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 A B S T R A C T

In recent years, FPGA platforms have shown significant potential for accelerating artificial intelligence (AI) 
applications, particularly in Embedded AI. While various studies have explored adaptive AI deployment on 
FPGAs, there remains a gap in methodologies fully integrating software adaptability with FPGA hardware 
reconfigurability. This article presents a novel end-to-end co-design methodology for deploying adaptable and 
scalable Convolutional Neural Networks (CNNs) on FPGA platforms. The framework enhances computational 
performance and reduces latency by dynamically modifying hardware acceleration units by combining CNN 
architecture adaptability with dynamic partial reconfiguration of FPGA hardware. The proposed methodology 
enables automated synthesis and runtime customization of both hardware accelerators and CNN architectures, 
eliminating the need for iterative synthesis. This approach has been implemented and tested on a Xilinx XC7020 
FPGA board for a CNN-based image classifier, achieving superior computation performance (0.68s/image) and 
accuracy (97%) compared to state-of-the-art alternatives.
1. Introduction

Over the last decade, Convolutional Neural Networks (CNN) [1] are 
used in solving complex problems such as classification, recognition, 
regression, prediction, and optimization [2–7]. Solving complex tasks 
by mimicking the human brain and its biological neural network has 
been a topic for decades and was first opened up for debate in the 
40s [8]. It is, however, only in the most recent years that CNN has been 
seen as a viable technology due to constraints enforced by the network 
sizes and the underlying computation complexity. This is due to the 
sheer amount of resources needed for utilizing CNN [9] to their full 
potential, especially for computationally intensive models that utilize 
kernel filters to extract spatial information from images [10].

CNNs are deep learning models formed by several layers of neurons 
that rely on accumulating the knowledge mathematically from baseline 
training to infer decisions based on the input data [11]. Neurons of a 
layer are connected to some or all of the neurons from the adjacent 
layers to pass processing results. The neuron connections are weighted 
with coefficients to determine how much each input will contribute to 
the output in the next layer. Each neuron is associated with a bias value 
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to be added to the output computation of the neuron. The weights and 
biases are computed through a training process [12].

CNNs extract features from the input images by recognizing the 
key patterns present in each image so as to classify them following 
the training and calibration of the CNN parameters so that the clas-
sification converges towards the pattern having the optimal output 
value [13]. CNNs may involve different image processing features such 
as segmentation, Max-pooling, and convolution. In fact, image segmen-
tation enables an image to be processed in multiple smaller segments 
independently, where the calculations can be sent to dedicated hard-
ware accelerators, a cluster of computational nodes, or a distributed 
system, thus achieving a short computation latency [14]. Max Pooling 
reduces a matrix of weighted pixels spatially into a smaller matrix by 
maintaining the highly informative pixels to reduce the computation 
cost without degrading the accuracy too much [15]. Convolution is the 
most computationally expensive operation as it amounts to multiplying 
an input image matrix with a kernel to generate a new image, called
fmap [16]. The convolution works by sliding the kernel image over the 
input image, where each position of the kernel will generate a new pixel 
by multiplying each value in the kernel with the respective position of 
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the kernel value in the input image. Convolution usually represents a 
fertile source for acceleration, given the many computation operations 
that can be performed in parallel.

Machine learning solutions, specifically CNN-based applications, 
often utilize cloud technology, where the actual network is deployed 
on powerful computation servers, making the inference speed relatively 
quick. For many application domains such as IoT and control systems, 
the deployment technology for CNN-based software solutions is re-
cently undergoing a significant transformation, shifting from a cloud to 
edge and embedded computing [17–20]. This was to (1) enable ubiqui-
tous and pervasive computing and reduce the connectivity dependency; 
(2) facilitate parallel execution of multiple layers and modules of the 
CNNs, thus reducing the execution latency and synchronizing with 
high-frequency data sources; (3) process and extract features directly 
from the data source to reduce data communication cost and security 
threats; (4) cope with privacy concerns and the nascent GDPR.

However, an intrinsic challenge for the platform-aware design and 
adaptation of applications targeting FPGAs is the expensive synthesis 
cost for acceleration hardware and the lack of automated customization 
of the synthesized computation resources and CNN architecture at run-
time [21]. For conventional acceleration frameworks, a new synthesis 
of the hardware acceleration cores is needed every time the deployed 
CNN changes because the acceleration cores are synthesized for a given 
software functionality [20,22]. Another factor that can harden this 
challenge comes from the fact that a CNN can adapt its architecture 
at runtime (changes to the overall CNN structure, number of layers, 
size of layers, and other hyper-parameters) following changes in the 
input data space to reduce the computation burden and adjust the CNN 
functionality [23].

Over the last few years, a substantial effort has been devoted to 
accelerating CNNs on reconfigurable embedded platforms to process 
images [19,21,24–28]. However, to the best of the author’s knowledge, 
none of the research studies considered optimizing the costly hardware 
synthesis operation and acceleration performance by combining both 
CNN adaptability and FPGA reconfigurability in a single design approach
where both software and hardware are reconfigurable at runtime [29,
30], so that to leverage the execution performance and flexibility and 
reduce further the deployment cost of CNNs on FPGAs.

