
Future Generation Computer Systems 169 (2025) 107777

A
0

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Dynamic FPGA reconfiguration for scalable embedded artificial intelligence

(AI): A co-design methodology for convolutional neural networks (CNN)
acceleration
Jalil Boudjadar a , Saif Ul Islam b ,∗, Rajkumar Buyya c
a Department of Electrical and Computer Engineering - Software Engineering & Computing systems, Aarhus University, Aarhus, 8200, Denmark
bWMG, The University of Warwick, Coventry, CV4 7AL, UK
c Quantum Cloud Computing and Distributed Systems (qCLOUDS) Lab, School of Computing and Information Systems, The University of
Melbourne, Melbourne, VIC 3125, Australia

A R T I C L E I N F O

Dataset link: https://e.pcloud.link/publink/sho
w?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnV
ArsSiX

Keywords:
Adaptive CNNs
FPGA dynamic reconfiguration
Hardware acceleration
Co-design framework
Embedded AI
Computation performance
Scalable AI deployment

 A B S T R A C T

In recent years, FPGA platforms have shown significant potential for accelerating artificial intelligence (AI)
applications, particularly in Embedded AI. While various studies have explored adaptive AI deployment on
FPGAs, there remains a gap in methodologies fully integrating software adaptability with FPGA hardware
reconfigurability. This article presents a novel end-to-end co-design methodology for deploying adaptable and
scalable Convolutional Neural Networks (CNNs) on FPGA platforms. The framework enhances computational
performance and reduces latency by dynamically modifying hardware acceleration units by combining CNN
architecture adaptability with dynamic partial reconfiguration of FPGA hardware. The proposed methodology
enables automated synthesis and runtime customization of both hardware accelerators and CNN architectures,
eliminating the need for iterative synthesis. This approach has been implemented and tested on a Xilinx XC7020
FPGA board for a CNN-based image classifier, achieving superior computation performance (0.68s/image) and
accuracy (97%) compared to state-of-the-art alternatives.
1. Introduction

Over the last decade, Convolutional Neural Networks (CNN) [1] are
used in solving complex problems such as classification, recognition,
regression, prediction, and optimization [2–7]. Solving complex tasks
by mimicking the human brain and its biological neural network has
been a topic for decades and was first opened up for debate in the
40s [8]. It is, however, only in the most recent years that CNN has been
seen as a viable technology due to constraints enforced by the network
sizes and the underlying computation complexity. This is due to the
sheer amount of resources needed for utilizing CNN [9] to their full
potential, especially for computationally intensive models that utilize
kernel filters to extract spatial information from images [10].

CNNs are deep learning models formed by several layers of neurons
that rely on accumulating the knowledge mathematically from baseline
training to infer decisions based on the input data [11]. Neurons of a
layer are connected to some or all of the neurons from the adjacent
layers to pass processing results. The neuron connections are weighted
with coefficients to determine how much each input will contribute to
the output in the next layer. Each neuron is associated with a bias value

∗ Corresponding author.
E-mail address: saif.islam@warwick.ac.uk (S.U. Islam).

to be added to the output computation of the neuron. The weights and
biases are computed through a training process [12].

CNNs extract features from the input images by recognizing the
key patterns present in each image so as to classify them following
the training and calibration of the CNN parameters so that the clas-
sification converges towards the pattern having the optimal output
value [13]. CNNs may involve different image processing features such
as segmentation, Max-pooling, and convolution. In fact, image segmen-
tation enables an image to be processed in multiple smaller segments
independently, where the calculations can be sent to dedicated hard-
ware accelerators, a cluster of computational nodes, or a distributed
system, thus achieving a short computation latency [14]. Max Pooling
reduces a matrix of weighted pixels spatially into a smaller matrix by
maintaining the highly informative pixels to reduce the computation
cost without degrading the accuracy too much [15]. Convolution is the
most computationally expensive operation as it amounts to multiplying
an input image matrix with a kernel to generate a new image, called
fmap [16]. The convolution works by sliding the kernel image over the
input image, where each position of the kernel will generate a new pixel
by multiplying each value in the kernel with the respective position of
https://doi.org/10.1016/j.future.2025.107777
Received 18 September 2024; Received in revised form 8 January 2025; Accepted
vailable online 26 February 2025
167-739X/© 2025 The Authors. Published by Elsevier B.V. This is an open access a
18 February 2025

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/fgcs
https://www.elsevier.com/locate/fgcs
https://orcid.org/0000-0003-1442-4907
https://orcid.org/0000-0002-9546-4195
https://orcid.org/0000-0001-9754-6496
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
mailto:saif.islam@warwick.ac.uk
https://doi.org/10.1016/j.future.2025.107777
https://doi.org/10.1016/j.future.2025.107777
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2025.107777&domain=pdf
http://creativecommons.org/licenses/by/4.0/

J. Boudjadar et al. Future Generation Computer Systems 169 (2025) 107777
the kernel value in the input image. Convolution usually represents a
fertile source for acceleration, given the many computation operations
that can be performed in parallel.

Machine learning solutions, specifically CNN-based applications,
often utilize cloud technology, where the actual network is deployed
on powerful computation servers, making the inference speed relatively
quick. For many application domains such as IoT and control systems,
the deployment technology for CNN-based software solutions is re-
cently undergoing a significant transformation, shifting from a cloud to
edge and embedded computing [17–20]. This was to (1) enable ubiqui-
tous and pervasive computing and reduce the connectivity dependency;
(2) facilitate parallel execution of multiple layers and modules of the
CNNs, thus reducing the execution latency and synchronizing with
high-frequency data sources; (3) process and extract features directly
from the data source to reduce data communication cost and security
threats; (4) cope with privacy concerns and the nascent GDPR.

However, an intrinsic challenge for the platform-aware design and
adaptation of applications targeting FPGAs is the expensive synthesis
cost for acceleration hardware and the lack of automated customization
of the synthesized computation resources and CNN architecture at run-
time [21]. For conventional acceleration frameworks, a new synthesis
of the hardware acceleration cores is needed every time the deployed
CNN changes because the acceleration cores are synthesized for a given
software functionality [20,22]. Another factor that can harden this
challenge comes from the fact that a CNN can adapt its architecture
at runtime (changes to the overall CNN structure, number of layers,
size of layers, and other hyper-parameters) following changes in the
input data space to reduce the computation burden and adjust the CNN
functionality [23].

Over the last few years, a substantial effort has been devoted to
accelerating CNNs on reconfigurable embedded platforms to process
images [19,21,24–28]. However, to the best of the author’s knowledge,
none of the research studies considered optimizing the costly hardware
synthesis operation and acceleration performance by combining both
CNN adaptability and FPGA reconfigurability in a single design approach
where both software and hardware are reconfigurable at runtime [29,
30], so that to leverage the execution performance and flexibility and
reduce further the deployment cost of CNNs on FPGAs.

This article proposes a new co-design and deployment approach to
leverage computation performance and latency for adaptive CNNs on
FPGA platforms. The proposed approach enables iteration-free deploy-
ment to reduce the expensive cost of hardware accelerator synthesis.
The accelerators are synthesized once and configured at runtime, using
a combination of fine-grained and coarse-grained customization, fol-
lowing the adaptive CNN architecture. The CNN adaptability is secured
upon an on-the-fly upload of new configurations (network structure
and hyper-parameters) to the FPGA at runtime. The proposed design
and deployment have been implemented to accelerate and deploy a
CNN-based image classifier on a Xilinx ZYBO XC7020 FPGA. Compu-
tation performance, accuracy, resource utilization, and scalability are
analyzed and compared to the state of the art. The major contributions
of the article are summarized as follows:

1. A novel co-design and deployment framework that integrates
adaptive CNN with FPGA platforms. The model eliminates the
need for iterative synthesis, significantly reducing the costs and
time associated with hardware accelerator deployment.

2. The proposed methodology leverages dynamic partial reconfigu-
ration of FPGA hardware to accommodate changes in CNN archi-
tecture and hyper-parameters during runtime. This approach en-
sures the high adaptability of CNNs, enabling on-the-fly updates
to the network structure and parameters.

3. By combining fine-grained and coarse-grained hardware cus-
tomizations with adaptive CNN architecture, the model enhances
computation performance and reduces latency. The co-design
approach ensures that FPGA platforms can maximize the effi-
ciency of hardware accelerators tailored to specific application
requirements.
2
4. The proposed framework has been implemented and tested using
a CNN-based image classifier on the Xilinx ZYBO XC7020 FPGA
board. Detailed analysis of computation performance, accuracy,
resource utilization, and scalability has been conducted, with
results compared to state-of-the-art approaches to demonstrate
the effectiveness and improvements of the proposed model.

5. The article contributes to the field of Embedded AI by presenting
a comprehensive end-to-end methodology that combines CNN
architecture adaptability with FPGA dynamic reconfiguration.
This advancement facilitates deploying scalable and adaptable
AI applications on FPGA platforms, pushing the boundaries of
what is achievable in hardware-accelerated AI.

