features and denote the fea-
ture dataset as B. For the synthetic dataset, we randomly
(in a uniform fashion) generate 24-dimensional vectors
as histograms and a 48-dimensional vector as the 2-
dimensional bin locations for the 24 bins. We denote
this synthetic dataset as dataset C. Table 1 shows the
cardinality and the number of bins of all the datasets and
Table 2 shows the EMD distribution among the datasets,
where the last column Dn,u is the Kolmogorov-Smirnov
statistic (ranging from 0 to 1) between the distances of
a uniform distribution and a sample of EMD in the
corresponding dataset. The larger this value suggests a
more skewed distribution of the dataset.The presented
datasets may appear small when compared to the typical
datasets involved in a Hadoop based study. However, as
demonstrated in Fig. 7, the EMD similarity joins are so
computation-intensive that a single machine takes hours
to join even the smallest datasets. With the limit of our
computation resource (16 virtual machines), to measure
the performance within a reasonable amount of time (6
hours per run), the size of datasets needs to be restricted.

101
102
103
104

1 2 3 4 5 6

E
la

pa
se

d
tim

e
(s

)

Different queries

J1
J2

J3

(a) MR

101
102
103
104

1 2 3 4 5 6

E
la

pa
se

d
tim

e
(s

)

Different queries

prep
refine

(b) BSP

101
102
103
104

1 2 3 4 5 6

E
la

pa
se

d
tim

e
(s

)

Different queries

prep
refine

(c) Spark

Fig. 1. Time breakdown in different implementations
TABLE 1

Datasets in the emperical study

Dataset Cardinality n ϵ

MIRFlickr (A) 62.5k, 125k, 250k, 500k, 1m 16 0.002
Million Songs (B) 32K, 64K, 128K, 256K, 512k 32 0.2
Synthetic (C) 12.8k(1X), 25.6k(2X), 51.2k(4X), 24 1.0

102.4k(8X), 204.8k(16X),
409.6k(32K), 819.2k(64X)

The parameters of the frameworks are configured as
follows. For HEADS-JOIN , we set the p and z to 4
and 4 for all the datasets. The optimal values of these
parameters are subject to various factors, such as the
data distribution, the dimensionality, the number of ma-
chines, and the hardware specification of the machines.
Tuning the parameters is beyond the scope of this paper.
For Quickjoin, we adjust the number of pivots to match
the number of the available reducers or workers. For all
BSP algorithms, batch is set to 100. The join predicate ϵ in
the range joins is varied according to Table 2 to produce
a reasonable selectivity. The predicate k in the top-k joins
varies from 1 to 10000, where 10 is the default value.

7.3 Performance Break-down of Different Phases

As HEADS-JOIN involves three phases, i.e., constructing
the grids, aggregating for composite cells, and pruning
as well as refining, we present the detailed time cost
of each phase in this section. Specifically, the results
of executing different queries are illustrated in Fig. 1.
Here, queries 1 to 6 corresponds to the top-k joins
and range joins on datasets A, B, and C, respectively.
In the figure, mr1, mr2, and mr3 corresponds to the
three MR jobs in the MR algorithm. As expected, mr3
always dominates the overall cost as mr1 and mr2 are
at least an order of magnitude cheaper than mr3 and
therefore negligible in the overall cost. Similarly, the
preparation phase prebsp in the BSP algorithm is two
orders of magnitude cheaper than the actual bsp join
phase. The preparation phase in Spark, prep, is slightly
more expensive, constantly sticking at an order of mag-
nitude than the actual refine phase. This is because in
the Spark algorithm, we estimate the workload of each
worker by the product of the native and guest records,
which involves an additional step when comparing to
the estimation by the number of native records. Overall,
the joining phase in all algorithms dominate the time cost
of HEADS-JOIN, confirming the efficiency of the involved
pruning techniques.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MONTH 201X 11