This article proposes a new co-design and deployment approach to 
leverage computation performance and latency for adaptive CNNs on 
FPGA platforms. The proposed approach enables iteration-free deploy-
ment to reduce the expensive cost of hardware accelerator synthesis. 
The accelerators are synthesized once and configured at runtime, using 
a combination of fine-grained and coarse-grained customization, fol-
lowing the adaptive CNN architecture. The CNN adaptability is secured 
upon an on-the-fly upload of new configurations (network structure 
and hyper-parameters) to the FPGA at runtime. The proposed design 
and deployment have been implemented to accelerate and deploy a 
CNN-based image classifier on a Xilinx ZYBO XC7020 FPGA. Compu-
tation performance, accuracy, resource utilization, and scalability are 
analyzed and compared to the state of the art. The major contributions 
of the article are summarized as follows:

1. A novel co-design and deployment framework that integrates 
adaptive CNN with FPGA platforms. The model eliminates the 
need for iterative synthesis, significantly reducing the costs and 
time associated with hardware accelerator deployment.

2. The proposed methodology leverages dynamic partial reconfigu-
ration of FPGA hardware to accommodate changes in CNN archi-
tecture and hyper-parameters during runtime. This approach en-
sures the high adaptability of CNNs, enabling on-the-fly updates 
to the network structure and parameters.

3. By combining fine-grained and coarse-grained hardware cus-
tomizations with adaptive CNN architecture, the model enhances 
computation performance and reduces latency. The co-design 
approach ensures that FPGA platforms can maximize the effi-
ciency of hardware accelerators tailored to specific application 
requirements.
2 
4. The proposed framework has been implemented and tested using 
a CNN-based image classifier on the Xilinx ZYBO XC7020 FPGA 
board. Detailed analysis of computation performance, accuracy, 
resource utilization, and scalability has been conducted, with 
results compared to state-of-the-art approaches to demonstrate 
the effectiveness and improvements of the proposed model.

5. The article contributes to the field of Embedded AI by presenting 
a comprehensive end-to-end methodology that combines CNN 
architecture adaptability with FPGA dynamic reconfiguration. 
This advancement facilitates deploying scalable and adaptable 
AI applications on FPGA platforms, pushing the boundaries of 
what is achievable in hardware-accelerated AI.

The rest of the article is organized as follows: Section 2 presents 
the state-of-the-art for acceleration architectural models and describes 
the relevant work. Section 3 explains the proposed methodology for 
customized acceleration of adaptive CNNs. Section 4 elaborates on 
the implementation and experiments using Xilinx XC7020 FPGA and 
compares the results to the state-of-the-art. Finally, Section 5 concludes 
the paper.

2. Related work

A Field Programmable Gate Arrays (FPGA) is a computation plat-
form composed of a conventional processing system (PS) and pro-
grammable logic (PL) [31]. PS is a conventional computer system that 
possesses processing cores (ARM processor), memories and caches. In 
contrast, PL is a set of fabric circuits (Flip-flops, registers, look-up 
tables, DSP, RAM blocks, etc.) that can be compiled to synthesize extra 
(user-defined) processing and storage components dedicated to execut-
ing given software functions. Compiling a set of circuits to implement 
the functionality of a software code as a hardware core is called High-
level synthesis (HLS) [32]. The hardware components resulting from 
the HLS of a software function are called Intellectual Property, IP for 
short. IP cores are usually described using an HDL language such as 
VHDL or Verilog. They can be seen as functional blocks coupled with PS 
to execute a software system much faster by parallelizing and splitting 
the execution between PS and PL.

Machine learning-empowered systems are often deployed in dy-
namic environments. Being able to change the machine learning model 
post-deployment could be of capital interest to ensure high accuracy 
and performance through adaptability. CNN adaptation is an update of 
the structure, connections, weights, and other hyper-parameters of the 
CNN architecture [6,23,24]. The adaptation can be performed offline 
or at runtime, mainly triggered by changes in the data stream and new 
training results, etc.

An IP core is synthesized for the network model to accelerate a 
CNN. Thus, runtime adaptability of a CNN may require re-synthesizing 
IPs and re-programming the FPGA, which is a complex and expensive 
task [24,25]. A hardware IP reconfiguration is a customization of the 
generic IP functionality to execute a modified version of the original 
software used for the synthesis [21,26]. Such automated customiza-
tion is captured by tuning some of the IP parameters based on the 
benchmark attributes of the input software.

Strong effort has been devoted to implementing CNNs adaptabil-
ity [20,23,26,33] and runtime reconfiguration of FPGA hardware accel-
erators [20,21,24,28,34]. However, the literature still lacks adequate 
tooling and studies that tie the CNN adaptability and the hardware 
reconfigurability to design and deploy customizable CNN hardware 
accelerators [24,29,35].

Bouazzaoui et al. [26] proposed a partial (coarse-grained) reconfig-
uration environment to accelerate the execution of machine learning 
models on FPGAs using dynamic classifier selection. Each classification 
model is implemented as a static accelerator to be activated and parsed 
to specific inputs at runtime. The identification of the most fitting 
classifier for incoming data, based on the K-Nearest Centroid approach, 
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at runtime has led to considerable reduction in the resources utilization 
of the FPGA platform. Huang et al. [36] introduced a partial (fine-
grained) reconfiguration architecture to accelerate CNN on FPGAs. The 
proposed acceleration relies on reconfiguring specific convolution layer 
hardware blocks according to the input model parameters at runtime. 
The partial reconfiguration of the IP blocks has led to high computation 
efficiency and decreased energy consumption.