The rest of the article is organized as follows: Section 2 presents
the state-of-the-art for acceleration architectural models and describes
the relevant work. Section 3 explains the proposed methodology for
customized acceleration of adaptive CNNs. Section 4 elaborates on
the implementation and experiments using Xilinx XC7020 FPGA and
compares the results to the state-of-the-art. Finally, Section 5 concludes
the paper.

2. Related work

A Field Programmable Gate Arrays (FPGA) is a computation plat-
form composed of a conventional processing system (PS) and pro-
grammable logic (PL) [31]. PS is a conventional computer system that
possesses processing cores (ARM processor), memories and caches. In
contrast, PL is a set of fabric circuits (Flip-flops, registers, look-up
tables, DSP, RAM blocks, etc.) that can be compiled to synthesize extra
(user-defined) processing and storage components dedicated to execut-
ing given software functions. Compiling a set of circuits to implement
the functionality of a software code as a hardware core is called High-
level synthesis (HLS) [32]. The hardware components resulting from
the HLS of a software function are called Intellectual Property, IP for
short. IP cores are usually described using an HDL language such as
VHDL or Verilog. They can be seen as functional blocks coupled with PS
to execute a software system much faster by parallelizing and splitting
the execution between PS and PL.

Machine learning-empowered systems are often deployed in dy-
namic environments. Being able to change the machine learning model
post-deployment could be of capital interest to ensure high accuracy
and performance through adaptability. CNN adaptation is an update of
the structure, connections, weights, and other hyper-parameters of the
CNN architecture [6,23,24]. The adaptation can be performed offline
or at runtime, mainly triggered by changes in the data stream and new
training results, etc.

An IP core is synthesized for the network model to accelerate a
CNN. Thus, runtime adaptability of a CNN may require re-synthesizing
IPs and re-programming the FPGA, which is a complex and expensive
task [24,25]. A hardware IP reconfiguration is a customization of the
generic IP functionality to execute a modified version of the original
software used for the synthesis [21,26]. Such automated customiza-
tion is captured by tuning some of the IP parameters based on the
benchmark attributes of the input software.

Strong effort has been devoted to implementing CNNs adaptabil-
ity [20,23,26,33] and runtime reconfiguration of FPGA hardware accel-
erators [20,21,24,28,34]. However, the literature still lacks adequate
tooling and studies that tie the CNN adaptability and the hardware
reconfigurability to design and deploy customizable CNN hardware
accelerators [24,29,35].

Bouazzaoui et al. [26] proposed a partial (coarse-grained) reconfig-
uration environment to accelerate the execution of machine learning
models on FPGAs using dynamic classifier selection. Each classification
model is implemented as a static accelerator to be activated and parsed
to specific inputs at runtime. The identification of the most fitting
classifier for incoming data, based on the K-Nearest Centroid approach,

https://www.xilinx.com/products/silicon-devices/fpga/what-is-an-fpga.html

J. Boudjadar et al. Future Generation Computer Systems 169 (2025) 107777
at runtime has led to considerable reduction in the resources utilization
of the FPGA platform. Huang et al. [36] introduced a partial (fine-
grained) reconfiguration architecture to accelerate CNN on FPGAs. The
proposed acceleration relies on reconfiguring specific convolution layer
hardware blocks according to the input model parameters at runtime.
The partial reconfiguration of the IP blocks has led to high computation
efficiency and decreased energy consumption.

Tong et al. [37] presented a highly unified generic acceleration
architecture to accelerate different machine learning models such as
standard CNNs, lightweight CNNs and CNNs with DeCONV layers by
dynamically reconfiguring the hardware accelerator following the ar-
chitecture parameters of the input model. The acceleration architecture
model reduces the overhead when deploying different models and
enhances the overall resources utilization efficiency.

Kumar et al. [20] proposed a hardware customization architecture
to execute CNN layers and enable intelligent edge computing. To cope
with the data transfer bottleneck, the layers execution is performed
using a linear task model. However, executing layers as a sequence
may lead to higher latency and degrade the computation performance,
notably, if the hardware accelerators enable overlapped execution [29].

To leverage FPGA flexibility for CNN applications, a dynamic model
enabling runtime reconfiguration of FPGA hardware to accelerate dif-
ferent CNN architectures was proposed in [22]. Using a layer-clustering
algorithm, the authors classify the CNN layers and generate optimal
hardware configurations to execute each layer. However, one must
run the expensive layers classification for each update to the CNN
architecture.

Wang et al. [38] developed a scalable and cost-efficient FPGA
accelerator for large-scale deep learning networks through a pipeline
of three processing units to scale the performance and improve the
throughput. However, data communication between the processing
system and the acceleration units (PL) is a bottleneck [39]. To loosen
the communication bottleneck between the FPGA processing system
and the acceleration hardware, Shi et al. [28] proposed an acceleration
model with optimized dynamic allocation, through a classification of
layers, to hardware processing elements using AXI bus interfaces. How-
ever, the classification processing overhead contributes to degrading
the execution performance.

Ratto et al. [35] proposed a toolchain to enable model-based adap-
tivity of CNNs and runtime reconfigurabilty of the underlying hardware
accelerators. The proposed deployment relies on fine-grained reconfig-
uration of the hardware accelerators synthesized using ONNX parser
and Vivado HLS by activating the subset of IP circuits corresponding to
the functionality parameters in the CNN customization.

Zaidy et al. [40] developed an efficient, low-power accelerator
to leverage the inherent parallelism in CNN architectures. The com-
putation efficiency resulted from implementing a set of ComputeCore
accelerators each of which integrates the maps, weights buffers and
comparators. One can see that, the computation efficiency is achieved
on the expense of hardware size area which could be a bottleneck for
scalability. Meloni et al. [41] proposed a flexible hardware/software so-
lution to accelerate CNNs on Zynq SoCs via an efficient allocation of the
Zynq ARM cores to hard-to-accelerate tasks whereas CNN computations
are allocated to the hardware accelerator. Although the accelerator is
static and the CNN architecture does not change at runtime, a flexibility
results from the dynamic scheduling of the computation resources and
control of the accelerator.

In this article, we develop an agile deployment model for accelerat-
ing CNNs using FPGA hardware. The proposed method involves altering
the functionality of FPGA by partially reconfiguring its hardware re-
sources at runtime using both fine-grained (partial reconfiguration of IP
cores) [36] and coarse-grained customization (dynamic mapping of IP
cores) [26,42]. By combining CNN adaptability and FPGA reconfigura-
bility, the proposed approach enables users to easily shape adaptivity
at model level, achieving thus application-specific HW accelerators.
Specifically, we advance the hardware reconfiguration models in [22,
3
Fig. 1. Proposed acceleration and deployment methodology.

26,36] by enabling the CNN to change its architecture at runtime,
for which the hardware accelerators are automatically customized and
dynamically mapped to secure high computation performance. Com-
pared to the state of the art, the proposed co-design achieved a highly
resource- and computation-efficient classification (0.68 s per image)
while delivering one of the highest accuracy levels (97%).

3. Adaptive acceleration methodology

This section specifies the adaptive CNN architecture model and
elaborates on how the hardware accelerators are customized at runtime
following changes in the CNN template to leverage the execution
performance.

The proposed methodology is depicted in Fig. 1. The hardware
IP cores for acceleration are synthesized once at the design stage,
from the software functionality using HLS, as standalone units flexible
enough to accommodate runtime changes and integration of differ-
ent applications. The CNN parameters are stored in on-chip memory
upon adaptation to leverage performance and achieve less memory
access [43]. The red components in the figure are dynamic. The blue
arrows are reconfiguration to the IP cores, and the dashed arrows are
dynamic allocations of the computation tasks to the IP cores.

We also developed an optimized dynamic allocation of CNN layers
to the accelerators to leverage the performance and latency [42],
enabling a coarse-grained reconfiguration. Besides, a fine-grained re-
configuration is achieved upon specifying different activation functions
within each IP core, where the corresponding functionality is activated
using the CNN layer parameters [35]. Although this may lead to a large
hardware area for each accelerator, it enables low-cost customization
and high flexibility.

3.1. Proposed adaptive CNN architecture

As illustrated in the Amazon Elastic Compute Cloud F1 services
[44], having an adaptive CNN architecture that changes at runtime can
secure customized service and better performance following changes
in the customer’s functionality and input data. One way of achieving
this is by implementing CNNs as a parameterized architecture where
weights, bias, number of layers, neurons per layer, and connections
can be updated with the input data at runtime. Enabling dynamic
model adjustments at runtime ensures the system’s adaptability to
changes in the environment or functional requirements. For instance,
one model configuration could optimize efficiency, while an alternative
configuration may prioritize accuracy [45].

