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Abstract—The Earth Mover’s Distance (EMD) similarity join
retrieves pairs of records with EMD below a given threshold. It
has a number of important applications such as near duplicate
image retrieval and pattern analysis in probabilistic datasets.
However, the computational cost of EMD is super cubic to
the number of bins in the histograms used to represent the
data objects. Consequently, the EMD similarity join operation
is prohibitive for large datasets. This is the first paper that
specifically addresses the EMD similarity join and we propose
to use MapReduce to approach this problem. The MapReduce
algorithms designed for generic metric distance similarity joins
are inefficient for the EMD similarity join because they involve
a large number of distance computations and have unbalanced
workloads on reducers when dealing with skewed datasets. We
propose a novel framework, named MELODY-JOIN, which trans-
forms data into the space of EMD lower bounds and performs
pruning and partitioning at a low cost because computing these
EMD lower bounds has a constant complexity. Furthermore, we
address two key problems, the limited pruning power and the
unbalanced workloads, by enhancing each phase in the MELODY-
JOIN framework. We conduct extensive experiments on real
datasets. The results show that MELODY-JOIN outperforms the
state-of-the-art technique by an order of magnitude, scales up
better on large datasets than the state-of-the-art technique, and
scales out well on distributed machines.

I. INTRODUCTION

The similarity join retrieves all the pairs of objects from
two datasets such that the similarity between the two objects
in every pair is beyond a certain threshold. The similarity
measure employed in the join predicate determines which data
objects are similar to each other and thus has a large influence
on the effectiveness of the operation. The Earth Mover’s Dis-
tance (EMD) is an attractive measure for applications such as
content-based image retrieval [16], video-based gesture recog-
nition [13], near duplicate detection [23], and probabilistic data
mining [24]. For example, given a dataset of copyright images
and a dataset of user-uploaded images, the EMD similarity
join will detect all potential copyright infringement among
the user-uploaded contents. Another example is analyzing the
similar patterns observed in probabilistic data collected by a
large group of sensors. In the above applications, EMD is more
popular than `p distances since it captures the visual similarity
between data objects in accordance to human perception
by defining the distance as the minimal transformation cost

between two data objects. However, such minimization is a
transshipment problem which has O(n3 log n) complexity. In
our experiment on a machine with 3.2GHz CPU, a single EMD
computation on two histograms with 32 three-dimensional bins
(n = 32) consumes 50 ms, which is about 25,000 times of
the `2 distance’s 0.002 ms on the same histograms. In real
applications datasets may contain hundreds of thousands or
even millions of objects. An EMD similarity join on them
may take tens of days to complete on a single machine. The
high cost of EMD similarity join has hindered its applications
in practice despite its effectiveness in similarity analysis.

We propose to use the popular parallel computation
paradigm, MapReduce [5], to tackle this problem. There have
been enormous efforts in implementing join operations using
MapReduce [7], [9], [11], [12], [18]. However, the state-of-
the-art technique designed for metric space similarity joins,
named MRSimJoin [18], is inefficient for the EMD similarity
join due to the following two challenges.

• Challenge 1: Existing techniques such as MRSimJoin
require performing pruning and partitioning in the EMD
space, which is prohibitive.

• Challenge 2: Real-life data are usually skewed. MR-
SimJoin may have highly unbalanced workloads in case
of skewed data, which results in long completion time.

To overcome Challenge 1, we propose a novel framework
named Mapreduce Earth mover’s distance Lower bOund
baseD similaritY Join (MELODY-JOIN). Instead of pruning
dissimilar pairs and partitioning data objects in the EMD space
as MRSimJoin does, MELODY-JOIN transforms data objects
into the space of EMD lower bounds, in which the pruning
and partitioning can be performed based on the EMD lower
bounds; these lower bounds can be computed at a constant
cost in the transformed low-dimensional space, which is much
cheaper than computing EMD in the original high-dimensional
space. Conceptually, MELODY-JOIN has three phases.

1) Transform data objects into the space of the normal
lower bound of EMD.

2) Divide the transformed space using a specially designed
grid based on the characteristics of the lower bound and
group the transformed records into cells.

3) Compute the lower bound of the EMD between every



record and every cell; any 〈record, cell〉 pair that has
a lower bound of EMD greater than the threshold
is pruned. The remaining 〈record, cell〉 pairs will be
partitioned and go through further refinement steps.

To enhance the pruning power of MELODY-JOIN, we
employ multiple lower bounds of EMD at the same time.
Using multiple lower bounds, data objects are transformed to
multiple lower bound spaces and are grouped by composite
cells formed by the cells from multiple spaces instead of the
cells in one space. Additionally, many types of EMD lower
bounds can be easily plugged into the framework thanks to
the generality of MELODY-JOIN.

To overcome Challenge 2, we propose to use a quantile
based grid technique and a cardinality based grouping tech-
nique to balanced the workloads of the refinement steps in the
third phase of MELODY-JOIN. The quantile grid divides the
transformed space according to the distribution of transformed
records, so that each cell contains a similar number of records.
The cardinality based grouping technique makes use of the
number of records contained in each cell, which is obtained
as a byproduct of the second phase, to partition composite cells
into groups such that all groups have balanced workloads.

To summarize, our contributions in this paper are as follows.
1) This is the first paper that specifically addresses the

EMD similarity join and we propose to use MapReduce
to approach this problem. This is also one of the rare
studies that employs the MapReduce paradigm to tackle
a computation-intensive problem.

2) We propose a novel framework named MELODY-JOIN,
which prunes dissimilar pairs and partitions data in the
space of EMD lower bounds to avoid any EMD com-
putations during the pruning and partitioning process.

3) We employ multiple lower bounds of EMD at the
same time to enhance the pruning power of MELODY-
JOIN. We address the unbalanced workloads problem by
enhancing MELODY-JOIN with the quantile based grid
and the cardinality based grouping techniques.

4) We conduct extensive experiments on large real
datasets and confirm the effectiveness and efficiency
of MELODY-JOIN. The improvement of MELODY-JOIN
over the state-of-the-art technique is typically an or-
der of magnitude and the improvement increases when
dataset size becomes larger. The results also show that
MELODY-JOIN scales out well.

The remainder of the paper is organized as follows. Sec-
tion II presents the preliminaries. Section III describes the
MELODY-JOIN framework and Section IV elaborates the en-
hancement of the framework. Section V discusses related
studies. Section VI shows the empirical results and Section VII
concludes the paper.

II. PRELIMINARIES

We first present problem formulation and then briefly de-
scribe techniques that MELODY-JOIN is built on. Table I lists
the frequently used symbols and their meanings.

