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Stream processing is an emerging paradigm to handle data streams upon arrival, powering latency-critical
application such as fraud detection, algorithmic trading, and health surveillance. Though there are a variety
of Distributed Stream Processing Systems (DSPSs) that facilitate the development of streaming applications,
resource management and task scheduling is not automatically handled by the DSPS middleware and re-
quires a laborious process to tune toward specific deployment targets. As the advent of cloud computing
has supported renting resources on-demand, it is of great interest to review the research progress of hosting
streaming systems in clouds under certain Service Level Agreements (SLA) and cost constraints. In this article,
we introduce the hierarchical structure of streaming systems, define the scope of the resource management
problem, and present a comprehensive taxonomy in this context covering critical research topics such as re-
source provisioning, operator parallelisation, and task scheduling. The literature is then reviewed following
the taxonomy structure, facilitating a deeper understanding of the research landscape through classification
and comparison of existing works. Finally, we discuss the open issues and future research directions toward
realising an automatic, SLA-aware resource management framework.
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1 INTRODUCTION

With the popularisation of the Internet of Things (IoT), the number of intelligent devices used for
monitoring, managing, and servicing has rapidly increased. These interconnected data sources
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generate fresh data continuously, forming a large number, or a massive flow, of data streams
that will eventually overwhelm the traditional data management systems. Meanwhile, the ever-
growing data generation has been accompanied by the escalating demands for low-latency data
processing. Time-critical applications such as fraud detection [103], algorithmic trading [1], and
health surveillance [157] are gaining increasing popularity, all of which rely heavily on the low-
latency guarantee to deliver meaningful results. The desire of fast data analysis gives birth to the
emergence of stream processing, a new in-memory processing paradigm that allows for the col-
lection, analysis, and visualisation of streaming data with only seconds or milliseconds latencies.

Unlike the traditional store-first, process-later batch paradigm, stream processing continuously
consumes incoming data to provide immediate insights before the value quickly diminishes with
time. The incoming data are handled upon arrival, with the results being incrementally updated
while the data flow through the system. Presented with only limited resources to handle con-
tinuous inputs, stream processing has no random access to the whole stream. Instead, it installs
processing logic over time- or buffer-based windows, conducting lightweight and independent
computations over recently arriving data. In this way, the strict latency requirement can be met
by proper workload balancing and processing parallelisation on a host of distributed resources.

Building a distributed streaming application from scratch is a tedious job and error-prone—
developers have to write code for collecting input data, wiring processing logic, and reporting
the value of insights with low latency. This is further exaggerated with the burdens of dynamic
scaling and failure handling, which are common requirements for distributed computation. Over
the recent years, various Distributed Stream Processing Systems (DSPSs) have been proposed to
facilitate the development of streaming applications. From a structural perspective, a DSPS works
as the middleware of a distributed system, offering unified stream management, imperative appli-
cation programming interfaces (APIs), and a set of streaming primitives to simplify the application
implementation. The state-of-the-art DSPSs, such as Apache Storm [150] and Apache Flink [16],
further provide transparent fault-tolerance, horizontal scalability, and state management for the
upper layer applications, while abstracting away the complexity of coordinating distributed re-
sources. A typical streaming system is thus a three-tier structure comprising user-applications,
DSPS, and the underlying infrastructure.

Though the adoption of DSPSs makes it easier to develop streaming applications, it re-
mains a challenging and labour-intensive task to deploy a streaming system in a distributed
environment satisfying certain Quality of Service (QoS) requirements with minimal resource
cost. In this article, the context of deployment problem is mainly derived from the application
provider’s perspective, which we have broken down into three major research topics: (1) re-
source provisioning—determining the composition of the processing infrastructure, (2) operator
parallelisation—configuring the degree of parallelism for streaming logic, and (3) task scheduling—
deciding the placement of streaming tasks on distributed resources. The subtle interplay between
these aspects plays a vital role for the deployed system to meet its functional and non-functional
design requirements. There are other topics such as operator migration, state management, and
operator graph optimisation that are commonly discussed within the streaming community. But
they are excluded from our survey, as we assume that the state-of-the-art DSPS has provided the
built-in mechanisms for the required functionalities, hence the deployment process does not in-
volve user intervention in these aspects for resource management and task scheduling purposes.

Cloud computing has offered a scalable and elastic resource pool to enable a new level of free-
dom in system deployment. Its customers can unilaterally provision computing capabilities as
needed through an automatic-measured, subscription-oriented model, where the monetary cost is
billed on a pay-as-you-go basis. The advent of cloud computing also makes it harder to manage
resources for streaming systems due to a combination of influencing factors, such as the sensitive
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application requirements, dynamic workload characteristics, various cloud resource types, and di-
verse pricing models. Improper resource management and task scheduling directly affect the sys-
tem performance on clouds. For example, over-provisioning and under-provisioning of resources
lead to extra operational cost and Service Level Agreement (SLA) breaches, respectively. Acquiring
resources from a suboptimal location introduces additional communication latency and network
traffic, and inappropriate parallelisation of operators results in either overload streaming tasks or
excessive overhead of context switching. Last but not least, misplacing streaming tasks to the un-
derlying infrastructure leads to inefficient stream routing and resource contention that impair the
system stability.

There have been quite a few surveys and taxonomies being conducted in the realm of distributed
stream processing systems. Some of them have reviewed the whole stream processing landscape.
Cugola et al. [31] wrote a seminal survey on information flow processing that aims to merge the
results produced by the data stream processing model and the complex event processing model.
Compared to our work, their survey stands at a higher viewpoint covering data and processing
models, the language used to express the processing logic, and the runtime system architecture.
Kamburugamuve et al. [76] conducted a survey on distributed stream processing systems with a
focus on fault tolerance and comparison among different DSPS implementations. Hirzel et al.’s
work [3] presents a catalog of optimisations to improve the performance of stream processing
systems, but only part of the optimisation techniques, such as task scheduling and load balancing,
are relevant to the deployment process for not changing the application graph and altering the
processing semantics. Dayarathna et al. [34] investigated on system architecture characteristics of
various event processing platforms, summarising the advancements made on open research topics
such as event ordering, system scalability, event processing languages, and the use of heteroge-
neous devices. Their survey is on general data stream processing covering both systems and use
cases, while our review has a narrower focus on deploying stream processing systems on cloud
with SLA-awareness and cost-efficiency. Recently, Röger et al. [128] developed a classification of
existing methods for both parallelisation and elasticity in stream processing systems. Though they
have carefully examined the literature on parallelisation and elasticity in various aspects such as
system type, programming model, and memory architecture, there is only a brief discussion on re-
source provisioning and task scheduling as part of the related work. In contrast, our review takes
these two topics as the first-class citizens of resource management and provides a comprehensive
overview and categorization of existing work with a taxonomy.

Some other surveys are conducted in the resource management and scheduling contexts, but
each of them has a more specific focus in this area without holistically covering the deployment
problem. Lakshmanan et al. [89] reviewed the various algorithms for task placement in data stream
management systems, identifying a set of core placement design characteristics such as software
implementation, algorithm structure, and considered metrics to help designers judge which place-
ment strategy is best suited to a specific problem. This work was done a decade ago so there
is a great need to timely review the research progress in the field of task scheduling. Zhao et
al. [170] surveyed various types of stream processing systems and discussed the default methods
for resource management in different DSPSs. Dias de Assunção et al. [38] surveyed the state-of-
the-art stream processing engines with a focus on the enabling mechanisms for resource elasticity.
Hummer et al. [67] also provided an overview of stream processing and explained the key concepts
pertaining to runtime adaptivity and cloud-based elasticity, but SLA-aware resource management
is not included in their survey. There are also some surveys that have discussed the patterns and in-
frastructure to run stream processing systems elastically [54, 55, 61, 123, 133], but they emphasise
more on the resource provisioning problem and lack sufficient discussion on operator parallelisa-
tion and task scheduling.
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Fig. 1. The sketch of the hierarchical structure of a streaming system.

As the research in this area advances, there is a long overdue effort to define the scope of the
resource management and scheduling problem in the stream processing context, then compre-
hensively analyse the recent progress and identify the main challenges to achieve better SLA-
awareness and cost-efficiency. In this article, we aim to bridge this gap by proposing a taxon-
omy of resource management and scheduling techniques, surveying existing work with regard to
the taxonomy architecture, and discussing the open issues and challenges worth pursuing in the
future.

The rest of the article is organised as follows: We first introduce the hierarchical structure of
a distributed streaming system as background, using it to organise the research topics that are
involved in the deployment process and covered in this review. Then we present a taxonomy of
resource management and scheduling to classify the key properties of existing work. In light of the
taxonomy, the surveyed works are mapped into different categories for better comparison of their
strengths and weaknesses. A thorough analysis of existing work also sheds light on the promising
future directions toward an SLA-aware, cost-efficient, and self-adaptive resource management and
scheduling framework, which we discuss before closing this article.

2 BACKGROUND

The resource management and task scheduling problem is part of the deployment process to ensure
that the pre-defined service level agreements are met and that the resource cost is minimised.
This section introduces the motivation and challenges of the targeted problem, and Appendix A.1
outlines how SLA-awareness can be achieved through a self-managing and self-adaptive resource
management process.