Tong et al. [37] presented a highly unified generic acceleration 
architecture to accelerate different machine learning models such as 
standard CNNs, lightweight CNNs and CNNs with DeCONV layers by 
dynamically reconfiguring the hardware accelerator following the ar-
chitecture parameters of the input model. The acceleration architecture 
model reduces the overhead when deploying different models and 
enhances the overall resources utilization efficiency.

Kumar et al. [20] proposed a hardware customization architecture 
to execute CNN layers and enable intelligent edge computing. To cope 
with the data transfer bottleneck, the layers execution is performed 
using a linear task model. However, executing layers as a sequence 
may lead to higher latency and degrade the computation performance, 
notably, if the hardware accelerators enable overlapped execution [29].

To leverage FPGA flexibility for CNN applications, a dynamic model 
enabling runtime reconfiguration of FPGA hardware to accelerate dif-
ferent CNN architectures was proposed in [22]. Using a layer-clustering 
algorithm, the authors classify the CNN layers and generate optimal 
hardware configurations to execute each layer. However, one must 
run the expensive layers classification for each update to the CNN 
architecture.

Wang et al. [38] developed a scalable and cost-efficient FPGA 
accelerator for large-scale deep learning networks through a pipeline 
of three processing units to scale the performance and improve the 
throughput. However, data communication between the processing 
system and the acceleration units (PL) is a bottleneck [39]. To loosen 
the communication bottleneck between the FPGA processing system 
and the acceleration hardware, Shi et al. [28] proposed an acceleration 
model with optimized dynamic allocation, through a classification of 
layers, to hardware processing elements using AXI bus interfaces. How-
ever, the classification processing overhead contributes to degrading 
the execution performance.

Ratto et al. [35] proposed a toolchain to enable model-based adap-
tivity of CNNs and runtime reconfigurabilty of the underlying hardware 
accelerators. The proposed deployment relies on fine-grained reconfig-
uration of the hardware accelerators synthesized using ONNX parser 
and Vivado HLS by activating the subset of IP circuits corresponding to 
the functionality parameters in the CNN customization.

Zaidy et al. [40] developed an efficient, low-power accelerator 
to leverage the inherent parallelism in CNN architectures. The com-
putation efficiency resulted from implementing a set of ComputeCore
accelerators each of which integrates the maps, weights buffers and 
comparators. One can see that, the computation efficiency is achieved 
on the expense of hardware size area which could be a bottleneck for 
scalability. Meloni et al. [41] proposed a flexible hardware/software so-
lution to accelerate CNNs on Zynq SoCs via an efficient allocation of the 
Zynq ARM cores to hard-to-accelerate tasks whereas CNN computations 
are allocated to the hardware accelerator. Although the accelerator is 
static and the CNN architecture does not change at runtime, a flexibility 
results from the dynamic scheduling of the computation resources and 
control of the accelerator.

In this article, we develop an agile deployment model for accelerat-
ing CNNs using FPGA hardware. The proposed method involves altering 
the functionality of FPGA by partially reconfiguring its hardware re-
sources at runtime using both fine-grained (partial reconfiguration of IP 
cores) [36] and coarse-grained customization (dynamic mapping of IP 
cores) [26,42]. By combining CNN adaptability and FPGA reconfigura-
bility, the proposed approach enables users to easily shape adaptivity 
at model level, achieving thus application-specific HW accelerators. 
Specifically, we advance the hardware reconfiguration models in [22,
3 
Fig. 1. Proposed acceleration and deployment methodology.

26,36] by enabling the CNN to change its architecture at runtime, 
for which the hardware accelerators are automatically customized and
dynamically mapped to secure high computation performance. Com-
pared to the state of the art, the proposed co-design achieved a highly 
resource- and computation-efficient classification (0.68 s per image) 
while delivering one of the highest accuracy levels (97%).

3. Adaptive acceleration methodology

This section specifies the adaptive CNN architecture model and 
elaborates on how the hardware accelerators are customized at runtime 
following changes in the CNN template to leverage the execution 
performance.

The proposed methodology is depicted in Fig.  1. The hardware 
IP cores for acceleration are synthesized once at the design stage, 
from the software functionality using HLS, as standalone units flexible 
enough to accommodate runtime changes and integration of differ-
ent applications. The CNN parameters are stored in on-chip memory 
upon adaptation to leverage performance and achieve less memory 
access [43]. The red components in the figure are dynamic. The blue 
arrows are reconfiguration to the IP cores, and the dashed arrows are 
dynamic allocations of the computation tasks to the IP cores.

We also developed an optimized dynamic allocation of CNN layers 
to the accelerators to leverage the performance and latency [42], 
enabling a coarse-grained reconfiguration. Besides, a fine-grained re-
configuration is achieved upon specifying different activation functions 
within each IP core, where the corresponding functionality is activated 
using the CNN layer parameters [35]. Although this may lead to a large 
hardware area for each accelerator, it enables low-cost customization 
and high flexibility.

3.1. Proposed adaptive CNN architecture

As illustrated in the Amazon Elastic Compute Cloud F1 services
[44], having an adaptive CNN architecture that changes at runtime can 
secure customized service and better performance following changes 
in the customer’s functionality and input data. One way of achieving 
this is by implementing CNNs as a parameterized architecture where 
weights, bias, number of layers, neurons per layer, and connections 
can be updated with the input data at runtime. Enabling dynamic 
model adjustments at runtime ensures the system’s adaptability to 
changes in the environment or functional requirements. For instance, 
one model configuration could optimize efficiency, while an alternative 
configuration may prioritize accuracy [45].