TABLE I
FREQUENTLY USED SYMBOLS

Symbol Meanings

H A set of histograms

h A histogram

n The number of bins in a histogram
~li The location vector of the ith(1 ≤ i ≤ n) bin in a histogram

wi The weight of ith(1 ≤ i ≤ n) bin in a histogram

L The bin location vectors {~li|1 ≤ i ≤ n} of a histogram

Lv̂ The projected bin location values {~li · v̂|1 ≤ i ≤ n}
Wh The weights {wi|1 ≤ i ≤ n} of a histogram h

ε The EMD threshold of the similarity join

p The number of random project vectors

v̂j The jth(1 ≤ j ≤ p) random unit projection vector

µ, σ The mean and standard deviation of the normal N (µ, σ2)

Cjh The approximation error values of the normal CDF has
on the histogram CDF of jth projected histogram

(m, b) The Hough transformed normal, m = 1
σ
, b = −µ

σ

z2 The number of cells in the grid

−tmin, The slopes of lines that divide the space into grid cells,
−tmax tmin = min

1≤i≤n
~li · v̂, tmax = max

1≤i≤n
~li · v̂

gjh The cell that h belongs to in the jth Hough transformed space

Gh The composite cell key {gjh|1 ≤ j ≤ p} of h in p spaces

m′, b′ The projected segments of (m, b) on two reference lines

Qm, Qb The quantile values {qk|0 ≤ k ≤ z} of all m′ or b′

Π, π The dual feasible solution and its key

λΠ, ρΠ The two hashed values of histogram, obtained through a Π

eG The group key for a composite cell key G

A. Earth Mover’s Distance and Problem Definition

In our problem, data objects are represented as histograms
and in the remainder of the paper we refer to the histogram
of a data object simply as a histogram. A histogram h is
represented as n bins. Each bin consists of a location which
is a multi- dimensional vector ~li and a weight which is a
nonnegative value wi. The EMD between a pair of histograms
is the minimum cost of transforming one histogram to the other
histogram, where the cost is defined as the amount of weight
moved times the ground distance between bins that the weight
is moved [14]. We follow the literature [15], [22], [24] and
focus on EMD with `2 ground distance in this paper. In many
image-related applications, features (bins) are collected locally
corresponding to a region in the image. Hence, the `2 distance
between bin locations naturally captures the distance between
the regions. Formally, we have

EMD(hα, hβ) = min

n∑
i

n∑
j

fi,jdi,j

s.t.∀i :
∑
j

fi,j = wi; ∀j :
∑
i

fi,j = wj ; ∀i, j : fi,j ≥ 0,

where di,j is the ground distance between ith and jth bins, i.e.,
di,j = d`2(~li, ~lj). EMD is a special case of the Kantorovich-
Rubinstein transshipment problem, which can be solved by
the transportation simplex method with an average-case time
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(a) a 2D histogram h with L =
{(0, 0), (0, 1), (0, 2), (1, 1), (2, 1)}
and W = {2.5, 3, 1, 4.5, 1}
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(b) normalized projected histogram
Lv̂ = {−1.2, 0, 0.2, 0.8, 0.6} and W =

{0.083, 0.208, 0.375, 0.25, 0.083}

Fig. 1. Projecting a two-dimensional histograms to an one-dimensional
histogram with a unit vector v̂ = {0.6,−0.8}, and then use a normal CDF
Φ(µ, σ2) to approximate the histogram CDF

complexity of O(n3 log n).
The EMD similarity join retrieves all the pairs consisting of

one histogram from each of the two histogram sets HR and
HS such that the two histograms in the retrieved pair has an
EMD not larger than a given threshold ε. Formally,

Definition 1. EMD Similarity Join Given two histogram
datasets HR and HS and an EMD threshold ε, the join returns
{(hR, hS)|EMD(hR, hS) ≤ ε, hR ∈ HR, hS ∈ HS}.

The EMD similarity join has an O(|HR||HS |n3 log n) cost,
where |HR| and |HS | are the cardinality of the sets HR and
HS , respectively. This is a very expensive operation even on
datasets of a few hundred thousand data objects as described
in the introduction.
B. Normal Lower Bounds of EMD

Lower bounds of EMD are useful for similarity joins since
any pairs with a lower bound larger than ε can be discarded.
Many lower bounds of EMD have been studied and are
discussed in Section V-A. Below we describe the normal lower
bound of EMD (normal LB) [15], which we employ to prune
dissimilar pairs and partition data in MELODY-JOIN.

The normal LB between a histogram and a group of
histograms is obtained by the following steps.

1) Projecting the original histograms to one-dimensional
histograms. Fig. 1 shows an example where a unit vector
is used to project a two-dimensional histogram to an
one-dimensional histogram.

2) Constructing Cumulative Distribution Functions (CDF)
for the one-dimensional histograms. In the example
shown in Fig. 1b, the shaded histogram is the projected
one-dimensional histogram and the white histogram is
its corresponding CDF.

3) Approximating the histogram CDF with the CDF of a
normal distribution. This is done by computing µ and σ
for the histogram CDF and compute the approximation
error values, denoted by C, of the normal CDF, denoted
by Φ(µ, σ2). In Fig. 1b, in different intervals the normal
CDF either overestimates or underestimates the his-
togram CDF. Hence, here C is a set of values computed
for predefined intervals in the range [tmin, tmax], where
tmin = min(~l · v̂) and tmax = max(~l · v̂).

4) Transforming normal CDF to Hough normal space.
For normal CDF Φ(µ, σ2), we transform it to a record

−tmax

−tmin

h1

h2

h3

h4

g

dominated by g

dominates g

partial dominate g

no domination

gN

gS

h′2
gW

gE

LBnormal(h1, g) = N(h1, gN ) + E(h1, gN )

LBnormal(h2, g) = 1
2 (N(h2, gN ) +N(h′2, h2)−N(h′2, gN )) + E(h2, gN )

LBnormal(h3, g) = min( 1
2 (N(h3, gN ) +N(gW , h3)−N(gW , gN ))

+E(h3, gN ), 1
2 (N(h3, gS) +N(gW , h3)−N(gW , gS)) + E(h3, gS))

LBnormal(h4, g) = N(h4, gS) + E(h4, gS)

Fig. 2. Domination relationships in the transformed Hough space; h′2 is the
projection of h2 along a line with slope of −tmax to the edge of g

(m, b), where m = 1
σ and b = −µ

σ . Each transformed
record in the Hough normal space therefore corresponds
to one histogram in the original space.

5) Grouping transformed records into diamond-shape re-
gion and computing the normal LB. The transformed
records are grouped to a diamond-shape region using
lines with slopes of −tmin and −tmax. For a record h
and a region g, let h′ denote the the projection of h on
its nearest edge of g, t denote the intersection between
Φa and Φb,we have
EMD(h, hg ∈ g) ≥ LBnormal(h, g)

=



N(h, gN ) + E(h, gN ) if h dominates g,
F (h, h′, arg min

g={gN ,gS}
d`2(g, h))if h partially dominates g,

min(F (h, gR, gN ), F (h, gR, gS))

if h has no domination relationship with g,
N(h, gS) + E(h, gS) if h is dominated by g,

where,
F (a, b, c) =

1

2
(N(a, c) +N(b, a)−N(b, c)) + E(a, c),

N(a, b) =


|
∫ t
tmin

Φa −
∫ t
tmin

Φb|+ |
∫ tmax
t

Φa −
∫ tmax
t

Φb|
if tmin ≤ t ≤ tmax

|
∫ tmax
tmin

Φa −
∫ tmax
tmin

Φb|
if tmin > t or t > tmax,

E(a, b) =

{
Ca[t]− Cb[t] if Φb dominates Φa,

Cb[t]− Ca[t] if Φa dominates Φb,

gR = arg min
g={gW ,gE}

d`2(g, h),

where gN , gW , gS , and gE represent the northern, west-
ern, southern, and eastern vertex of g, respectively. The
dominance relationship between h and g is determined
by the stochastic dominance between their correspond-
ing normal CDF. There are four possible relationships.
Fig. 2 shows an example, where h1 dominates g, h2

partially dominates g, h3 has no dominance relationship
with g, and h4 is dominated by g.