We design the CNN model as a dynamic architecture (template) to
be instantiated by the processing system PS every time an instantiation
configuration of the template is provided. The runtime customization of
the CNN model dynamically maps template parameters to the specific

J. Boudjadar et al. Future Generation Computer Systems 169 (2025) 107777
Fig. 2. Example of CNN adaptation and HW reconfiguration.

configuration parameters governing neurons, layers, and connections
in the architecture. This mechanism ensures an efficient adaptation
via instantiation. Once an instance of the CNN template is carried
out every time a configuration is provided, further customization is
performed via: (1) deactivation of the connections having null weights:
connections between neurons that hold weights equal to zero are
identified and deactivated. This eliminates unnecessary computations,
as such connections do not contribute to the forward or backward
propagation; (2) deactivation of Neurons with no active, outgoing
connections: each neuron is analyzed for active outgoing connections. If
all outgoing connections of a neuron are deactivated, the neuron itself
becomes redundant and is subsequently deactivated. This step further
reduces the computational load by removing idle neurons from the
computational graph; (3) deactivation of each layer if all its neurons
are deactivated: Entire layers are subject to deactivation if all neurons
within the layer are deactivated due to a lack of outgoing connections.
This step simplifies the model architecture by removing layers that do
not contribute to the network’s output.

Formally, we specify a neuron 𝑁 = ⟨𝑓, 𝑏⟩ through an activation
function 𝑓 () [46] and bias 𝑏 ∈ R. Besides, we define a CNN layer
𝐿 = ⟨𝑁1 …𝑁𝑛

⟩ as a set of neurons 𝑁 𝑖. A CNN template 𝑇 is then given
by:

𝑇 = ⟨𝐿1, 𝐿2, .., 𝐿𝑚,⟩

where ∈ 𝐿𝐼×𝐿𝐼×R+ specifies the neuron connections given as weight
coefficients. The template 𝑇 is the original model architecture to be
customized at runtime.

For the sake of notation, we denote the neuron 𝑁 𝑗 within layer 𝐿𝑖
as 𝑁𝑖𝑗 . Likewise, the weight of a connection between a source neuron
𝑁𝑠 and a destination neuron 𝑁𝑑 is represented as 𝑤𝑑

𝑠 . For instance, 𝑤21
12

is the weight connecting neuron 𝑁2
1 to neuron 𝑁1

2 .
We characterize a configuration, denoted as 𝐶, as the dynamic

modification to the CNN template at runtime, achieved by adjusting
parameters and activation or deactivating neurons, connections, and
layers. Specifically, a configuration 𝐶 ⊆ 𝑇 ∗ constitutes a subset of
the template, specifying values for a portion of the actual parameters.
These modifications encompass alterations to the activation functions,
the number of layers and neurons per layer, and connections between
layers and neuron-related parameters.

For the sake of simplicity, we represent 𝐶 as a function that gener-
ates a new template 𝑇 ′ = 𝐶(𝑇) from the actual template 𝑇 as stated in
Eq. (1):

𝑇 ′ = 𝑇 |

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

∀𝑖 𝑗,𝑁 𝑗
𝑖 ∈ 𝐶 ⟹

⎧

⎪

⎨

⎪

⎩

𝑇 ′.𝐿𝑖.𝑁 𝑗 .𝑓 = 𝑁 𝑗
𝑖 .𝑓

𝑇 ′.𝐿𝑖.𝑁 𝑗 .𝑏 = 𝑁 𝑗
𝑖 .𝑏

∀𝑥𝑦 𝑇 ′..𝑤𝑥𝑦
𝑖𝑗 = 𝐶..𝑤𝑥𝑦

𝑖𝑗

∀𝑖 𝑗,𝑁 𝑗
𝑖 ∉ 𝐶 ⟹

⎧

⎪

⎨

𝑇 ′.𝐿𝑖.𝑁 𝑗 .𝑓 = 𝑁𝑒𝑢𝑡𝑟𝑎𝑙
𝑇 ′.𝐿𝑖.𝑁 𝑗 .𝑏 = 0

(1)
⎪

⎩

⎪

⎩

∀𝑥 𝑦 𝑇 ′..𝑤𝑥𝑦
𝑖𝑗 = 0

4
Fig. 2 illustrates the adaptation of a CNN template, image (a),
to a new configuration, image (b), where elements greyed out (2
neurons, one layer, and many connections) are deactivated. Moreover,
the activation function of the first hidden layer changed from F1 to F3.
This has led to adjusting the acceleration cores allocation and active
modules within the cores as explained in Section 3.2.

Recognizing the potential variability in layers, we omit explicit
iteration on layers, considering it implicitly accomplished through neu-
ron iteration. To ensure scalability for the efficient processing of large
CNNs, even if the platform imposes limitations on the width of layers
(number of neurons acquired and processed simultaneously), it should
support the ability to partition layers into sub-layers for processing
across multiple iterations. However, it is crucial to note that such a
layer split necessitates the segmentation of bias vectors and weight
matrices. This introduces a notable overhead in the time required to
reconstruct the processed layers. It is important to acknowledge that
the exploration of layer-splitting options goes beyond the scope of this
article.

3.2. Proposed acceleration customization

Although FPGAs are limited in computation and storage resources,
many recent analyses have shown that FPGAs can form a promising
ground for the deployment and acceleration of future deep learning
applications given the parallelization of FPGAs and the pipeline-based
architecture of neural networks [47,48]. Moreover, FPGA-based accel-
eration enables application flexibility and deployment optimization as
explicit design steps. As an example of the potential of FPGAs, Amazon
Elastic Compute Cloud (Amazon Web Services EC2) F1 instances are
Xilinx FPGAs reconfigured to accelerate data workloads supporting
machine learning inference [44], providing 90x higher performance
than CPUs [49].

The proposed customization of acceleration cores encompasses fine-
grained and coarse grained reconfiguration at runtime. The customiza-
tion strategy focuses on key operational aspects to achieve seamless
parallelism and reduced memory footprint. Firstly, it involves mapping
layers processing from sub-images to distinct IP cores. This assignment
adheres to specific guidelines such that either two layers belonging
to the same sub-image are mapped to different IP cores (Intra-Sub-
Image Mapping), or layers from different sub-images are allocated to
different IP cores (Inter-Sub-Image Mapping), facilitating local data
exchange between IP cores. This runtime arrangement promotes ef-
ficient local data exchange between IP cores, thus reducing latency
and ensuring that intermediate computation results are available for
subsequent processing without unnecessary communication overhead.
Secondly, by monitoring the processing balance between the PS and
the IP cores, the customization enables offloading an IP core if the
layers’ processing by a given IP core outpaces the image reassembly and
reconstruction handled by the PS partition. This step ensures a balanced
workflow, maintains synchronization between PS and PL partitions, and
curtails the storage requirements for intermediate results, as each result
produced by IP cores is immediately transferred and used by PS.

Lastly, each acceleration core is equipped with the capability to
execute multiple activation functions (e.g., ReLU, Sigmoid, etc.) im-
plemented as modular components. The customization incorporates an
automated mechanism to activate or deactivate these functional blocks
based on the runtime CNN adaptation configuration. This adaptive
approach ensures that the IP reconfiguration aligns seamlessly with the
customization of the CNN template.

The capability of dynamic mapping and offloading of acceleration
cores is a valuable optimization feedback mechanism for the image-
splitting process [42]. It allows for dynamic adjustments to the size
and quantity of sub-images per image. When PL partition demonstrates
superior performance, opting for larger sub-images becomes advanta-
geous, as it effectively diminishes the storage requirements for interim
results. This reduction in storing intermediate results subsequently

J. Boudjadar et al. Future Generation Computer Systems 169 (2025) 107777
Fig. 3. Multi-module architecture for PL partition.

lowers the processing system’s reassembly cost. Conversely, if the accel-
eration lags behind the PS performance, considering smaller sub-images
and allocating layers from the same sub-image to the acceleration cores
becomes a valuable choice to balance PS-PL workload and latency.

A thorough exploration of the hardware architecture and partition-
ing design space was undertaken to enhance the customization and
performance. The findings pointed to a promising architecture: creating
two hardware partitions, illustrated in Fig. 3, each containing two
processing modules. This choice arises from the advantageous ability to
parallelize sub-image processing and implement a pipelining approach
for different functions (such as convolution and classification) within
the same sub-image processing.

Given that input images might have large sizes due to high res-
olution, we consider image segmentation, where each input image
is divided into smaller sub-images [50]. The partitions overlap with
one pixel to preserve boundary information, as CNN operations like
convolution rely on neighborhood data. Each sub-image is passed in-
dependently through the CNN layers, performing convolution, pooling,
and activation operations. The results (feature maps) for each sub-
image are computed separately. To integrate the sub-images processing
results, we apply image reassembling [51]. In fact, image reassem-
bling combines the resulting sub-images to recreate a feature map
corresponding to the original input image. This involves aligning the
outputs correctly based on their spatial relationships in the original im-
age. Overlapping areas between sub-images must be handled to avoid
artifacts or inconsistencies in the reconstructed feature map, where
methods like averaging or blending may be used to ensure a smooth
transition. In our case, we adopt blending [52], where each newly
integrated segment overrides a one-pixel row or column depending
on the original coordinates in the input image, on each side with the
already integrated segments.

To calibrate the synchronization between PS and PL partitions to
minimize execution latency [53], we tune the parallelization of sub-
image acceleration on PL, where either layers from the same sub-image
(as tasks) execute on all IP cores or layers from different images
interleave [54].

