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Abstract—A Dynamic Job-shop Scheduling Problem (DJSP) in
3C (i.e., Computer, Communication, and Consumer Electronics)
manufacturing requires efficient resource allocation under dy-
namically changing production conditions where jobs arrive un-
predictably. Traditional optimization methods struggle to provide
scalable solutions due to the high computational cost of searching
for the optimal schedules in large and complex environments.
To address this challenge, this work proposes a Dual Graph
convolutional networks-driven Dynamic Cooperative Hunting
Optimizer (DG-DCHO). It integrates Graph Convolutional Net-
works (GCN) with metaheuristic optimization to generate high-
quality schedules and significantly improve computational effi-
ciency. A GCN generator processes graph representations of job-
shop environment, captures complex dependencies among jobs
and machines, and constructs high-quality initial schedules for
the optimization process. A GCN evaluator estimates makespan
values directly from schedule representations and replaces costly
fitness evaluation, thereby minimizing computational overhead
and improving optimization speed. A Dynamic Cooperative Hunt-
ing Optimizer serves as a base optimizer and generates scheduling
solutions by balancing global exploration with local exploitation
through an adaptive search strategy. Experimental results across
various DJSP instances demonstrate that DG-DCHO consis-
tently outperforms advanced scheduling algorithms by producing
higher-quality solutions with reduced computational resources,
establishing it as a scalable and effective framework for real-
time dynamic scheduling of large-scale manufacturing systems.

Note to Practitioners—This paper is motivated by the practical
need to rapidly generate efficient production schedules for
complex job shops. We propose a novel automated approach,
DG-DCHO, which uses deep learning to learn the dependencies
of the production environment and rapidly generate high-quality
initial schedules. DG-DCHO also estimates schedule performance
without relying on lengthy simulations, accelerating the opti-
mization process with an adaptive algorithm. To apply this
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approach, practitioners would provide standard manufacturing
data, including the sequence of operations required for each
job, the constraints between operations, the list of available
machines, the potential machine assignments for each operation,
and the processing times. The system uses this information
to automatically build the required graph model, where DG-
DCHO optimizes and outputs the best scheduling sequence. This
results in the faster generation of more efficient production
schedules, improving responsiveness and productivity. Although
the simulation results are strong, practical implementation re-
quires integration with factory systems and initial training in
artificial intelligence models. Our future plans to extend the
proposed approach to addressing other dynamic optimization
challenges in logistics, intelligent manufacturing, and real-time
traffic management.

Index Terms—Dynamic job-shop scheduling, graph convolu-
tional networks, intelligent optimization algorithms, and deep
learning.

I. INTRODUCTION
The multi-constrained dynamic job-shop scheduling prob-

lem (DJSP) in 3C smart manufacturing is a notable optimiza-
tion challenge in production systems [1–3]. The 3C industry,
which includes Computer, Communication, and Consumer
Electronics, is characterized by short product lifecycles and
volatile demand, making agile and efficient resource alloca-
tion essential. As a result, the problem centers on assigning
machines to jobs under uncertain and dynamically changing
conditions. In such dynamic environments, the unpredictable
occurrence of machine breakdowns and changes in job prior-
ities increases the complexity of generating scheduling plans.

Traditional approaches to solving DJSP often rely on
meta-heuristic algorithms or exact optimization algorithms.
However, these methods can be computationally expensive,
particularly for large and complex problem instances [4, 5].
Meta-heuristic approaches, including genetic algorithms (GA)
and simulated annealing (SA), frequently exhibit a slow con-
vergence speed and yield suboptimal solutions due to their
exhaustive exploration of high-dimensional solution space
[6]. Although exact optimization techniques such as integer
programming and branch-and-bound algorithms theoretically
guarantee global optima, their exponential time complexity
makes them computationally intractable for sizable prob-
lems in time-sensitive operational contexts requiring real-time
decision-making capabilities [7].

To solve the aforementioned challenges, researchers have
increasingly turned to machine learning (ML) and reinforce-
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Fig. 1. The workflow of DG-DCHO. DJSP is modeled as a graph comprising operation and machine nodes, as well as different types of edges. Conjunctive
edges enforce intra-job precedence, disjunctive edges represent resource conflicts, and assignment edges link operations to corresponding machines. This
graph structure is fed into a GCN generator, which produces an initial population of feasible scheduling sequences, subsequently optimized by DCHO. During
optimization, operation nodes and sequential edges form topological graphs to train a GCN evaluator, which rapidly predicts sequence fitness, bypassing
time-consuming simulations. The final optimized schedule is executed to a 3C manufacturing production line.

ment learning (RL) approaches, which enable the development
of adaptive scheduling strategies that can dynamically respond
to environmental changes and system uncertainties [8–10].
Unlike traditional heuristics, ML-based methods can learn
from historical data and simulation feedback, capturing latent
patterns in complex scheduling space and improving gener-
alization to unseen scenarios [11]. Among these techniques,
graph-based neural models, particularly Graph Convolutional
Networks (GCNs), have shown considerable promise due to
the intrinsic structural nature of DJSP. However, GCN-based
methods face several critical challenges when applied to DJSP.
Generating high-quality schedules in real-time is challenging,
especially in large-scale or dynamic environments. Most ex-
isting models also lack the flexibility to adapt to real-world
constraints, such as machine breakdowns and rush orders [12].
This highlights the need for a unified framework that combines
GCNs for structural learning with dynamic adaptation in
complex 3C manufacturing settings.

Based on the above analysis, this work proposes a novel
hybrid framework that synergistically combines Dual Graph
(DG) convolutional networks with Dynamic Cooperative
Hunting Optimizer (DCHO) named DG-DCHO to solve DJSP
efficiently. It first employs two specialized GCN models, each
of which is designed to handle distinct aspects of a schedul-
ing process. 1) GCN generator produces a relatively high-
quality initial population of candidate schedules, represented
as sequences of operations assigned to jobs. It leverages the
topological structure of dynamic job-shop environment by
modeling jobs and machines as nodes in a bipartite graph,
where edges capture processing dependencies and resource
constraints. Through this graph-based representation, GCN can
encode both spatial and temporal interactions among opera-

tions, machines, and job precedence relationships in a compact
form. This enables the model to learn rich relational patterns
and generate feasible and efficient action sequences for further
optimization. 2) GCN evaluator estimates the quality of these
schedules by predicting the makespan, i.e., the total time
required to complete all jobs in the schedule. It processes these
sequences, which are first represented as scheduling graphs
by modeling operations as nodes and precedence/resource
constraints as directed edges, and provides an objective fitness
evaluation by assessing the temporal efficiency of each candi-
date solution. In this context, the fitness value corresponds
to the predicted makespan, indicating the schedule quality.
The evaluator incorporates attention mechanisms and global
pooling to capture higher-order dependencies in the scheduling
graph, providing a more robust prediction of the makespan.

The integration of DG with the optimization process is
further enhanced by DCHO combined with Cauchy mutation
[13]. This hybridization allows the algorithm to explore vast
solution space by balancing exploration and exploitation.
Inspired by cooperative hunting strategies, DCHO refines
solutions iteratively through cooperative behaviors, while the
Cauchy mutation introduces limited randomness to maximize
its chance to achieve the optimal schedules. By combin-
ing these advanced optimization techniques with GCNs, the
proposed algorithm can generate high-quality schedules by
dynamically adjusting population diversity, search trajectory,
and structural guidance throughout the scheduling process. The
workflow of DG-DCHO is shown in Fig. 1.