To better understand the problem scope, Figure 1 presents the hierarchical structure of an exam-
ple streaming system. Sitting on the topmost level is the abstraction of the streaming logic, which
in this case consists of four operators standing on incoming data streams. These inter-connected
operators constitute a Directed Acyclic Graph (DAG) called topology, representing a streaming
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application that produces incremental results on-the-fly unless being explicitly terminated. Each
operator encapsulates certain streaming logic such as data filtering, stream aggregation, or func-
tion evaluation, while the edges denote the data paths between operators as well as the sequence of
operations conducted on the data streams. In most cases, the DAG of operators has been properly
defined upon the completion of application development. Once entering the deployment phase,
one has to decide where and how these streaming logic are executed in a live distributed environ-
ment to cater for the continuous and possibly fluctuating workload with SLA-awareness.

A Distributed Stream Processing System (DSPS) is positioned in the middle of the system
structure, executing the DAG of operators in a data-parallel and pipelined manner to provide
high-throughput, low-latency stream processing capabilities. Specifically, DSPSs expose a set of
imperative programming APIs and streaming primitives to developers, encapsulating low-level
implementation details such as stream routing, data serialisation, and buffer management in a
unified streaming model. Developers can thus focus on the implementation of streaming logic
without having to reinvent the wheels for routine data management. DSPSs also provide abstrac-
tions for parallel and distributed computing, allowing applications to exploit horizontal/vertical
scalability and fault-tolerance without code changes. During the deployment phase, the parallel
operators in the topology can scale with a given parallelism degree, generating multiple replicas,
known as tasks, to execute simultaneously on top of distributed resources. As illustrated in Figure 1,
Operator B is parallelised intoTask4 andTask5 due to operator parallelisation. Afterward, a process
called task scheduling dynamically assigns the streaming tasks to distributed resources, e.g.,Task6

ofOperator C is mapped to the computing node at the right end of Figure 1 for execution. Conve-
niently, the DSPS guarantees the semantic correctness of parallelisation with built-in mechanisms
like automatic stream splitting and tuple tracking. Heinze et al. [55] classified the existing DSPSs
into three generations, among which we mainly focus on the third generation, which is highly dis-
tributed and even applicable to heterogeneous environments such as edge and fog clouds. Notable
implementations falling into this generation include S4 (Simple Scalable Streaming System) [2],
Apache Storm, Twitter Heron [87], Apache Flink, Samza [117], Spark Streaming [167], and so on.

The underlying infrastructure level represents the physical view of a stream processing system,
which is an interconnected computing environment created by a process called resource provision-

ing. In this article, we only consider the Infrastructure-as-a-Service (IaaS) model for provisioning
resources in clouds. This model visualises the physical infrastructure as separate service compo-
nents such as computing, storage, and network, where users can deploy their applications with
the finest control over the entire software stack, including operating systems, middleware, and
applications. There are also streaming services available in the form of the Platform as a Service
model and the Software as a Service model. Notable examples include Silicus,1 Google Dataflow,2

and Microsoft Azure Stream Analytics.3 However, the deployment of streaming applications on
these services is usually managed by the service owner rather than the application provider, mak-
ing it harder for the stakeholders to directly manage resources for boosting performance and
cost-efficiency.

As shown in Figure 1, deploying a streaming system can be regarded as a decision and config-
uration problem that constructs the hierarchical system structure in a distributed environment,
where the higher tier is mapped to and hosted on the lower tier to be concrete and runnable. The
primary motivation of having a resource management and scheduling framework is to free the
application providers from the burden of manual tuning. By applying a collection of profiling,

1https://www.silicus.com/iot/services/stream-processing-and-analytics.html.
2https://cloud.google.com/dataflow/.
3https://azure.microsoft.com/en-gb/services/stream-analytics/.
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modelling, and decisioning techniques, the framework, which is discussed in Appendix A.1, can
be trusted to ensure the deployed system meet its SLA requirements with minimal resource
consumption.

The scope of resource management and scheduling is broken down into main three sub-research
topics. We explain each topic by highlighting its peculiar problem domain, as well as discussing
the issues and challenges faced by developers to achieve SLA-awareness and cost-efficiency.

Resource Provisioning. Resource provisioning describes the activities to estimate, select, and al-
locate appropriate resources from the service provider to constitute the interconnected stream
processing environment.

• Resource estimation: estimating the type and amount of resources needed by the system
to meet its performance and cost targets articulated in the SLA. Such estimation can be
derived from the analysis of historical data as well as the prediction of future workload, but
its accuracy is often affected by the instantaneous, unexpected fluctuation of inputs and
system performance variations due to the dynamic nature of data streams.

• Resource adaptation: the real resource demands can fluctuate along with the varying work-
load, or remain vague and unclear even after the system is brought online. Finding the right
point in time to scale in/out and choosing the right adaptation scheme remains a huge chal-
lenge. In addition, the profitability of adaptation is affected by a number of factors such as
the selected billing model and the geographical distribution of resource pools. Take the lat-
ter case as an example, the non-negligible network latency must be taken into consideration
when performing system adaptation in a distributed manner [17, 20, 121].

Operator Parallelisation. Operator parallelisation divides a parallel operator into several func-
tionally equivalent replicas, each handling a subset of the whole operator inputs to accelerate data
processing.

• Parallelism calculation: This would require accurate profiling of stream workload and prob-
ing the processing capability of each task. The details of the infrastructure also matter—the
number of cores/threads in a CPU confines the maximum degree of runtime parallelism
and the hardware implementation determines the cost of thread scheduling and context
switching.

• Parallelism adjustment: Over-parallelisation and under-parallelisation can occur at runtime
as a result of workload change or resource adaptation. It remains a major challenge to
monitor and profile streaming tasks at a fine-grained level to reveal the true performance
bottleneck of the application. Another challenge is transparent state management during
adjustment—stateful operators need to repartition and migrate their states properly among
the constituent tasks to make parallelism adjustment transparent to developers.

• Balancing data source4/sinks5: The parallelism degree of an operator reflects the adequacy
of access to the distributed resources. While making parallelisation decisions, the balance
between data sources and data sinks needs to be fine-tuned as their performances are cor-
related due to the producer and consumer communication model in the streaming system.
An overly powerful data source may cause severe backlogs in data sinks, whereas an ineffi-
cient data source would starve the subsequent operators and encumber the overall through-
put [100].

4A data source is an operator responsible for injecting data into the stream processing graph.
5A data sink is a peripheral operator that does not have any outgoing edges and only consume data in the stream processing
graph.
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Task Scheduling. Task scheduling dynamically maps streaming tasks to horizontally/vertically
scaled resources, such that data streams are partitioned and processed at different locations simul-
taneously and independently. In this review, we assume that the load balancing of stream routing
relies on the DSPS to properly partition data streams among the streaming tasks belonging to the
same operator. In addition, we assume that there is a state migration mechanism, like the one in
Reference [22], to handle the migration of internal task state to the node where the stateful task is
being rescheduled.

• Minimising inter-node communication: inter-node communication is much costlier than
intra-node communication as the former involves time-consuming operations such as mes-
sage serialisation and network transfer. It is therefore preferable to place communicating
tasks on the same node as long as it does not cause resource contention. If the infrastructure
consists of geographically distributed resources, then it becomes even more prominent to re-
duce large data transmissions on remote and error-prone data links with limited bandwidth.

• Mitigating resource contention: one of the leading causes of performance deterioration is
the competition for computational and network resources among collocated tasks. There
is a great interest in designing a resource-aware scheduler that makes sure the accrued
resource demands of collocated tasks do not exceed the node’s capacity.

• Performance-oriented scheduling: the scheduling of tasks should be optimised toward the
specific application performance targets defined in the SLA, regardless of the interference
brought by workload fluctuations, virtual machine (VM) performance variations, and the
multi-tenancy mechanism at the infrastructure and the DSPS tier.

Task scheduling for stream processing systems is similar to workflow scheduling for batch pro-
cessing systems—both of them are concerned with the assignment of tasks to the previously provi-
sioned resources. However, they also differ from each other as the objects being scheduled exhibit
distinct properties. Streaming tasks possess indefinite lifespan and share a great deal of intercom-
munication due to the producer and consumer model inherent in stream processing, while batch
tasks only exist for a limited time with the dependency of execution hinging on the sequence of
completion rather than the continuous and intermediate streams. These differences are naturally
reflected in the scheduling process. The former involves real-time decision making considering
the dynamic nature of input data, such as the varying intensity and complexity of the data flow,
whereas the latter can be done prior to the processing of batch jobs based on the priori knowledge
of data, tasks, and the execution environment.

It is also common that the data streams being transmitted in DSPSs are handled in batches for
performance reasons. Due to the strict latency constraint, batches in DSPSs are rather small and
processed at small intervals, which gives birth to a new concept called micro-batch. Comparing to
the canonical streaming model that handles each new piece of data when it arrives, the micro-batch
model divides the stream into small batches of a fixed duration and processes them at individual
batch windows, gaining better reliability and exactly once semantics at the cost of higher laten-
cies. The micro-batch model also plays a vital role in striking a balance between throughput and
latency—the two most significant performance indicators in stream processing. For instance, en-
larging the batch size in micro-batching may deteriorate end-to-end latencies due to the increased
buffer filling time, but it helps improve batch throughput by reducing the frequency of small com-
munication calls. From the scheduling perspective, the micro-batch model introduces a new level
of scheduling called job scheduling—with each batch considered as a job, the job scheduler re-
ceives the periodically generated jobs and decides when and how to schedule them in DSPS for
execution. There is also a number of scheduling parameters such as batch size, job parallelism and
resource shares among jobs to be tuned to cope with the variations in the workload and system
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conditions. However, due to the page limit, the scope of our review is confined to task scheduling
alone, which applies to both of the canonical streaming model and the micro-batch model.