TABLE 2
EMD distribution of the datasets

Dataset 0.001% 0.01% 0.1% 1% 100% Dn,u

A 0.0031 0.0036 0.0049 0.0065 0.0121 0.5004
B 0.3217 0.5429 0.6998 0.9516 2.0650 0.9613
C 1.0491 2.3485 3.4123 4.4482 10.7467 0.3425

102

103

104

range-A

topk-A

range-B

topk-B

range-C

topk-CS
ta

nd
ar

d
D

ev
ia

tio
n

(s
)

Different queries and datasets

heads quick

Fig. 2. The standard deviation of completion time among
the distributed machines in MR, the smaller the more
balanced

7.4 Performance on Handling Skewed Datasets

The standard deviation of the elapsed time correspond-
ing to the final refinement MR job of HEADS-JOIN and
Quickjoin on the distributed machines are presented in
Fig. 2. Here, all datasets are of the default sizes and
parameters are set to their default values. Clearly, the
smaller the standard deviation, the more balanced the
workloads are on the distributed machines. From Fig. 2,
HEADS-JOIN always delivers an order of magnitude
more balanced workloads than Quickjoin, suggesting
its better performance when handling skewed datasets.
The results for BSP and Spark are omitted as in these
paradigms the progress on the distributed machines are
periodically synchronized; the measure on the workload
balancing is less straightforward than in MR.

7.5 Effect of Varying Dataset Cardinality

We vary the cardinality of the datasets and measure the
performance of all the seven methods.

Comparing the methods in range joins. The results of
range joins are presented in Fig. 3. As the size of datasets
grows, the cost of all methods climbs linearly with the
|H|2 (since it is a join operation). We compare HEADS-
JOIN and Quickjoin in three computation paradigms:

• MR. Compared to Quickjoin (mq), HEADS-JOIN (mh)
runs from 2.1 to 2.5 times faster on A, from 1.9 to
2.9 times faster on B, and from 2.0 to 3.3 times faster
on C.

• BSP. In terms of elapsed time, HEADS-JOIN (bh) is
several times faster than Quickjoin (bq): from 1.5 to
3.1 times on A, from 1.4 to 2.7 times on B, and from
5.6 to 7.9 times on C. Moreover, Quickjoin sends
more messages than HEADS-JOIN , e.g., 1.3 to 1.5
times on B.

• Spark. Similarly, HEADS-JOIN (sh) is always faster
than Quickjoin (sq): from 1.7 to 3.5 times on A, from
1.6 to 3.6 times on B, and from 1.8 to 4.3 times on
C. Both methods outperforms the BNL method (sb),

102
103
104
105

62.5k125k 250k 500k 1mE
la

sp
ed

 ti
m

e
(s

)

Dataset cardinality

mh
mq

bh
bq

sh
sq

sb

(a) Effect on time, A

102
103
104
105

32k 64k 128k 256k 512kE
la

sp
ed

 ti
m

e
(s

)

Dataset cardinality

mh
mq

bh
bq

sh
sq

sb

(b) Effect on time, B

102
103
104
105

1X 2X 4X 8X 16X32X64XE
la

sp
ed

 ti
m

e
(s

)

Dataset cardinality

mh
mq

bh
bq

sh
sq

sb

(c) Effect on time, C

0.1

1

10

62k 125k 250k 500k 1m#
of

 m
sg

s
(1

00
k)

Dataset cardinality

heads quick

(d) Effect on messages, B

Fig. 3. Range joins with varying dataset cardinalities

102
103
104
105

62.5k125k 250k 500k 1mE
la

sp
ed

 ti
m

e
(s

)
Dataset cardinality

mh
mq

bh
bq

sh
sq

sb

(a) Effect on time, A

103

104

105

32k 64k 128k 256k 512kE
la

sp
ed

 ti
m

e
(s

)

Dataset cardinality

mh
mq

bh
bq

sh
sq

sb

(b) Effect on time, B

102
103
104
105

1X 2X 4X 8X 16X32X64XE
la

sp
ed

 ti
m

e
(s

)

Dataset cardinality

mh
mq

bh
bq

sh
sq

sb

(c) Effect on time, C

0.1

1

10

62k 125k 250k 500k 1m#
of

 m
sg

s
(1

00
k)

Dataset cardinality

heads quick

(d) Effect on messages, B

Fig. 4. Top-k joins with varying dataset cardinalities

while HEADS-JOIN usually beats BNL by an order
of magnitude.