We design the CNN model as a dynamic architecture (template) to 
be instantiated by the processing system PS every time an instantiation 
configuration of the template is provided. The runtime customization of 
the CNN model dynamically maps template parameters to the specific 
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Fig. 2. Example of CNN adaptation and HW reconfiguration.

configuration parameters governing neurons, layers, and connections 
in the architecture. This mechanism ensures an efficient adaptation 
via instantiation. Once an instance of the CNN template is carried 
out every time a configuration is provided, further customization is 
performed via: (1) deactivation of the connections having null weights: 
connections between neurons that hold weights equal to zero are 
identified and deactivated. This eliminates unnecessary computations, 
as such connections do not contribute to the forward or backward 
propagation; (2) deactivation of Neurons with no active, outgoing 
connections: each neuron is analyzed for active outgoing connections. If 
all outgoing connections of a neuron are deactivated, the neuron itself 
becomes redundant and is subsequently deactivated. This step further 
reduces the computational load by removing idle neurons from the 
computational graph; (3) deactivation of each layer if all its neurons 
are deactivated: Entire layers are subject to deactivation if all neurons 
within the layer are deactivated due to a lack of outgoing connections. 
This step simplifies the model architecture by removing layers that do 
not contribute to the network’s output.

Formally, we specify a neuron 𝑁 = ⟨𝑓, 𝑏⟩ through an activation 
function 𝑓 () [46] and bias 𝑏 ∈ R. Besides, we define a CNN layer 
𝐿 = ⟨𝑁1 …𝑁𝑛

⟩ as a set of neurons 𝑁 𝑖. A CNN template 𝑇  is then given 
by:

𝑇 = ⟨𝐿1, 𝐿2, .., 𝐿𝑚,⟩

where  ∈ 𝐿𝐼×𝐿𝐼×R+ specifies the neuron connections given as weight 
coefficients. The template 𝑇  is the original model architecture to be 
customized at runtime.

For the sake of notation, we denote the neuron 𝑁 𝑗 within layer 𝐿𝑖
as 𝑁𝑖𝑗 . Likewise, the weight of a connection between a source neuron 
𝑁𝑠 and a destination neuron 𝑁𝑑 is represented as 𝑤𝑑

𝑠 . For instance, 𝑤21
12

is the weight connecting neuron 𝑁2
1  to neuron 𝑁1

2 .
We characterize a configuration, denoted as 𝐶, as the dynamic 

modification to the CNN template at runtime, achieved by adjusting 
parameters and activation or deactivating neurons, connections, and 
layers. Specifically, a configuration 𝐶 ⊆ 𝑇 ∗ constitutes a subset of 
the template, specifying values for a portion of the actual parameters. 
These modifications encompass alterations to the activation functions, 
the number of layers and neurons per layer, and connections between 
layers and neuron-related parameters.

For the sake of simplicity, we represent 𝐶 as a function that gener-
ates a new template 𝑇 ′ = 𝐶(𝑇 ) from the actual template 𝑇  as stated in 
Eq. (1): 

𝑇 ′ = 𝑇 |

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

∀𝑖 𝑗,𝑁 𝑗
𝑖 ∈ 𝐶 ⟹

⎧

⎪

⎨

⎪

⎩

𝑇 ′.𝐿𝑖.𝑁 𝑗 .𝑓 = 𝑁 𝑗
𝑖 .𝑓

𝑇 ′.𝐿𝑖.𝑁 𝑗 .𝑏 = 𝑁 𝑗
𝑖 .𝑏

∀𝑥𝑦 𝑇 ′..𝑤𝑥𝑦
𝑖𝑗 = 𝐶..𝑤𝑥𝑦

𝑖𝑗

∀𝑖 𝑗,𝑁 𝑗
𝑖 ∉ 𝐶 ⟹

⎧

⎪

⎨

𝑇 ′.𝐿𝑖.𝑁 𝑗 .𝑓 = 𝑁𝑒𝑢𝑡𝑟𝑎𝑙
𝑇 ′.𝐿𝑖.𝑁 𝑗 .𝑏 = 0

(1)
⎪

⎩

⎪

⎩

∀𝑥 𝑦 𝑇 ′..𝑤𝑥𝑦
𝑖𝑗 = 0
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Fig.  2 illustrates the adaptation of a CNN template, image (a), 
to a new configuration, image (b), where elements greyed out (2 
neurons, one layer, and many connections) are deactivated. Moreover, 
the activation function of the first hidden layer changed from F1 to F3. 
This has led to adjusting the acceleration cores allocation and active 
modules within the cores as explained in Section 3.2.

Recognizing the potential variability in layers, we omit explicit 
iteration on layers, considering it implicitly accomplished through neu-
ron iteration. To ensure scalability for the efficient processing of large 
CNNs, even if the platform imposes limitations on the width of layers 
(number of neurons acquired and processed simultaneously), it should 
support the ability to partition layers into sub-layers for processing 
across multiple iterations. However, it is crucial to note that such a 
layer split necessitates the segmentation of bias vectors and weight 
matrices. This introduces a notable overhead in the time required to 
reconstruct the processed layers. It is important to acknowledge that 
the exploration of layer-splitting options goes beyond the scope of this 
article.