Another topic on-trend in big data processing is the Lambda architecture designed to incorpo-
rate both batch and stream processing methods in a uniform manner [16, 117]. It describes systems
that consist of three layers: a batch layer for processing all available data at rest (typically on per-
sistent storage), a speed layer for processing the most recent data in motion, and a serving layer
for responding to user queries in low-latency on an ad hoc basis. This sort of architecture aims to
balance latency, throughput, and fault-tolerance by providing comprehensive and accurate views
of batch data, as well as rough results and quick insights of online data through continuous stream
processing. Essentially, the principle of lambda architecture implies a loosely coupled design—each
of the batch and streaming sides maintains a different code base and processes data independently
from different paths. Only at the query time are the results from both systems stitched together
to produce a complete answer. Our review applies specifically to the speed layer of the lambda
architecture, in which a stream processing system is employed to provide quick analysis of big
data and can benefit from the various resource management techniques surveyed in this article.

3 TAXONOMY

Figure 2 presents a taxonomy of resource management and scheduling in distributed stream pro-
cessing systems. In Section 2, we have broadly broken down the topic of interest into main three
sub-research topics—resource provisioning, operator parallelisation, and task scheduling. This tax-
onomy explores the sub-research topics further, covering seven specific aspects to allow better
comparison of existing work with similar research targets and method properties. Structuring the
taxonomy this way echoes the challenges and issues identified in Section 2, clearly defines the
scope of our survey, and demonstrates the necessity of using a combination of resource manage-
ment and task scheduling techniques to achieve SLA-awareness and cost-efficiency. The stream
processing community can benefit from the classification of current practice, and the developers
can make use of the identified common patterns to build a system respecting given target SLAs.

• Resource Type: the various resource types involved in the resource management process to
compose the stream processing infrastructure.

• Resource Estimation: the estimation and modelling of resource costs for a streaming system
to satisfy its SLA requirements.

• Resource Adaptation: the adaptation of resource allocation to the changes of workload vol-
ume and application performance.

• Parallelism Calculation: the profiling and calculation of parallelism degree for the parallel
operators in the application topology.

• Parallelism Adjustment: the adaptation of operator parallelism in response to workload
variations and internal system changes.

• Scheduling Objective: the various objectives of task scheduling and the rationale behind
these objectives to achieve the overall deployment target.

• Scheduling Methods: the various methods used for task scheduling.

Though our taxonomy has broken down the topic of interest into seven different aspects, this
only serves as a roadmap to review the literature of resource management and task scheduling
from different perspectives rather than specifying the boundaries of research. As discussed in
Appendix A.1, the activities of resource management and scheduling are tightly correlated—they
are often conducted in a bundle to fulfill a holistic deployment target. For example, a complete
resource provisioning cycle consists of three steps—selecting particular resource types (Resource
Type), estimating requirement of resource allocation (Resource Estimation), and adapting resource
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Fig. 2. The taxonomy of resource management and scheduling in distributed stream processing systems.
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allocation in response to runtime changes (Resource Adaptation), where the former step is re-
garded as a prerequisite for the latter. Since a relevant research may stretch across multiple as-
pects for completeness, it can be covered multiple times in the following sections (Section 4 �
Section 10) with a different focus of the taxonomy.

4 RESOURCE TYPE

Resource describes any physical or virtual component of limited availability within a computer
system. However, depending on the actual context, the same term could contain diverse meanings
and refer to various resource types at different levels of abstraction. For deployment in IaaS clouds,
resource generally refers to the computing and network facilities that are available to rent through
usage-based billing, such as VMs, IP addresses, and Virtual Local Area Networks. However, when
a streaming system is to be deployed in a more hybrid and geographically distributed environ-
ment, the concerned resource types also include other infrastructural components such as specific
hardware and hybrid networks.

In this section, we identify the various resource types involved in the deployment and resource
management process. It is worth noting that the storage resources, such as block, file, or object
storage, are omitted in our classification due to the rare discussion in the literature. This is credited
to the fact that saving stream data to an off-site storage system is often prohibitive, which would
block the dynamic data flow and cause unsustainable processing latency.

4.1 Resource Abstractions

Resource abstractions, such as CPU, memory, and network bandwidth, quantify the resource re-
quirements of a streaming system, regardless of the hardware differences at the infrastructure
layer. In addition, network latency is a major constraining factor that determines if the streaming
application can fulfill its low-latency SLA. From the end-users’ perspective, the measurement of re-
source abstractions is intuitive and straightforward. CPU resources can be counted by the number
of used CPU cores, with loads measured by Million Instructions Per Second (MIPS) or percentage
utilisations. Memory usage refers to the amount of memory currently in use and is quantified by
Megabytes (MB). Network bandwidth consumption corresponds to the average rate of successful
data transfer through a communication path, which is gauged by the unit of Megabytes per second
(MB/s) or Kilobytes per second (KB/s). Network latency indicates any kind of delay that happens
in data communication over a network and is often measured by milliseconds.

However, ignoring the particularity of the underlying infrastructure also means that the mea-
surement of resource abstractions reflects the general system state rather than yielding actual
resource provisioning plans. The results would be susceptible to countless modelling nuances and
hardware discrepancies. Instead of being used to directly construct the infrastructure, resource
abstractions are more commonly seen in rule-based approaches (Section 6.2) to approximate the
resource cost and shed light on the direction of adjustments.

4.2 Virtual Machines

Virtual machine (VM) is an emulation of a computer system customisable to meet the specific user
needs. In a cloud environment, virtual machine is the most common resource type that encapsu-
lates the computing power and serves as the host of streaming tasks in a distributed environment.

Provisioning VMs from a particular cloud platform is a mixed problem of considering the VM
price model, the location of data centres, and the network capacity of inter-connections. The actual
VM configurations and placement are determined by the specific computation and communica-
tion needs of the streaming system to meet its performance and cost SLA. For the generality of
discussion, this survey also includes resource management techniques that originally apply to
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the on-premise cluster environment, as the proposed resource estimation and adaptation methods
would also benefit the VM management in clouds to prevent resource leaks and contentions.

Containers are similar to VMs in terms of encapsulating virtualised resources to host the stream-
ing tasks, but they are more lightweight as the isolation properties are relaxed to share the oper-
ating system among the applications. It is increasingly common to deploy streaming systems over
containers rather than VMs to exploit the benefits of portability and efficiency. In these cases, the
underlying containers can be considered as a special type of VMs from the resource management
and task scheduling perspective. Many of the existing resource management techniques still apply
to the container cloud with little modifications required.

4.3 Specific Hardware

The infrastructure of streaming systems may require specific hardware to boost performance, im-
prove manageability, and deal with particular streaming scenarios. Due to the scarcity of supply
and the indispensability of functionality, provisioning of these critical resources is often prioritised
over other common computing and network resources in clouds.

Chen et al. [29] proposed a GPU-enabled extension on Apache Storm, exploiting the massively
parallel computing power of the Single Instruction Multiple Data (SIMD) architecture to accelerate
the processing of stream data. Similarly, Espeland et al. [42] processed distributed real-time multi-
media data on GPUs with support for transparent scaling and massive data- and task-parallelism.

FPGA is reconfigurable hardware designed to enable hardware-accelerated computations. The
use of FPGA as central data processing elements allows exploiting low-level data and functional
parallelism in streaming applications. To facilitate the application of FPGA for stream processing,
Auerbach et al. [5] presented a Java-compatible language as well as the associated compiler and
run-time system to integrate the streaming paradigm into a mainstream programming environ-
ment. Neuendorffer et al. [116] from Xilinx discussed the design tools required for the fast imple-
mentation of streaming systems on FPGAs, and Sadoghi et al. [131] investigated how to map multi-
ple streaming applications to FPGA hardware using Hardware Description Language (HDL) code.

Specific hardware can not only be found at the centralized cloud but also at different locations
of the network to facilitate the timely processing of stream data. In some use cases, deploying the
streaming system requires specific sensors to collect input data or monitor the current processing
state such as network transmission and power consumption. For instance, data collection sensors
are employed by Zhu and Vijayakumar [153, 173] to aggregate stream data from the satellites and
environmental monitoring facilities in real time. Kamburugamuve et al. [75] proposed a hybrid
platform to connect smart sensors and cloud services, with the data processing logic deployed
in the centralised cloud servers to enable new real-time robotics applications such as autonomous
robot navigation. Traub et al. [151] optimised communication costs on sensor networks by sharing
sensor reads among streaming applications, so that the amount of data transfer is reduced by a
combination of data stream sampling and tailoring techniques. Also, power meters such as Watts
Up are employed by Shen et al. [139] and Mashayekhy et al. [110] in their streaming systems to
get live power readings from the host machines.