Comparing the methods in top-k joins. The results
of top-k joins are presented in Fig. 4. As expected, all
methods take more time when the dataset grows. We
compare HEADS-JOIN and Quickjoin as follows:

• MR. While on A, Quickjoin achieves a competitive
performance when dataset is small (62.5k), it is
beaten by HEADS-JOIN on all other datasets. Specifi-
cally, the speedup from Quickjoin of HEADS-JOIN is
from 1.1 to 1.7 times on A, from 1.1 to 2.6 times on
B, and from 1.5 to 2.4 times on C. Such an advantage
is increasing when dataset grows, as Quickjoin fails
to return results on medium size datasets within 6
hours.

• BSP. In terms of elapsed time, the speedup factors
of HEADS-JOIN from Quickjoin are: from 2.1 to 3.2
times on A, from 2.3 to 4.7 times on B, and from 6.2
to 13.0 times on C. Remarkably, the BSP algorithm
of HEADS-JOIN is the only method that manages to
complete joins on large datasets. In terms of number
of messages, Quickjoin constantly sends 1.5 times
more messages than HEADS-JOIN .

• Spark. HEADS-JOIN is always several times faster

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MONTH 201X 12

than Quickjoin: from 2.0 to 2.4 times on A, around
1.8 times on B, and from 2.1 to 2.3 times on C.

Comparing the computation paradigms. We com-
pare the three computation paradigms by comparing
the yellow (MR), blue (BSP), and red (Spark) bars in
the figure. Note this is a rough comparison because:
1) methods are implemented in different programming
languages; 2) the implementation of the paradigms are
based on different packages, e.g., asynchronous Netty
versus synchronous sockets, protocol buffer versus kryo
serialization, etc. When processing range joins, there is
no clear winner in a general sense and the difference
between paradigms are rather steady when the dataset
grows. This is because the join cost is dominated by
the CPU computation, there is virtually little difference
since all methods follow HEADS-JOIN to distribute data
and conduct the refining procedure. Both the disk based
method, i.e., MR, and the memory based method, i.e.,
BSP and Spark, need to load the data into main memory
and conduct the expensive computation. However, when
processing top-k joins, BSP is clearly the best method
as it is the only one that is able to perform top-k
joins on large datasets. This is because BSP supports
the frequent synchronizations between workers when
performing the joining procedure, which quickly lowers
the joining threshold for a given k. The winner between
the MR and the Spark algorithms change from datasets
to datasets: Spark is beaten by MR on A and B while
beats MR on C. The reason for this lies in the difference
between the MR and the Spark methods and is twofold.

1) The Spark method estimates the workloads by ad-
ditionally considering the number of guest records;
this better balances the workloads by paying some
extra cost. For larger datasets such as those from
A and B, the extra cost outweighs the benefits of
more balanced workloads.

2) Spark splits the main memory into two parts: one
part for persisting intermediate RDDs to avoid
repeated computations, and the other part for
the general heap usage. Despite the fact that the
datasets involved are relatively small, the interme-
diate RDDs and temporary objects can be rather
large. When some RDDs cannot be persisted in
the main memory, they will be re-computed when
referenced in the future. Such repeat computations
may result in redundant cost in the measurement.