3.2. Proposed acceleration customization

Although FPGAs are limited in computation and storage resources, 
many recent analyses have shown that FPGAs can form a promising 
ground for the deployment and acceleration of future deep learning 
applications given the parallelization of FPGAs and the pipeline-based 
architecture of neural networks [47,48]. Moreover, FPGA-based accel-
eration enables application flexibility and deployment optimization as 
explicit design steps. As an example of the potential of FPGAs, Amazon 
Elastic Compute Cloud (Amazon Web Services EC2) F1 instances are 
Xilinx FPGAs reconfigured to accelerate data workloads supporting 
machine learning inference [44], providing 90x higher performance 
than CPUs [49].

The proposed customization of acceleration cores encompasses fine-
grained and coarse grained reconfiguration at runtime. The customiza-
tion strategy focuses on key operational aspects to achieve seamless 
parallelism and reduced memory footprint. Firstly, it involves mapping 
layers processing from sub-images to distinct IP cores. This assignment 
adheres to specific guidelines such that either two layers belonging 
to the same sub-image are mapped to different IP cores (Intra-Sub-
Image Mapping), or layers from different sub-images are allocated to 
different IP cores (Inter-Sub-Image Mapping), facilitating local data 
exchange between IP cores. This runtime arrangement promotes ef-
ficient local data exchange between IP cores, thus reducing latency 
and ensuring that intermediate computation results are available for 
subsequent processing without unnecessary communication overhead. 
Secondly, by monitoring the processing balance between the PS and 
the IP cores, the customization enables offloading an IP core if the 
layers’ processing by a given IP core outpaces the image reassembly and 
reconstruction handled by the PS partition. This step ensures a balanced 
workflow, maintains synchronization between PS and PL partitions, and 
curtails the storage requirements for intermediate results, as each result 
produced by IP cores is immediately transferred and used by PS.

Lastly, each acceleration core is equipped with the capability to 
execute multiple activation functions (e.g., ReLU, Sigmoid, etc.) im-
plemented as modular components. The customization incorporates an 
automated mechanism to activate or deactivate these functional blocks 
based on the runtime CNN adaptation configuration. This adaptive 
approach ensures that the IP reconfiguration aligns seamlessly with the 
customization of the CNN template. 

The capability of dynamic mapping and offloading of acceleration 
cores is a valuable optimization feedback mechanism for the image-
splitting process [42]. It allows for dynamic adjustments to the size 
and quantity of sub-images per image. When PL partition demonstrates 
superior performance, opting for larger sub-images becomes advanta-
geous, as it effectively diminishes the storage requirements for interim 
results. This reduction in storing intermediate results subsequently 
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Fig. 3. Multi-module architecture for PL partition.

lowers the processing system’s reassembly cost. Conversely, if the accel-
eration lags behind the PS performance, considering smaller sub-images 
and allocating layers from the same sub-image to the acceleration cores 
becomes a valuable choice to balance PS-PL workload and latency.

A thorough exploration of the hardware architecture and partition-
ing design space was undertaken to enhance the customization and 
performance. The findings pointed to a promising architecture: creating 
two hardware partitions, illustrated in Fig.  3, each containing two 
processing modules. This choice arises from the advantageous ability to 
parallelize sub-image processing and implement a pipelining approach 
for different functions (such as convolution and classification) within 
the same sub-image processing.

Given that input images might have large sizes due to high res-
olution, we consider image segmentation, where each input image 
is divided into smaller sub-images [50]. The partitions overlap with 
one pixel to preserve boundary information, as CNN operations like 
convolution rely on neighborhood data. Each sub-image is passed in-
dependently through the CNN layers, performing convolution, pooling, 
and activation operations. The results (feature maps) for each sub-
image are computed separately. To integrate the sub-images processing 
results, we apply image reassembling [51]. In fact, image reassem-
bling combines the resulting sub-images to recreate a feature map 
corresponding to the original input image. This involves aligning the 
outputs correctly based on their spatial relationships in the original im-
age. Overlapping areas between sub-images must be handled to avoid 
artifacts or inconsistencies in the reconstructed feature map, where 
methods like averaging or blending may be used to ensure a smooth 
transition. In our case, we adopt blending [52], where each newly 
integrated segment overrides a one-pixel row or column depending 
on the original coordinates in the input image, on each side with the 
already integrated segments. 

To calibrate the synchronization between PS and PL partitions to 
minimize execution latency [53], we tune the parallelization of sub-
image acceleration on PL, where either layers from the same sub-image 
(as tasks) execute on all IP cores or layers from different images 
interleave [54].

Formally, given a set of acceleration IP cores 𝐼1, .., 𝐼𝑙, we define 
the latency 𝑅(𝐿(𝑆), 𝐼) of a layer execution L to process a sub-image
S on IP core I to be the time duration between the uploading of 
sub-image S to PL and the execution termination of L. We write L(S) 
to refer to the processing of S by L. Thus, 𝑅(𝐿𝑚(𝑆), 𝐼) refers to the 
response time of executing S on I since 𝐿𝑚 is the last layer in the CNN 
architecture. The calibration amounts analyze the response time of the 
previous sub-images batch (reassembling, acceleration), compare the 
PS and PL performance, and adjust the parallelization of sub-images 
execution. The performance estimation and comparison is given by the 
specification in Eq. (2): 
𝑅(𝑅𝑒𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑒(𝑆1, .., 𝑆𝑘)𝑖1 ) > max

∑

(𝑅𝑖−1(𝐿𝑚(𝑆𝑗 ), 𝐼𝑥)) (2)

