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Abstract—Unmanned aerial vehicle (UAV) networks have
widespread applications, ranging from surveillance and disaster
management in the military domain to transportation and
delivery of goods in the civilian domain. Regardless of the
application, the placement of routing UAV nodes (especially
in networks spanning long distances) is crucial in determining
network performance parameters such as network lifetime and
data transmission delay. In this paper, an Energy-efficient, Fault-
Tolerant, and Area-optimized UAV placement scheme (EFTA) is
proposed for search operations. A cluster-based UAV network
is considered, in which the Cluster Members (CMs) are mobile
and scan the geographic area of interest. The Cluster Heads
(CHs) are quasi-static and route information from the CMs to
the Ground Control Station (GCS). A multi-objective Cuckoo
Search Algorithm is used to determine the placement of the
CHs while minimizing energy consumption, maximizing area
coverage, and maximizing tolerance to node failures. Further,
a comprehensive analysis was performed against a state-of-the-
art UAV placement algorithm. The analysis showed that EFTA
gives a significant performance improvement when compared
to the competing placement scheme in fault tolerance, power
consumption, network lifetime, end-to-end delay, and packet
delivery ratio.

Index Terms—UAVs, search and rescue, optimization, cuckoo
search, UAV placement

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have become increas-
ingly popular due to their versatility and reduced human
intervention, especially in dangerous situations. They have
been used in a variety of fields, such as agriculture, military,
forest monitoring, and disaster management operations. Based
on the application, the system may be a single UAV system
or a multi-UAV system. Multi-UAV networks increase the
autonomy, reliability, and speed of the mission while reducing
the communication requirements. In the event of a node failure
in a multi-UAV system, the network reorganizes itself and
maintains communication through other nodes, which is not
possible in a single UAV system.

One of the most important applications of multi-UAV
systems is search operations. These operations involve the
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scanning of a widespread region to get information about
it, and are typically used in reconnaissance, surveillance or
disaster management applications. These systems may also
assess damage and relay this information to the concerned
authorities. Most work on UAV placement is related to base
station placement, where the area of interest is known be-
forehand, as can be seen in [1]. However, limited literature is
available for search operations where the area of interest is
not known.

A. Challenges

For search operations, the UAV node placement problem
has multiple challenges:

1) Search operations require systems that can assess an area
and relay this information to the concerned authorities.
While their mobility and size may be attractive for such
operations, UAVs have limited power resources and op-
erating time. Hence, conserving the energy of individual
nodes in a network and using it efficiently is essential in
search operations.

2) Such systems must cover as much area as possible,
especially in sensitive operations such as disaster manage-
ment or anomaly detection in reconnaissance missions.
Therefore, UAV nodes must be placed such that they
cover maximum area in minimum possible time.

3) In such time-sensitive applications, time lost due to node
failure(s) can be catastrophic. Therefore, UAV networks
used for such missions must provide alternate data trans-
mission routes to their nodes to minimize data loss due
to node failure(s).

B. Contributions

Keeping in mind the above considerations, an Energy-
efficient, Fault-Tolerant, and Area optimized (EFTA) UAV
placement scheme is proposed in this work. It is evaluated
and compared to a state-of-the-art energy-efficient maximal
coverage algorithm [2].

The main contributions of this work are as follows:
1) A novel metric (FT I) is introduced to measure the

tolerance of a UAV network to individual node failures



2) A system model designed specifically to tackle search
operations

3) A novel placement scheme - EFTA, for routing data
among the UAV CHs that minimizes energy consumption,
maximizes area covered, and is tolerant to node failures.

4) Intensive simulation studies which show that EFTA out-
performs a state-of-the-art energy-efficient maximal cov-
erage algorithm [2] in terms of energy efficiency, fault
tolerance, network lifetime, end-to-end delay and packet
delivery ratio.

It is to be noted here that the optimization problems of
maximizing area and fault tolerance while minimizing power
consumption are conflicting and NP-hard. Thus, a meta-
heuristic algorithm, MOCS [3], is used to arrive at a solu-
tion. Moreover, as natural processes inspire meta-heuristics,
they provide quality solutions that can be used in real-time
scenarios and apply to different use cases, as shown in [4].

The rest of this article is organized as follows. Section II
gives a brief overview of related works, followed by Section
III, which gives a background of the considered system model.
Section IV explains the proposed scheme for UAV placement.
Section V discusses the results of simulations carried out,
followed by the conclusion in Section VI.