Formally, given a set of acceleration IP cores 𝐼1, .., 𝐼𝑙, we define
the latency 𝑅(𝐿(𝑆), 𝐼) of a layer execution L to process a sub-image
S on IP core I to be the time duration between the uploading of
sub-image S to PL and the execution termination of L. We write L(S)
to refer to the processing of S by L. Thus, 𝑅(𝐿𝑚(𝑆), 𝐼) refers to the
response time of executing S on I since 𝐿𝑚 is the last layer in the CNN
architecture. The calibration amounts analyze the response time of the
previous sub-images batch (reassembling, acceleration), compare the
PS and PL performance, and adjust the parallelization of sub-images
execution. The performance estimation and comparison is given by the
specification in Eq. (2):
𝑅(𝑅𝑒𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑒(𝑆1, .., 𝑆𝑘)𝑖1) > max

∑

(𝑅𝑖−1(𝐿𝑚(𝑆𝑗), 𝐼𝑥)) (2)

𝑗

5
This constraint states that if the response time of the last sub-images
reassembling in PS, from receiving the first processed sub-image 𝑆1
to the previous one 𝑆𝑘, is larger than the maximum response time of
the sub-images acceleration in PL, the scheduler will consider reducing
the parallelization, as described later. Accordingly, at any time point
𝑡 if the PS partition is faster than the PL partition, according to the
performance comparison defined earlier, the scheduling of a layer 𝐿𝑖
to process sub-image 𝑆𝑗 is computed as described in Eq. (3):

𝑆𝑐ℎ𝑒𝑑(𝐿𝑖(𝑆𝑗), 𝑡) = 𝐼𝑥 ∣ ∀𝑦

⎧

⎪

⎨

⎪

⎩

𝑅(𝐿𝑖(𝑆𝑗), 𝐼𝑥) ≤ 𝑅(𝐿𝑖(𝑆𝑗), 𝐼𝑦)
∧

¬∃ 𝑘 𝑙 𝑆𝑐ℎ𝑒𝑑(𝐿𝑘(𝑆𝑙), 𝑡) = 𝐼𝑦
(3)

Implementing this constraint decreases the interleaving of layer exe-
cution for sub-images during runtime, subsequently enhancing latency.
This reduction allows for the storage of fewer intermediate results
and minimizes the utilization of AXI buses, ultimately contributing
to improved execution performance. The control module of the IPs
dynamically adjusts the allocation of layers and sub-images based on in-
puts from the Processing System (PS) and adherence to the constraints
above. Parallel processing from different sub-images can be increased,
and real-time random computation of hardware allocation is facilitated
to achieve a more efficient mapping with reduced latency as given in
Eq. (4):
𝑆𝑐ℎ𝑒𝑑(𝐿𝑖(𝑆𝑗), 𝑡) = 𝐼𝑥 ∣ ∀𝑦𝑅(𝐿𝑖(𝑆𝑗), 𝐼𝑥) ≤ 𝑅(𝐿𝑖(𝑆𝑗), 𝐼𝑦) (4)

Lastly, an initial static binding of the template layers to the IP cores
is established, which will be dynamically adjusted at runtime based on
the computational load of adaptive CNN layers. The computation load
of a given layer, denoted as 𝐿𝑖, is quantified by the computation cost
of its activation functions, denoted as | |, benchmarked on the target
FPGA board [55], as stated in Eq. (5):

𝑙𝑜𝑎𝑑(𝐿𝑖) =
𝑛𝑖
∑

1
|𝑁 .

𝑖𝑓 | (5)

Accordingly, as given in Eq. (6), a layer is defined to be NEUTRAL
if it has an empty computation load, i.e., to simulate an inactive layer
where all activation functions are neutral.
𝑁𝐸𝑈𝑇𝑅𝐴𝐿(𝐿𝑖) = {∀𝑗 𝑁 𝑗

𝑖 .𝑓 = 𝑁𝑒𝑢𝑡𝑟𝑎𝑙} (6)

At runtime, when a layer is excluded from the CNN template due
to having a neutral load in the adaptive architecture, the original
IP core designated to execute that excluded layer, denoted as 𝐿𝑖, is
repurposed to execute the subsequent layer in the sequence. This is
to avoid computing an entirely new schedule. Meanwhile, the outputs
presumed to be generated by layer 𝐿𝑖 are utilized as inputs for the next
layer in the CNN architecture. Consequently, this dynamic adjustment
in the runtime schedule ensures that the next layer, denoted as 𝐿𝑖 + 1,
is scheduled for execution using the IP core initially assigned to 𝐿𝑖.
Namely, the scheduling update is given in Eq. (7).
𝑆𝑐ℎ𝑒𝑑(𝐿𝑖, 𝑡) = −1 if 𝑁𝐸𝑈𝑇𝑅𝐴𝐿(𝐿𝑖) (7)

Accordingly, whenever a layer 𝐿𝑖 becomes neutral, the scheduling
of the next layers 𝐿𝑖+𝑧, with 𝑧 ∈ {1, 𝑚 − 𝑖} will be updated as stated in
Eq. (8).
𝑆𝑐ℎ𝑒𝑑(𝐿𝑖+𝑧, 𝑡) = 𝑆𝑐ℎ𝑒𝑑(𝐿𝑖+𝑧−1, 𝑡 − 1) (8)

The schedule update is iterative, so whenever a layer is deacti-
vated, customization runs through mapping all layers and updating it
accordingly.

4. Implementation and performance evaluation

This section elaborates on the implementation and experiments and
compares the results to the state-of-the-art, with respect to accuracy,
computation performance, hardware utilization, and scalability.

J. Boudjadar et al.

Future Generation Computer Systems 169 (2025) 107777
Table 1
Summary of the experiments and tests performed.
 Exp∖Test values Test 1 Test 2 Test 3 Test 4 Test 5 Test 6
 Experiment set1
 (sub-image size) 12*12 18*18 24*24 28*28 34*34 52*52
 Experiment set2
 (layers number) 3 4 5 6 7 8
 Experiment set3
 (neurons per layer) 32 64 128 256 512 1024
 Experiment set4
 (quantization) Q(2,14) Q(4,4) Q(8,8) Q(16,16) Q(32,16) Q(32,32)

4.1. Implementation

The implementation and testing of the proposed methodology uti-
lized the rapid prototyping PYNQ framework, as it allows for work at
a higher abstraction when interacting with the acceleration IP cores,
where those cores are wrapped as functions to call from the application
code in PS. This is particularly efficient when carrying out design space
exploration on Xilinx MPSoCs. PYNQ further enabled easy memory
allocation in the DDR RAM on the platform, making intermediate
storage of weights, biases, and fmaps possible.

The original implementation was made in Python due to the avail-
ability of tools and open-source libraries for image processing and
training the CNN network. Namely, Keras has been used to create
the CNN template, train and test it on the public data sets MNIST
and CODaN. Keras further enables easier storage of the CNN models
as it offers many different formats to store the networks, where, in
this case, the h5 format is used [56]. The training outcomes are then
supplied to the CNN template on the FPGA through an SD card for
runtime customization. The runtime customization configuration of the
CNN can be triggered upon reading the SD card or can as well be
time-triggered.

It was chosen to synthesize many independent IP cores. Each IP
core was created using Vitis HLS, where the IP core was implemented,
optimized using pragma, tested, synthesized, and exported to Vivado
to integrate later with the PS partition code. Furthermore, in the
implementation of the CNN template 𝑇 we considered the following:
𝑚 ≤ 6, 𝑛 ≤ 512 and ∑𝑚

𝑖=1 𝑛𝑖 ≤ 2048. When the current image block layers
have been processed, the CNN controller triggers a callback where the
next layers are determined and sent to the corresponding IP core set
in the Layer Controller. The implementation code, including CNN test
data, high-level synthesis of the hardware accelerators, and application
integration, is available here.1

4.2. Experiments

We have conducted a large set of experiments to analyze the perfor-
mance, accuracy, resource utilization, memory storage, and scalability
of the proposed acceleration architecture. We have considered the
following parameters to define the different experiments: sub-image
resolution (splitting size), activation functions, CNN depth (number of
layers), number of neurons per layer, and quantization size to represent
and store the CNN parameters and data. For each experiment, we
maintain all the parameters constant and only vary one at a time. Table
1 summarizes the experiment sets we conducted where the variable
parameters are highlighted in parenthesis. In total, 24 experiments
were carried out with more than 56 analyses, and for each experiment,
we assessed accuracy, resource utilization, and execution performance.

4.3. Results and discussion

Accuracy Analysis. The accuracy analysis was conducted on
MNIST and CODaN datasets with variable parameters. Fig. 4(a) presents

1 https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCk
cOojnVArsSiX.
6
the accuracy loss for the MNIST data set while varying the image split
size. Our model demonstrates an accuracy range of 93% to 97% in
both the 14 and 28 splitting experiments. This range falls within the
acceptable threshold compared to state-of-the-art analyses utilizing the
same datasets. For instance, previous studies such as [57] reported an
accuracy of 93%, while [58] achieved an accuracy of 96%. We observed
that the accuracy level is the same when a convolutional block of one
and two is used. However, a minimal accuracy loss is introduced when
the length of the convolution blocks is larger than two. Similarly, an
accuracy analysis is conducted on the CODaN dataset. Fig. 4(b) shows
the accuracy results where a higher accuracy loss is introduced due to
data being much larger and diverse compared to MNIST.