4.4 Hybrid Network

Traditionally, streaming systems are deployed in a single cluster or cloud environment as most
of the data streams to be processed are collected from web analytic applications. However, there
is an ongoing trend that the deployment migrates to a more heterogeneous and geographically
distributed setting to process the huge data streams generated by the IoT applications. In this
process, novel network elements and hybrid network structures have been employed to enhance
the infrastructure connectivity and create new application paradigms.
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The emergence of programmable networking hardware and the expressive data plane program-
ming languages motivate the idea of in-network computation [8, 9, 96, 132]. In-network stream
processing delegates part of the computing operations to the network devices such as switches
and smart Network Interface Cards (NIC), to reduce the increasing data traffic to data centres.
However, this brings new challenges to the design of the scheduler to decide what type of compu-
tation can be done in-network. The streaming applications are sensitive to the varying network
performance yet there are strict end-to-end latency constraints to respect, so the scheduler must
make a careful selection of streaming tasks that can work with the limitations of the network ar-
chitecture and the confined computing power of programmable devices. As well, the scheduler
needs to consider maintaining scalability with the rapidly increasing communication cost as the
stream data are routinely moved in many-to-many patterns.

Collaborative Fog, Edge, and IoT networks are also gaining popularity in stream processing for
the ability to offload a substantial amount of control, computation and management workload
to the network gateways close to data sources, thus reducing data transmission and bandwidth
consumption. Papageorgiou et al. [119] identified that the low latency requirement is often chal-
lenged at the edge of the application topology due to the frequent communication with external
IoT entities, so they built new decision modules to place selected tasks on edge devices at runtime
using resource descriptors. Hochreiner et al. [62] discussed the distributed deployment of stream-
ing applications over a hybrid cloud, with a threshold-based resource elasticity mechanism to deal
with the variation of IoT streams. Cardellini et al. [20] also investigated distributed deployment of
streaming systems over a geographically distributed Fog infrastructure, in which they focused on
the design and implementation of a QoS-aware and decentralised scheduling policy. A distributed
IoT network developed by Ralf et al. [122] tackles aggregation and processing of streaming data
in smart city applications, which is capable of enriching input streams with semantic annotations
and utilising stream reasoning techniques to allow real-time intelligence with event detection.

Mobile devices have also taken part in the network infrastructure of a streaming system to move
computation closer to the data sources. To deploy stream processing application directly on smart-
phones, Wang et al. [158] proposed a new check-pointing method to mask the simultaneous failure
of mobile devices and employed a segmented, UDP-based data transmission method to reduce the
cellular network overhead. Similarly, Morales et al. [114] relied on mobile devices to pre-process
data streams, and they also proposed a new check-pointing method that is both connectivity-aware
and energy-aware. Yang et al. [165] discussed how to enable mobile devices to work in partnership
with VMs provisioned in clouds, with a focus on the dynamic partitioning of data streams between
mobile devices and data centres to achieve higher throughput and scalability.

However, High-performance Computing (HPC) network has also been employed in stream pro-
cessing to enable advanced interconnectivity and better scalability than the conventional Ethernet
connection. Recently, Kamburugamuve et al. [77] discussed the use of Infiniband and Intel Omni-
Path to improve the performance of stream processing applications, where a new Storm extension
is proposed, exploiting the native function of high-performance interconnects to achieve signifi-
cantly lower latencies and improved throughputs.

5 RESOURCE ESTIMATION

Based on the information retrieved, recorded, or derived from the present and the past system
states, resource estimation calculates the minimal amount of resources required by the streaming
system to fulfill its SLA. The accuracy of resource estimation determines the cost-efficiency of
resource provisioning, which plays a key role in a quick converge to optimal deployment and
avoiding over- and under-resource utilisation.

Our taxonomy covers the following characteristics of a resource estimation method:
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Fig. 3. The classification of predicted metrics used for resource estimation.

• Predictive Ability: whether the resource estimation method can predict future application
and system metrics, such as workload size, resource utilisation, and application perfor-
mance.

• Resource cost modelling: how it models the resource costs based on the predicted or col-
lected metrics, and what criteria in SLA determine the minimal amount of resource require-
ments.

5.1 Predictive Ability

Prediction of future application and system metrics allows active speculation of future resource
demands rather than assuming a constant resource consumption pattern. Figure 3 illustrates the
classification of predicted metrics based on the level of which they are collected from the software
stack. Metrics of different granularities contain different information and thus contributing to re-
source estimation in different ways. The prediction of system metrics normally leads to a direct
estimation of future resource requirements, which is oblivious to the particularity of the hosted
applications; whereas the prediction of application metrics leads to an indirect estimation of re-
source demands, which requires further resource cost modelling to suggest the minimal resource
requirement without violating the SLA requirements.

From the methodology perspective, time series analysis and queueing theory are identified as
the two prominent approaches for metric prediction.

5.1.1 Time Series Analysis. A time series is a sequence of data records collected at successive
points in time, and time series analysis is an umbrella term that describes a variety of models and
methods on time series to find repeating patterns in the historical data. In the context of stream
processing, time series analysis can work on the past system resource usages and application met-
rics, leading to direct and indirect estimation of future resource requirements, respectively.

Direct Resource Estimation by Predicting System Metrics. CloudScale [139] is an elastic resource
scaling system built on Xen hypervisor6 that directly predicts the short-term resource demands
based on the recent history of system metrics. They adopted a hybrid time series analysis approach
combining both Fast Fourier Transform (FFT) and a discrete-time Markov chain to balance between
high estimation accuracy and low overhead. The light-weight FFT is tried first for fast identification
of repeating patterns in the previous time series. If not found, then the heavier Markov chain
model performs multi-step analysis on the metric history to provide coarse-grained and long-term
resource estimations.

The same approach is also seen in the group’s previous work [171], with more details revealed on
the prediction process. The application of FFT identifies the dominant frequencies of variation in

6https://www.xenproject.org/.
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the observed resource-usage time series, followed by a discrete-time Markov chain model that un-
veils the deeper-hidden patterns through calculating the feature value distribution of the collected
resource metrics. The combination of these two methods leads to a fast yet accurate estimation
model, provided that there are patterns concealed in the resource usage history.

OrientStream [155] is a recent work on dynamic resource provisioning of stream processing
systems. It features an online resource prediction module that employs an ensemble regression
model on the past system metrics to suggest future resource usages. The prediction process is
essentially a weighted vote of four independent regression models, reaping the benefit of reducing
the overall Relative Absolute Error.

Dai et al. [33] presented VM provisioning as a multi-objective optimisation problem, which they
solve with an auto-regressive model that learns and predicts the utilisation of each VM as well as
the bandwidth consumption between routers. With further consideration on power management,
Liu et al. [97] applied deep reinforcement learning over a linear combination of system metrics such
as total power consumption, VM latency, and reliability metrics to synthetically predict future sys-
tem states. Based on the forecast, a hierarchical resource provisioning model is proposed that saves
energy consumption without significantly impacting application performance and availability.

Indirect Resource Estimation by Predicting Application Metrics. Time series analysis can also work
on the historical application metrics to indirectly suggest the future resource demands with the
help of resource cost modelling.

The first category of works predicts the future state of operators. Hidalgo et al. [60] applied a
Markov chain model on the workload time series to predict whether an operator’s future state
would be overloaded, underloaded, or stable. Based on the state predictions, resource cost is mod-
elled by checking the minimal amount of resources needed for the placement of tasks. Kombi
et al. [86] adopted a similar method to forecast operator bottlenecks, which circumvents the rigor-
ousness of queuing theory while still being able to estimate resource demands at the operator level.
Ottenwälder et al. [118] achieved location-aware adaptation of operators with a query predictor.
The proposed algorithm can reduce the latency during operator graph switches by configuring the
graph deployments in advance, where the predicted operator states such as the possible location
of the focal point and the future processing interests are utilised to guide the deployments.

The second category tries to predict future workload. Balkesen et al. [7] applied exponential
smoothing on the periodic observations of the input stream rate to forecast the volume of future
workloads. Their rate-forecasting heuristic solves the bin packing problem formulation, suggest-
ing the future resource usages based on the stream distribution and the placement of operators.
Analogously, Ishii et al. [70] employed Sequentially Discounting AutoRegression to predict future
input rates. They formulated an optimisation problem on resource provisioning and solved it with
linear programming to find the minimal resource requirement without violating the application
latency SLA. Hoseiny Farahabady et al. [64] also predicted the changes in the input traffic with
an Auto Regressive Integrated Moving Average model, which lays the foundation for a resource
provisioning algorithm that causes less QoS detriments over all available servers.

Mayer et al. [112] predicted the workload distribution and its parameters with a hybrid approach
of distribution moments and maximum likelihood method. The predicted workload distribution
feeds into the calculation of operator parallelism and then sheds light on the resource cost by
counting the number of processor cores required for task execution. Imai et al. [69] trained a linear
regression model on the performance data collected in an experimental environment, to predict
the maximum sustainable throughput of the streaming application running on a larger number
of VMs. Therefore, the cost model is built by directly linking the desired application performance
with the number of VMs provisioned in the infrastructure.
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5.1.2 Queueing Theory. Queueing theory is a set of mathematical models studying the waiting
lines and queues to describe or predict the waiting time and queue lengths. In stream processing,
queueing theory is often applied to application performance metrics—especially operator latency—
to shed light on the possible data flow bottlenecks.