This work aims to make new contributions to the field of
DJSP in highly stochastic manufacturing environments. The
key contributions are summarized as follows.

1) A dual-GCN-driven learning framework is proposed to
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capture structural dependencies between jobs and ma-
chines, significantly reducing the reliance on resource-
intensive fitness evaluations. It overcomes the initializa-
tion bias and computational inefficiencies of traditional
optimization methods.

2) A cooperative metaheuristic algorithm named DCHO
is developed, integrating dynamic step size adjustment
and Cauchy mutation strategies to enhance both global
exploration and local exploitation in the presence of
dynamic disturbances.

3) DG-DCHO is developed as a unified hybrid approach,
combining the strengths of graph-based representation
learning and adaptive metaheuristic optimization to en-
able efficient and robust scheduling in large-scale and
real-time DJSP scenarios.

4) Extensive experiments on various DJSP benchmark in-
stances and 3C manufacturing simulations demonstrate
that DG-DCHO outperforms several state-of-the-art al-
gorithms in terms of makespan, convergence speed, and
robustness to dynamic disturbances.

The remainder of this work is organized as follows. Section
II reviews the related work. Based on the problem formula-
tion in Section III and the proposed algorithmic framework
in Section IV, Section V gives comprehensive experimental
results to validate the framework. Finally, Section VI provides
the conclusions.

II. RELATED WORK

This section reviews existing approaches to DJSP from
three perspectives: traditional optimization methods, machine
learning-based scheduling techniques, and hybrid frameworks
that combine metaheuristics with deep learning.

A. Traditional Optimization Methods

Traditional approaches to solving DJSP primarily rely on
meta-heuristic and exact optimization algorithms. Among
them, meta-heuristic methods such as GA, SA, and particle
swarm optimization (PSO) are widely adopted due to their
flexibility in navigating high-dimensional solution spaces. Xu
et al. [14] apply GA with adaptive mutation rates to mini-
mize makespan in static job shop environments, achieving a
12% improvement over rule-based schedulers. However, the
performance of GA degrades in dynamic settings due to its
slow convergence and limited adaptability to stochastic events
such as machine failures. To address these limitations, Feng et
al. [15] propose a two-stage NSGA variant tailored for multi-
objective DJSP. Their decomposition-based strategy reduces
computational complexity by 30% for small-scale instances
and demonstrates strong convergence performance in dynamic
scenarios. Nevertheless, frequent solution repairs caused by
redundant iterations significantly impact its effectiveness in
large-scale problems involving over 50 machines.

Rule-based heuristics, including classical dispatching rules
(e.g., shortest processing time, earliest due date), are favored
for their low computational cost and scalability in large-scale
DJSP. Bi et al. [16] integrate an adaptive optimizer with

a radial basis function network to derive near-optimal solu-
tions, demonstrating superior performance in high-dimensional
scheduling problems. In electronic manufacturing scenarios,
applying the Modified Due Date (MDD) rule reduces job tar-
diness by 18%. However, its rigid priority structure leads to the
25% increase in machine idle time. To enhance adaptability,
Zhao et al. [17] develop a fuzzy logic-based hybrid rule system
capable of dynamically adjusting priorities based on real-
time machine load. Despite improved flexibility, this approach
remains constrained by the manual design of rules, limiting its
scalability and generalization to unforeseen disruptions. Exact
optimization methods, such as Mixed-Integer Linear Program-
ming (MILP) and constraint programming, offer theoretical
guarantees of optimality by exhaustively exploring the solution
space. Wang et al. [18] model DJSP as an MILP problem with
temporal constraints and solve it using a branch-and-cut algo-
rithm. While their approach yields near-optimal schedules for
small-scale instances, it suffers from prohibitive computational
overhead when applied to large-scale job shop scenarios. To
improve computational efficiency, Zhang et al. [19] introduce
a hybrid branch-and-bound algorithm augmented with local
search, reducing computational cost by 40% through problem
decomposition. Despite these advancements, exact methods
remain impractical for real-time scheduling in dynamic en-
vironments such as 3C manufacturing, where job priorities
and machine availability frequently change. Moreover, exact
algorithms lack inherent adaptability to uncertainties such as
urgent job insertions or resource reconfigurations, limiting
their applicability in highly dynamic production settings.

B. Deep Learning-Based Scheduling Methods
The integration of deep learning into DJSP has transformed

adaptive scheduling by enabling data-driven decision. RL
methods, such as Deep Q-Networks (DQN) and policy gra-
dient algorithms, learn optimal scheduling strategies through
trial-and-error interactions with simulated environments. Luo
et al. [20] develop a DQN-based scheduler for partial-no-wait
DJSP, achieving a 22% reduction in makespan compared to
GA in Printed Circuit Board (PCB) manufacturing scenarios.
However, their model requires extensive training iterations to
reach convergence, limiting its suitability for time-sensitive
deployment. To address this limitation, Pan et al. [21] propose
a meta-reinforcement learning framework that enables policy
transfer across similar job-shop environments, reducing train-
ing time by 60%. Despite these improvements, RL approaches
still face challenges with sparse reward signals in large-scale
settings and often converge to suboptimal policies in systems
with more than 100 machines.

GNNs have emerged as a powerful paradigm for capturing
relational dependencies in DJSP. By modeling jobs and ma-
chines as nodes in a bipartite graph, GNNs can effectively
extract features and capture spatiotemporal interactions essen-
tial for scheduling in complex environments. Liu et al. [22]
propose a GNN-RL hybrid model that embeds job precedence
constraints and machine capacities into graph representations.
Their approach achieves a 15% reduction in makespan com-
pared to traditional heuristics in dynamic automotive assem-
bly lines. However, the model relies on large volumes of
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labeled training data, which are often expensive and difficult
to obtain in real-world industrial systems. Building on this,
Chen et al. [23] incorporate multi-head attention mechanisms
into the GNN framework to dynamically prioritize bottleneck
machines and high-priority jobs. While this improves adapt-
ability, the graph construction process introduces significant
computational overhead, especially in large-scale settings.
Their results indicate that preprocessing time increases sharply
when the number of machines exceeds 200. To alleviate
the burden of explicit graph modeling, recent studies have
explored transformer-based sequence scheduling architectures.
For instance, Zhao et al. [24] introduce a heterogeneous graph
transformer to model the temporal dependencies among opera-
tions, achieving state-of-the-art performance in semiconductor
scheduling tasks. However, due to the quadratic complexity
of the transformer on sequence length, its efficiency degrades
significantly when handling jobs with more than 50 operations,
limiting its scalability in practice.

C. Hybrid Optimization Frameworks

Hybrid frameworks that integrate metaheuristics with deep
learning seek to combine the global search capabilities of
optimization algorithms with the pattern recognition strengths
of neural networks. Zhang et al. [25] explore this direction
by combining genetic programming with instance-rotation
surrogates, enabling the dynamic evolution of scheduling
rules based on real-time performance feedback. Their method
achieves a 35% reduction in makespan variability under fluc-
tuating demand conditions but suffers from high-dimensional
action spaces in multi-objective scenarios. To address this limi-
tation, Lei et al. [26] propose a hierarchical RL architecture for
flexible job-shop scheduling, decomposing the problem into
task allocation and machine assignment layers. This structural
decoupling reduces computational delays by 24%. However,
the absence of efficient fitness evaluation mechanisms leads to
premature convergence in complex scheduling environments.