Comparing two join operations on the same dataset.
From Fig. 3 and Fig. 4, it is clear that the top-10 joins
take more time than the range joins with default ϵ
values for all the methods on all datasets. The reason
is that the estimated kth smallest distance is likely to
be much larger than the default ϵ value, resulting in
worse pruning effects. This is especially true for methods
that are not able to synchronize regularly, e.g., the MR
and Spark methods. For the BSP algorithm of Quickjoin,
the progressively refined threshold value in top-k join
also introduces problems when assigning records to

102
103
104
105

2 2.5 3 3.5 4E
la

sp
ed

 ti
m

e
(s

)

Distance (10-3)

mh
mq

bh
bq

sh
sq

sb

(a) Effect on time, A

102
103
104
105

0.2 0.3 0.4 0.5 0.6E
la

sp
ed

 ti
m

e
(s

)

Distance

mh
mq

bh
bq

sh
sq

sb

(b) Effect on time, B

102

103

104

1.0 1.5 2.0 2.5 3.0E
la

sp
ed

 ti
m

e
(s

)

Distance

mh
mq

bh
bq

sh
sq

sb

(c) Effect on time, C

0.1

1

10

1.0 1.5 2.0 2.5 3.0#
of

 m
sg

s
(1

00
k)

Distance

heads quick

(d) Effect on messages, C

Fig. 5. Range joins with varying range distances

102
103
104
105

1 10 100 100010000E
la

sp
ed

 ti
m

e
(s

)
k

mh
mq

bh
bq

sh
sq

sb

(a) Effect on time, A

103

104

105

1 10 100 100010000E
la

sp
ed

 ti
m

e
(s

)

k

mh
mq

bh
bq

sh
sq

sb

(b) Effect on time, B

102
103
104
105

1 10 100 100010000E
la

sp
ed

 ti
m

e
(s

)

k

mh
mq

bh
bq

sh
sq

sb

(c) Effect on time, C

0.1

1

10

100

1 10 100 100010000#
of

 m
sg

s
(1

00
k)

k

heads quick

(d) Effect on messages, B

Fig. 6. Top-k joins with varying k

partitions: a record is likely to be assigned to multiple
partitions as it lies right between many partitions.

7.6 Effect of Varying Query Parameter
We vary the parameters of the join predicate, i.e, ϵ in the
range joins and k in the top-k joins, and measure the
performance of all the seven methods.

Comparing the methods in range joins. The results
of range joins with varying ϵ are shown in Fig. 5.

• MR. The speedup factor of HEADS-JOIN from
Quickjoin is around 3 times on all the datasets, and
it is relatively steady to the increasing values of ϵ.

• BSP. The speedup factors of HEADS-JOIN from
Quickjoin are: from 1.9 to 2.1 times on A, from 1.7 to
2.0 times on B, and from 4.6 to 6.1 times on C. More-
over, Quickjoin sends 1.6 to 7.3 times more messages
than HEADS-JOIN on C. While HEADS-JOIN sends
marginally more messages when ϵ grows, Quickjoin
sends exponentially more messages.

• Spark. The speedup factors of HEADS-JOIN from
Quickjoin are: from 1.8 to 2.3 times on A, from 2.4
to 4.0 times on B, and from 2.4 to 3.1 times on C.

Comparing the methods in top-k joins. The results
of range joins with varying ϵ are shown in Fig. 6.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MONTH 201X 13

10-1
100
101
102

1 4 8 12 16

E
la

ps
ed

 ti
m

e(
10

00
s)

Number of machines

m-r
b-r

s-r
m-k

b-k
s-k

(a) Effect on time, A

10-1
100
101
102

1 4 8 12 16

E
la

ps
ed

 ti
m

e(
10

00
s)

Number of machines

m-r
b-r

s-r
m-k

b-k
s-k

(b) Effect on time, B

10-1
100
101
102

1 4 8 12 16

E
la

ps
ed

 ti
m

e(
10

00
s)

Number of machines

m-r
b-r

s-r
m-k

b-k
s-k

(c) Effect on time, C

10-1
100
101
102

1 4 8 12 16#
of

 m
sg

s
(1

00
k)

Number of machines

h-r h-k

(d) Effect on messages, C

Fig. 7. Scaling out HEADS-JOIN

• MR. Quickjoin manages to beat HEADS-JOIN on A
when only one pair is needed (k = 1), but is from 1.1
to 1.7 times slower than HEADS-JOIN when k grows
larger. On both B and C, HEADS-JOIN is always
faster than Quickjoin: from 1.9 to 2.8 times on B,
and from 2.3 to 2.6 times on C.