This normal LB can be computed at an O(1) cost since 1)
two normal CDF with different σ only have one intersection;
2) there is a closed-form formula on integrating normal CDF,
i.e.,

∫ x2
x1

Φ(µ, σ2) = σ(x2Φstd(x2) + φstd(x2) − x1Φstd(x1) −



φstd(x1)), where Φstd and φstd are the CDF and density func-
tion of the standard normal distribution N (0, 1), respectively.

Besides using the normal LB to transform data objects into
the EMD lower bound space, we also use another type of EMD
lower bound, the dual lower bound (dual LB) to show how
multiple lower bounds can be plugged into MELODY-JOIN.
Dual LB [24] is computed via feasible solutions to the dual
form problem of the optimization in EMD. A feasible solution,
denoted by Π, is a set of variables satisfying the constraints
of the dual form problem, with a solution key, denoted by π,
computed by aggregating these variables. The feasible solution
can be computed by sampling the histograms. Each feasible
solution can transform a histogram to two one-dimensional
values λ and ρ, denoted as dual keys. Given two histograms
h and h′, two lower bounds can be computed as (λh + ρh′)
and (λh − λh′ + π), respectively.

C. The MapReduce Paradigm

The MapReduce paradigm [5] is designed to simplify par-
allel programming on a cluster of commodity machines. It
involves a map and a reduce function. The map and reduce
functions are executed independently on the machines referred
to as the mappers and the reducers, respectively. Briefly, the
mappers first parse and process the input key-value pairs
〈K1|V1〉 that are read from a distributed file system, then
distribute intermediate pairs 〈K2|V2〉 to reducers. MapReduce
guarantees that intermediate pairs 〈K2|V2〉 with the same key
value K2 are processed by the same reducer. The reducers
compute aggregate values based on 〈K2|V2〉 they receive and
write these aggregate values back to the distributed file system.
A map-reduce procedure corresponds to a MapReduce job.

III. THE MELODY-JOIN FRAMEWORK

MELODY-JOIN employs the normal LB to transform data
objects into the Hough normal space, divides the space into
a grid, collects statistics on grouped records in the cells,
and then conducts pruning, partitioning, and refining. We
avoid pruning and partitioning in the EMD space because
the original histograms are likely to have a large number
of bins; the super cubic cost of computing EMD on these
high-dimensional histograms will outweigh the benefits gained
from pruning. We choose normal LB to transform data objects
because it provides 1) an efficient way to compute the lower
bound between a histogram and a group of histograms, and 2)
good geometric properties for partitioning the dataset.

MELODY-JOIN involves three MapReduce jobs correspond-
ing to the three phases described in the introduction. The
first two jobs are lightweight since they only perform linear
cost operations on the datasets. It is a common practice to
employing multiple lightweight jobs to achieve high overall
efficiency. Fig 3a illustrates the three jobs in MELODY-JOIN.
Specifically, the three jobs are as follows.

1) Job 1: Obtaining the domain of transformed space. The
mappers of this job transform the histograms into a
Hough normal space where each histogram is repre-
sented by a two-dimensional record (m, b). A single

H

map reduce

domain

compute C

prune

a histogram grid space

cells with Cpartition
refine

(a) an overview on three jobs in the
proposed framework

−tmin

−tmax

(mmin, bmin)

(mmax, bmax)

(b) dividing space into cells,
shaded area is the domain

Fig. 3. The overview of the three jobs in MELODY-JOIN and dividing the
transformed space into grid cells so that records are grouped accordingly

reducer in this job obtains the space domain by aggre-
gating the maximum and minimum values of m and b.
The space then is conceptually divided into grid cells.

2) Job 2: Computing the approximation errors for cells.
The mappers compute the approximation error values
of the normal CDF and the reducers aggregate the
maximum and minimum approximation errors values
for each cell. These aggregated errors are used for
computing the normal LB between a record and a cell.

3) Job 3: Pruning, partitioning, and refining records. The
mappers prune every record against every cell and
distribute it to reducers accordingly. The pruning is done
by comparing ε with the normal LB and discarding the
〈record, cell〉 pairs with normal LB greater than ε. The
distribution ensures that the remaining 〈record, cell〉
pairs with the same cell are refined on the same reducers,
i.e., using the cell id as the key of the intermediate pairs.
The reducers in this job further refine received pairs
using a chain of lower bounds, and compute EMD if
necessary to obtain the results.

MELODY-JOIN directly supports two-way joins. In this case
we build two separate grids for the objects in the two datasets
and conduct pruning and partitioning on one dataset using the
grid built for the other dataset. Below, we describe the details
of MELODY-JOIN using a self join on a set of histogram H
as an example.

A. Job 1: Obtaining the Domain of the Transformed Space

This job is designed for obtaining the domain of the
transformed Hough normal space. On the mappers, the normal
LB technique is applied to histograms to transform each of
them to a two-dimensional record. One reducer aggregates the
maximum and minimum values of each dimension, serving as
the domain. The job is lightweight since the transformation
is of linear cost and there is only a small portion of data
distributed from mappers to reducers.

Since the location of bins are shared by all the histograms,
we leverage the DistributedCache capability provided by
Hadoop (the popular open-source implementation of MapRe-
duce) to store the the projected bin locations Lv̂ = {~li · v̂|1 ≤
i ≤ n}. DistributedCache makes its stored content (in this
case the projected bin locations) available to all mappers and
reducers in the later jobs.

Algorithm 1 lists the detailed steps in this job. On mappers,
the transformation from multi-dimensional histograms to two-



Algorithm 1: Job 1 Obtaining Domain

DistributedCache: Lv̂
1 map
2 foreach h ∈ H do
3 CDFh ←Wh, L

v̂ // construct histogram CDF
4 Φ(µ, σ2)← CDFh // approximate with normal CDF
5 m← 1

σ
, b← −µ

σ
// transform in Hough space

6 output 〈0|(m, b)〉
7 reduce
8 foreach (m, b) do
9 update mmin, mmax, bmin, bmax // aggregate domain

10 output 〈0|[mmin,mmax], [bmin, bmax]〉

dimensional records is carried out in three steps. First, a
histogram CDF of the projected one-dimensional histogram
is constructed (line 3). Second, the normal CDF Φ(µ, σ2) is
used to approximate this histogram CDF (line 4). Third, the
record (m, b) is computed as m = 1

σ and b = −µ
σ (line 5). All

these steps can be done at a linear cost. Optionally, a combine
function, which aggregates the local maximum and minimum
values on mappers, can be employed so that less records are
distributed from the mappers to the reducers.