Graph-enhanced metaheuristics have also emerged as a
promising avenue. Inspired by the success of dual-GCN ar-
chitectures in hyperspectral image classification [27], Liu et
al. [28] embed graph convolutional layers into a teaching-
learning-based optimizer, allowing the algorithm to exploit
the topological structure of job-machine relationships. This
approach achieves a 20% reduction in makespan in static job
shop scenarios. Nonetheless, its performance deteriorates in
dynamic environments due to the use of fixed graph repre-
sentations. To enhance adaptability, Liu et al. [29] introduce
a dynamic graph update mechanism that reconfigures node
connections in response to real-time machine status, improving
adaptability in electronics manufacturing. Despite these ad-
vantages, the iterative graph reconstruction process introduces
considerable computational overhead, limiting the method’s
practicality in real-time applications. At the frontier of this
field, meta-heuristic and deep learning co-evolution frame-
works have shown promising results. Mou et al. [30] design a
hybrid algorithm combing PSO and a GNN-based surrogated
model, where the surrogated model predicts the makespan of
candidate solutions to accelerate fitness evaluation, achieving a

70% reduction in evaluation time. However, the model exhibits
reduced accuracy in highly dynamic environments, leading to
suboptimal schedule selection. To address this issue, Xiao et
al. [31] propose a Gaussian Mixture Model (GMM)-based
surrogate that quantifies prediction uncertainty, enabling more
robust filtering of candidate solutions. Although their method
achieves higher prediction accuracy in stable environments,
its performance declines to 65% under frequent machine
breakdowns in dynamic environments.

In summary, although existing hybrid frameworks show
promise in addressing the challenges of dynamic job shop
scheduling, they are still limited by several critical issues: sub-
optimal integration of graph-based initialization with adaptive
metaheuristics, high computational overhead from repeated fit-
ness evaluations, and insufficient robustness in highly stochas-
tic manufacturing environments. These limitations highlight
the need for a unified framework that effectively bridges graph-
driven schedule generation with adaptive optimization while
maintaining computational efficiency and resilience to real-
world uncertainties.

III. PROBLEM FORMULATION

DJSP in 3C smart manufacturing is a resource-constrained,
time-varying optimization problem that allocates jobs to ma-
chines while minimizing the total time to complete all jobs
(i.e., the makespan). DJSP is characterized by the dynamic
and stochastic nature of the environment, including variability
in production requirements, machine availability, and poten-
tial disruptions such as machine breakdowns and urgent job
insertions. The main notations are summarized in Table I.

TABLE I
MAIN PARAMETERS

Notation Definition

m Number of machines
n Number of jobs
k Number of operations in Ji

J Set of jobs, J = {J1, J2, . . . , Jn}
M Set of machines, M = {M1,M2, . . . ,Mm}
R Assignment of operations to machines
T Time required to process each operation
Oil l-th operation of Ji

Ril Machine assignment for Oil

Til Processing time of Oil

Sil Start time of Oil

Cil Completion time of Oil

Ĉ Makespan, i.e., maximum job completion time
Tw Waiting time due to scheduling conflicts on shared machines
xj
il Binary variable: 1 if Oil assigned to Mj , 0 otherwise

θ(Mj , Oil) Indicator: 1 if Oil can be assigned to Mj , 0 otherwise
Ci,l−1 Completion time of previous operation Oi,l−1 in Ji

Cab Completion time of another job’s operation on same machine
Aj(e) Availability of Mj at time e
Di Deadline for completion of Ji

A. Problem Definition

Fig. 2 illustrates a DJSP instance with six jobs and nine
machines, where each job follows a predefined sequence of
operations across multiple machines. The arrows of the same
color indicate the unique flow of a specific job, representing
the predefined sequence in which operations must be executed.
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Each job consists of a set of operations, and each operation is
assigned to a specific machine with a given processing time.

Fig. 2. DJSP Scenarios in 3C manufacturing.

Let M={M1,M2, . . . ,Mj , . . . ,Mm} denote a set of ma-
chines, where m is the number of machines, and let
J={J1, J2, . . . , Ji, . . . , Jn} denote a set of jobs, where n is
the number of jobs. Each Ji consists of a sequence of opera-
tions Oi={Oi1, Oi2, . . . , Oil, . . . , Oik}, where k is the number
of operations per job. The machine matrix R={Ril | Ril ∈
{0,M1,M2, . . . ,Mj , . . . ,Mm}} represents the assignment of
operations to machines, where

Ril=

{
Mj if Oil is processed by Mj ,

0 if Oil is not processed by any machine.
(1)

The processing time matrix T={Til | Til ≥ 0} specifies the
time required to process each Oil. If Oil is not assigned to
any machine, Ril=0, and its processing time Til is also zero,
indicating the operation does not contribute to the scheduling
process and does not require execution.

The objective is to minimize the makespan Ĉ (the total time
required to complete all jobs). The completion time of each
Oil is denoted by Cil. Ĉ can be obtained as:

Ĉ=max (Cik) , i ∈ J, k ∈ Oi, (2)

where Cik is the completion time of the last operation of Ji,
and k represents the index of the last operation of Ji. The
completion time of each Oil is determined by:

Cil=

{
0, l = 0

max(Ci,l−1, Cab)+Til+Tw, l ≥ 1
(3)

where Ci,l−1 is the completion time of the previous Oi,l−1

of Ji, Cab is the completion time of the previous operation
Oab of another Ja on the same Ril, Tw is the waiting time for
the Ril when it is idle but cannot process due to a scheduling
conflict, i.e., other jobs using the machine at the same time.

B. Constraints of Job Shop Scheduling in 3C Manufacturing

3C-based DJSP operates under several constraints that de-
fine its scheduling feasibility and optimization complexity.
These constraints are formulated as follows.

1) Machine Capacity: Each machine can process only
one operation at a time, reflecting the resource limitations
in 3C manufacturing systems, where precision and resource
allocation are critical to maintaining production efficiency. In
electronics manufacturing, a surface-mount technology (SMT)
machine can handle only one PCB assembly at a time. This
constraint ensures that the simultaneous execution of multiple
jobs on the same machine is prevented, i.e.,∑

i∈J

∑
l∈Oi

θ(Mj , Oil) · xj
il ≤ 1, ∀j ∈ M, (4)

where θ(Mj , Oil) is an indicator function that takes the value
one if Oil of Ji is assigned to Mj , and xj

il is a binary variable
indicating whether Oil of Ji is executed on Mj .