• BSP. In terms of the elapsed time, the speedup
factors of HEADS-JOIN over Quickjoin are: from 2.2
to 3.2 times on A, from 3.1 to 4.1 times on B, and
from 2.8 to 3.4 times on C. In terms of the number
of messages, Quickjoin sends 1.4 to 41.3 times more
messages than HEADS-JOIN . When k grows, for
HEADS-JOIN the number of messages grows by a
small constant factor, while for Quickjoin it grows
linear to k.

• Spark. The speedup factors of HEADS-JOIN over
QuickJOin are: from 2.5 to 3.9 times on A, around
2.2 times on B, and from 1.8 to 2.5 times on C.

Comparing the computation paradigms. Again, for
range joins, there is no clear winner and all methods take
longer time when ϵ grows. While the MR algorithm is
the most sensitive method towards the growth of k, the
Spark algorithm is the least sensitive one. This is because
Spark algorithms involve the extra cost on estimating the
workloads using the product, which stays the same for
different ϵ values. With such a constant overhead, the
overall cost of Spark appears to be less sensitive. For top-
k joins, the BSP algorithm is clearly the winner, thanks
to its frequent synchronization on the joining threshold.

7.7 Scaling Out
We vary the number of virtual machines in the cluster
and measure the performance of all HEADS-JOIN meth-
ods. All the datasets and ϵ values are the default ones
(the bold ones in Table 1), and k is set to 10. The
results are demonstrated in Fig. 7 and Table 3, where
m-r, b-r, s-r, m-k, b-k, and s-k represent the MR
range joins, the BSP range joins, the Spark range joins,
the MR top-k joins, the BSP top-k joins, and the Spark
top-k joins. When there are more machines, the time
needed for the join operation is reduced. Specifically,

TABLE 3
Detailed scale-out speedup ratio corresponding to Fig. 7

Dataset Paradigm Join Speedup on Number of Nodes
1 4 8 12 16

A MR range 1.00 3.38 5.38 8.17 11.20
top-k 1.00 3.10 6.95 8.89 11.43

BSP range 1.00 2.67 5.70 8.21 10.83
top-k 1.00 3.03 4.84 6.71 9.61

Spark range 1.00 3.60 5.68 9.47 12.15
top-k 1.00 3.31 6.73 9.56 11.50

B MR range 1.00 3.45 6.29 8.23 11.21
top-k 1.00 2.61 5.17 7.37 8.52

BSP range 1.00 2.60 4.46 6.40 8.95
top-k 1.00 2.13 4.00 6.06 8.78

Spark range 1.00 2.62 4.60 6.53 10.13
top-k 1.00 2.75 4.42 6.45 10.10

C MR range 1.00 3.24 4.93 6.45 9.70
top-k 1.00 3.50 5.55 9.86 11.78

BSP range 1.00 3.34 4.95 6.31 12.57
top-k 1.00 3.54 5.11 8.49 12.79

Spark range 1.00 2.66 4.90 7.19 9.82
top-k 1.00 2.95 5.08 9.00 10.49

Average 1.00 3.00 5.15 7.15 10.70

when the number of machines increases from 1 to 16,
the join operations speeds up by up to 12.8 times (note
the logscale y axes in Fig. 7). Moreover, the speedup of
all the methods on every dataset follows a quasi-linear
manner with different nonlinear overheads. It is not a
fully linear relation because more workers inevitably
introduces more records distributed over the network
(e.g., the messages sent in BSP methods as shown in
Fig. 7d), resulting in higher overhead costs.

7.8 Summary
While both Quickjoin and HEADS-JOIN outperform the
naive NBL join, HEADS-JOIN constantly reduces the
running time of Quickjoin by up to an order of mag-
nitude. For the BSP algorithms, HEADS-JOIN sends up
to 41 times fewer messages than Quickjoin thanks to
the CGM’s mechanism on batching a large number of
short messages into several long messages. Moreover,
HEADS-JOIN enjoys the quasi-linearly horizontal scale-
out property.