After the domain is obtained, the space can be divided into
z2 grid cells. As described in Section II-B, lines with slopes of
−tmax and −tmin are used to conduct the division. We denote
the two lower boundary lines of the grid as the reference lines.
In order to cover the space domain, the grid is a minimum
bounding quadrilateral for the domain with edges of specific
slopes. The straightforward division is to evenly divide each
reference line into z segments, which gives z2 cells with the
identical size. Fig. 3b shows an example where the shaded
area is the domain and the space is divided into 42 cells.

B. Job 2: Computing the Approximation Errors for Cells

To prune a record from a cell, we need to compute the
normal LB between them, which requires the aggregated
approximation error values of the cell. To obtain these values
for all cells, we employ another MapReduce job. The reason
for adding another job is that Job 1 requires one reducer for
the aggregation. If error values are to be aggregated in Job
1, all of them are required to be distributed to this reducer,
suggesting limited scalability. Moreover, since the mappers of
Job 1 do not have the grid information, it is impossible to
leverage the combine function to locally pre-aggregate error
values on mappers. Aggregating them in a separate job means
that a combine function and multiple (up to z2) reducers can
be employed to achieve better scalability.

Algorithm 2 presents the detailed steps in this job. Specif-
ically, for each histogram, the mappers in Job 2 compute the
approximation error values C by comparing the histogram
CDF with the normal CDF used for approximation (line 3
to line 5). As discussed in Section II-B, C is a set of error
values computed for a set of predefined intervals. Following
the conclusion in [15], we compute error values for five
intervals [tmin,

s
5 (tmax − tmin)], where s is 1, 2, 3, 4, and 5.

Given z, if an even grid division is employed, the domain
provides adequate information for the mappers to determine

Algorithm 2: Job 2 Computing Approximation Errors for Cells

DistributedCache: Lv̂ , [mmin,mmax], [bmin, bmax]
1 map
2 foreach h ∈ H do
3 CDFh ←Wh, L

v̂

4 Φ(µ, σ2)← CDFh
5 Ch ← (CDFh −

∫
Φ(µ, σ2)) // compute error values

6 gh ← (m, b), [mmin,mmax], [bmin, bmax] // find cell
7 output 〈gh|Ch〉
8 reduce
9 foreach g do

10 foreach 〈g|C〉 do
11 update Cg // aggregate min/max error values

12 output 〈g|Cg〉

Algorithm 3: Job 3 Pruning, Partitioning, and Refining

DistributedCache: L,Lv̂ , [mmin,mmax], [bmin, bmax], {Cg |∀g}
1 map
2 foreach h ∈ H do
3 CDFh ←Wh, L

v̂

4 Φ(µ, σ2)← CDFh
5 C ← (

∫
Φ(µ, σ2)− CDFh)

6 foreach g do
7 if h ∈ g then /* prune against cell */
8 output 〈g|h,Wh, in〉 /* native record */

9 else if LBnormal(h, g) ≤ ε then
10 output 〈g|h,Wh, out〉 /* guest record */

11 reduce
12 foreach g do
13 foreach 〈g|hα,Whα , in〉 do
14 foreach 〈g|hβ ,Whβ , in〉 do /* self join */
15 if hα 6= hβ and EMDJoin(hα, hβ) then
16 output 〈hαhβ〉

17 foreach 〈g|hβ ,Whβ , out〉 do /* nested-loop */
18 if EMDJoin(hα, hβ) then
19 output 〈hα|hβ〉

the containing cell for a record (line 6). A record is distributed
to reducers using the id of its containing cell as the key. The
reducers then aggregate the maximum and minimum values of
(each value in) C for each cell (line 8 to line 11). The output
maximum and minimum approximation error values for each
cell are stored in DistributedCache for further use.
C. Job 3: Pruning, Partitioning, and Refining Records

The mappers in this job prune records from cells and
partition them based on the pruning results. The reducers
further prune candidate pairs using a chain of lower bounds
and compute EMD if necessary to refine the results.

The detailed steps are shown in Algorithm 3. On mappers,
a histogram h is first transformed to (mh, bh) with its ap-
proximation error values Ch (line 3 to line 5). Then for each
cell g and its aggregated error values Cg , LBnormal(h, g) is
computed (line 9) using the formula described in Section II-B
(cell vertexes can be computed based on the domain and z).
If this LBnormal(h, g) is smaller than or equal to ε, h should
be refined with records in g (line 10). Otherwise the record is
pruned from g. Additionally, a record should be refined with
records that lie in the same cell (line 7 to line 8). Hence,



Algorithm 4: EMDJoin on Reducers of Job 3
Input: two histograms hα and hβ
Returns: true or false

1 if LBproj(hα, hβ) ≤ ε then
2 if LBdual(hα, hβ) ≤ ε then
3 if LBredu(hα, hβ) ≤ ε then
4 if LBindm(hα, hβ) ≤ ε then
5 if EMD(hα, hβ) ≤ ε then
6 return true

7 return false

for each cell, there are two types of records: the native ones
who lie in the cell and the guest ones who are not pruned
from the cell using the lower bound. We use the flags in or
out to denote whether a record is native for the cell. The
straightforward way to distribute this refinement workload is
to create one reduce task for one cell, i.e., using the cell id
g as the key value of the intermediate pair. On reducers, a
self join is performed on the native records (line 14 to line
16), while a nested-loop join is performed between the native
records and the guest records (line 17 to line 19). As shown
in Algorithm 4, a chain of EMD lower bounds including the
projection lower bound LBproj , the dual lower bound LBdual,
the dimensionality reduction lower bound LBredu, and the
independent minimization lower bound LBindm, are computed
to further filter dissimilar candidates. Details of these lower
bounds are discussed in Section V-A.

IV. ENHANCING PRUNING POWER AND ADDRESSING
LOAD BALANCING

Two key performance issues in MELODY-JOIN are the lim-
ited pruning power of a single normal LB and the unbalanced
workloads on reducers in Job 3. We propose to use the
following techniques to address these two issues.
• Multiple lower bounds are employed at the same time.

Multiple projection vectors are used to produce multiple
Hough normal spaces, so that a histogram is pruned using
multiple normal LB. Moreover, we use dual LB as an
example to show that multiple types of lower bounds
can be easily plugged into MELODY-JOIN.

• The quantile values in each dimension of the Hough
normal space are used to divide the space into a quantile
based grid (which we call quantile grid), such that the
grid cells contain more balanced numbers of records.

• When multiple projections are used, the composite quan-
tile grids may not be adequate for balancing the work-
loads. To produce balanced workloads for reduce tasks in
Job 3, we propose to use a cardinality based grouping
technique to partition composite cells in groups for reduce
tasks to balance their workloads.

We elaborate the details of the above techniques as follows.