𝑗

5 
This constraint states that if the response time of the last sub-images 
reassembling in PS, from receiving the first processed sub-image 𝑆1
to the previous one 𝑆𝑘, is larger than the maximum response time of 
the sub-images acceleration in PL, the scheduler will consider reducing 
the parallelization, as described later. Accordingly, at any time point 
𝑡 if the PS partition is faster than the PL partition, according to the 
performance comparison defined earlier, the scheduling of a layer 𝐿𝑖
to process sub-image 𝑆𝑗 is computed as described in Eq. (3): 

𝑆𝑐ℎ𝑒𝑑(𝐿𝑖(𝑆𝑗 ), 𝑡) = 𝐼𝑥 ∣ ∀𝑦

⎧

⎪

⎨

⎪

⎩

𝑅(𝐿𝑖(𝑆𝑗 ), 𝐼𝑥) ≤ 𝑅(𝐿𝑖(𝑆𝑗 ), 𝐼𝑦)
∧

¬∃ 𝑘 𝑙 𝑆𝑐ℎ𝑒𝑑(𝐿𝑘(𝑆𝑙), 𝑡) = 𝐼𝑦
(3)

Implementing this constraint decreases the interleaving of layer exe-
cution for sub-images during runtime, subsequently enhancing latency. 
This reduction allows for the storage of fewer intermediate results 
and minimizes the utilization of AXI buses, ultimately contributing 
to improved execution performance. The control module of the IPs 
dynamically adjusts the allocation of layers and sub-images based on in-
puts from the Processing System (PS) and adherence to the constraints 
above. Parallel processing from different sub-images can be increased, 
and real-time random computation of hardware allocation is facilitated 
to achieve a more efficient mapping with reduced latency as given in 
Eq. (4): 
𝑆𝑐ℎ𝑒𝑑(𝐿𝑖(𝑆𝑗 ), 𝑡) = 𝐼𝑥 ∣ ∀𝑦𝑅(𝐿𝑖(𝑆𝑗 ), 𝐼𝑥) ≤ 𝑅(𝐿𝑖(𝑆𝑗 ), 𝐼𝑦) (4)

Lastly, an initial static binding of the template layers to the IP cores 
is established, which will be dynamically adjusted at runtime based on 
the computational load of adaptive CNN layers. The computation load 
of a given layer, denoted as 𝐿𝑖, is quantified by the computation cost 
of its activation functions, denoted as | |, benchmarked on the target 
FPGA board [55], as stated in Eq. (5): 

𝑙𝑜𝑎𝑑(𝐿𝑖) =
𝑛𝑖
∑

1
|𝑁 .

𝑖𝑓 | (5)

Accordingly, as given in Eq. (6), a layer is defined to be NEUTRAL
if it has an empty computation load, i.e., to simulate an inactive layer 
where all activation functions are neutral. 
𝑁𝐸𝑈𝑇𝑅𝐴𝐿(𝐿𝑖) = {∀𝑗 𝑁 𝑗

𝑖 .𝑓 = 𝑁𝑒𝑢𝑡𝑟𝑎𝑙} (6)

At runtime, when a layer is excluded from the CNN template due 
to having a neutral load in the adaptive architecture, the original 
IP core designated to execute that excluded layer, denoted as 𝐿𝑖, is 
repurposed to execute the subsequent layer in the sequence. This is 
to avoid computing an entirely new schedule. Meanwhile, the outputs 
presumed to be generated by layer 𝐿𝑖 are utilized as inputs for the next 
layer in the CNN architecture. Consequently, this dynamic adjustment 
in the runtime schedule ensures that the next layer, denoted as 𝐿𝑖 + 1, 
is scheduled for execution using the IP core initially assigned to 𝐿𝑖. 
Namely, the scheduling update is given in Eq. (7). 
𝑆𝑐ℎ𝑒𝑑(𝐿𝑖, 𝑡) = −1 if 𝑁𝐸𝑈𝑇𝑅𝐴𝐿(𝐿𝑖) (7)

Accordingly, whenever a layer 𝐿𝑖 becomes neutral, the scheduling 
of the next layers 𝐿𝑖+𝑧, with 𝑧 ∈ {1, 𝑚 − 𝑖} will be updated as stated in 
Eq. (8). 
𝑆𝑐ℎ𝑒𝑑(𝐿𝑖+𝑧, 𝑡) = 𝑆𝑐ℎ𝑒𝑑(𝐿𝑖+𝑧−1, 𝑡 − 1) (8)

The schedule update is iterative, so whenever a layer is deacti-
vated, customization runs through mapping all layers and updating it 
accordingly.

4. Implementation and performance evaluation

This section elaborates on the implementation and experiments and 
compares the results to the state-of-the-art, with respect to accuracy, 
computation performance, hardware utilization, and scalability.
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Table 1
Summary of the experiments and tests performed.
 Exp∖Test values Test 1 Test 2 Test 3 Test 4 Test 5 Test 6  
 Experiment set1  
 (sub-image size) 12*12 18*18 24*24 28*28 34*34 52*52  
 Experiment set2  
 (layers number) 3 4 5 6 7 8  
 Experiment set3  
 (neurons per layer) 32 64 128 256 512 1024  
 Experiment set4  
 (quantization) Q(2,14) Q(4,4) Q(8,8) Q(16,16) Q(32,16) Q(32,32) 

4.1. Implementation

The implementation and testing of the proposed methodology uti-
lized the rapid prototyping PYNQ framework, as it allows for work at 
a higher abstraction when interacting with the acceleration IP cores, 
where those cores are wrapped as functions to call from the application 
code in PS. This is particularly efficient when carrying out design space 
exploration on Xilinx MPSoCs. PYNQ further enabled easy memory 
allocation in the DDR RAM on the platform, making intermediate 
storage of weights, biases, and fmaps possible.