2) Job Operation Execution: Each job operation can only
be executed by one machine at a time. It prevents a job
operation from being executed simultaneously on multiple
machines, which violates the logical sequence of operations
in a job, i.e., ∑

j∈M

xj
il=1, ∀i ∈ J, ∀l ∈ Oi. (5)

3) Job Precedence Constraints: An operation cannot start
until its preceding operation is completed. The constraint en-
sures that the operations of a job are executed in a fixed order,
representing that Oil cannot begin until Oi,l−1 is finished.
This is essential for maintaining the workflow of multi-stage
processes, particularly in 3C manufacturing environments such
as electronics assembly, where each step must follow a defined
sequence to ensure product integrity, i.e.,

Cil ≥ Ci,l−1+Til, ∀l ∈ {2, . . . , k}, i ∈ J. (6)

4) Operation Non-Suspension: An operation cannot be
paused or terminated once it has started. This assumption
is necessary to maintain the integrity of the job schedule,
ensuring that no operation can be interrupted. This is typical
in manufacturing environments where resources are dedicated
to specific tasks for the duration of their execution. This
constraint helps reduce the risk of errors and inefficiencies
caused by interruptions or restarts in operations, i.e.,

Cil=Sil+Til, ∀i ∈ J, ∀l ∈ Oi, (7)

where Sil is the start time of Oil.
5) Sequential Job Operations: All operations of the same

job must follow a specific and ordered sequence. This se-
quential order ensures that each job undergoes all required
processes and quality checks, essential for high-precision
manufacturing tasks, i.e.,

Cil ≤ Ci,l+1, ∀l ∈ {1, . . . , k − 1}, i ∈ J. (8)

6) Negligible Transportation and Setup Times: The trans-
portation and setup times among operations are assumed to
be zero. This simplifies the problem by neglecting the time
required for moving jobs between machines or setting up
machines for new operations, thus focusing solely on the
processing time for each operation. In real-world 3C man-
ufacturing environments, such times are typically minimized
through efficient layouts and automation systems. However,
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this assumption enables a streamlined modeling approach
focusing on the most critical factors.

7) Known Machine and Processing Time Matrices: The
machine matrix R and processing time matrix T are known in
advance. This eliminates uncertainty in machine assignment
and processing durations, formulating the scheduling problem
with deterministic input. This is particularly beneficial when
real-time data on machine availability and operation times can
be dynamically integrated.

8) Machine Breakdowns: Machine breakdowns may occur
during production, which leads to machine downtime. The
availability of each machine at any given time can be stochas-
tic, depending on whether the machine is operational or not.
Let Aj(e) denote the availability of Mj at time e, i.e.,

Aj(e)=

{
1 if Mj is available at time e,

0 if Mj is unavailable at time e.
(9)

This ensures that the scheduler accounts for disruptions,
such as machine failures or unexpected maintenance, enabling
timely rescheduling and enhancing system reliability by min-
imizing downtime and maintaining production continuity.

9) Priority Jobs: Certain jobs have higher priority and must
be scheduled before lower-priority jobs. This is important in
real-world manufacturing systems where some jobs must be
completed before others, e.g., rush orders or time-sensitive
products. This prioritizes critical jobs, helping to reduce delays
and maintain overall production timelines, i.e.,

Cik ≤ Cdk, if Ji has higher priority than Jd. (10)

10) Machine-Specific Operations: Certain jobs or oper-
ations can only be processed by specific machines. This
constraint ensures that certain operations can only be assigned
to specific machines due to technical requirements or resource
limitations. For each Oil of Ji, i.e.,

xj
il=1 if Oil can only be processed by Mj . (11)

11) Job Deadlines: Each job must be completed by a
specified deadline Di. This constraint ensures that the final op-
eration of each job is completed within the deadline, ensuring
just-in-time (JIT) production and supply chain synchroniza-
tion in electronics manufacturing. It also ensures that critical
deliveries and operations are completed on time, minimizing
customer impact and reducing inventory costs, i.e.,

Cik ≤ Di, ∀i ∈ J, k ∈ Oi, (12)

where Di is the deadline for Ji.
12) Dynamic Job Arrival: Jobs may arrive at different

times, introducing uncertainty into scheduling. This reflects
real-time operational constraints commonly seen in 3C manu-
facturing, where new orders can be introduced during ongoing
production. An effective scheduling system must adapt to these
dynamic arrivals without disrupting existing operations.

13) Resource Utilization: Machines must be optimally
utilized throughout the scheduling period to avoid under-
utilization or overloading. This constraint improves overall
system efficiency by ensuring that each machine operates near
its optimal capacity while minimizing idle time, which is
especially important in large-scale 3C manufacturing focused
on maximizing throughput.

C. Optimization Problem

In conclusion, Table II shows the decision variables of DJSP,
and our goal is to optimize Ĉ, i.e.,

Min
χ

Ĉ,

where χ represents a set of decision variables and it is subject
to (2)-(12).

TABLE II
DECISION VARIABLES

Notation Definition

Til Processing time of Oil

Sil Start time of Oil

Cil Completion time of Oil

Tw Waiting time due to scheduling conflicts on shared machines
xj
il Binary variable: 1 if Oil assigned to Mj , 0 otherwise

θ(Mj , Oil) Indicator: 1 if Oil can be assigned to Mj , 0 otherwise
Ci,l−1 Completion time of previous operation Oi,l−1 in Ji

Cab Completion time of another job’s operation on same machine
Aj(e) Availability of Mj at time e
Di Deadline for completion of Ji

IV. PROPOSED DYNAMIC JOB SHOP SCHEDULING
FRAMEWORK

This section introduces the solution algorithm for solving
DJSP using a hybrid approach combining DCHO with DG.
It aims to find the optimal scheduling solution rapidly while
reducing the total makespan.

A. Framework Overview

DG-DCHO is an iterative optimization algorithm that com-
bines the strengths of DG for schedule generation and fitness
evaluation with the capabilities of DCHO for refinement and
optimization. The process begins with initialization, where
the workshop environment is modeled by abstracting job-
shop scheduling problems and their constraints into graph
matrices and then pre-processing the data for training the
GCN generator. Once the activation condition is met, the
GCN generator processes the environment’s graph structure to
generate an initial population of feasible scheduling solutions.
These schedules are then optimized using DCHO, aiming to
minimize the makespan. During the early optimization phase,
when the iteration count is less than t̂1, the fitness of all
generated schedules is computed through conventional fitness
evaluation, and the scheduling sequences are transformed into
graph matrices. These sequence graphs and their correspond-
ing fitness values are used to train the GCN evaluator. As the
iteration count surpasses t̂1 but remains below the termination
threshold t̂2, the GCN evaluator assists fitness evaluation
by predicting makespan values, significantly accelerating op-
timization while reducing computational cost. The iterative
refinement continues until it reaches the maximum iteration
count t̂2. Finally, the best scheduling solution that minimizes
the makespan is selected as the final optimized schedule. Fig.
3 shows the overall framework of DG-DCHO, which inte-
grates DG for both schedule generation and accelerated fitness
evaluation while utilizing DCHO for adaptive and efficient
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optimization. By leveraging the GCN generator to construct
high-quality initial schedules and the GCN evaluator to predict
makespan values with minimal computational overhead, it
significantly reduces the cost of fitness evaluation.

Fig. 3. Framework of DG-DCHO.

B. Graph Construction

To effectively leverage GCNs for scheduling optimization,
both the dynamic job shop environment and candidate so-
lutions are transformed into structured graphs. This section
details the construction process for the distinct input graphs
required by the GCN generator and the GCN evaluator.

The graph constructed for the GCN generator captures
the structural and dynamic features of the DJSP instance.
Formally, the input graph is denoted as G = (V,E), where the
node set V consists of operation nodes Oil and machine nodes
Mj [32]. Each operation node represents a specific operation
and carries attributes such as the processing time Til, arrival
time, and other dynamic status indicators. Each machine node
includes information such as the current availability state
Aj(e) or breakdown-related features, capturing real-time con-
straints in the production environment. The edge set E encodes
dependencies and constraints. Directed conjunctive edges con-
nect consecutive operations within the same job, enforcing job
precedence and the correct execution order. Assignment edges
link operation nodes to machine nodes that are capable of
processing them, reflecting machine-specific capabilities and
ensuring each operation is assigned to exactly one machine. In
addition, disjunctive edges are introduced between operations
that may contend for the same machine, modeling the resource
conflict constraint that no two operations can occupy the same
machine simultaneously. Through this unified representation,
the constructed graph integrates job sequencing, machine as-
signment, and resource contention, while naturally supporting
dynamic conditions such as breakdowns, job arrivals, and job
priorities. By processing this graph, the GCN generator learns
to produce initial scheduling sequences that satisfy both static
and dynamic feasibility requirements.