A. Multiple Projections and Multiple Lower Bounds

There are two ways to integrate multiple lower bounds
into pruning: to use multiple projection vectors so multiple
normal LB are available, and to include different types of

Algorithm 5: Job 1 with Quantile and Multiple Bounds

DistributedCache: {Lv̂j |1 ≤ j ≤ p}
1 map
2 foreach h ∈ H do
3 for j ← 1 to p do /* multiple projections */
4 same to map in Algorithm 1 with v̂ replaced by v̂j
5 output 〈j|(m, b)〉

6 reduce
7 for j ← 1 to p do
8 foreach 〈j|(m, b)〉 do /* each space */
9 update mmin,mmax, bmin, bmax

10 (m, b)S ← project (mmin, bmin) along − tmax to tSE
11 foreach 〈j|(m, b)〉 do
12 (m, b)SW ← project (m, b) along − tmin to tSW
13 m′ ← d`2 ((m, b)SW , (m, b)S)

(m, b)SE ← project (m, b) along − tmax to tSE
14 b′ ← d`2 ((m, b)SE , (m, b)S)

15 Qm ← {m′}, Qb ← {b′} /* quantile values */
16 output 〈j|Qm, Qb〉
17 cleanup
18 Π← hα, hβ /* compute a feasible solution */

lower bounds in addition to normal LB. We consider both
and modify the three jobs in MELODY-JOIN to Algorithm 5,
Algorithm 6, and Algorithm 7, respectively.

To employ multiple normal LB, we use p vectors {v̂j |1 ≤
j ≤ p} to obtain multiple projected one-dimensional his-
tograms for each original histogram. This brings p independent
Hough normal spaces and p grids. To group histograms, rather
than grouping their corresponding transformed records by cells
in a single space, we group them by the composite cell,
which is composed of the containing cells of their transformed
records in each space, i.e., G = {gj |1 ≤ j ≤ p}. A
histogram is a native histogram of a composite cell if its
containing cells in all space exactly match the composite cell.
Otherwise, it is a guest histogram of the composite cell. Fig. 4a
shows an example where three projection vectors are used.
A histogram h has its transformed records laying in the cell
10, the cell 6, the cell 8 in the 1st, the 2nd, and the 3rd

space, respectively. Hence, h is a native histogram of the
composite cell {10, 6, 8}. Similarly, h′ is a native histogram
of the composite cell {10, 6, 0} and a guest histogram of the
composite cell {10, 6, 8}. To implement the idea of grouping
by composite cells, Job 1 transforms the histograms to p spaces
(line 3 to line 5 in Algorithm 5). In job 2, the approximation
error values are aggregated for each composite cell rather than
cells in one space (line 14 to line 15 in Algorithm 6). In Job 3,
when trying to prune a histogram from a group of histograms
in a composite cell, p normal LB are computed and compared
with ε (line 9 to line 13 in Algorithm 7). A histogram is
pruned from the group of histograms in the composite cell if
any normal LB between them is larger than ε.

Other types of lower bounds can also be effortlessly plugged
into MELODY-JOIN. The plugging requirements on the lower
bound are: 1) it can be computed in a transformed low-
dimensional space; and 2) it can be computed in an aggregate
fashion. The requirement 1) is to ensure that Job 1 and Job 2
are at low costs. The requirement 2) is to enable chaining
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Algorithm 6: Job 2 with Multiple Lower Bounds

DistributedCache: {Lv̂j (1 ≤ j ≤ p)}, {Qjm, Qjb(1 ≤ j ≤ p), {Π}
1 map
2 foreach h ∈ H do
3 for j ← 1 to p do
4 same to map in Algorithm 2 with v̂ replaced by v̂j
5 gj ← (m, b), Qjm, Q

j
b

6 G← {gj |1 ≤ j ≤ p} /* find composite cell */
7 foreach Π do
8 λ← h,Π /* hash dual key */

9 output 〈G|{Cj |1 ≤ j ≤ p}, {λ}〉
10 reduce
11 foreach G do
12 O ← 0 /* record number count */
13 foreach 〈G|{Cj |1 ≤ j ≤ p}, {λ}〉 do
14 for j ← 1 to p do /* multiple spaces */

15 update Cjg
16 foreach Π do /* multiple duals */
17 foreach λ do
18 update λmin, λmax

19 O ← O + 1

20 output 〈G|{Cjg |1 ≤ j ≤ p}, {[λmin, λmax]}, O〉

the lower bound when pruning histograms from a group
of histograms in a composite cell. The dual LB is a good
example of such lower bounds. To employ it we first need
to compute several feasible solutions to the dual problem
and then transform all histograms to dual keys according to
these feasible solutions. This can be done in MELODY-JOIN
as follows. In Job 1, each mapper samples histograms and
employs the cleanup function to compute a feasible solution,
denoted as Π, and writes it out to DistributedCache (line
17 to line 18 in Algorithm 5). The cleanup function is
provided by Hadoop and is executed after the map function
is completed for all input. Then in Job 2, these dual feasible
solutions are read by each mapper, which transforms input
histograms to a set of one-dimensional dual keys, denoted
as {λ} (line 7 to line 8 in Algorithm 6). These values are
then distributed to reducers together with the approximation
error values and aggregated to generate a set of dual ranges
{[λmin, λmax]} for each composite cell (line 16 to line 18
in Algorithm 6). In Job 3, in addition to the normal EMD
computation, each histogram is transformed to a set of two
dual keys {λ, ρ} using the feasible solutions (line 5 to line 6 in
Algorithm 7). These values are used to filtered against the set
of one-dimensional range {[λmin, λmax]} of each composite

Algorithm 7: Join 3 with Multiple Lower Bounds

DistributedCache: L, {Lv̂j }, {Qjm, Qjb}, {Π},
〈G|{Cjg}, {[λmin, λmax], O〉, (1 ≤ j ≤ p)

1 map
2 foreach h ∈ H do
3 for j ← 1 to p do
4 same to map in Algorithm 3 with v̂ replaced by v̂j
5 foreach Π do
6 λΠ, ρΠ ← h,Π /* hash two dual keys */

7 foreach G do
8 flag ← true /* pruned flag */
9 for j ← 1 to p do

10 if h ∈ gj then
11 Gh ← gj ; // native in composite cell

12 else if LBnormal(h, gj) > ε then
13 flag ← false /* pruned by normal */

14 if G = Gh then
15 output 〈G|h,Wh, in〉 /* native record */

16 else if flag then
17 foreach Π do
18 if λmin > (ε− ρΠ) or λmax < (π+λΠ− ε) then
19 flag ← false /* pruned by dual */

20 if flag then
21 output 〈G|h,Wh, out〉 /* guest record */

22 reduce same to reduce in Algorithm 3 with g being replaced by G

cell using dual LB (line 17 to line 19 in Algorithm 7).
Specifically, given a feasible solution Π with the solution key
π, the corresponding dual keys λ, ρ of two histograms h and
h′, we have

EMD(h, h′) ≤ ε→ LBdual(h, h
′) ≤ ε

→ λh′ + ρh ≤ ε and λh − λh′ + π ≤ ε
→ π + λh − ε ≤ λh′ ≤ ε− ρh.

That is, a histogram is pruned from G with [λmin, λmax] if

λmin > (ε− ρ) or λmax < (π + λ− ε).
A histogram will be refined with a composite cell on reducers
only if neither normal LB nor dual LB is able to prune it
(line 21 in Algorithm 7). More types of lower bounds can be
plugged into MELODY-JOIN by leveraging Job 1 and Job 2
to aggregate transformed values and chaining the pruning into
the map function of Job 3.