The original implementation was made in Python due to the avail-
ability of tools and open-source libraries for image processing and 
training the CNN network. Namely, Keras has been used to create 
the CNN template, train and test it on the public data sets MNIST 
and CODaN. Keras further enables easier storage of the CNN models 
as it offers many different formats to store the networks, where, in 
this case, the h5 format is used [56]. The training outcomes are then 
supplied to the CNN template on the FPGA through an SD card for 
runtime customization. The runtime customization configuration of the 
CNN can be triggered upon reading the SD card or can as well be 
time-triggered.

It was chosen to synthesize many independent IP cores. Each IP 
core was created using Vitis HLS, where the IP core was implemented, 
optimized using pragma, tested, synthesized, and exported to Vivado 
to integrate later with the PS partition code. Furthermore, in the 
implementation of the CNN template 𝑇  we considered the following: 
𝑚 ≤ 6, 𝑛 ≤ 512 and ∑𝑚

𝑖=1 𝑛𝑖 ≤ 2048. When the current image block layers 
have been processed, the CNN controller triggers a callback where the 
next layers are determined and sent to the corresponding IP core set 
in the Layer Controller. The implementation code, including CNN test 
data, high-level synthesis of the hardware accelerators, and application 
integration, is available here.1

4.2. Experiments

We have conducted a large set of experiments to analyze the perfor-
mance, accuracy, resource utilization, memory storage, and scalability 
of the proposed acceleration architecture. We have considered the 
following parameters to define the different experiments: sub-image 
resolution (splitting size), activation functions, CNN depth (number of 
layers), number of neurons per layer, and quantization size to represent 
and store the CNN parameters and data. For each experiment, we 
maintain all the parameters constant and only vary one at a time. Table 
1 summarizes the experiment sets we conducted where the variable 
parameters are highlighted in parenthesis. In total, 24 experiments 
were carried out with more than 56 analyses, and for each experiment, 
we assessed accuracy, resource utilization, and execution performance.

4.3. Results and discussion

Accuracy Analysis. The accuracy analysis was conducted on
MNIST and CODaN datasets with variable parameters. Fig.  4(a) presents

1 https://e.pcloud.link/publink/show?code=XZvDN2ZW2YSsz7tHMQzevCk
cOojnVArsSiX.
6 
the accuracy loss for the MNIST data set while varying the image split 
size. Our model demonstrates an accuracy range of 93% to 97% in 
both the 14 and 28 splitting experiments. This range falls within the 
acceptable threshold compared to state-of-the-art analyses utilizing the 
same datasets. For instance, previous studies such as [57] reported an 
accuracy of 93%, while [58] achieved an accuracy of 96%. We observed 
that the accuracy level is the same when a convolutional block of one 
and two is used. However, a minimal accuracy loss is introduced when 
the length of the convolution blocks is larger than two. Similarly, an 
accuracy analysis is conducted on the CODaN dataset. Fig.  4(b) shows 
the accuracy results where a higher accuracy loss is introduced due to 
data being much larger and diverse compared to MNIST.

Computation Performance Analysis. In Fig.  5(a), the comprehen-
sive analysis of computation performance depicts the total execution 
time and the acceleration time (hardware time) required for one adap-
tation of the CNN architecture and the processing of 10 images. In the 
best case (Split28), our proposed acceleration environment processes 
10 images in 18.5 s, including initial parsing of the CNN architecture, 
image partitioning, reassembly, classification and another CNN parsing 
via adaptation. A breakdown analysis of the execution reveals that up to 
53% of the 18.5 s duration is used to read and parse both the initial and 
the adaptation CNN configurations, each consisting of at least 140000 
parameters from the SD card, and up to 10% to fetch the input images 
from the SD card. Thus, the actual computation time to process 10 
images with a split of 28 is 6.8 s, with an average of 0.68 s per image. 
The experiment employing a 14 × 14 split executes in 68 s, while its 
counterpart with a 28 × 28 split completes the processing in 18.5 s. One 
can observe that a significant portion, approximately 80%, of the total 
execution time for the 14 × 14 split is consumed outside the hardware 
accelerators to fetch and store the high number of sub-images [18]. In 
fact, the high processing time in PS is due to parsing the CNN template 
(from an off-chip memory), computing new schedules to allocate the 
acceleration cores, segmentation, and storage of the increased number 
of 14 × 14 sub-images. This leads to heightened overhead time in PS 
to reassemble processed sub-images and a higher frequency of sending 
and retrieving sub-images between PS and PL partitions. By applying 
a split of 52 × 52 (test case 6), the total processing time for the same 
experiment as above converges to 1 s.

Since we have synthesized mainly two different IP core classes, one 
for classification and one for convolution, we analyzed the execution 
time of both hardware accelerators as depicted in Fig.  5(b). It can 
be seen that the time spent performing CNN convolutions is largely 
higher than the classification time. This is, in fact, due to convolution 
being applied to all intermediate sub-images, whereas classification is 
executed only once on the final (reassembled) image.

Hardware Utilization and Scalability analysis. Considering that 
CNN size and image resolution significantly influence the overall re-
source utilization and scalability, we conducted various analyses by 
adjusting the total number of CNN neurons and pixels per image.