By modelling the operator as a G/G/1 queueing system, De Matteis et al. [35] regarded each
operator task as a single server queue where both inter-arrival times and service times have a
general distribution. The Kingman’s formula is then used to approximate the mean waiting time
at the operator level, which sheds light on the runtime adaptation of the number of used cores as
well as the CPU frequency. The same modelling and solving technique are also found in a variety
of literature [25, 36, 37, 91, 104], which proves that the Kingman’s formula is widely accepted for
latency modelling because of its accuracy and generality applying to arbitrary distributions of the
inter-arrival time and service time.

Differently, Hoseiny Farahabady et al. [64] modelled the operator as a G/G/k queue (k is the
number of processors for the target operator) and employed Allen-Cunneen approximation to give
an upper-bound of the sojourn time experienced by each tuple. Since there is no exact formula
known for theG/G/k-model, Allen-Cunneen approximation provides asymptotically exact results
under heavy traffic and is particularly suitable for streaming applications with highly utilised op-
erators. Fu et al. [46] formulated the operator as a M/M/k system, where M indicates Poisson
distribution for arrival and Exponential distribution for service time. Accordingly, Erlang formula
is applied to estimate the expected value of the total tuple sojourn time in the application. This is
different to theG/G/1 andG/G/k modelling at the operator level as the whole application topology
is modelled as a Jackson open queueing network, which increases the rigorousness of the queueing
model but is capable of providing more accurate latency estimations for the whole application if
the model assumptions are met.

5.2 Resource Cost Modelling

With the domain knowledge of stream processing, a resource cost model summarises the various
metrics collected at the runtime stack, suggesting an overall estimation of resource requirements
for the streaming system to satisfy its particular SLA requirements.

Modelling resource costs requires taking the application logic and the desired deployment target
into consideration. Different operators may exhibit different resource usage patterns. For example,
a filtering operator shows a pattern of resource consumption linear to its workload volume, while a
window operator exhibits periodical resource requirement peaks as the window slides or executes.
When the deployment of applications is tuned toward higher reliability and availability, extra
resources are provisioned for fault-tolerance or serving as headroom to confine the utilisation rate
of each node in certain bounds. When the deployment emphasises cost-efficiency and lower run-
time overheads, the placement of tasks is consolidated to as fewer nodes as possible to reduce
resource usages and inter-node communications. Proper resource cost modelling is the key to deal
with these variations and suggest the overall resource requirements accordingly.

For the convenience of discussion, our taxonomy categorises different resource cost models
based on the intended SLA optimisation, i.e., which SLA requirement is more critical to determine
the system resource cost in general.

Minimal Cost Model. This model intends to achieve the targeted performance requirement with
minimal resource cost and provisions no spare resources to improve reliability and availability. Bin
packing is the most common strategy to model the minimal resource cost based on the compact
task placement. Setty et al. [138] used bin-packing formulation to determine the minimal number
of VMs needed by the placement of topic-subscriber pairs, with a greedy heuristic to optimise
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cost while respecting the constraint that the application communication must not exceed the VM
bandwidth capacity. Heinze et al. developed FUGU, an elastic data stream processing prototype,
to evaluate different scaling policies [58] and optimise the scaling parameters [59]. In both works,
the resource requirements are estimated using a bin-packing model solved by a First Fit and Best
Fit heuristic. Balkesen et al. [7] employed bin packing to dynamically re-assign data streams to
different nodes, making runtime adjustments to the previous round of stream assignment rather
than optimising from scratch to balance between result optimality and the overhead of stream
redirections. Shukla et al. [141] proposed a model-based approach to offer reliable estimates of the
resource allocation required, which is essentially a two-dimensional bin-packing problem (CPU
and memory) solved by best-fit packing. Bin packing is also employed by Liu et al. [98, 99, 101],
Xu et al. [163], Nardelli et al. [115] and Ghaderi et al. [50] to suggest minimal resource cost under
a certain SLA requirement.

Reliability-oriented Model. This model provisions additional resources for state management and
failure recovery. Madsen et al. [108, 109] proposed a Storm extension that replicates the same op-
erator state across different nodes, allowing faster state migration in failure recovery and the scal-
ing of stateful operators. The resource cost is thus calculated by the needs of state management to
maintain semantic correctness and fault-tolerance. Similarly, Castro Fernandez et al. [23] designed
a set of state management primitives to expose internal operator states to the DSPS for transpar-
ent failure handling and scaling. This leads to a resource cost model built on state management
with extra computation and communication overhead introduced by failure recovery and peri-
odical state check-pointing. Koldehofe et al. [85] proposed a rollback-recovery scheme with low
run-time overhead, where the state information is incrementally replicated at preceding operators
to reduce the resource consumption required for providing reliability guarantees.

Contention-aware Model. Model of this type permits certain resource allowances to handle ran-
dom workload bursts when needed. Hoseiny Farahabady et al. [64] proposed a resource cost model
that tracks and confines the CPU utilisation level of each node within an accepted range, and a
similar approach is also found in Thamsen et al.’s work [148]. To limit the memory usage and
CPU consumption within a certain bound, Cammert et al. [15] proposed a cost model to estimate
resource utilisation of continuous queries based on the stream characteristics such as the average
inter-arrival time and the average validity of tuples. The proposed fine-grained cost model is cus-
tomised to a variety of operator types and streaming logic, making it possible to even quantify the
impact of (re)optimisations on query plans.

Load-balancing-oriented Model. This model focuses on the fair utilisation of available resources
and is the opposite of the compact task placement, which is commonly seen in the minimal cost
model. Fischer et al. [43], Eskandari et al. [41], and Jiang et al. [73] regard the operator placement
as a graph partitioning problem, so that they explicitly spread the streaming tasks across all avail-
able resources at the infrastructure for better load balancing. This cost model is also employed by
the round-robin scheduler that is used as default by a variety of DSPSs, which favours even load
distribution over participating computing nodes.

Distribution-based Model. Also, depending on the nature of the cost model, the result of resource
requirement may be a probability distribution rather than a definitive value. Khoshkbarforoushha
et al. [82, 83] employed Mixture Density Networks, a statistical machine learning model combining
Gaussian mixture models and feed-forward neural networks, to estimate the whole spectrum of
resource usage as probability density functions. Modelling the resource usage as a distribution
rather than a single point value captures the possible variances caused by resource contentions
and interferences from parallel workloads.
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6 RESOURCE ADAPTATION

In this review, we refer to resource adaptation in stream processing specifically as horizontal
scaling, i.e., adding or removing VMs within the infrastructure to alter the scale of distributed
computation. However, there is also vertical scaling that resizes the existing VMs and adjusts
the capabilities of hardware in terms of CPU, memory, and network resources. One advantage of
vertical scaling is that the underlying resource adaptation remains highly transparent to the ap-
plication logic, making it easier to leverage resource elasticity at the deployment stage. It can also
help reduce the movement of data tuples across the network by consolidating the number of VMs
used for data processing and management. Nevertheless, vertical scaling incurs a considerable
cost from an operational point of view. The maximal scalability is limited to the capacity of a single
host machine, and the adaptation process often involves downtime due to a mandatory system
restart. The possible interruption of service makes vertical scaling less preferable when it comes
to the cloud deployment of DSPS. The consequence of bringing down the whole streaming system
for maintenance can be unacceptable in the presence of continuous inputs and strict latency SLA.
Recently, there have been techniques proposed by academia to enact resource adaptation updates
while ensuring reliable execution by mitigating the stopping and restarting of the DSPS [142, 164].
But the gap is still huge for these techniques to be mature and for the mainstream cloud provider
such as Amazon, Microsoft, and Google to support stop-free vertical scaling in production systems.

In some cases, vertical scaling can be combined with horizontal scaling for right-sizing the VMs
for the current load, with a typical use case being workload consolidation [64]. For example, it is
profitable to reduce inter-VM latency by consolidating eight medium VMs at 50% load into four
medium VMs at 100% load. In addition, vertical scaling can be employed to optimise energy con-
sumption through Dynamic Voltage and Frequency Scaling (DVFS). DVFS is a power management
technique that allows processors to dynamically change power states, lowering and raising CPU
frequency and voltages on the fly according to the resource demands from virtual machines. It is
used by Matteis et al. [35, 37] to explicitly regulate the CPU frequency, by Sun et al. [147] to model
the power-to-frequency relationship, and by Shen et al. [139] to turn unused resources into energy
savings without affecting application SLA.

While performing resource adaptation in response to the internal and external changes, it is
of crucial importance to evaluate the cost-benefit trade-off. The general guideline for deciding
whether and how resource adaptation should be triggered is the well-known SASO properties [49].
That is, it exhibits stability (avoids frequent modifications of the current configuration and results
in wild oscillation), achieves good accuracy (minimises the number of QoS violations), has short
settling time (reaches the desirable configuration quickly), and finally, avoids overshoot (does not
overestimate the configuration to meet the needed QoS).

In the rest of this section, we categorise horizontal scaling techniques into two major categories
based on how they select the proper scaling time. (1) Proactive approaches that adjust resource
provisioning according to the prediction of workload pressure and system behaviour in the fu-
ture time horizon. (2) Reactive approaches that scale the infrastructure only when necessary as
indicated by some threshold breaches or changes of system state.