The graph constructed for the GCN evaluator focuses on
representing individual candidate schedules generated during
optimization. Formally, each candidate schedule is transformed
into a graph G′ = (V ′, E′), where the node set V ′ consists
solely of operation nodes Oil, carrying features such as
processing time Til and operation identifiers. The edge set E′

comprises directed sequential edges that represent the actual
execution flow of operations in the candidate schedule. The
resulting graph G′ forms a directed acyclic graph (DAG) that
captures the topological order of operations and inherently
respects the operation non-suspension constraint.

Through these graph representations, the proposed method
comprehensively models scheduling constraints, including ma-
chine capacity, job precedence, operation non-suspension,
machine-specific assignments, breakdown tolerance, job pri-
oritization, and dynamic job arrivals. This graph-based formu-
lation provides a unified and scalable foundation for intelligent
scheduling under complex 3C manufacturing conditions.

C. GCN generator and GCN evaluator

The constructed graph is then processed by the GCN
generator through multiple graph convolutional layers, which
iteratively update node representations based on local con-
nectivity. The operation of each graph convolutional layer is
formulated as:

h(q+1)
v =σ

 ∑
u∈N(v)

W (q)h(q)
u + b(q)

 , (13)

where h
(q)
v denotes the feature vector of node v at layer q,

N(v) represents the neighboring nodes of v, W (q) and b(q)

are the learnable weight matrix and bias for layer q, and σ
is the ReLU activation function. After passing through the
convolutional layers, a Fully Connected (FC) layer generates
a sequence of machine assignments, representing the initial
schedule, i.e.,

S=FC(h(Q)
v ), (14)

where S denotes the output sequence of job-machine assign-
ments. The GCN generator guarantees the feasibility of initial
schedules through its end-to-end learning process, ensuring
that all solutions originate within the valid search space.
By processing a graph that encodes precedence and resource
constraints, it learns to produce inherently feasible schedules.
The training objective, aimed at minimizing makespan, im-
plicitly penalizes infeasible sequences, driving the model to
explore only solutions that respect both job precedence and
machine assignment rules. This feasibility is preserved during
optimization, where any candidate generated in the iterative
search that would cause a machine conflict is immediately
discarded.

The GCN evaluator predicts the makespan of candidate
schedules based on their graph representations, enabling ef-
ficient fitness evaluation without full process simulation. By
leveraging spatial and relational information from job-machine
sequences, it approximates schedule quality with significantly
reduced computational cost.
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The model begins with a Graph Attention Layer (GAT),
which enhances the network’s capacity to focus on relevant
operational relationships and selectively aggregate features for
more accurate makespan prediction [33]. This operation is
formulated as:

hv=GAT({hu, euv}), (15)

where hu represents the features of neighboring nodes and
euv represents the edge between nodes u and v. The extracted
features are then aggregated through global pooling, where
the entire graph is transformed into a compact representation
using global mean pooling [34]. This compact representation is
subsequently fed into a Multi-Layer Perceptron (MLP) layer,
which is a neural network composed of a sequence of fully
connected layers. The MLP processes the aggregated features
and ultimately predicts the makespan value, i.e.,

Ĉ=MLP(h(Q)
v ). (16)

The GCN evaluator is trained using the mean squared
error (MSE) loss function, minimizing the difference between
predicted and actual makespans [35], i.e.,

L= 1

N

N∑
y=1

(
Cp(S

(t)
y )−Cu(S

(t)
y )

)2

, (17)

where N is the number of samples, S
(t)
y represents the y-

th scheduling solution at iteration t, Cp(S
(t)
y ) represents the

predicted makespan of schedule S
(t)
y , and Cu(S

(t)
y ) denotes its

true makespan.
The GCN evaluator employs a dual-safeguard mechanism to

ensure both predictive accuracy and computational efficiency
in dynamic environments, thereby avoiding the need for con-
tinuous online retraining while still enabling essential updates.
During the iterative process, it is not exclusively relied on
to identify the best individual. Instead, it serves as a rapid
prescreening tool for the entire population, selecting a small
subset of the most promising candidates (e.g., k = 10) for
further evaluation. Subsequently, we calculate the true fitness
of only these k individuals through conventional, resource-
intensive simulation. The final selection of the best individual
in each generation is made using these precise, true fitness
values. This hybrid strategy greatly reduces computational
overhead, as most of the population is evaluated by the fast
GCN model, while the accuracy of elite solution identification
is ensured by validating only the top candidates. The second
layer of this safeguard is a monitoring and triggered-retraining
mechanism. As we compute the true fitness for the top-k indi-
viduals which are denoted as the set Ptop-k, we simultaneously
compare these values against the predictions made by the GCN
evaluator. The discrepancy is quantified by the monitoring loss,
L′, defined as:

L′ =
1

k

∑
Sy∈Ptop-k

(fp(Sy)− fu(Sy))
2
, (18)

where fp(Sy) is the predicted fitness and fu(Sy) is the true
fitness for a solution Sy . If this monitoring loss exceeds a
predefined threshold, it signals a significant concept drift,
indicating that the evaluator’s model no longer aligns well

with the current state of the dynamic environment. Upon such
a trigger, the optimization process is briefly paused to fine-
tune the GCN evaluator for a few epochs using these k newly
validated data points. To empirically demonstrate the stability
of our evaluator, we recorded the frequency of this fine-tuning
process. As shown in Table III, it is triggered in only a small
fraction of iterations. This low trigger rate confirms that the
GCN evaluator is reliable in most cases, while the safeguard
ensures that its accuracy is maintained by correcting errors as
they arise, affirming the overall robustness of our approach.

TABLE III
FREQUENCY OF TRIGGERED RETRAINING UNDER DISTURBANCES

Instance Iterations Retraining Triggers Trigger Rate (%)

15×15 DJSP 450 26 5.78
20×20 DJSP 450 31 6.89
50×10 DJSP 450 35 7.78

Average 450 30.7 6.82

D. Dynamic Cooperative Hunting Optimizer
The DCHO serves as the core search engine by leveraging

the inherent strengths of metaheuristics to address complex
problems such as DJSP. Its population-based design provides
a flexible framework for navigating vast solution spaces while
mitigating premature convergence. DCHO’s cooperative hunt-
ing strategy offers an intuitive mechanism for dynamically bal-
ancing global exploration and local exploitation, inherently en-
hancing robustness to environmental changes. This resilience
is further strengthened by the integration of Cauchy mutation,
whose heavy-tailed properties enable large exploratory jumps
to escape local optima caused by sudden disturbances such as
machine breakdowns. By maintaining this adaptive balance,
DCHO efficiently discovers high-quality schedules within ac-
ceptable polynomial time complexity, making it suitable for
large-scale industrial applications where exact methods are
computationally prohibitive. Moreover, its update rules are
grounded in clearly defined behavioral components, providing
strong explainability that aids parameter tuning and fosters
operational trust, which distinguishes it from more opaque
black-box approaches.