8 CONCLUSION AND FUTURE WORK

We proposed HEADS-JOIN, a novel framework for pro-
cessing the EMD similarity joins based on the Hadoop
platform. HEADS-JOIN employs multiple computation-
ally cheap lower bounds to prune and partition data. We
tackled both the range and the top-k joins by designing
efficient algorithms using the MR, the BSP, and the
RDD(Spark) paradigms. We conducted experiments on
various real datasets to evaluate efficiency of HEADS-
JOIN. As demonstrated by the results, HEADS-JOIN out-
performs the state-of-the-art metric similarity join tech-
nique, i.e., Quickjoin, by up to an order of magnitude
and it scales out well. In the future, we would like to
investigate employing GPUs to further parallelize the
EMD computation itself to scale HEADS-JOIN to even
larger scale datasets.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MONTH 201X 14

ACKNOWLEDGMENTS

This work is supported in part by the Australian Research
Council (ARC) Discovery Project DP130104587, National High-
Tech R&D (863) Program of China (2013AA01A213), Natural
Science Foundation of China (61433008, 61373145, 61170210,
U1435216), Chinese Special Project of Science and Technology
(2013zx01039-002-002). Dr. Zhang and Dr. Buyya are supported
by the ARC Future Fellowships Projects FT120100832 and
FT120100545 respectively. Prof. Chen is supported by the Fun-
damental Research Funds for the Central Universities (Grant
No. 2015ZZ029).

REFERENCES

[1] D. Applegate, T. Dasu, S. Krishnan, and S. Urbanek, “Unsuper-
vised clustering of multidimensional distributions using earth
mover distance,” in KDD, 2011.

[2] I. Assent, A. Wenning, and T. Seidl, “Approximation techniques
for indexing the earth mover’s distance in multimedia databases,”
in ICDE, 2006.

[3] M. Bamha and M. Exbrayat, “Pipelining a skew-insentitive par-
allel join algorithm,” Parallel Processing Letters, 2003.

[4] T. Bertin-Mahieux, D. P. Ellis, B. Whitman, and P. Lamere, “The
million song dataset,” in ISMIR, 2011.

[5] S. Blanas, J. M. Patel, V. Ercegovac, and J. Rao, “A comparison
of join algorithms for log processing in mapreduce,” in SIGMOD,
2010.

[6] S. Cohen and L. Guibas, “The earth mover’s distance: Lower
bounds and invariance under translation,” Stanford University,
DTIC Report, 1997.

[7] D. E. Culler, A. C. Dusseau, R. P. Martin, and K. E. Schauser, “Fast
parallel sorting under logp: from theory to practice,” Protability
and Performance for Parallel Processing, 1993.

[8] J. Dean and S. Ghemawat, “Mapreduce: Simplified data process-
ing on large clusters,” in OSDI, 2004.

[9] F. Dehne, A. Fabri, and A. Rau-Chaplin, “Scala parallel geometric
algorithms for coarse grained multicomputers,” in SCG, 1993.

[10] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin,
and I. Stoica, “Graphx: Graphx processing in a distributed
dataflow framework,” in OSDI, 2014, pp. 599–613.

[11] J. Huang, R. Zhang, J. Chen, and R. Buyya, “Melody-join: Efficient
earth mover’s distance similarity join using mapreduce,” in ICDE,
2014.

[12] E. H. Jacox and H. Samet, “Metric space similarity join,” ACM
TODS, 2007.

[13] W. Lu, Y. Shen, S. Chen, and B. C. Ooi, “Efficient processing of k
nearest neighbor joins using mapreduce,” PVLDB, 2012.

[14] B. T. Mark J. Huiskes and M. S. Lew, “New trends and ideas
in visual concept detection: The mir flickr retrieval evaluation
initiative,” in MIR, 2010.

[15] A. Metwally and C. Faloutsos, “V-smart-join: A scalable mapre-
duce framework for all-pair similarity joins of multisets and
vectors,” PVLDB, vol. 5, no. 8, 2012.