Computation Performance Analysis. In Fig. 5(a), the comprehen-
sive analysis of computation performance depicts the total execution
time and the acceleration time (hardware time) required for one adap-
tation of the CNN architecture and the processing of 10 images. In the
best case (Split28), our proposed acceleration environment processes
10 images in 18.5 s, including initial parsing of the CNN architecture,
image partitioning, reassembly, classification and another CNN parsing
via adaptation. A breakdown analysis of the execution reveals that up to
53% of the 18.5 s duration is used to read and parse both the initial and
the adaptation CNN configurations, each consisting of at least 140000
parameters from the SD card, and up to 10% to fetch the input images
from the SD card. Thus, the actual computation time to process 10
images with a split of 28 is 6.8 s, with an average of 0.68 s per image.
The experiment employing a 14 × 14 split executes in 68 s, while its
counterpart with a 28 × 28 split completes the processing in 18.5 s. One
can observe that a significant portion, approximately 80%, of the total
execution time for the 14 × 14 split is consumed outside the hardware
accelerators to fetch and store the high number of sub-images [18]. In
fact, the high processing time in PS is due to parsing the CNN template
(from an off-chip memory), computing new schedules to allocate the
acceleration cores, segmentation, and storage of the increased number
of 14 × 14 sub-images. This leads to heightened overhead time in PS
to reassemble processed sub-images and a higher frequency of sending
and retrieving sub-images between PS and PL partitions. By applying
a split of 52 × 52 (test case 6), the total processing time for the same
experiment as above converges to 1 s.

Since we have synthesized mainly two different IP core classes, one
for classification and one for convolution, we analyzed the execution
time of both hardware accelerators as depicted in Fig. 5(b). It can
be seen that the time spent performing CNN convolutions is largely
higher than the classification time. This is, in fact, due to convolution
being applied to all intermediate sub-images, whereas classification is
executed only once on the final (reassembled) image.

Hardware Utilization and Scalability analysis. Considering that
CNN size and image resolution significantly influence the overall re-
source utilization and scalability, we conducted various analyses by
adjusting the total number of CNN neurons and pixels per image.

In Fig. 6, the utilization of hardware fabric logic resources, in-
cluding RAM blocks (BRAM), digital signal processors (DSP), flip-flops
(FF), and look-up tables (LUT), is depicted for the CNN architectures
ranging from 32 to 2048 neurons. Notably, storage requirements ex-
hibit a quadratic increase with input size expansion. Conversely, DSPs,
FFs, and LUTs display linear growth, as these resources are statically
determined by the number of neurons rather than the input size. Con-
sequently, BRAM capacity may present a bottleneck for deploying CNNs
with more neurons. Given that the board we use contains 230K LUT,
the acceleration core can be scaled up to incorporate and process up
to 2700 neurons in parallel, however, this bottleneck can be bypassed
by reusing IP core circuits and serializing the execution of some of
the neurons although this can slow down execution pace. Furthermore,
typical neural networks contain far less than that large number of
neurons per layer.

Fig. 7 depicts the hardware resource utilization following the input
image size. One can see that BRAM and URAM have a linear complexity

https://keras.io/
https://www.tensorflow.org/datasets/catalog/mnist
https://github.com/Attila94/CODaN
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX

J. Boudjadar et al.

Fig. 4. Accuracy analysis on MNIST and CODaN datasets.

Fig. 5. Analysis of execution and acceleration time.

Fig. 6. PL resources utilization and scalability.

Future Generation Computer Systems 169 (2025) 107777

7

J. Boudjadar et al. Future Generation Computer Systems 169 (2025) 107777
Fig. 7. PL resources utilization following input image size.
Table 2
Comparison to the state-of-the-art.
 Ref Accuracy (%) Latency (s) FF LUT DSP BRAM
 Luo et al. [59] 95 0.33 49K 49K 44 93
 Wen et al. [60] 94 0.035 25K 20K 576 149
 Waseem et al.
[61]

– 0.11 43K 17K 25 173

 Wang et al.
[62]

89 2.19 131K 181K 576 435

 Huang et al.
[36]

– 2.5 – – – –

 Meshkini et al.
[57]

93 – – – – –

 Proposed
Approach

97 0.68 11K 14K 54 178

relative to the input image size, whereas DSPs, FFs, and LUTs do not
demonstrate any specific increase pattern. This might require further
investigation to identify a particular dependency pattern so that de-
ployment feasibility can be assessed early enough for the input image
sizes. However, it is important to state that the input image size does
not represent a deployment bottleneck given the modular processing
of images via splitting. Thus, high-resolution images can be processed
in a similar way via a larger number of splitting and reassembling
operations. Indeed, the number of splits to perform depends on the
maximum input size of the IP core adopted.

Since the customization involves the activation and deactivation
of acceleration core modules, as each IP is synthesized to execute
functions such as convolution, classification, and computation utilizing
distinct activation functions, we have observed that if the current layer
size is less than 50% of the original template layer size employed during
IP synthesis, up to 35% of the IP circuits remain inactive.

Comparison to the state-of-the-art. As stated earlier, the proposed
acceleration framework outperforms different state-of-the-art studies in
terms of accuracy [57,60]. Moreover, the achieved computation per-
formance (0.68 s/image) outperforms the computation performance of
2.5 s/image and 2.19 s/image achieved in [36] and [62], respectively.
This is, in fact, due to the parallelization of the sub-images processing,
with a dynamic overlapping (intra- and inter-subimage mapping), and
the efficient load balancing between PS and PL partitions. Thanks to
our efficient implementation, parallelization efficiency is not achieved
at the expense of large hardware sizes. Rather, the IP components
are re-utilized for sub-image processing, whereas the Pipeline direc-
tive executes the for-loops within each sub-image processing. Table
2 summarizes a comparison to the relevant state-of-the-art studies by
considering classification accuracy, computation performance, and the
number of hardware resources used for acceleration.
8
One can see that while delivering the highest accuracy and moder-
ate computation performance, the proposed acceleration requires one
of the lowest hardware resources set for acceleration. This will result
in high scalability to accelerate larger CNN architectures and achieve
high energy efficiency.

5. Conclusions and future work

This article developed a methodology for deploying adaptable, scal-
able, and hardware-accelerated convolutional neural networks on an
embedded platform for image processing applications. The proposed ar-
chitecture facilitates CNNs’ runtime adaptability and dynamic configu-
ration of the hardware accelerators to leverage execution performance.
The innovation lies in an iteration-free synthesis approach, where
hardware IPs are synthesized once and configured at runtime following
the CNN architecture, significantly reducing design and deployment
costs.

A prototype was implemented in Python to validate the feasibility
of the proposed acceleration and deployment processes. This prototype
enabled CNN training and parameter generation using Keras. Vitis HLS
was employed to synthesize and optimize hardware accelerators on
a Xilinx FPGA board, while the PYNQ environment integrated the
software application with the synthesized hardware accelerators.

Extensive experiments, encompassing datasets such as MNIST and
CODaN with up to 180,000 parameters, were conducted to evaluate the
execution performance, accuracy, resource utilization, and scalability.
The results indicate that our prototype surpasses the state-of-the-art in
terms of accuracy and deployment cost, especially when changes to the
CNN architecture or functionality do not necessitate IP core synthesis.

In the future, we aim to enhance adaptability by incorporating a
broader range of activation functions and strive for better alignment
of computation loads across IP accelerators to optimize response time.
Additionally, automated inference of optimized configurations during
initial hardware synthesis will be crucial for further development. It is
also worth investigating efficient on-chip memory utilization to reduce
the off-chip bottleneck and improve the latency further.

CRediT authorship contribution statement

Jalil Boudjadar: Writing – original draft, Visualization, Software,
Methodology, Investigation, Conceptualization. Saif Ul Islam: Writ-
ing – original draft, Visualization, Validation, Project administration.
Rajkumar Buyya: Writing – review & editing, Validation, Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

J. Boudjadar et al. Future Generation Computer Systems 169 (2025) 107777
Data availability

Code, CNN test data, high- level synthesis of the hardware accelera-
tors, and application integration are available at: https://e.pcloud.link/
publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX.

References

[1] R. Miikkulainen, J. Liang, E. Meyerson, A. Rawal, D. Fink, O. Francon, B. Raju,
H. Shahrzad, A. Navruzyan, N. Duffy, B. Hodjat, Evolving deep neural networks,
2024.

[2] A. Haleem, M. Javaid, M. Asim Qadri, R. Pratap Singh, R. Suman, Artificial
intelligence (AI) applications for marketing: A literature-based study, Int. J. Intell.
Netw. 3 (2022) 119–132.