As a metaheuristic algorithm inspired by cooperative hunt-
ing strategies in nature, DCHO iteratively improves scheduling
solutions by balancing exploration and exploitation. The op-
timization process is divided into two phases: an exploration
phase based on hunting coordination and an exploitation phase
simulating predator escape. During exploration, the position
of each individual is updated by referencing the current
best solution. The exploration mechanism in DCHO draws
inspiration from coordinated hunting behaviors observed in
animal groups. A core principle involves individuals adjusting
their search trajectory based on the location of the current best
individual. The representation of such movement towards the
current best target is denoted as:

p′f,g=pf,g+r · (pb,g−z · pf,g), (19)

where p′f,g is the potential new g-th dimension of individual f ,
calculated based on its current position pf,g. It moves towards
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the best solution’s position pb,g , modulated by a random factor
r∈[0, 1] and a stochastic element z. This promotes conver-
gence towards promising regions while preserving sufficient
stochasticity for exploration.

In the exploitation phase, individuals refine their search
by adaptively adjusting their positions based on perturbations
around a promising target. The exploitation mechanism is
inspired by behaviors in which individuals make fine-tuned
adjustments in a localized area. This often involves searching
within progressively smaller and more focused regions around
the current position. The scope of the local search can be
dynamically reduced over iterations t. Representing the lower
Lg and upper Ug bounds for parameter g, the local search
bounds (L′

g, U
′
g) is denoted as:

L′
g=Lg/t, U ′

g=Ug/t. (20)

Within these progressively shrinking bounds, a new position
can be generated by adding a random perturbation to the
current position pf,g:

p′′f,g=pf,g+(1− 2r) · (L′
g+r · (U ′

g−L′
g)), (21)

where p′′f,g is the updated position. (1−2r) provides a ran-
dom direction [−1, 1], and the subsequent term generates a
random point within the shrinking local bounds [L′

g, U
′
g]. This

facilitates precise local search.
Once the GCN generator generates the initial scheduling

solutions, DCHO is applied to optimize them. DCHO iterates
over a multitude of scheduling solutions S, where S implic-
itly defines Cil for all Oil based on Til and the sequence
order. During the iterative process, any S with Cik>Di,
θ(Mj , Oil)=0, or causing machine conflicts will be discarded.
Unlike conventional optimization approaches, DCHO dynam-
ically adjusts its search behavior using an adaptive step size
mechanism and Cauchy mutation, allowing it to navigate
complex scheduling landscapes more effectively. The update
rule of the schedule adjustment process is obtained as:

S(t+1)
y =S(t)

y +α · (Sb−S(t)
y )+β · N (0,Γ), (22)

where Sb denotes the best schedule solution found so far, α
and β are coefficients that regulate the balance between explo-
ration and exploitation, and N (0,Γ) is a Gaussian noise term
introduced to maintain population diversity and prevent pre-
mature convergence. The coefficients α and β are crucial for
balancing exploitation and exploration. Instead of using fixed
values, we employ a dynamic adaptive strategy to enhance the
algorithm’s performance across different optimization stages.
The exploitation factor α is designed to increase non-linearly,
strengthening the pull towards the best-known solution as the
search progresses. This is governed by:

α(t) = αmin + (αmax − αmin) ·
(

t

T

)2

, (23)

where t is the current iteration, T is the maximum number
of iterations, and αmin and αmax are set within the ranges
of [0.1, 0.3] and [0.6, 0.9], respectively. Concurrently, the

exploration factor β, which controls the magnitude of random
perturbations, is used to decrease non-linearly as follows:

β(t) = βmax ·
(
1− t

T

)2

, (24)

where its initial value βmax set in the range of [0.1, 0.2].
This co-adaptive mechanism enables DCHO to intelligently
transition its focus from broad exploration in the early phases
to fine-grained exploitation in the later phases, thereby improv-
ing overall convergence quality. DCHO employs a dynamic
step size adaptation mechanism to enhance search efficiency
further, ensuring that the search process remains aggressive
in early iterations but gradually stabilizes as the solution
converges. The step size at iteration t is obtained as:

δ(t)=∆ ·
(
1− t

T

)
+δ · t

T
, (25)

where ∆ and δ represent the initial and final step sizes. This
dynamic adjustment allows the algorithm to explore broadly
in the early phase while focusing on fine-tuning solutions in
later stages. Additionally, Cauchy mutation is introduced to
further enhance diversity in candidate schedules by perturbing
solutions in a heavy-tailed manner, increasing the probability
of escaping local optima. It is applied as:

S(t+1)
y =S(t)

y +γ · C(0, 1), (26)

where γ is a mutation scaling factor, and C(0, 1) represents
a random variable drawn from a Cauchy distribution with
zero mean and unit scale. The Cauchy mutation scale factor γ
determines the average magnitude of the perturbation, which
is critical for escaping local optima due to the distribution’s
heavy tails. The selection of γ requires balancing the risk of
a large value disrupting solution structures against a small
value failing to provide enough force to exit a local minimum.
Through extensive experimentation, we have found that setting
γ to a fixed value within the range of [0.05, 0.2] provides a
robust balance between exploration and convergence stability.
For our implementation, a default value of 0.1 is used, proving
effective in providing the necessary momentum for escaping
local traps without compromising the algorithm’s ability to
converge efficiently.

To empirically justify parameter configurations, we con-
ducted a comprehensive sensitivity analysis on a representative
20×20 DJSP instance. The results, presented in Table IV,
compare the performance of DG-DCHO configuration against
a range of variations in its key hyperparameters, including the
Cauchy mutation scale γ and the dynamic step size boundaries
(∆, δ).

It is shown in Table IV that the configuration for DG-
DCHO consistently yields the best makespan with the lowest
standard deviation, indicating superior performance and sta-
bility. Disabling the adaptive strategy for α and β leads to
a notable performance degradation, confirming the value of
dynamic control. Furthermore, the Cauchy scale γ exhibits a
clear optimal range, as insufficient exploratory power from
a low value and destabilization from a high value both
worsen solution quality. The dynamic step size boundaries
(∆, δ) are similarly crucial for balancing search intensity, with
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TABLE IV
PARAMETER SENSITIVITY ANALYSIS ON A 20×20 DJSP INSTANCE

Parameter Group Value Avg. Makespan Std. Dev.

No Adaptation α = 0.5, β = 0.1 1291.8 20.3
α = 0.2, β = 0.2 1305.3 22.1
α = 0.8, β = 0.6 1312.6 26.5

Adaptive Strategy 1255.4 15.2

Cauchy Scale (γ) 0.01 1280.7 18.5
0.1 1255.4 15.2
0.5 1315.2 25.8
1.0 1342.1 31.4

Step Size (∆, δ) ∆ = 1, δ = 0.01 1277.3 16.8
∆=5, δ=0.05 1255.4 15.2
∆ = 10, δ = 0.5 1291.5 24.1
∆ = 10, δ = 1.0 1308.9 28.6

Evaluator LR 0.0005 1289.6 19.1
0.001 1275.9 17.5
0.01 1255.4 15.2
0.1 1283.4 22.3

conservative strategies leading to premature convergence and
aggressive ones hindering effective fine-tuning. These findings
confirm that the parameters and adaptive mechanisms are inte-
gral to the superior and robust performance of the DG-DCHO
framework. By integrating dynamic step size adaptation and
Cauchy mutation, DCHO dynamically refines the schedules
generated by the GCN generator, incorporating feedback from
the GCN evaluator to iteratively minimize the makespan.