In Fig.  6, the utilization of hardware fabric logic resources, in-
cluding RAM blocks (BRAM), digital signal processors (DSP), flip-flops 
(FF), and look-up tables (LUT), is depicted for the CNN architectures 
ranging from 32 to 2048 neurons. Notably, storage requirements ex-
hibit a quadratic increase with input size expansion. Conversely, DSPs, 
FFs, and LUTs display linear growth, as these resources are statically 
determined by the number of neurons rather than the input size. Con-
sequently, BRAM capacity may present a bottleneck for deploying CNNs 
with more neurons. Given that the board we use contains 230K LUT, 
the acceleration core can be scaled up to incorporate and process up 
to 2700 neurons in parallel, however, this bottleneck can be bypassed 
by reusing IP core circuits and serializing the execution of some of 
the neurons although this can slow down execution pace. Furthermore, 
typical neural networks contain far less than that large number of 
neurons per layer.

Fig.  7 depicts the hardware resource utilization following the input 
image size. One can see that BRAM and URAM have a linear complexity 
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Fig. 4. Accuracy analysis on MNIST and CODaN datasets.

Fig. 5. Analysis of execution and acceleration time.

Fig. 6. PL resources utilization and scalability.
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Fig. 7. PL resources utilization following input image size.
Table 2
Comparison to the state-of-the-art.
 Ref Accuracy (%) Latency (s) FF LUT DSP BRAM 
 Luo et al. [59] 95 0.33 49K 49K 44 93  
 Wen et al. [60] 94 0.035 25K 20K 576 149  
 Waseem et al. 
[61]

– 0.11 43K 17K 25 173  

 Wang et al. 
[62]

89 2.19 131K 181K 576 435  

 Huang et al. 
[36]

– 2.5 – – – –  

 Meshkini et al. 
[57]

93 – – – – –  

 Proposed 
Approach

97 0.68 11K 14K 54 178  

relative to the input image size, whereas DSPs, FFs, and LUTs do not 
demonstrate any specific increase pattern. This might require further 
investigation to identify a particular dependency pattern so that de-
ployment feasibility can be assessed early enough for the input image 
sizes. However, it is important to state that the input image size does 
not represent a deployment bottleneck given the modular processing 
of images via splitting. Thus, high-resolution images can be processed 
in a similar way via a larger number of splitting and reassembling 
operations. Indeed, the number of splits to perform depends on the 
maximum input size of the IP core adopted.

Since the customization involves the activation and deactivation 
of acceleration core modules, as each IP is synthesized to execute 
functions such as convolution, classification, and computation utilizing 
distinct activation functions, we have observed that if the current layer 
size is less than 50% of the original template layer size employed during 
IP synthesis, up to 35% of the IP circuits remain inactive.

Comparison to the state-of-the-art. As stated earlier, the proposed 
acceleration framework outperforms different state-of-the-art studies in 
terms of accuracy [57,60]. Moreover, the achieved computation per-
formance (0.68 s/image) outperforms the computation performance of 
2.5 s/image and 2.19 s/image achieved in [36] and [62], respectively. 
This is, in fact, due to the parallelization of the sub-images processing, 
with a dynamic overlapping (intra- and inter-subimage mapping), and 
the efficient load balancing between PS and PL partitions. Thanks to 
our efficient implementation, parallelization efficiency is not achieved 
at the expense of large hardware sizes. Rather, the IP components 
are re-utilized for sub-image processing, whereas the Pipeline direc-
tive executes the for-loops within each sub-image processing. Table 
2 summarizes a comparison to the relevant state-of-the-art studies by 
considering classification accuracy, computation performance, and the 
number of hardware resources used for acceleration.
8 
One can see that while delivering the highest accuracy and moder-
ate computation performance, the proposed acceleration requires one 
of the lowest hardware resources set for acceleration. This will result 
in high scalability to accelerate larger CNN architectures and achieve 
high energy efficiency.

5. Conclusions and future work

This article developed a methodology for deploying adaptable, scal-
able, and hardware-accelerated convolutional neural networks on an 
embedded platform for image processing applications. The proposed ar-
chitecture facilitates CNNs’ runtime adaptability and dynamic configu-
ration of the hardware accelerators to leverage execution performance. 
The innovation lies in an iteration-free synthesis approach, where 
hardware IPs are synthesized once and configured at runtime following 
the CNN architecture, significantly reducing design and deployment 
costs.

A prototype was implemented in Python to validate the feasibility 
of the proposed acceleration and deployment processes. This prototype 
enabled CNN training and parameter generation using Keras. Vitis HLS 
was employed to synthesize and optimize hardware accelerators on 
a Xilinx FPGA board, while the PYNQ environment integrated the 
software application with the synthesized hardware accelerators.

Extensive experiments, encompassing datasets such as MNIST and 
CODaN with up to 180,000 parameters, were conducted to evaluate the 
execution performance, accuracy, resource utilization, and scalability. 
The results indicate that our prototype surpasses the state-of-the-art in 
terms of accuracy and deployment cost, especially when changes to the 
CNN architecture or functionality do not necessitate IP core synthesis.

In the future, we aim to enhance adaptability by incorporating a 
broader range of activation functions and strive for better alignment 
of computation loads across IP accelerators to optimize response time. 
Additionally, automated inference of optimized configurations during 
initial hardware synthesis will be crucial for further development. It is 
also worth investigating efficient on-chip memory utilization to reduce 
the off-chip bottleneck and improve the latency further.
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