The choice of proactive or reactive approaches much depends on the predictability of workload
pattern and system behaviour. In some cases, the input stream exhibits gradual and repetitive vari-
ations in volume and composition, making it possible to learn from the history and apply the ob-
tained knowledge to adjust resource provisioning proactively before the application requirement
changes. In other cases, the arriving data stream contains random bursts and drastic workload
changes with no clear pattern, leaving the prediction of future system state no longer a viable
option [11, 149]. Hence, reactive approaches are required to deal with the bursty load on the best
effort basis.
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6.1 Proactive Adaptation

Proactive adaptation regards the infrastructure tier as a controllable system requiring certain cor-
rective actions from time to time, e.g., acquiring more resources to tackle under-provisioning or
relinquishing over-provisioned resources for cost-efficiency. Therefore, there are continuous con-
trolling loops that monitor the various inputs and outputs of resource management and actively
suggest optimal adjustments without delay or overshoot.

A typical workflow of a controlling loop is as follows: (1) The resource estimation module pre-
dicts the future system state such as the workload arrival rate and the average input processing
latency in the prediction horizon7; (2) the system model captures the relationship of various QoS
variables, assessing the system’s capability to maintain the articulated SLA; (3) the control al-
gorithm solves an optimisation problem to find the best resource allocation for the next loop;
(4) perform resource adaptation and adjust the operator parallelism accordingly to avoid data skew
and load imbalance.

Based on how the optimisation problem is solved, we generally categorise the proactive adap-
tation methods into two groups. The first one is loop-wise control, which regards each prediction
horizon as an independent control interval and derives proactive adjustments by applying the
predefined scaling rules to the estimation of the next control loop. Methods falling this group are
intuitive and straightforward to implement, but they may suffer from the problem of adjusting for
short-term benefits while ignoring the long-term future.

To mitigate this, Model Predictive Control (MPC) optimises resource provisioning in a receding
prediction horizon that consists of multiple control intervals. At each control interval, the con-
troller solves an optimisation problem to obtain the optimal reconfiguration trajectory over the
prediction horizon. However, when it comes to execution, only the first element of the optimal re-
configuration trajectory would be employed to steer the resource adaptation, while the whole tra-
jectory is re-evaluated at the beginning of the next control interval to exploit the updated forecast
in the shifted prediction horizon. De Matteis et al. [35–37] employed MPC to achieve QoS-aware
and energy-efficient resource adaptation, formulating the optimisation problem as a minimisation
of QoS cost, resource cost and adaptation cost. The search space of the optimisation problem is de-
scribed as a tree structure and the Branch & Bound methods are employed to prune the search tree
and reduce the runtime overhead of MPC in a latency-sensitive environment. Meanwhile, Hoseiny
Farahabady et al. [63, 64] employed MPC to proactively alleviate the resource contention between
collocated applications, in which the optimisation problem is solved by Particle-Swarm Optimiza-
tion (PSO) with the execution time capped to 1% of the control interval to limit its computational
overhead.

6.2 Reactive Adaptation

Based on the metric classification shown in Figure 3, we also categorise different reactive methods
by the nature of the triggering metric.

System Metrics Triggered. The system metrics such as CPU utilisation, memory usage, and band-
width consumption contain raw information on system performance and resource utilisations,
thus reflecting the need for adaptation when some metrics have breached certain thresholds. The
common problem associated with this type of methods is that the system metrics may not faith-
fully reflect the application performance. For example, a higher CPU utilisation rate does not nec-
essarily mean higher application throughput and lower processing latency. Instead, it may im-
ply that the current resource provisioning is not sufficient for handling the incoming workload.

7Prediction horizon: the period in which the future values of the interested metrics are predicted.
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However, methods falling into this category are versatile and easy to implement for being
application-agnostic—the simplest example would be monitoring the CPU utilisation at each host,
with an upper and lower bound defined to trigger scaling in and out actions [22, 23, 58, 152]. The
memory threshold method is also found in Liu et al.’s work [95].

Application Metrics Triggered. The application metrics include not only the application perfor-
mance perceived by the end-user but also internal metrics from the DSPS that include the service
time, the arrival rate, and the length of input/output queue for individual operators.

Lohrmann et al. [104] present a reactive scaling strategy that reacts to latency constraint viola-
tions with appropriate scaling actions, which minimises the total resource consumption under a
varying load scenario. The same approach is also employed in their Nephele [105] implementation.
Xu et al. [164] defined a metric named Effective Throughput Percentage (ETP) for each operator,
which captures the state of congestion and estimates the impact of operator output toward the
application throughput. The operator with the highest ETP will be given more parallelism and
assigned to a new VM for scaling out.

By monitoring the input stream rates and the current processing rates within the DSPS, Cervino
et al. [24] detect overload conditions in the operator buffer and then scale the number of used
VMs accordingly to maintain the required throughput. Similarly, Vijayakumar et al. [153] defined
a derived metric describing the difference between the processing time per data block and the
average time interval of receiving one block, so that the adaptation is triggered by the calculated
buffer-overflow. Kleiminger et al. [84] monitored the lengths of the input and output queues for
stream processors, so that the computation can scale out from an on-premise cluster to clouds
when needed. Satzger et al. [134] determined if an operator is overloaded by analysing the length of
its incoming message queue, with thresholds hard-coded in the scaling logic to trigger adaptations.

Hybrid Metrics Triggered. Since leveraging system metrics or application metrics alone may not
faithfully reflect the actual application performance and resource utilisation, there are some works
collecting hybrid metrics to comprehensively trigger reactive resource adaptations. The most com-
mon combination is to monitor the operator throughput and the resource utilisation at each host
node, to deduce the average processing cost per tuple at the operator granularity. Liu et al. [99] ap-
plied this method to trigger reactive resource adaptation, so that the overall application throughput
can be maintained at a pre-defined level regardless of the initial allocation of resources. In another
work of the same group, scale-in is performed when the input load decreases, and so does the re-
source consumption of each operator [98]. The scale of adaptation is derived from the monitored
load difference and a comprehensive metric of per-tuple processing cost.

Apart from stream processing with a DSPS as middleware, there is a trending serverless and
event-driven architecture called Function as a Service (FaaS) that utilises a docker-based runtime
to scale up or down automatically in response to demand. It provides a programming model to
allow developers to write functional logic, which is completely autonomous and independent of
the event sources, to be dynamically scheduled and run in response to associated events from
external sources. Such built-in elasticity also means that the resource adaptation is managed by
the docker runtime internally and the resource cost is billed by the workload activity rather than
per hour of VM utilization. The typical examples of this architecture include Apache OpenWhisk
and IBM Cloud Functions, which we will discuss more in Section 11 to shed light on how containers
facilitate the resource management of stream processing systems.

7 PARALLELISM CALCULATION

Parallelism calculation answers the question of how many streaming tasks are required for an
operator to sustain its assigned workload without causing congestions to the whole application

ACM Computing Surveys, Vol. 53, No. 3, Article 50. Publication date: April 2020.



50:20 X. Liu and R. Buyya

topology. We have identified two prominent approaches in the literature. The first approach is
called performance-driven parallelisation—the resulting parallelism degree is a divisor of the oper-
ator input size by the anticipated capacity of each streaming task. The second approach is platform-
oriented parallelisation—it first checks the maximum number of parallelism units supported by the
provisioned platform and then distributes them as resources among different operators to ensure
that the platform is not over-utilised by an excessive amount of processes and threads.

7.1 Performance-driven Parallelisation

In this approach, direct calculation of operator parallelism hinges on the accurate profiling of
both operator inputs and the capacity of each streaming task, the latter of which is defined as the
maximum number of tuples that a single task can sustainably handle per time unit [99]. There
are direct and indirect methods to measure the volume of inputs for an individual operator. The
direct methods install a metric collector at the task entrance that automatically gauges the flow
traffic and regularly reports to the calculation logic [71], while the indirect method relies on the
producer and consumer model to infer the input volume of a particular operator by examining the
selectivity8 of its upstream operators [135]. The state-of-the-art DSPSs are now exposing metrics
reporting APIs for light-weight stream monitoring and management,9 so the hurdle of directly
measuring operator inputs has been lowered with the abundance of collected metrics.

In addition to measuring operator input, task profiling is another piece of the puzzle to achieve
performance-driven parallelisation. There are a bunch of monitoring and sampling techniques that
profile the task performance from different perspectives. The most commonly profiled metrics
include the average processing latency per tuple [27, 100], the idleness of task execution [73, 159],
and the resource usages of a task entity [98, 99]. The relationship between task capacity and the
first two metrics is readily established—a task reaches its maximum capacity when fully occupied
with tuple processing under the wall clock time. However, estimating task capacity with the last
metric relies on the assumption that this task is hosted by a single thread, which means its peak
performance is also limited by the maximum CPU utilisation of a single CPU core.