B. The Quantile Grid

The q-quantile values are (q − 1) values that divide an
ordered dataset into q intervals with the same number of
records in each interval. A quantile grid is a grid that has
each of its dimension divided by the quantile values of record
values in that dimension. We propose to use a quantile grid
instead of an even grid to divide the Hough normal space
so that each cell has a similar number of records. Since we
need to obtain z2 cells by dividing each reference line into
z segments, the quantile values should be collected on the
projected segments of the record (m, b) on the two reference
lines. Specifically, let tSW and tSE denote the reference line
with slope of −tmax and −tmin, respectively. To project
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(m, b) on these lines is to transform (m, b) along a line with
the slope −tmax to the reference line tSE or along a line
with the slope −tmin to the reference line tSW . Specifically,
let (m, b)SW and (m, b)SE denote the projections of (m, b)
on reference line tSW and tSE , respectively; (m, b)S denote
the projection of (mmin, bmin) on reference line tSE . Then
for (m, b), the projected segment on tSW is computed by
m′ = d`2((m, b)SW , (m, b)S); the projected segment on tSE
is computed by b′ = d`2((m, b)SE , (m, b)S). Fig. 4b demon-
strates an example on using four-quantile values to divide the
Hough transform space into 42 cells. The cells in the shaded
domain area have either one or two records, forming a grid
division that has similar number of records in each cell.

Algorithm 5 shows the detailed steps of collecting quantile
values in Job 1. Specifically, after obtaining the domain space
on reducers (line 8 to line 9), for each (m, b) we compute m′

and b′ (line 11 to line 14) and aggregate them to obtain the
quantile values (line 15). To divide a space into z2 cells, we
collect (z − 1)-quantile values for both m′ and b′.

C. The Cardinality Based Grouping

When multiple projection vectors are used, the quantile
grids still suffer from skewed datasets. Fig. 5 shows an
example. In each space, the two quantile grids generate four
balanced cells, each of which contain eight histograms. How-
ever, the resultant composite cells contain different number of
histograms. If one reduce task is created for one composite
cell, this skewed distribution will lead to vastly unbalanced
workloads of reduce tasks and ultimately low efficiency.

To tackle this problem, we propose to use a cardinality
based estimation on the workloads to group multiple com-
posite cells together for reduce tasks, such that one reduce
task is created for one group.

The grouping goal is to balance the refinement workloads in
each group. The refinement workload of a composite cell con-
sists of the self join on native histograms and the join between
the native and the guest histograms. However, when mappers
conduct partitioning, there is no global information on the
number of guest histograms for each composite cell because
the pruning is performed in a distributed manner on mappers.

Algorithm 8: Job 3 with Load Balancing

1 map-setup
2 sort {〈G|O〉} /* sort G descendingly based on O */

foreach 〈G|O〉 do /* assign one by one in order */
3 e← arg mine

∑
G→eO // group with least records

4 e← G // assign G to the group

5 map same to map in Algorithm 7 with output 〈eG|G, h,Wh, in〉
6 reduce
7 foreach eG do
8 foreach G do /* records in same composite cell */
9 same to reduce in Algorithm 3 with g replaced by G

We therefore use the cardinality of the native histograms as
an estimation of the workload of one composite cell. The
problem then becomes to group composite cells to r groups
such that each group has similar number of native histograms.
This can be done by a simple algorithm. First we sort the
composite cell in a descending order on the number of native
histograms in it. Then we assign composite cells one by one
to groups according to the sorted order. For each composite
cell, we assign it to the group who has the smallest number of
native histograms so far. Note that this simple solution may
not achieve the optimal results, i.e., the minimum standard
deviation on the workloads of all reduce tasks, it is adequate
for our problem since it computes roughly balanced groups
with negligible computational overhead. Fig. 6 demonstrates
how the skewed composite cells in the previous example are
assigned to four groups to form balanced workloads.

Integrating this technique into MELODY-JOIN is easy since
the the cardinality of native histograms can be obtained as
a byproduct in Job 2. The details are shown in Algorithm 6
and Algorithm 8. The cardinality of native histograms in a
composite cell is collected by the reducers of the Job 2 (line
19 to line 20 in Algorithm 6). These numbers are then stored
in DistributedCache. Later, the mappers of Job 3 makes
use of these numbers and employ the aforementioned sorting
based algorithm to construct a hash table from the composite
cell to the group id (line 1 to line 4 in Algorithm 8). For
the native histograms and not pruned guest histograms of a
composite cell G, the mappers output a pair with key eG
to reducers (line 5). The composite cell G now is stored
as a value in the key-value pairs (line 5 in Algorithm 8).
This is used by reducers to distinguish records associated to
different composite cells. Optionally, this grouping idea can be
implemented in the partition function provided by Hadoop.

One may consider exploiting Hadoop’s scheduler to achieve
the balanced workloads on reducers. This is done by setting the
number of reduce tasks to a large number. The reducers which
process tasks with less workload finish earlier and become
idle. Hadoop then assigns pending tasks to these idle reducers
so that all computation power in the cluster can be utilized.
Even though, the load balancing technique here is still useful
since it is a prerequisite for the scheduler to perform well. One
example scenario is that if reduce tasks are of vastly different
amounts of workloads, the one with the largest workload will
still dominate the running time no matter how other tasks are



assigned in a balanced manner. Moreover, in similarity joins,
increasing the number of reduce tasks directly increases the
replication of records, which decreases efficiency. Overall, our
proposed load balancing techniques provide essential support
on handling skewed data in MELODY-JOIN.

V. RELATED WORK

In this section, we discuss the work on lower bounds of
EMD and the studies on processing joins using MapReduce.
A. Lower Bounds of EMD

Lower bounds of EMD help avoid expensive EMD com-
putations and thus are useful in the similarity search [19]
in addition to the similarity join. Devising computationally
cheap lower bounds for EMD has received much efforts
from different fields in the community [1], [2], [4], [15],
[17], [22], [24]. Generally, the techniques can be categorized
into simplification based methods and transformation based
methods. While all lower bounds can be chained to assist the
filtering before EMD computations, the transformation based
lower bounds can be easily plugged into MELODY-JOIN to
enhance the pruning.

Simplification Methods. Simplification based methods gen-
erally use a cheaper EMD computation to approximate the
original EMD. Several approaches are available to achieve the
goal. First, EMD is of O(n) cost when the location vectors
are one-dimensional. The random projection [4] follows this
approach. Second, the number of bins n in a histogram can
be reduced, which significantly decreases the cost due to the
super cubic complexity. Dimensionality reduction [22] is a
technique that multiples the location vectors of bins by a
reduction matrix and adjusts the ground distance accordingly.
The intuition behind adjusting the ground distance is that the
maximum transformation cost on the reduced bins should be
preserved by the adjusted ground distance. Third, the optimiza-
tion constraints can be relaxed to speedup the computation.
The independent minimization technique [2] can be applied
where the optimization constraints in EMD definition can be
simplified by only requiring ∀j :

∑
i fi,j ≤ wj rather than

∀j :
∑
i fi,j = wj . The simplified optimization problem can

be computed at an O(n2) cost.
Transformation Methods. Transformation based methods

transform high-dimensional histograms to lower dimension
and perform a computationally cheap operation (rather than
EMD) on these transformed values to provide the lower bound
of the EMD. Both the normal LB and dual LB belong to this
family. Other similar lower bounds include sketching lower
bound [1], which maps data into a non-metric space to achieve
a sub-linear computation and small distortion.