II. RELATED WORKS

The placement of UAVs in a network is of prime importance
as it determines its performance in terms of network lifetime,
energy usage, and delay in data transmission. Further, the
placement of UAVs may be fixed or dynamic. An important
UAV application where placement plays an important role is
provision of cellular services using UAV base stations. In [1],
Arani et al. proposed a novel learning-based mechanism for
the three-dimensional deployment of UAVs to assist terrestrial
networks. Low complexity algorithms based on the multi-
armed bandit and satisfaction methods were used to learn
UAVs’ locations along with tools from reinforcement learning
to arrive at the optimum placement. Another method proposed
for base station placement is [5], where a density-aware place-
ment algorithm was used to maximize the number of users
covered subject to the constraint of the minimum required
data rates per user. In [2], Alzenad et al. considered a 3-D
placement algorithm that provided energy-efficient maximal
coverage. The UAV mounted base station deployment in the
horizontal dimension was first modeled as a circle placement
problem and then a smallest enclosing circle problem.

In [6], UAV swarm positions were optimized to achieve a
high multiplexing gain in line-of-sight MIMO backhaul. The
authors developed two distributed algorithms for this - one
based on gradient descent and another that used brute force.
Both of these algorithms showed better performance as op-
posed to random swarm placement. Pan et al. [7] investigated
a utility maximization problem for UAV placement and re-
source allocation in a software-defined network. The proposed
solution used alternating maximization iterative algorithm, a
successive convex optimization technique, and the modified
alternating direction method of multipliers at different stages.

Better results were obtained when bench-marked against other
schemes at the cost of increased complexity.

However, this is not the only application that is dependent
on UAV placement. In [8], a placement optimization problem
was formulated to minimize the number of UAVs in the wind
farm along with a routing optimization problem to minimize
the inspection time. Both problems were NP-hard and solved
using heuristics designed by the author. Zhang et al. [9]
proposed a max-min energy harvesting problem by optimizing
the UAVs’ placement based on a non-linear energy harvesting
model for wireless power transfer applications. The problem
was solved by using the bat algorithm and ant colony optimiza-
tion algorithm. For search operations, no placement schemes
exist in literature, to the best of the authors’ knowledge.

III. SYSTEM MODEL

A. Nodes in Network

This work considers a UAV network with the following
nodes:

1) Ground Control Station (GCS):: The GCS acts as a
data sink for the network and has no power constraints. The
remaining nodes direct all relevant information, such as the
number and location of survivors, to the GCS. Further rescue-
related actions are taken here as well.

2) Cluster Heads (CHs):: These are the UAVs with low
mobility, enhanced computational power for complex data
processing, and enhanced energy characteristics. EFTA is used
to place these CHs. Once the CHs are placed, they remain
quasi-static. Their primary purpose is to act as routers for
information from the CMs to the GCS.

3) Cluster Members (CMs):: These are highly mobile
UAVs with minimal computational abilities. Their main task
is to search the area allotted to them and send any necessary
information (such as detection of a survivor) to a CH, which
then routes this information to the GCS.

B. Network Layout

A rectangular search area is considered in this work, and the
nodes are depicted in Fig. 1. The GCS (denoted by a tower
with dark blue background) is located at one corner of the
search area, whereas both the CHs and CMs are distributed
throughout the search area. The CHs (denoted by the UAVs
with a light blue background) are quasi-static and act as routers
for the CMs.

C. Flow of Information

CMs are responsible for scanning a designated area. On
identifying objects of interest in that area, they forward their
location to the nearest CH. Using a multi-hop routing algo-
rithm, the CH subsequently forwards this information to the
GCS.

IV. EFTA: UAV PLACEMENT SCHEME

The objective of EFTA is to place CHs such that the
area covered and fault tolerance are maximized while min-
imizing the power consumption. MOCS is used for solving



Fig. 1: Network Layout

these constraints simultaneously and providing a solution.
The following subsections explain the constituent optimization
problems:

A. Maximizing Area Coverage

The rectangular area to be covered is modeled as a grid
consisting of cells of dimensions 100m × 100m. Thus, the
area covered by the CHs is proportional to the number of
cells covered by them, and the objective is to maximize the
total number of grid cells covered by the CHs.
Let the network consist of k CHs, whose positions are denoted
by (xtD, y

t
D), where t = {1, 2, 3, 4...., k}. Further, consider a

binary variable u[i][j] ∈ {0, 1} such that u[i][j] = 1, if and
only if the cell with coordinates (i, j) in the grid is covered by
a CH. A CH covers a cell (i, j) in the grid only if the distance
of the CH from the cell is less than the transmission range R0.
A CH covers a cell if the below condition is satisfied for a
cell with coordinates (i, j) in the grid:

(xtD − i)2 + (ytD − j)2 ≤ R2
0, (1)

where R0 is the transmission range of a CH. In this work,
an area is represented by a grid G consisting of m×n cells,
each of which are represented by a binary variable u[i][j] as
defined above.
The area maximization problem can thus be defined as follows:

maximize
m∑
i=1

n∑
j=1

u[i][j]

such that

u[i][j] = 1 iff

(xtD − i)2 + (ytD − j)2 ≤ R2
0

for any t ε {1, 2, 3...k}

(2)

Thus, to maximize the area covered by the CHs, the number
of grid cells covered by the CHs is maximized.

B. Minimizing Nodal Power Consumption

The CH power consumption model used in this work is
based on [10], where the power consumed is modeled as a
function of the power consumed in transmitting and receiving

a signal from one node to another. The following equation is
used to model the energy lost, E(q), in the one transmission:

E(q) = (q– 1)ER0 + q ET0 +
η

γ

q∑
l=1

dαl , (3)

where ET0 and ER0 are constants representing distance-
independent terms for transmitting and receiving power re-
spectively for one hop, γ is the efficiency of the radio’s
power amplifier, η is the power consumed by the power
amplifier at maximum efficiency, α is the shadowing/fading
effect constant, q is the number of hops associated with the
transmission, and dl is the distance associated with the lth hop
in the transmission. Hence, in this work, the energy constraint
is modeled as the average power lost in sending information
from a CH in the network to the GCS. In case a CH requires
multi-hop routing to send data to the GCS, the total power lost
in transmitting data is calculated with respect to the shortest
distance path available to the CH. Note that distance here
refers to the distance a packet has to travel to reach the GCS
from a CH.

Let k CHs be present at various cells and consider two
matrices N and D of sizes k×1 and k×k respectively. N
contains the number of hops required for each CH to send
data to the GCS, while D contains the distance associated with
each hop from a given CH to the GCS. Since the maximum
number of hops while transmitting a packet from a CH to the
GCS is k hops, the size of D is k × k. For example, Dij

is the distance of the jth hop in a transmission from the ith
CH to the GCS. Thus, from Eq. (3) nodal power consumption
(NPC) is defined as follows: Thus, this work defines nodal
power consumption (NPC) as follows:

NPC =
∑k
j=1 ((Nj − 1)ER0 + NjET0 + η

γ

∑Nj

i=1D
α
ij)

k
,

(4)
where Nj is the jth element of matrix N , ET0 and ER0 are
constants representing distance-independent terms for trans-
mitting and receiving power respectively for one hop, γ is
the efficiency of the radio’s power amplifier, η is the power
consumed by the power amplifier at maximum efficiency and
α is the shadowing/fading effect constant.

Thus, this work aims to minimize the power consumed in
data transmission from any CH to the GCS by minimizing
NPC.

C. Maximizing Fault Tolerance Index (FT I)

The third objective takes into account the ability of the
network to tolerate node failures. Fault tolerance is of prime
importance as it is essential to ensure that this UAV network
is robust to the failure of one or more UAV nodes. As
a measure of fault tolerance, a novel index is introduced
by this work - the Fault Tolerance Index (FT I). FT I is
defined as the average number of connections of CHs with
their neighbors in the network. A greater number of average
connections (FT I) would allow the network to use the
nodes’ energies more evenly and, therefore, result in a higher



network lifetime. Further, a high FT I would provide CHs
with alternate routes to send information if one or more
nodes fail. Therefore, the dependence of the network on
individual nodes reduces, thereby increasing the robustness
of the network to node failures.

Consider a UAV network with k CHs present at various
cells, whose positions are denoted by {xtD, ytD}, t ε
{1,2,3,4....,k}. Consider a connections matrix C of size
k × k defined such that C[i][j] = 1 if nodes i and j are
within distance R0 (transmission range of CHs) of one another

(xiD − x
j
D)

2 + (yiD − y
j
D)

2 ≤ R2
0, (5)

and C[i][j] = 0 if the above inequality is not satisfied.
The mathematical representation of FT I is thus given as:

FT I =

∑k
i=1

∑k
j=1 C[i][j]

k
(6)

D. Problem Formulation

Let the UAV network consist of k CHs. Variables have
meanings as defined in the previous subsections. Note that the
default values of C[i][j] and u[i][j] are 0. Hence, the overall
multi-objective optimization problem can be represented as
below:

Maximize {
m∑
i=1

n∑
j=1

u[i][j] ,

∑k
i=1

∑k
j=1 C[i][j]

k
}

&

Minimize {

∑k
j=1 ((Nj − 1)ER0 + NjET0 + η

γ

∑Nj

i=1D
α
ij)

k
}

such that

1. Ni > 0 and Ni ≤ k ∀ i ε {1, 2, 3....k}
2. C[i][j] = 1

if (xiD − x
j
D)

2 + (yiD − y
j
D)

2 < R2
0 for i,j ε {1, 2, 3....k}

3. u[i][j] = 1

iff (xtD − i)2 + (ytD − j)2 < R2
0 for any t ε {1, 2, 3...k}

(7)

E. Multi-objective Cuckoo Search (MOCS) and NSGA-II

Cuckoo Search Algorithm [11] is a meta-heuristic algorithm
based on the breeding behavior of certain species of cuckoos.
The reason for choosing a meta-heuristic algorithm for EFTA
is simple - multiple conflicting objectives have to be achieved,
and the optimization problem is NP hard. There will be
trade-offs, for example, between power consumption and the
area covered. Moreover, the non-linearity of the constraints
further makes it difficult to use deterministic algorithms over
stochastic ones. On the other hand, the fast computation and
the global nature of meta-heuristics make them a good choice
for such a problem.

The algorithm incorporates the breeding behavior and the
characteristics of Lévy flights, which brings a degree of
randomness to the algorithm. Exploration and exploitation are

two key characteristics of meta-heuristics. Exploration ensures
diversity of solutions globally, while exploitation focuses on
the current region where a good solution has been located to
find an even better one. Lévy flights are used for both these
characteristics - smaller steps from the current best solution
would relate to exploitation, whereas larger steps relate to
exploration or diversification [11]. For multiple objectives,
the last step of breeding behavior is modified and can be
found in [3]. It must be noted that MOCS does not use a
weighted function. Instead, it optimizes the three constraints
simultaneously to present a set of solutions. This is done by
incorporating NSGA-II [12], an evolutionary genetic algorithm
to compare and rank solutions using non-dominated sorting.

A characteristic of multi-objective optimization problems is
that there exist multiple optimal solutions that form the Pareto
front, which is a group of non-dominated solutions. While
there are no practical approaches for obtaining a Pareto front,
Lévy flights are also used to approximately generate it [13].
Lévy flights are incorporated when generating new solutions.
For cuckoo i, the new solution generated for the (r + 1)th
iteration is given as:

sr+1
i = sri + β ⊕ Levy(λ) (8)

where β >0 is the step size and is decided based on the scope
of the problem. Also, si is the ith solution, which corresponds
to a 2k×1 matrix containing the x and y coordinates of k CHs.

Hence, using MOCS and NSGA-II, the Pareto front is
generated.

As a Pareto front generates a group of solutions, the
following steps are carried out to choose the best solution
out of them:

1) In search missions, the primary goal of UAVs is to
search the area as exhaustively and as quickly as possible.
To accomplish this, CMs must have at least 1 CH in
communication range at all times. Therefore, the CHs
must cover a minimum threshold of the area in the
network. Hence, all solutions in the pareto front that cover
less than 99% of the prescribed grid area are removed.

2) The remaining solutions are then ranked using the func-
tion below: (the three parameters have equal weightage)

f = NormFTIi +NormAreai −NormNPCi (9)

3) EFTA then chooses the solution with the highest value of
f as its final output.

V. PERFORMANCE EVALUATION

This section presents a comprehensive comparative analysis
between EFTA and Alzenad et al. [2]. As mentioned earlier,
to the best of the authors’ knowledge, no UAV placement
schemes specifically addressing search operations exist in lit-
erature. Alzenad et al. [2] proposed a state-of-the-art, maximal
coverage, energy-efficient UAV placement scheme for generic
scenarios in applications using base-stations. As both [2] and
EFTA aim at energy-efficient maximal coverage, this work
uses [2] for performance comparison. This section is organized



TABLE I: Simulation Parameters

Parameter Value
ER0 0.1 mW
ET0 0.1 mW
γ 0.3
α 2 (assuming free space)
η 5 ×105

R0 50 cells

as follows. Section V-A gives an overview of the simulation
environment while section V-B displays results for the three
metrics explained in Section IV - area coverage, FT I and
NPC. Section V-C presents a comparative analysis of network
performance of EFTA and Alzenad et al. for k = 6.