[3] Z. Wang, M. Goudarzi, M. Gong, R. Buyya, Deep reinforcement learning-based
scheduling for optimizing system load and response time in edge and fog
computing environments, 152, 2024, pp. 55–69,

[4] A. Khdoudi, T. Masrour, I. El Hassani, C. El Mazgualdi, A deep-reinforcement-
learning-based digital twin for manufacturing process optimization, Systems 12
(2) (2024) 38.

[5] M. Rafiei, J. Boudjadar, M.P. Griffiths, M.-H. Khooban, Deep learning-based
energy management of an all-electric city bus with wireless power transfer, IEEE
Access 9 (2021) 43981–43990.

[6] B. Saleem, R. Badar, A. Manzoor, M.A. Judge, J. Boudjadar, S.U. Islam, Fully
adaptive recurrent neuro-fuzzy control for power system stability enhancement
in multi machine system, IEEE Access 10 (2022) 36464–36476.

[7] N. Hu, D. Zhang, K. Xie, W. Liang, K.-C. Li, A.Y. Zomaya, Dynamic multi-scale
spatial–temporal graph convolutional network for traffic flow prediction, Future
Gener. Comput. Syst. 158 (2024) 323–332.

[8] P.W. McCulloch WS, A logical calculus of the ideas immanent in nervous activity,
Bull. Math. Biophys. 52 (1943) 115–133.

[9] P. Freire, S. Srivallapanondh, B. Spinnler, A. Napoli, N. Costa, J.E. Prilepsky,
S.K. Turitsyn, Computational complexity optimization of neural network-based
equalizers in digital signal processing: A comprehensive approach, J. Lightwave
Technol. 42 (12) (2024) 4177–4201.

[10] Y. Wang, Y. Han, C. Wang, S. Song, Q. Tian, G. Huang, Computation-efficient
deep learning for computer vision: A survey, Cybern. Intell. (2024).

[11] R. Miikkulainen, J. Liang, E. Meyerson, A. Rawal, D. Fink, O. Francon, B. Raju,
H. Shahrzad, A. Navruzyan, N. Duffy, B. Hodjat, Evolving deep neural networks,
in: Artificial Intelligence in the Age of Neural Networks and Brain Computing
(Second Edition), Academic Press USA (2024), pp. 269–287.

[12] M. Yasir, S. Liu, X. Mingming, J. Wan, S. Pirasteh, K.B. Dang, ShipGeoNet: SAR
image-based geometric feature extraction of ships using convolutional neural
networks, IEEE Trans. Geosci. Remote Sens. (2024).

[13] X. Zhao, L. Wang, Y. Zhang, X. Han, M. Deveci, M. Parmar, A review of
convolutional neural networks in computer vision, Artif. Intell. Rev. 57 (4)
(2024).

[14] Y. Zhang, A survey on evaluation methods for image segmentation, Pattern
Recognit. 29 (8) (1996) 1335–1346.

[15] A. Zafar, M. Aamir, N. Mohd Nawi, A. Arshad, S. Riaz, A. Alruban, A.K. Dutta, S.
Almotairi, A comparison of pooling methods for convolutional neural networks,
Appl. Sci. 12 (17) (2022).

[16] G.D. Licciardo, C. Cappetta, L. Di Benedetto, Design of a convolutional two-
dimensional filter in FPGA for image processing applications, Computers 6 (2)
(2017).

[17] P. Grzesik, D. Mrozek, Combining machine learning and edge computing:
Opportunities, challenges, platforms, frameworks, and use cases, Electronics 13
(3) (2024) 640.

[18] Y. Wan, X. Xie, J. Chen, K. Xie, D. Yi, Y. Lu, K. Gai, ADS-CNN: Adaptive dataflow
scheduling for lightweight CNN accelerator on FPGAs, Future Gener. Comput.
Syst. 158 (2024) 138–149.

[19] S. Bertazzoni, L. Canese, G.C. Cardarilli, L. Di Nunzio, R. Fazzolari, M. Re,
S. Spanò, Design space exploration for edge machine learning featured by
MathWorks FPGA DL processor: A survey, IEEE Access (2024).

[20] P. Kumar, I. Ali, D.-G. Kim, S.-J. Byun, D.-G. Kim, Y.-G. Pu, K.-Y. Lee, A study
on the design procedure of re-configurable convolutional neural network engine
for FPGA-based applications, Electronics 11 (23) (2022).

[21] J.G. Reis, A.A. Fröhlich, Towards deterministic FPGA reconfiguration, Int. J.
Embed. Syst. 13 (2) (2020) 236–253.

[22] Y. Yang, C. Wang, X. Zhou, Drama: A high efficient neural network accelerator
on FPGA using dynamic reconfiguration: Work-in-progress, in: Proceedings of
Intl. Conf. on Hardware/Software Codesign and System Synthesis Companion,
2019.

[23] M. Sponner, B. Waschneck, A. Kumar, Adapting neural networks at runtime:
Current trends in at-runtime optimizations for deep learning, ACM Comput. Surv.
56 (10) (2024).
9
[24] A. Dimitriou, B. Biggs, J. Hare, G.V. Merrett, FPGA acceleration of dynamic
neural networks: Challenges and advancements, in: 2024 IEEE International
Conference on Omni-Layer Intelligent Systems, COINS, 2024.

[25] E. Jaballi, S. Gdaim, N. Liouane, Design and implementation of FPGA-based
hardware acceleration for machine learning using opencl: A case study on the
K-means algorithm, in: 2024 International Conference on Control, Automation
and Diagnosis, ICCAD, 2024.

[26] A. El Bouazzaoui, A. Hadjoudja, O. Mouhib, N. Cherkaoui, FPGA-based ML
adaptive accelerator: A partial reconfiguration approach for optimized ML
accelerator utilization, Array 21 (2024).

[27] K.P. Seng, P.J. Lee, L.M. Ang, Embedded intelligence on FPGA: Survey,
applications and challenges, Electronics 10 (2021).

[28] K. Shi, M. Wang, X. Tan, Q. Li, T. Lei, Efficient dynamic reconfigurable CNN
accelerator for edge intelligence computing on FPGA, Information 14 (3) (2023).

[29] T.S. Ajani, A.L. Imoize, A.A. Atayero, An overview of machine learning within
embedded and mobile devices–optimizations and applications, Sensors 21 (13)
(2021) 4412.

[30] A. Fanariotis, T. Orphanoudakis, K. Kotrotsios, V. Fotopoulos, G. Keramidas,
P. Karkazis, Power efficient machine learning models deployment on edge IoT
devices, Sensors 23 (2023).

[31] I. Kuon, R. Tessier, J. Rose, FPGA architecture: Survey and challenges, Found.
Trends® Electron. Des. Autom. 2 (2) (2008) 135–253.

[32] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, Z. Zhang, High-level syn-
thesis for FPGAs: From prototyping to deployment, IEEE Trans. Comput.-Aided
Des. Integr. Circuits Syst. 30 (4) (2011) 473–491.

[33] S. Branco, A.G. Ferreira, J. Cabral, Machine learning in resource-scarce embedded
systems, FPGAs, and end-devices: A survey, Electronics 8 (11) (2019) 1289.

[34] J. Jakobsen, M. Jensen, I. Sharifirad, J. Boudjadar, A flexible implementation
model for neural networks on FPGAs, in: International Conference on Intelligent
Systems Design and Applications, Springer, 2022, pp. 332–342.

[35] F. Ratto, Á.P. Máinez, C. Sau, P. Meloni, G. Deriu, S. Delucchi, M. Massa, L. Raffo,
F. Palumbo, An automated design flow for adaptive neural network hardware
accelerators, J. Signal Process. Syst. 95 (9) (2023) 1091–1113.

[36] C.-H. Huang, S.-W. Tang, P.-A. Hsiung, ACNNE: An adaptive convolution engine
for CNNs acceleration exploiting partial reconfiguration on FPGAs, in: 2024 IEEE
International Symposium on Circuits and Systems, ISCAS, 2024.

[37] H. Tong, K. Han, S. Han, Y. Luo, Design of a generic dynamically reconfigurable
convolutional neural network accelerator with optimal balance, Electronics 13
(2024).

[38] C. Wang, L. Gong, Q. Yu, X. Li, Y. Xie, X. Zhou, DLAU: A scalable deep learning
accelerator unit on FPGA, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.
36 (3) (2016) 513–517.

[39] K. Neshatpour, H.M. Mokrani, A. Sasan, H. Ghasemzadeh, S. Rafatirad, H.
Homayoun, Architectural considerations for FPGA acceleration of machine learn-
ing applications in MapReduce, in: Proceedings of Intl. Con. on Embedded
Computer Systems: Architectures, Modeling, and Simulation, 2018, pp. 89–96.

[40] V. Gokhale, A. Zaidy, A.X.M. Chang, E. Culurciello, Snowflake: An efficient hard-
ware accelerator for convolutional neural networks, in: 2017 IEEE International
Symposium on Circuits and Systems, ISCAS, 2017.

[41] P. Meloni, A. Capotondi, G. Deriu, M. Brian, F. Conti, D. Rossi, L. Raffo, L.
Benini, NEURAghe: Exploiting CPU-FPGA synergies for efficient and flexible CNN
inference acceleration on zynq socs, ACM Trans. Reconfigurable Technol. Syst.
11 (3) (2018).