EMD Approximation algorithms, e.g., [17], are related to
the bounds of EMD. These algorithms approximate EMD and
bound the approximation errors with certain ratios. Hoverer,
the errors can be either overestimates or underestimates of
the EMD. Whether an particular error is overestimate or
underestimate can not be determined without computing the
EMD. Therefore, we cannot use these approximate EMD
algorithms to provide guaranteed lower bounds for EMD.
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Fig. 7. Pruning and partitioning records in MRSimJoin with three pivots
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B. Processing Join Using MapReduce

Implementing relational database operators using MapRe-
duce attracts vast amount of attention [8]. The join operator
and its variations are the focus of many studies. Four ap-
proaches for processing equi-join are studied [3] and the theta-
join variation [12]. Much efforts have been devoted on the set
similarity join [11], [21] and the metric distance similarity
join [18]. In the set similarity join, data records are sets con-
taining a small portion of elements from the element universe.
This property enables the effective pruning techniques such as
prefix-filtering [21] and inverted index [11]. In our problem,
the property is not present since every histogram share exactly
the same bin locations. It is not viable to prune a pair of
histograms based on the absence of bins. In recent years,
variations of similarity join such as top-k similarity join [7]
and kNN similarity join [9], [25] using MapReduce have
also been studied. Moreover, enhancement on MapReduce
mechanisms may also speed up the join operations [6].

MRSimJoin [18] is the state-of-the-art MapReduce based
solution for metric distance similarity joins. The intuition is
to divide the space using pivot points such that data objects are
assigned to nearest pivot to form multiple clusters. The data
objects in the margin of clusters may have small distances
hence should also be joined to guarantee the completeness.
In MRSimJoin, mappers sample the pivots and assign data
objects to clusters and then reducers join the records in the
same cluster and the same margin. Fig. 7 illustrates an example
where three pivots are used. Shaded areas are the three
marginal regions with a width of 2ε. The technique involves
substantial amount of distance computations on mappers since
each data object needs to find its nearest pivot. The lower
bounds of EMD cannot be integrated into the mappers of
MRSimJoin since 1) most lower bounds are not metric; 2)
even a metric lower bound may not preserve the locality of
EMD, i.e., for an object, its nearest pivot in terms of the
lower bound is not necessarily its nearest pivot in terms of
EMD. Furthermore, in MRSimJoin if a reducer receives a
large number of objects, it further samples pivots and partitions
those objects. This is inefficient in our problem as it introduces
more EMD computations.

VI. EXPERIMENTS

We present an extensive experimental study to evaluate the
performance of MELODY-JOIN. Since there is no existing
solutions specifically designed for the EMD distance similarity



TABLE II
DATASET SETTINGS USED IN EXPERIMENTS

Dataset Cardinality # of bins Threshold values

CC 12K, 24K, 36K, 48K 32 0.05, 0.1, 0.15, 0.2

CL 12K, 24K, 36K, 48K 32 0.025, 0.05, 0.075, 0.1

MV, MH 12K, 24K, 48K, 30 0.04, 0.05, 0.06, 0.07
MS 96K, 192K 0.03, 0.04, 0.05, 0.06

TABLE III
EMD DISTRIBUTION IN DATASETS USED IN EXPERIMENTS

Dataset 0.001% 0.01% 0.1% 1% 100% Dn,u

CC 0.0802 0.1422 0.2464 0.4102 4.1075 0.2181

CL 0.0145 0.0364 0.0819 0.1934 3.1073 0.1608

MV 0.0438 0.0605 0.0810 0.1184 2.3454 0.4282

MH 0.0468 0.0614 0.0814 0.1158 1.9938 0.3781

MS 0.0453 0.0566 0.0734 0.1052 1.7382 0.3309

join, we choose MRSimJoin, the state-of-the-art technique for
metric distance similarity join, as the baseline method.

A. Datasets and Experimental Configurations

Datasets. We use five real datasets generated from two pub-
lic image collections. The first collection is the COREL [20]
containing 68,040 images. We use MPEG-7 Dominant Color
Histogram and Color Layout Histogram descriptors to rep-
resent each image. For each descriptor, there are 32 bins
(features). The location of bin is three-dimensional and the
weight represents the color value in the specific locations on
the image. We denote the two generated datasets as COREL
Color (CC) and COREL Layout (CL). They are treated as
separate datasets since we employ `2 distance as the ground
distance yet the `2 distance between different descriptors are
undefined. The second collection is the MIRFLICKR 1M [10].
This collection contains one million public-domain images
collected from Flickr image sharing site. We use MPEG-
7 Edge Histogram descriptor to represent each image. The
edge histogram descriptor includes five types of edge features:
vertical, horizontal, slash, backslash, and non-directional. The
feature values are collected locally, semi- globally, and glob-
ally from the image, resulting to a histogram with 30 three-
dimensional bins for each feature. We show the experiments
on the histograms corresponding to the first three features,
i.e., vertical, horizontal, and slash; the results of other two
features are similar and omitted. We denote the three gen-
erated datasets as MIRFLICKR Vertical (MV), MIRFLICKR
Horizontal (MH), and MIRFLICKR Slash (MS), respectively.
Because there is no definition of `2 distance between different
edge features, we use them as separate datasets. For all
datasets, we uniformly sample specific numbers of images as
listed in Table II. The default settings are in bold style. The
EMD distribution of the five datasets are shown in Table III.
The last column Dn,u is the Kolmogorov-Smirnov statistic
(ranging from 0 to 1) between the distances of a uniform
distribution and a sample of EMD in the corresponding dataset.
The larger this value suggests a more skewed distribution of
the dataset. We choose the threshold values for datasets such
that about 1%× 1% (0.01%) pairs are retrieved by the query.

We use the elapsed time as the performance measure. This is
because the EMD similarity join is computation-intensive, i.e.,
the CPU time dominates the response time. Also, the elapsed
time is typically the basic unit for calculating the usage fee in
a cloud service. For the same reason, our sampled datasets are
relatively small because we report results that can be evaluated
within a reasonable amount of time (10 hours). We run each
experiment five times and report the median.

Experimental configurations. We conduct the experiments
on an in-house 48-node Hadoop cluster (Cloudera CDH4
distribution). Each node runs at 3.2GHz and has 4GB memory.
To further demonstrate the scalability of MELODY-JOIN, we
conduct one set experiment for each dataset using the default
settings on a cloud research facility provided by our university.
We attempt several settings for MRSimJoin, yet it is always
outperformed by MELODY-JOIN by an order of magnitude.
Hence we focus on the scalability of MELODY-JOIN and omit
the results of MRSimJoin here. On this cloud service, we
provision 24 to 72 nodes.