A. Simulation Environment

For simulations, a rectangular search area is modeled as a
grid of cells, each of size 100m× 100m. Further, a matrix X
of size k× 2 was defined to store the coordinates of the CHs
within the grid. This matrix contains solutions obtained from
MOCS. The optimization metrics for individual solutions were
calculated using X . Note that all simulations were performed
using MATLAB 2020b. The simulation parameters used by
this work are as follows - ET0 = 0.1 mW, ER0 = 0.1 mW, γ
= 0.3, α = 2 (assuming free space), η = 5 ×105 and R0 = 50
cells.

B. Placement Results

Figure 2 shows the Pareto Front generated for k=7. As
mentioned above, function f defined in Eq. (9) is then used
on the solutions in the Pareto Front to find a single optimal
solution for the optimisation problem defined in Eq. (7).

EFTA was compared with [2] for 3 parameters : FT I,
NPC, and Area Coverage. The simulations were run for
k = 4, 5, 6 and 7 and the results are shown in Fig. 3, Fig. 4
and Fig. 5. Different dimensions of search area were chosen
- 9km × 9km for k = 4, 10km × 10km for k = 5 and
12km× 12km for k = 6 and 7. It may be noted that the area
coverage for EFTA is comparable to [2], with a difference of
under 0.5% in each case. The reason for [2] showing slightly
better area coverage is that [2] aims to maximize area while
ensuring energy efficiency. In other words, [2] maximises area
first and then chooses the solution with best energy efficiency

Fig. 2: Pareto Front for k=7

Fig. 3: Fault Toleratance Index (FT I) Comparison

Fig. 4: Nodal Power Consumption (NPC) Comparison

Fig. 5: Area Coverage Comparison

amongst those that cover the maximum area. Meanwhile,
EFTA considers two more constraints while generating the
pareto front - fault tolerance and power consumption in
addition to the area covered. Hence, EFTA consistently
shows higher FT I values indicating the existence of a
greater number of alternate paths per node. Even in terms
of NPC, EFTA shows better performance by 40% on average.

C. Network Evaluation

For the purpose of network evaluation, placements obtained
by EFTA and [2] for k = 6 were considered, and Optimized
Link State Routing (OLSR) [14] was chosen as the routing
protocol to compare metrics such as network lifetime, end-to-
end delay, and Packet Delivery Ratio (PDR). It must be noted
that network lifetime is the packet number until which all the
CHs in the network were active. In these simulations, 2000



TABLE II: Comparative Analysis for k = 6

Parameter Alzenad et al. [2] EFTA
Network Lifetime 1014 1732
(No. of packets)

End-to-end Delay 6.004× 10−5s 4.058× 10−5s
Packet Delivery Ratio (PDR) 0.495 0.859

Fig. 6: Cumulative Packet Delivery Ratio (PDR) after every
250 packets

packets were collected and sent to the GCS from randomly
chosen CMs. These CMs were chosen with the help of a
normal distribution with zero mean and unit variance. The
results have been presented in Table II.

As can be seen in Table II, EFTA performs significantly
better than [2]. EFTA increases network lifetime by almost
71% and reduces the end-to-end delay for packet transmission
by 33%. It also shows a considerable improvement of 73.5% in
PDR. These findings can be attributed to the fact that EFTA
provides not only good area coverage but also lower power
consumption and a greater number of alternative routes. EFTA
thus ensures the successful transmission of a greater number
of packets to the GCS while simultaneously ensuring that
individual CHs are not drained of their power.

The cumulative PDR trend for every 250 packets can be
seen in Fig. 6. Clearly, as the first node of [2] ran out of power,
the PDR dropped sharply. This sharp dip is highly undesir-
able for time-sensitive applications such as search operations.
EFTA, on the other hand, maintains a consistent PDR for the
first 1500 packets due to a higher network lifetime. Further,
it shows a less steep drop in PDR when a node runs out of
energy at 1732 packets. This less steep drop is attributed to
the fact that EFTA shows higher FT I which results in the
availability of a higher number of alternate paths for routing
data in the network and hence, a greater robustness to node
failures.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents EFTA, a novel multi-objective UAV
placement scheme focused on search operations. Intensive
simulations show that EFTA yields better fault tolerance and

power consumption results while giving similar area coverage
compared to a state-of-the-art placement scheme for UAV
networks. Furthermore, EFTA also shows significant improve-
ment in network performance in terms of network lifetime,
delay, and packet delivery ratio. In future works, the focus
will be to develop a novel routing scheme that incorporates
EFTA to present an end-to-end solution for search operations.
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