[42] S.I. Venieris, C.-S. Bouganis, FpgaConvNet: Mapping regular and irregular con-
volutional neural networks on FPGAs, IEEE Trans. Neural Netw. Learn. Syst. 30
(2) (2019).

[43] C. Gao, F. Zhang, FPGA-based accelerator for independently recurrent neu-
ral network, in: 2018 IEEE 4th International Conference on Computer and
Communications, ICCC, 2018.

[44] A. Xilinx, AWS Cloud: Xilinx FPGAs in world’s largest cloud. https://www.xilinx.
com/products/design-tools/acceleration-zone/aws.html.

[45] H. Li, A. Kadav, I. Durdanovic, H. Samet, H.P. Graf, Pruning filters for efficient
convnets, 2016, arXiv preprint arXiv:1608.08710.

[46] S. Qian, H. Liu, C. Liu, S. Wu, H.S. Wong, Adaptive activation functions in
convolutional neural networks, Neurocomputing 272 (2018) 204–212.

[47] A. Nechi, L. Groth, S. Mulhem, F. Merchant, R. Buchty, M. Berekovic, FPGA-
based deep learning inference accelerators: Where are we standing? ACM Trans.
Reconfigurable Technol. Syst. 16 (4) (2023).

[48] A.G. Blaiech, K.B. Khalifa, C. Valderrama, M.A. Fernandes, M.H. Bedoui, A survey
and taxonomy of FPGA-based deep learning accelerators, J. Syst. Archit. 98
(2019) 331–345.

[49] A.M.D. Xilinx, https://www.xilinx.com/applications/megatrends/machine-
learning.html.

[50] S. Bose, A. Mukherjee, Madhulika, S. Chakraborty, S. Samanta, N. Dey, Parallel
image segmentation using multi-threading and k-means algorithm, in: 2013 IEEE
International Conference on Computational Intelligence and Computing Research,
2013.

[51] T. Yan, G. Chen, H. Zhang, G. Wang, Z. Yan, Y. Li, S. Xu, Q. Zhou, R. Shi,
Z. Tian, B. Wang, Convolutional neural network with parallel convolution scale
attention module and ResCBAM for breast histology image classification, Heliyon
10 (2024).

https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb1
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb1
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb1
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb1
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb1
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb2
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb2
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb2
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb2
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb2
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb3
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb3
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb3
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb3
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb3
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb4
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb4
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb4
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb4
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb4
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb5
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb5
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb5
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb5
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb5
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb6
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb6
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb6
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb6
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb6
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb7
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb7
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb7
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb7
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb7
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb8
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb8
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb8
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb9
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb9
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb9
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb9
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb9
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb9
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb9
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb10
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb10
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb10
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb11
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb11
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb11
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb11
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb11
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb11
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb11
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb12
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb12
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb12
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb12
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb12
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb13
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb13
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb13
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb13
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb13
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb14
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb14
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb14
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb15
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb15
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb15
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb15
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb15
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb16
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb16
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb16
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb16
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb16
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb17
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb17
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb17
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb17
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb17
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb18
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb18
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb18
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb18
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb18
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb19
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb19
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb19
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb19
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb19
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb20
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb20
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb20
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb20
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb20
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb21
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb21
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb21
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb22
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb22
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb22
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb22
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb22
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb22
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb22
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb23
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb23
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb23
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb23
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb23
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb24
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb24
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb24
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb24
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb24
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb25
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb25
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb25
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb25
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb25
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb25
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb25
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb26
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb26
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb26
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb26
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb26
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb27
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb27
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb27
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb28
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb28
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb28
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb29
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb29
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb29
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb29
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb29
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb30
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb30
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb30
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb30
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb30
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb31
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb31
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb31
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb32
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb32
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb32
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb32
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb32
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb33
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb33
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb33
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb34
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb34
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb34
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb34
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb34
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb35
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb35
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb35
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb35
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb35
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb36
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb36
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb36
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb36
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb36
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb37
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb37
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb37
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb37
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb37
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb38
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb38
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb38
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb38
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb38
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb39
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb39
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb39
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb39
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb39
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb39
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb39
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb40
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb40
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb40
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb40
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb40
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb41
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb41
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb41
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb41
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb41
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb41
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb41
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb42
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb42
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb42
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb42
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb42
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb43
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb43
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb43
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb43
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb43
https://www.xilinx.com/products/design-tools/acceleration-zone/aws.html
https://www.xilinx.com/products/design-tools/acceleration-zone/aws.html
https://www.xilinx.com/products/design-tools/acceleration-zone/aws.html
http://arxiv.org/abs/1608.08710
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb46
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb46
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb46
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb47
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb47
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb47
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb47
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb47
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb48
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb48
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb48
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb48
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb48
https://www.xilinx.com/applications/megatrends/machine-learning.html
https://www.xilinx.com/applications/megatrends/machine-learning.html
https://www.xilinx.com/applications/megatrends/machine-learning.html
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb50
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb50
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb50
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb50
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb50
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb50
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb50
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb51
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb51
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb51
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb51
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb51
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb51
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb51

J. Boudjadar et al. Future Generation Computer Systems 169 (2025) 107777
[52] C.-N. Lu, Y.-C. Chang, W.-C. Chiu, Bridging the Visual Gap: Wide-Range Image
Blending , in: 2021 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, CVPR, 2021.

[53] J. Boudjadar, S. Ramanathan, A. Easwaran, U. Nyman, Combining task-level
and system-level scheduling modes for mixed criticality systems, in: 2019
IEEE/ACM 23rd International Symposium on Distributed Simulation and Real
Time Applications (DS-RT), 2019.

[54] B. Madzar, J. Boudjadar, J. Dingel, T.E. Fuhrman, S. Ramesh, Formal analysis
of predictable data flow in fault-tolerant multicore systems, in: Formal Aspects
of Component Software, 2017.

[55] H. Sharma, J. Park, D. Mahajan, E. Amaro, J.K. Kim, C. Shao, A. Mishra, H.
Esmaeilzadeh, From high-level deep neural models to FPGAs, in: Intl. Symposium
on Microarchitecture, MICRO, 2016.

[56] The HDF Group, 2022. https://www.hdfgroup.org/solutions/hdf5/.
[57] K. Meshkini, J. Platos, H. Ghassemain, An analysis of convolutional neural

network for fashion images classification (fashion-MNIST), in: Proceedings of
Conf. on Intelligent Information Technologies for Industry, 2020.

[58] K. Cheng, R. Tahir, L.K. Eric, M. Li, An analysis of generative adversarial
networks and variants for image synthesis on MNIST dataset, Multimedia Tools
Appl. 79 (2020) 13725–13752.

[59] Y. Luo, X. Cai, J. Qi, D. Guo, W. Che, FPGA–accelerated CNN for real-time plant
disease identification, Comput. Electron. Agric. 207 (2023).

[60] L.C. Hongxing Wen, Software and hardware synergy for accelerated plant disease
identification, Appl. Soft Comput. 61 (2024).

[61] S.M. Waseem, S.K. Roy, Chapter 10 - fully convolutional network for edge
devices—FPGA implementation and analysis for agriculture technology, in: Agri
4.0 and the Future of Cyber-Physical Agricultural Systems, Academic Press
(2024), 2024, pp. 175–196.

[62] X. Wang, Z. Zhou, Z. Yuan, J. Zhu, Y. Cao, Y. Zhang, K. Sun, G. Sun, FD-CNN:
A frequency-domain FPGA acceleration scheme for CNN-based image-processing
applications, ACM Trans. Embed. Comput. Syst. 22 (2023).

Jalil Boudjadar is an Associate Professor at the Department
of Electrical and Computer Engineering, Aarhus University
Denmark. He is leading the Cyber-Physical Systems group,
and member of the DIGIT research center. Jalil received his
PhD degree from Toulouse University, France, in December
2012. His research interests include the design, validation,
and optimization of embedded systems; hardware acceler-
ation; cyber-physical systems and digital twins; real-time
systems and scheduling theories; applied artificial intelli-
gence; and adaptive runtime engineering. Dr. Boudjadar
publsihed more than 100 papers in different international
venues, and is leading different research projects.

Saif Ul Islam received a Ph.D. degree from Université
de Toulouse, Toulouse, France, in 2015 under the super-
vision of Prof. Jean-Marc Pierson, the head of Institut
de Recherche en Informatique de Toulouse (IRIT). He is
currently a Research Fellow at WMG, The University of
Warwick, UK, where he serves as the lead researcher on
the EU Horizon project INSAFEDARE. Additionally, he is
contributing to the AutoTrust project, a research initiative
focused on exploring new ideas and challenges in smart
mobility. Previously, he was an Associate Professor with
the Department of Computer Science, Institute of Space
Technology, Islamabad, Pakistan, and an Assistant Professor
with COMSATS University, Islamabad, Pakistan. He has
published his research in various reputed journals. He serves
as a member of the editorial board for two journals and is
also guest-editing a few special issues in different journals.
His research interests include parallel and distributed com-
puting, sustainable computing, artificial intelligence, health
informatics, fog computing, edge computing, and machine
learning.