V. PERFORMANCE EVALUATION

This section presents the experimental results of DG-
DCHO. We conduct both comparison experiments and ablation
studies to demonstrate the superiority and effectiveness of DG-
DCHO in terms of makespan and convergence speed.

A. Comparison Experiments

To validate the performance of DG-DCHO, we com-
pare it with several advanced scheduling algorithms, in-
cluding Asymptotically MSE-Optimal Gaussian-GMM Es-
timator (AMGG) [36], Surrogate-Assisted Autoencoder-
Embedded Evolutionary Optimization Algorithm (SAEO)
[37], Surrogate-Assisted Hybrid Evolutionary Algorithm with
Local Estimation of Distribution (SHEALED) [38], Coati Op-
timization Algorithm (COA) [39], Multi-factorial Evolutionary
Algorithm (MFEA) [40], Starfish Optimization Algorithm
(SFOA) [41], and Alpha Evolution (AE) [42]. These methods
are selected due to their representative strengths in model-
based optimization, surrogate-assisted scheduling, and bio-
inspired search strategies, which align with the challenges
posed by large-scale dynamic job shop problems. All algo-
rithms are evaluated under the same DJSP environments to
assess solution quality and computational efficiency.

Fig. 4 presents the iteration curves of all eight algorithms,
where each algorithm’s fitness value is evaluated over 1,000
iterations. The solid lines indicate surrogate-assisted algo-
rithms, whereas the dashed lines represent algorithms without
surrogated model. The fitness value represents the quality of
the schedule, with a lower value indicating better performance.

It is shown in Fig. 4 that DG-DCHO achieves the lowest fitness
value at both the start and end of the iterations. Furthermore,
DG-DCHO shows the fastest convergence rate, reaching the
optimal solution significantly faster than the other algorithms.
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Fig. 4. Comparison of convergence speed for eight algorithms.

Fig. 5 presents a comparative analysis of the makespan of
eight different algorithms in solving the 20×20 DJSP. The re-
sults are visualized in a bar chart, illustrating the effectiveness
of each method in minimizing the total completion time of
all jobs. It is shown that DG-DCHO achieves the smallest
Ĉ, highlighting its capability to generate superior scheduling
solutions compared to alternative methods.
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Fig. 5. Comparison of makespan for eight algorithms.

To further validate the quality stability of DG-DCHO in
dynamic job-shop scheduling tasks, we select a representative
12×12 scale DJSP instance. Under identical experimental
settings, DG-DCHO is compared with the above peers, and
each is executed 150 times independently. Boxplots of the
makespan distributions are generated to visualize the vari-
ability in solution quality. As shown in Fig. 6, DG-DCHO
consistently outperforms the other algorithms in terms of
median makespan and exhibits a significantly narrower in-
terquartile range (i.e., smaller box height), indicating greater
stability and robustness across repeated runs. Additionally,
the absence of outliers in DG-DCHO further confirms its
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strong convergence capability when handling random initial
populations and dynamic disturbances.

Fig. 6. Comparison of statistical robustness for eight algorithms.

Furthermore, to evaluate the robustness of DG-DCHO un-
der highly dynamic manufacturing conditions, we conduct a
controlled experiment within a 15×15 dynamic job-shop envi-
ronment. This environment simulates two representative types
of real-world disturbances: random machine breakdowns and
urgent job insertions. By varying the disturbance frequency
from low to high, we emulate different levels of environmental
volatility. Each algorithm is executed 30 times under each
disturbance level, and the average total processing time is
recorded. As shown in Fig. 7, DG-DCHO consistently achieves
the lowest total processing time across all disturbance levels,
demonstrating strong robustness and exceptional adaptability
to frequent disruptions.
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Fig. 7. Robustness analysis under dynamic disturbances.

To validate the generalization ability of DG-DCHO, Table
V comprehensively compares the performance across six dif-
ferent problem scales. The large-scale 200×40 instance, along
with its associated operational constraints, is sourced from a
real-world factory to evaluate the performance of DG-DCHO
in a practical industrial scenario [43]. In addition to solution
quality, we further analyze the computational efficiency. The

minimum, average, and maximum runtimes required by each
algorithm to solve DJSP instances of varying scales are
recorded. To ensure a rigorous and consistent comparison, a
single experimental trial is defined as a complete execution of
the algorithm terminating at a fixed limit of 1,000 iterations.
All experiments are conducted on the same platform, and each
run is repeated 30 times to obtain a stable average. Regarding
solution quality, DG-DCHO consistently yields the lowest
makespan values. The performance gap widens as the problem
size increases, demonstrating the algorithm’s strong scalability
and generalization ability in complex 3C manufacturing envi-
ronments. In terms of computational cost, the reported runtime
indicators show that DG-DCHO is significantly faster and
more stable than the baselines. Notably, even the worst-case
runtime of DG-DCHO is consistently lower than the best-case
runtime of the runner-up algorithms, confirming its absolute
efficiency advantage.

B. Ablation Study
The purpose of the ablation study is to evaluate the contri-

bution of each component of our framework, including COA,
DCHO, and DG-DCHO. We assess the performance of these
three configurations under varying problem sizes across six
different virtual scheduling environments.

1) Ablation Study on Makespan: To assess the impact of
DG and the improvements made to the optimization algorithm,
we compare the makespan obtained by COA, DCHO, and
DG-DCHO across six DJSP environments of different sizes:
10×10, 20×15, 50×10, 100×20, 150×30, and 200×40.

The results of ablation study are presented in Fig. 8,
where each bar illustrates the makespan achieved by each
configuration. The performance improvements reveal a clear
progression. DCHO optimizer, with its advanced search ca-
pabilities, already provides a substantial improvement over
the baseline COA. The most significant performance gain is
achieved by DG-DCHO, which consistently outperforms both
its standalone optimizer and the baseline to achieve the lowest
makespan across all instances. This tiered improvement con-
firms that while the DCHO optimizer itself is highly effective,
the integration of the GCN framework is critical for reaching
top-tier performance. The design of DG-DCHO enables the
model to learn complex job-machine relationships, generate
higher-quality initial schedules, and accelerate convergence,
leading to these superior scheduling solutions.
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Fig. 8. Makespan comparison across different configurations.
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TABLE V
COMPARISON OF MAKESPAN AND RUNTIME FOR DIFFERENT ALGORITHMS ON DIFFERENT DJSP SCALES

Algorithm Metric Problem Scale

10×10 20×15 50×10 100×20 150×30 200×40

DG-DCHO
Makespan 1292 2082 3874 3519 5117 7555
Runtime (Avg) 15.8 38.5 85.2 151.6 230.4 315.7
Runtime (Min / Max) 14.2 / 17.5 35.1 / 42.8 78.5 / 93.4 140.2 / 165.5 212.5 / 251.8 295.6 / 340.2

SAEO
Makespan 1327 2171 4094 3770 5290 7842
Runtime (Avg) 23.8 63.3 155.4 315.0 549.7 833.1
Runtime (Min / Max) 20.5 / 28.1 55.8 / 72.5 135.2 / 178.6 280.5 / 355.2 490.8 / 615.4 750.2 / 925.5

AMGG
Makespan 1432 2352 4184 4025 5375 8014
Runtime (Avg) 28.5 74.3 180.1 380.4 653.0 986.7
Runtime (Min / Max) 24.2 / 33.5 65.5 / 85.1 160.4 / 205.2 340.2 / 425.8 595.5 / 718.2 905.4 / 1078.5