[16] A. Okcan and M. Riedewald, “Processing theta-join using mapre-
duce,” in SIGMOD, 2011.

[17] Z. Ren, J. Yuan, and Z. Zhang, “Robust hand gesture recognition
based on finger-earth mover’s distance with commodity depth
camera,” in MM, 2011.

[18] Y. Rubner, C. Tomasi, and L. J. Guibas, “The earth mover’s
distance as a metric for image retrieval,” International Journal of
Computer Vision, vol. 40, pp. 99–121, 2000.

[19] B. E. Ruttenberg and A. K. Singh, “Indexing the earth mover’s
distance using normal distributions,” PVLDB, 2012.

[20] M. A. Ruzon and C. Tomasi, “Edge, junction, and corner detection
using color distributions,” IEEE Transaction on Pattern Analysis and
Machine Intelligence, 2001.

[21] Y. N. Silva and J. M. Reed, “Exploiting mapreduce-based similar-
ity joins,” in SIGMOD, 2012.

[22] L. G. Valiant, “A bridging model for parallel computation,”
Communications of the ACM, 1990.

[23] R. Vernica, M. J. Carey, and C. Li, “Efficient parallel set-similarity
joins using mapreduce,” in SIGMOD, 2010.

[24] M. Wichterich, I. Assent, P. Kranen, and T. Seidl, “Efficient emd-
based similarity search in multimedia database via flexible di-
mensionality reduction,” in SIGMOD, 2008.

[25] D. Xu, T.-J. Cham, S. Yan, and S.-F. Chang, “Near duplicate image
identication with spatially aligned pyramid matching,” in CVPR,
2008.

[26] J. Xu, Z. Zhang, A. K. H. Tung, and G. Yu, “Efficient and effective
similarity search over probabilistic data based on earth mover’s
distance,” The VLDB Journal, 2012.

[27] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed
datasets: a fault-tolerant abstraction for in-memory clutser com-
puting,” in NSDI, 2012, pp. 2–2.

[28] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica,
“Discretized streams: Fault-tolerant streaming computation at
scale,” in SIGOPS, 2013.

Jin Huang Jin Huang is currently a Ph.D. stu-
dent in the Department of Computing Informa-
tion Systems at the University of Melbourne,
Australia. He received his B.S. in Software En-
gineering from South China University of Tech-
nology in 2011. His research interest includes
large-scale similarity analytics, scalable knowl-
edge mining over emerging social data, and
efficient indexing techniques.

Rui Zhang Rui Zhang is currently an Asso-
ciate Professor and Reader in the Department
of Computing and Information Systems at The
University of Melbourne, Australia. He received
his B.S. from Tsinghua University in 2001 and
his Ph.D. from National University of Singapore
in 2006. His research interest is in areas of high-
performance computing, spatial and temporal
data analytics, moving object management, in-
dexing techniques and data streams.

Rajkumar Buyya Rajkumar Buyya is a Profes-
sor in the Department of Computing Information
Systems, a Future Fellow of the Australian Re-
search Council, and the Director of the CLOUDS
Laboratory at the University of Melbourne, Aus-
tralia. He has authored over 450 publications
and four text books, and is one of the highly cited
authors in computer science worldwide.

Jian Chen Jian Chen is currently a Profes-
sor in the School of Software Engineering at
South China University of Technology, China.
She received her B.S. and Ph.D. degrees, both
in Computer Science, from Sun Yat-Sen Uni-
versity, China, in 2000 and 2005 respectively.
Her research interests can be summarized as
developing effective and efficient data analysis
techniques for complex data and the related
applications.

Yongwei Wu Yongwei Wu received the PhD
degree from the Chinese Academy of Sciences
in 2002. He is currently a professor in computer
science and technology at Tsinghua University
of China. His research interests include parallel
and distributed processing, cloud computing and
big data. Dr. Wu has published over 80 research
publications and has received three Best Paper
Awards.