Rajkumar Buyya is a Redmond Barry Distinguished Pro-
fessor and Director of the Quantum Cloud Computing and
Distributed Systems (qCLOUDS) Laboratory at the Univer-
sity of Melbourne, Australia. He is also serving as the
founding CEO of Manjrasoft Pty Ltd., a spin-off company
of the University, commercializing its innovations in Cloud
Computing. He served as a Future Fellow of the Australian
Research Council during 2012–2016. He serving/served as
Honorary/Visiting Professor for several elite Universities
including Imperial College London (UK), University of Birm-
ingham (UK), University of Hyderabad (India), and Tsinghua
10
University (China). He received B.E and M.E in Computer
Science and Engineering from Mysore and Bangalore Uni-
versities in 1992 and 1995 respectively; and a Doctor
of Philosophy (Ph.D.) in Computer Science and Software
Engineering from Monash University, Melbourne, Australia
in 2002. He was awarded Dharma Ratnakara Memorial
Trust Gold Medal in 1992 for his academic excellence
at the University of Mysore, India. He received Richard
Merwin Award from the IEEE Computer Society (USA) for
excellence in academic achievement and professional efforts
in 1999. He received Leadership and Service Excellence
Awards from the IEEE/ACM International Conference on
High Performance Computing in 2000 and 2003. He re-
ceived "Research Excellence Awards" from the University of
Melbourne for productive and quality research in computer
science and software engineering in 2005 and 2008. He
acknowledges all researchers and institutions worldwide for
their consideration in building on software systems created
by his CLOUDS Lab and recognizing them through citations
and contributing to their further enhancements. With over
156,200 citations, a gindex of 374, and an h-index of 171,
he is one of the highly cited authors in computer science
and software engineering worldwide. He received the Chris
Wallace Award for Outstanding Research Contribution 2008
from the Computing Research and Education Association
of Australasia, CORE, which is an association of university
departments of computer science in Australia and New
Zealand. Dr. Buyya received the "2009 IEEE TCSC Medal
for Excellence in Scalable Computing" for pioneering the
economic paradigm for utility-oriented distributed comput-
ing platforms such as Grids and Clouds. He served as
the founding Editor-in-Chief (EiC) of IEEE Transactions on
Cloud Computing (TCC). Dr. Buyya is recognized as a
"Web of Science Highly Cited Researcher" for seven times
since 2016, Scopus Researcher of the Year 2017 with
Excellence in Innovative Research Award by Elsevier, and
"Lifetime Achievement Awards" from two Indian universities
for his outstanding contributions to Cloud computing and
distributed systems. He has been recognized as the "Best of
the World" twice for research fields (in Computing Systems
in 2019 and Software Systems in 2021) as well as "Life-
time Achiever" and "Superstar of Research" in "Engineering
and Computer Science" discipline twice (2019 and 2021)
by the Australian Research Review. Recently, he received
"Research Innovation Award" from IEEE Technical Commit-
tee on Services Computing and "Research Impact Award"
from IEEE Technical Committee on Cloud Computing. Dr.
Buyya has contributed to the creation of high-performance
computing and communication system software for PARAM
supercomputers developed by the Centre for Development
of Advanced Computing (C-DAC), India. He has pioneered
Economic Paradigm for Service-Oriented Distributed Com-
puting and demonstrated its utility through his contribution
to conceptualization, design and development of Grid and
Cloud Computing technologies such as Aneka, GridSim,
Libra, NimrodG, Gridbus, and Cloudbus that power the
emerging eScience and eBusiness applications. He has been
awarded, over $8 million, competitive research grants from
various national and international organizations including
the Australian Research Council (ARC), Sun Microsystems,
StorageTek, IBM, and Microsoft, CA Australia, Australian
Dept. of Innovation, Industry, Science and Research (DIISR),
and European Council. Dr. Buyya has been remarkably
productive in a research sense and has converted much of
that knowledge into linkages with industry partners (such
as IBM, Sun and Microsoft), into software tools useful to
other researchers in a variety of scientific fields, and into
community endeavours. Software technologies for Grid and
Cloud computing developed under Dr. Buyya’s leadership
have gained rapid acceptance and are in use at several
academic institutions and commercial enterprises in 50+
countries around the world. In recognition of this, he
received Vice Chancellor’s inaugural "Knowledge Transfer
Excellence (Commendation) Award" from the University of
Melbourne in Nov 2007. Manjrasoft’s Aneka technology for
Cloud Computing developed under Dr.Buyya’s leadership
has received "2010 Asia Pacific Frost & Sullivan New
Product Innovation Award". Recently, Dr. Buyya received
"Bharath Nirman Award" and "Mahatma Gandhi Award"

http://refhub.elsevier.com/S0167-739X(25)00072-X/sb52
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb52
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb52
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb52
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb52
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb53
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb53
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb53
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb53
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb53
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb53
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb53
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb54
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb54
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb54
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb54
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb54
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb55
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb55
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb55
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb55
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb55
https://www.hdfgroup.org/solutions/hdf5/
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb57
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb57
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb57
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb57
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb57
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb58
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb58
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb58
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb58
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb58
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb59
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb59
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb59
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb60
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb60
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb60
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb61
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb61
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb61
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb61
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb61
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb61
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb61
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb62
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb62
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb62
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb62
http://refhub.elsevier.com/S0167-739X(25)00072-X/sb62

J. Boudjadar et al. Future Generation Computer Systems 169 (2025) 107777
along with Gold Medals for his outstanding and extraor-
dinary achievements in Information Technology field and
services rendered to promote greater friendship and India-
International cooperation.
 Dr. Buyya has authored/co-authored over 850 publica-
tions. Since 2007, he received twelve "Best Paper Awards"
from international conferences/journals including a "2009
Outstanding Journal Paper Award" from the IEEE Commu-
nications Society, USA. He has co-authored five text books:
Microprocessor x86 Programming (BPB Press, New Delhi,
India, 1995), Mastering C++ (McGraw Hill Press, India,
1st edition in 1997 and 2nd edition in 2013), Object Ori-
ented Programming with Java: Essentials and Applications
(McGraw Hill, India, 2009), Mastering Cloud Computing
(Morgan Kaufmann, USA; McGraw Hill, India, 2013; China
Machine Press, 2015), and Cloud Data Centers and Cost
Modeling (Morgan Kaufmann, USA, 2015). The books on
emerging topics that he edited include, High Performance
Cluster Computing (Prentice Hall, USA, 1999), High Per-
formance Mass Storage and Parallel I/O (IEEE and Wiley
Press, USA, 2001), Content Delivery Networks (Springer,
Germany, 2008), Market Oriented Grid and Utility Com-
puting (Wiley Press, USA, 2009), and Cloud Computing:
Principles and Paradigms (Wiley, USA, 2011). He also edited
proceedings of over 25 international conferences published
by prestigious organizations, namely the IEEE Computer
Society Press (USA) and Springer Verlag (Germany). He
served as Associate Editor of Elsevier’s Future Generation
Computer Systems Journal (2004–2009) and currently serv-
ing on editorial boards of many journals including Software:
11
Practice and Experience (Wiley Press). Dr. Buyya served as
a speaker in the IEEE Computer Society Chapter Tutorials
Program (from 1999–2001), Founding Co-Chair of the IEEE
Task Force on Cluster Computing (TFCC) from 1999–2004,
and member of the Executive Committee of the IEEE
Technical Committee on Parallel Processing (TCPP) from
2003–2011. He served as the first elected Chair of the IEEE
Technical Committee on Scalable Computing (TCSC) during
2005–2007 and played a prominent role in the creation
and execution of several innovative community programs
that propelled TCSC into one of the most successful TCs
within the IEEE Computer Society. In recognition of these
dedicated services to computing community over a decade,
President of the IEEE Computer Society presented Dr. Buyya
a Distinguished Service Award in 2008.
 Dr. Buyya is a Fellow of IEEE, Foreign Fellow of
Academia Europaea, and Life Member of ACM. He has co-
founded five IEEE/ACM international conferences: CCGrid,
Cluster, Grid, e-Science, and UCC (Utility and Cloud Com-
puting) and served as the Chair of their inaugural meetings.
He served as a Member of the IEEE Computer Society
Fellow Evaluating Committee in 2015, 2018, and 2021. He
has presented over 600 invited talks (keynotes, tutorials,
and seminars) on his vision on IT Futures and advanced
computing technologies at international conferences and
institutions in Asia, Australia, Europe, North America, and
South America. For further information on Dr. Buyya, please
visit: http://www.buyya.com

http://www.buyya.com

	Dynamic FPGA reconfiguration for scalable embedded artificial intelligence (AI): A co-design methodology for convolutional neural networks (CNN) acceleration
	Introduction
	Related Work
	Adaptive Acceleration Methodology
	Proposed Adaptive CNN Architecture
	Proposed Acceleration Customization

	Implementation and Performance Evaluation
	Implementation
	Experiments
	Results and Discussion

	Conclusions and Future Work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