COA
Makespan 1404 2296 4286 3924 5406 8139
Runtime (Avg) 18.3 49.7 110.5 243.1 412.8 610.4
Runtime (Min / Max) 16.1 / 21.4 43.5 / 57.2 98.5 / 125.8 215.2 / 275.5 370.4 / 460.2 550.8 / 681.2

MFEA
Makespan 1418 2331 4256 3997 5558 7936
Runtime (Avg) 24.2 65.1 158.9 321.5 560.9 845.3
Runtime (Min / Max) 21.5 / 27.8 58.2 / 73.5 142.5 / 178.4 290.8 / 355.2 510.5 / 615.8 770.4 / 930.5

AE
Makespan 1425 2342 4271 3983 5618 8050
Runtime (Avg) 22.1 55.4 130.8 275.3 450.1 688.2
Runtime (Min / Max) 19.5 / 25.4 48.8 / 63.5 115.4 / 148.5 245.2 / 310.5 405.8 / 502.4 620.5 / 765.8

SFOA
Makespan 1451 2365 4390 4076 5694 8215
Runtime (Avg) 26.0 70.2 171.6 355.8 615.2 921.9
Runtime (Min / Max) 22.8 / 30.1 62.5 / 79.4 152.4 / 195.8 318.5 / 400.2 560.4 / 675.5 840.5 / 1016.6

SHEALED
Makespan 1473 2385 4448 4108 5763 8280
Runtime (Avg) 25.6 68.9 165.3 340.7 598.6 890.5
Runtime (Min / Max) 22.4 / 29.5 60.5 / 78.8 145.2 / 188.5 305.4 / 380.2 540.5 / 665.8 805.2 / 990.0

2) Ablation Study on Scheduling Behaviors: Fig. 9 shows
Gantt charts illustrating the scheduling behavior of COA,
DCHO, and DG-DCHO for a new 30x10 environment. Differ-
ent colors represent different jobs, each consisting of several
operations, and their scheduling order is displayed in the Gantt
chart. We also compare the scheduling results for the three
configurations, where the time taken for job completion is
shown. Specifically, the time efficiency in each of the three
configurations can be obtained as:

Te=
∑
i∈J

∑
l∈Oi

Til, (27)

where Te is the total time taken for the completion of all op-
erations in a schedule. The Gantt charts visually represent the
scheduling behaviors and the improvement in time efficiency
achieved by DG-DCHO.

Fig. 9 shows that DG-DCHO consistently produces the most
efficient schedules with the shortest makespan. In contrast,
COA and DCHO configurations show more significant idle
time and longer job completion times. This indicates that
incorporating DG and the improvements made to the original
optimization algorithm leads to more efficient scheduling by
improving the initial generation of schedules, thereby reducing
the overall makespan.

3) Empirical Analysis of Dual-GNN Effectiveness: We
record the per-iteration computational time and the number
of iterations required for convergence. Table VI presents a

detailed comparison between the baseline DCHO and the
proposed DG-DCHO across representative instances. The data
reports the average, minimum, and maximum values derived
from 30 independent runs. It is shown that DG-DCHO exhibits
a substantial reduction in both time consumption and search
steps. This efficiency stems directly from the proposed dual-
GNN framework. The GCN evaluator replaces the vast ma-
jority of time-consuming and simulation-based fitness evalua-
tions with rapid, low-cost predictions. Furthermore, the GCN
generator provides a high-quality initial population, which
allows the DCHO optimizer to reach a high-quality solution in
fewer iterations. This dual advantage confirms that DG-DCHO
strikes an exceptional balance between solution quality and
computational cost, making it highly practical for real-time
scheduling in dynamic 3C manufacturing environments.

4) Tri-Metric Radar Analysis of Scheduling Performance:
To intuitively demonstrate the overall performance of different
components in terms of scheduling quality, search efficiency,
and initialization capability, a radar chart is constructed using
three core metrics: final makespan, convergence speed to the
optimal solution, and the quality of the initial scheduling se-
quence. All metrics are normalized and directionally adjusted,
and higher values indicate better performance. As illustrated in
Fig. 10, DG-DCHO outperforms all methods across the three
dimensions, forming the largest and most balanced region on
the radar chart. This reflects its comprehensive strength in
generating high-quality schedules, accelerating convergence,
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(a) 30*10-DG-DCHO

(b) 30*10-DCHO

(c) 30*10-COA

Fig. 9. Gantt charts for different configurations.

TABLE VI
COMPARISON OF PER-ITERATION TIME AND CONVERGENCE SPEED

Instance Metric Algorithm

DCHO DG-DCHO

20×15

Time (ms) 58.4 38.5
Min / Max 55.2 / 62.5 37.1 / 40.2

Iterations 629 410
Min / Max 545 / 687 372 / 439

50×10

Time (ms) 162.6 85.2
Min / Max 145.5 / 178.2 82.5 / 88.9

Iterations 726 454
Min / Max 653 / 790 401 / 514

200×40

Time (ms) 810.2 315.7
Min / Max 770.5 / 865.8 305.2 / 328.5

Iterations 917 655
Min / Max 852 / 970 580 / 726

and producing structurally informed initial solutions. DCHO
incorporates dynamic step adaptation and Cauchy mutation,
and exhibits strong convergence behavior. However, its use of
randomly initialized populations results in greater variability
and lower quality in early-stage solutions. In contrast, the base-
line COA lacks structural guidance during initialization and is
more susceptible to getting trapped in local optima, leading
to significantly inferior makespan outcomes compared to DG-
DCHO. Overall, the radar chart highlights the advantages of
DG-DCHO’s dual-GCN architecture and dynamic cooperative
optimization mechanism, yielding a well-balanced, efficient,
and robust scheduling strategy.

Makespan

Convergence Speed

Initialization Quality

COA

DCHO

DG-DCHO

Fig. 10. Tri-metric radar analysis of scheduling performance.

VI. CONCLUSIONS AND FUTURE WORK

In modern 3C manufacturing systems, efficiently solving
Dynamic Job-shop Scheduling Problem (DJSP) remains a crit-
ical challenge due to unpredictable job arrivals, machine break-
downs, and varying processing times. Traditional optimization
methods often struggle with scalability and adaptability, mak-
ing it challenging to balance solution quality and computa-
tional efficiency when solving large-scale scheduling problems
in dynamic environment. To address such limitations, this
work introduces a novel hybrid framework that synergistically
combines Dual-Graph convolutional networks with Dynamic
Cooperative Hunting Optimizer named DG-DCHO. Its GCN
generator effectively models job-machine dependencies, gen-
erating high-quality initial schedules, while DCHO’s adaptive
search strategies refine these solutions, balancing global explo-
ration and local exploitation. Its GCN evaluator accelerates
fitness estimation by learning from prior scheduling results,
significantly reducing computational overhead and improving
optimization speed. Experimental results demonstrate that DG-
DCHO outperforms state-of-the-art algorithms in both solution
quality and computational efficiency, making it a practical
approach to large-scale and real-time scheduling problems.

Our future work should focus on extending DG-DCHO
to multi-objective optimization scenarios, incorporating addi-
tional constraints such as energy consumption and production
cost, while further enhancing robustness in highly dynamic
environment. We have to adapt the framework to real-world
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industrial settings by using real-time data streams to improve
scheduling flexibility and decision-making accuracy.
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