7.2 Platform-oriented Parallelisation

The rationale of platform-oriented parallelisation is twofold—to avoid over-utilising the available
resources with excessive operator parallelism and to help incorporate some rules of thumb sug-
gested by the DSPS developers to make full use of the parallel processing capability. Take Apache
Storm as an example, it is suggested that the operator parallelism is a multiple of the number of
machines deployed in the platform, and the parallelism of data source is a factor of the number of
partitions of the message queue, as such configuration empirically facilitates load balancing be-
tween different hosts [100, 145]. As for Apache Flink, the official training guide suggests that using
1 CPU per slot and setting the operator parallelism as a multiple of the number of slots would help
achieve balanced slot sharing.10

Platform-oriented parallelisation is commonly used in industrial deployment settings as re-
ported by Goetz et al. [51]. Specifically, there is a concept of parallelism unit to describe the parallel
processing capability of the platform, which essentially multiplies the number of nodes in the plat-
form by the number of cores available on each node. For instance, there are 160 parallelism units

8Selectivity: an operator metric that describes the number of data tuples produced as outputs per tuple consumed in inputs.
9Apache Storm: http://storm.apache.org/releases/2.0.0-SNAPSHOT/metrics_v2.html; Apache Flink: https://ci.apache.org/
projects/flink/flink-docs-stable/monitoring/metrics.html; Apache Samza: https://samza.apache.org/learn/documentation/
0.7.0/container/metrics.html.
10https://www.slideshare.net/dataArtisans/apache-flink-training-deployment-operations.
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available in a cluster consisting of 10 worker nodes with each incorporating 16 cores. The cal-
culated parallelism units are then regarded as a special type of resources that can be distributed
among parallel operators in the topology— the slower the task is in terms of the processing latency,
the larger parallelism it gets from the resource pool of parallelism units. They also considered the
fact that some tasks may exhibit a higher processing latency because of having intensive commu-
nications, so the number of parallelism units can be enlarged 10 to 100 times depending on the
number of I/O bound operators present in the topology. This is to ensure that there are enough
streaming tasks for the communication-intensive operator to split the workload and perform I/O
operations.

8 PARALLELISM ADJUSTMENT

The direct calculation of operator parallelism may not be feasible in some user cases due to the lack
of pilot run or monitoring facilities. Also, the results of calculation are prone to profiling errors
that adversely affect the system performance. Therefore, an iterative adjustment process is needed
to dynamically adapt the parallelism degree in response to the continuous variations of workload
and system performance.

8.1 Rule-based Approaches

Rule-based approaches have attracted extensive research attentions due to the simplicity of im-
plementation and effectiveness of adjustments. The core of the method is made of a collection of
scaling rules that define the triggering thresholds as well as the corresponding scaling actions.
In most cases, the scaling actions are greedy-based, which favour direct mitigation of the thresh-
old violation and converging to suitable parallelism quickly at the expense of optimality. It also
means that the resulting parallelism may be trapped in the local optimum and a proper backtrack
mechanism is required to search for the global optimum [6].

Rule-based approaches can be generally classified as either static or dynamic in terms of execu-
tion.

Static Single Threshold. A static threshold is pre-defined in the scaling logic to trigger parallelism
adjustments in a single direction. For example, the threshold on processing latency is one-sided—
when the monitored latency exceeds the SLA requirement, the operator parallelism is increased to
amortise the processing workload by adding more streaming tasks to the fleet. Besides, Humayoo
et al. [65] assessed the necessity of adjustment with a utility threshold to evaluate if the probabil-
ity of obtaining positive gain outweighs that to incur a loss. Gulisano et al. [52] defined an upper
imbalance threshold to ensure the standard deviation of load distribution is below a pre-defined
limit. Though setting a single threshold statically makes it fairly easy to implement the adjustment
logic, expert knowledge on application characteristics and the platform specification are still re-
quired to properly decide the threshold value and the corresponding scaling actions. Furthermore,
methods falling into this category lack the ability to scale reversely nor being self-adaptive as the
employed threshold is fixed during the complete runtime of the system.

Static Multiple Thresholds. Multiple static thresholds are set in pairs to maintain the concerned
parameters within certain upper and lower bounds. For instance, Fernandez et al. [23] defined two
thresholds on the average CPU usages of each node to trigger parallelism adjustment from the
perspective of local resource utilisation. This approach is also seen in Veen et al.’s work [152].
Kombi et al. [86] divided the estimated amount of operator input by the estimated capacity of a
streaming task, where two performance thresholds are defined delimiting a low and a high activity
level to trigger the corresponding scaling action. The major challenge for this type of methods
is oscillation, where opposite scaling operations are conducted continuously due to the poorly
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configured thresholds or overreacting changes [49]. Therefore, a configuration of cooling time is
set in practice to conservatively limit the frequency of adjustments and mitigate oscillation.

Dynamic Thresholds. With the knowledge acquired from the evaluation of the previous ad-
justment results, dynamic thresholds improve the method adaptivity by updating the triggering
thresholds and refining the adjustment behaviours at runtime. It also helps mitigate oscillation as
the parameters of scaling are dynamically updated with regard to the previous run history. Heinze
et al. [58] applied reinforcement learning to reward effective adjustments and punish unnecessary
changes caused by inappropriate thresholds. Bilal et al. [10] examined whether a change of pa-
rameter value has an overall positive or negative impact on latency and throughput, where the
dynamic thresholds are defined as the best performance monitored in the execution history.

8.2 Queueing Theory

The anticipation of operator congestion using queueing theory is not only useful for the estimation
and adaptation of resource provisioning but also for deciding the relevant parallelism requirement.
Mayer et al. [111, 112] built an adaptive data parallelisation middleware that deduces a stationary
distribution of the queue length under a certain parallelisation degree, so that the operator paral-
lelism is adjusted accordingly to make sure that the message buffer’s limit is not exceeded with a
high probability. Liu et al. [100] employed a queueing network to infer the throughput distribu-
tion among operators considering their selectivity and communication pattern, based on which
the operator parallelism is scaled in batch ensuring that the capability of the data source and data
sink is balanced.

A predictive operator latency model is built on queueing theory and employed by Lohrmann
et al. [104] to formulate a linear objective function on the minimisation of total parallelism. They
applied a gradient descent search to find the optimal degree of parallelism for each operator that
reduces resource footprints while enforcing the latency constraints. Similarly, Fu et al. [46] for-
mulated a latency model based on queueing theory to determine the number of nodes that each
operator needs to be placed on; however, their approach is dedicated to computationally inten-
sive applications with no regards to the possible communication overhead and network delays.
Cardellini et al. [19, 22] searched for the optimal parallelism by jointly considering operator repli-
cation and task placement within an integer linear programming formulation, and this process
relies on modelling the underlying computing node as an M/M/1 queue to estimate the response
time of a particular operator subject to its parallelism, service rate, and incoming load.

8.3 Control Theory

The versatile control theory also applies to the adjustment of operator parallelism. In Section 6.1,
we have discussed various MPC-based algorithms that explore the optimal configuration of the
target application under ever-changing operational conditions. The parallelism degree of each op-
erator is part of the configuration, which is updated at the beginning of each control interval [35,
36, 37, 63, 64]. In addition, Gedik et al. [47, 49] investigated the profitability of parallelism adjust-
ment with respect to the changes in workload volume and the availability of resources, where a
control algorithm is proposed to manage the operator throughputs and congestion with appropri-
ate parallelism. In Li et al.’s work [92], the operator parallelism is controlled by the comparison of
congestion degrees11 that are measured on the operator’s receiving and sending queue, where the
strength of intervention could be tweaked by an adjustment coefficient. Floratou et al. [45] pre-
sented a throughput-oriented policy that automatically configures the parallelism degree to ensure

11The congestion degree for a particular operator queue refers to the ratio of the size of the queued messages to the overall
queue buffer size.
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satisfactory throughput and alleviate backpressure. Similarly, Stela [164] also relies on monitoring
throughput changes to make control decisions—the control algorithm increases the parallelism of
the most congested and most influential operator to make full use of the newly added machines
during scaling out. In Sun et al.’s work [144, 145], the parallelism degree of each operator is de-
termined in proportion to its computational complexity, which is monitored and measured by the
unit of MIPS, i.e., Millions of Instructions Per Second.

8.4 Machine Learning and Game Theory

The adjustment of operator parallelism can also resort to a variety of machine learning techniques.
Gaussian processes is employed by Zacheilas et al. [166] to analyse historical data of workload vol-
ume and processing latency, so that the parallelism degree can be proactively adjusted to augment
the system’s performance. By applying incremental learning techniques to different query work-
loads as training sets, Wang et al. [156] predicted the operator resource usages under several man-
ually supplied candidate configurations. The optimal parallelism is then selected to minimise re-
source usages while considering the current query requests and stream properties. Game theory is
also explored to formulate the elastic parallelism scaling problem as a non-cooperative game, with
each operator regarded as an independent agent performing a local control strategy. The operator
parallelism is thus determined as the system reaches the agreement of Nash equilibrium [113].

Having introduced a decentralized approach for parallelism adjustment, It is also beneficial to
compare it with centralized approaches in terms of flexibility and performance. Generally speak-
ing, centralized approaches have a single component conducting a streamlined decision-making
process, which allows for enhanced controllability over various operators and also becomes sus-
ceptible to single point of failures. However, decentralized approaches break down the adjustment
logic into local control strategies that are run by each operator. The result of adjustment may be
less efficient but the robustness of decision-making is improved.