Following the practice in related studies [9], [11], we
conduct all experiments using self-joins. For MELODY-JOIN,
we conduct experiments using jobs described in Algorithm 5,
Algorithm 6, and Algorithm 8. For MRSimJoin, more pivots
suggest larger pruning overhead of EMD computations while
less pivots are more likely to produce unbalanced workloads.
As a trade-off, we choose the number of pivots so that the
number of reduce tasks generated fits to the capacity of our
in-house cluster. We integrate the same chain of lower bounds
employed in MELODY-JOIN to the reducers of MRSimJoin to
avoid unnecessary EMD computations.

B. Evaluation of Parameters in MELODY-JOIN

Effect of the number p of projection vectors. By employing
more projection vectors, MELODY-JOIN gains larger pruning
power from multiple lower bounds. However, more projection
vectors also suggests more composite cells, and therefore a
larger overhead on pruning. We vary p from 2 to 6. The
results are shown in Fig. 8a. As expected, when p grows,
the performance MELODY- JOIN first improves then slightly
degrades. The value that achieves the best performance is 3 in
all datasets. This can be explained by the fact that the locations
of bins in all datasets are three-dimensional. Three random
projection vectors are adequate to nicely capture shapes of
histograms in the projected spaces.

Effect of the granularity z2 of grid division. The granularity
of grids directly determines the granularity of the load bal-
ancing technique (as we group composite cells into groups to
balance the workloads). Intuitively, a fine-grained grid (larger
z) provides more composite cell cells with small number
of records. This is more likely to balance the workloads,
though may lead to a larger overhead of pruning. A coarse-
grained grid (smaller z) provides less composite cell cells with
large number of records. This risks of failures on balancing
workloads, trading for a low overhead of pruning. The specific
value of z that provides the best performance is likely to be
correlated to the size of cluster. We vary the granularity z2
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Fig. 8. Effects of parameters on the performance of MELODY-JOIN

from 32 to 72 and evaluate the performance of MELODY-
JOIN on all datasets. As shown in Fig. 8b, as z increases, the
performance of MELODY-JOIN first improves then degrades.
The best value z is 4 in most datasets, except that in CL
datasets where 7 is the best value. This can be explained by the
fact that the default setting of CL has the smallest cardinality
among all datasets. The overhead of pruning is surpassed by
the gained efficiency from more balanced workloads when the
number of composite cell grows. In the following experiments,
we set the value of p and z to 3 and 4 respectively.

C. Comparative Study

In this section, we first show the completion time of each
job in MELODY-JOIN and measure the standard deviation on
completion time of reducers in MRSimJoin and the last job
of MELODY-JOIN. Then we vary dataset cardinality and the
threshold value. In the end we vary the number of nodes in
the cloud service to evaluate the scalability of MELODY-JOIN.

Breakdown Job Completion Time of MELODY-JOIN. The
first two jobs in MELODY-JOIN are lightweight since they only
perform operations of linear cost. We measure completion time
for each job and present them in Fig. 9. As confirmed by the
results, Job 3 dominates the overall performance of MELODY-
JOIN by taking orders of magnitude longer to complete.

Standard Deviation of Reducer Completion Time. A job
is complete only when all reduce tasks complete. Therefore,
given the same workload, a smaller standard deviation on
the completion time of reducers suggests more balanced
workloads and therefore higher efficiency. We measure the
standard deviations of reducers in Job 3 of MELODY-JOIN and
MRSimJoin, the results of which is shown in Fig. 10. For all
datasets, the standard deviation of reducer completion time in
MELODY-JOIN is an order of magnitude smaller than that of
MRSimJoin. This confirms the effectiveness of our proposed
quantile grid and cardinality based grouping techniques in
MELODY-JOIN.

Effects of dataset cardinality |H|. The experimental results
on varying dataset cardinality are presented in Fig. 11. The
results for MRSimJoin on some large datasets are not shown
because MRSimJoin did not complete within 10 hours. As
shown in the figure, the elapsed time of both methods increases
when the cardinality of datasets grows. On the two COREL
datasets, MELODY-JOIN beats MRSimJoin by 1.8 to 4.2 times
while on the three MIRFLICKR datasets, MELODY-JOIN beats
MRSimJoin by 5.7 to 33.1 times. This can be explained by the
fact that MIRFLICKR datasets are more skewed than COREL
datasets, as shown in Table III, where MIRFLICKR datasets
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have larger Dn,u values than COREL datasets. Unbalanced
workloads are more likely to present when joining data objects
in MIRFLCIKR datasets. While MRSimJoin severally suffers
from the unbalanced workloads, MELODY-JOIN maintains its
efficiency attributing to the effective quantile grid and load
balance techniques. Moreover, the improvement of MELODY-
JOIN over MRSimJoin also becomes larger when cardinality
grows, suggesting the better scalability to dataset size of
MELODY-JOIN when compared with MRSimJoin.

Effects of threshold value ε. Fig. 12 shows the results for
varying the threshold value in five datasets. As demonstrated in
the figure, both methods spend more time on larger threshold
values, while MELODY-JOIN outperforms MRSimJoin in all
settings by up to an order of magnitude. Again, due to the
larger Dn,u values in MIRFLICKR datasets, the improvement
of MELODY-JOIN over MRSimJoin is larger in the three
MIRFLICKR datasets (8.7 to 22.6 times) than two COREL
datasets (2.5 to 13.4 times). Additionally, MELODY-JOIN is
more responsive than MRSimJoin when the selectivity is high
as it always one order of magnitude quicker than MRSimJoin
when ε is small. This suggests the superior value of MELODY-
JOIN in real applications that prefers the high selectivity.

Effects of the number of nodes in the cluster. Fig. 13
illustrates the results on all five datasets when we vary
the number of nodes from 24 to 72 on the cloud research
facility. MELODY-JOIN gradually speeds up as the number of
nodes increases. On the CC, CL, MV, MH, and MS datasets,
the speed-up ratios of MELODY-JOIN are 38.68%, 25.88%,
32.32%, 47.64%, and 35.15%, respectively. These speed-up
ratios are not linear to the number of nodes because the more
nodes in cluster, a record will be replicated and distributed to
more nodes, ultimately increasing the overall workloads.

VII. CONCLUSION

In this paper we proposed MELODY-JOIN, a novel frame-
work for processing the EMD similarity join based on MapRe-
duce. MELODY-JOIN employs the computationally cheap
lower bounds to prune and partition data which avoids a large
number of EMD computations. Multiple EMD lower bounds
can be plugged into MELODY-JOIN. We further proposed
the quantile based grid and the cardinality based grouping
techniques to address the problem of unbalanced workloads.
We conducted extensive experiments on various real datasets,
confirming the effectiveness and efficiency of MELODY-JOIN.
As demonstrated by the results, MELODY-JOIN outperforms
the state-of-the-art technique typically by an order of magni-
tude and it scales up and out well.
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Fig. 11. Varying the cardinality of H in five datasets on the 48-node in-house Hadoop cluster
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Fig. 12. Varying the EMD threshold ε in five datasets on the 48-node in-house Hadoop cluster
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Fig. 13. Scaling MELODY-JOIN from 24 nodes to 72 nodes on the cloud research facility provided by our university
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