9 SCHEDULING OBJECTIVES

Scheduling plays an important role in successful deployment as it determines how streaming tasks
acquire resource allocation and exhibit communication pattern over distributed hosts. It can be
considered as a process of trading communication cost against resource utilisation, where the
safety of adjustment depends on whether the host machine has enough resources for all the stream-
ing tasks placed on it [3].

While making scheduling decisions, the cost of adjustment must be taken into consideration
as moving streaming tasks around can potentially cause severe latency spikes. The oscillating
placement of tasks, for example, is one of the most common causes of system instability and SLA
breaches, which should be avoided whenever possible to ensure the profitability of scheduling.

The scheduling objective can be multi-fold and not exclusive to a single dimension. In some
cases, preferences must be set to sort the competing scheduling targets that cannot be fulfilled at
the same time. For example, communication-reduction and load-balancing are two conflicting tar-
gets requiring task consolidation and task spreading over distributed resources, respectively. And
so are energy-efficiency and fault-tolerance—the former tends to remove any under-utilised com-
ponents for energy conservation while the latter purposely introduces redundancies to improve
reliability. When facing multiple scheduling choices, it is up to the developers to decide which
scheduling objective addresses the primary application concern. The one being prioritised is re-
ferred to as the primary scheduling objective, and the rest are considered as secondary factors to
satisfy particular application requirements. This review mainly focuses on the primary scheduling
target, and the taxonomy of task scheduling categorises the existing work based on that.
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To evaluate and compare different scheduling policies within the same scope, we have classified
the various scheduling objectives into six major categories.

9.1 Fairness-aware Scheduling

The meaning of fairness is twofold when it comes to the scheduling of streaming tasks. First, the
amount of workload assigned to each node should be fair, avoiding load-unbalance where part of
the computing infrastructure is over-utilised while the other part is under-utilised. This is mainly
achieved by scheduling at runtime by placing streaming tasks on different hosts if they tend to
experience load spikes at the same time [3]. Second, the resources allocated to each streaming
application should be fair, preventing the multi-tenancy mechanism in the mainstream DSPSs
from causing application starvation and resource competition. However, it should be noted that
being fair in load distribution and resource allocation does not necessarily guarantee a streaming
application can meet its SLA requirements [74].

Fairness-aware scheduling is adopted by many open-source DSPSs as their default scheduling
strategy. For example, the default scheduler of Apache Storm assigns streaming tasks to computing
nodes in a round-robin fashion, achieving coarse-grained load balancing by placing roughly the
same number of tasks to each node. The FAIR scheduler of Spark supports the grouping of jobs into
pools and setting different scheduling options (e.g., weight) for each pool, ensuring the fairness of
resource assignment at different granularities. For instance, the FAIR scheduler can group the jobs
by the pertaining user, giving each user an equal share of resources rather than giving each job
an equal share. Similarly, the default scheduler of Apache Flink endeavours to make sure that the
task slots, each of which run one pipeline of parallel tasks, are utilised in a fair manner.

9.2 Performance-oriented Scheduling

Throughput and latency are the two dominant metrics measuring the performance of a streaming
application from the end-user’s perspective. Maintaining throughput at the required level is of vi-
tal importance to the stability of a streaming system. In a streaming environment, the data sources
usually work independently and asynchronously with respect to the other parts of the streaming
system. So if the processing facility lags behind in sustaining the required throughputs, the mes-
sage buffer between the data source and the deployment platform will be overwhelmed by the
backlogs, which eventually lead to the system crash [100]. However, the importance of reducing
processing latency stems from the fact that streaming applications are latency-sensitive in nature.

Performance-oriented scheduling used to be platform-centric in a cluster environment, which
aims at producing better performance in a fixed deployment platform by optimising the resource
utilisation or reducing the network communication of streaming tasks [4, 27, 41, 43, 72, 120, 144,
163]. However, as cloud computing has enabled dynamic resource provisioning during runtime,
performance-oriented scheduling has become SLA-centric that focuses on meeting the pre-defined
performance targets with elastic scaling on resource and operator parallelism [46, 69, 100].

9.3 Resource-aware Scheduling

Resource-aware scheduling matches the resource demands of streaming tasks to the capacity of
distributed nodes, so that the total amount of resources required by the fused streaming tasks
can be accommodated by the resources of distributed hosts [3]. Being resource-aware offers the
opportunity to consume less computing and network resources to achieve the same performance
target [98]. Apache Storm, for example, has a built-in resource-aware scheduler that is derived
from [120]. In practice, the resource demands and capacity are described as a multi-dimensional
vector, with each element representing a particular resource type, such as CPU, memory, and
bandwidth [99, 120]. The scheduling process is thus finding a mapping of tasks to machines such
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that the overall resource consumption is minimised and the resource constraints are satisfied. To
be more specific, the resource constraints state that the accumulated vector of resource demands
requested by the collocated tasks can not exceed the vector of resource availability on that node.

In addition, the need for resource-aware scheduling is driven by the ever-growing use of het-
erogeneous resources in the streaming infrastructure. The computing nodes could range from
energy-constrained mobile devices to powerful virtual machines, which possess different com-
puting powers and connection capabilities. Hence, it is of crucial importance to ensure that the
workload assignment does not exceed the node’s capacity and the resulting task communications
can be sustained by the network facilities connecting to it. Furthermore, the task scheduling on
specific hardware such as GPU and FPGA should be optimised accordingly to unlock the potential
of the heterogeneous hardware [129, 130].

9.4 Cost-aware Scheduling

Cost-aware scheduling and resource-aware scheduling are strongly related, since they all cut back
unnecessary resource consumption for cost saving. However, they also differ from each other as the
behaviour of VMs, with their startup time and billing intervals, means that reducing resource usage
may not reduce the costs. Cost-aware scheduling has an ultimate goal of minimising the overall
monetary cost for hosting the streaming system. In the context of stream processing, the cost
optimisation problem is easily complicated by the strict latency requirement, the heterogeneity
of resource types, and the diversity of billing models. For example, in a computing cloud with
heterogeneous resources, the billing schemes for CPUs, GPUs, and FPGAs can be vastly different
and so are the programming efforts that are required to utilise them [53]. The scheduler needs
to be aware of the infrastructure, knowing the performance characteristics of different computing
nodes while conducting different types of computations, and the characteristics of incoming data to
make scheduling plans that reduce the overall costs [130]. Similarly, when the deployment involves
multiple geo-distributed data centres, or collaborative Fog, Edge, and IoT networks, the cost of data
transmission is non-negligible and must be taken into consideration when making scheduling
decisions [28].

9.5 Communication-aware Scheduling

From the perspective of implementation, inter-node communication triggers a cumbersome pro-
cess involving serialisation, message queueing, and network transmission. In contrast, intra-node
communication can be reduced to passing an object’s pointer in memory, or being expedited by
the use of a concurrent programming framework like Disruptor.12 As inter-node data transmission
incurs much higher resource consumption and significant network latency, it is preferable to place
communicating tasks on the same node as long as it does not lead to resource contention. This also
implies that communication-aware scheduling is a special type of resource-aware scheduling. But
rather than formulating the problem as a bin-packing variant to minimise the overall resource
consumption, it has a more specific target of minimising the inter-node communication [4, 27,
41, 43, 44, 73, 163]. For example, SPADE [48] has a optimising compiler that automatically maps
the applications to distributed resources, minimising the total inter-node communication while
exploiting the available operator parallelism for performance improvements.

To be communication-aware, the scheduler needs to monitor the task communication pattern
as well as the resource usage at each computing node. The communication pattern can be repre-
sented by a weighted directed graph of streaming tasks, in which the weights associated with ver-
tices denote the task resource requirement and the weights on edges represent the instantaneous

12https://lmax-exchange.github.io/disruptor/.
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throughput of internal streams or the accumulated volume of data transmission. However, the de-
ployment infrastructure is also regarded as a weighted directed graph of computing nodes, where
the weights on vertices denote the node’s resource availability and the weights on edges represent
the bandwidth capacity of network connection. Therefore, communication-aware scheduling is to
find a proper mapping of these two graphs at runtime to minimise the number of messages sent
between machines while respecting the constraints on computation and network resources.

9.6 Fault-tolerant Scheduling

Due to the large size of deployment, faults in a stream processing system are not only considered as
exceptions but rather normal events. This implies that fault-tolerance should be made a first-class
citizen in the scheduling phase to allow fast and efficient error-handling. In a data streaming sys-
tem, the consequences of faults can range from a single tuple failure to cascading node crashes [66].
A tuple failure affects the timely delivery of messages, which could be caused by the package dis-
carding on overloaded networks. A node crash, however, impairs the proper functioning of stream
operators that are allocated to this node. In general, we categorise various fault-tolerance tech-
niques into two groups: (1) state management, which allows stateful operators to survive from
possible node crashes, and (2) event tracking, which ensures that messages are delivered with re-
gard to the desired semantic. Schedulers that are fault-tolerance-aware can alleviate the overhead
of state management, reduce the risk of event replay, and expedite the recovery process by taking
the possible failures into consideration during the placement of streaming tasks [90, 137, 146, 154,
169]. For example, the frequency of state check-pointing can be reasonably decreased by being
availability-aware [19]: stateful tasks can be scheduled on more reliable computing nodes while
stateless tasks that are fail-fast and easy to recover can be assigned to nodes with relatively lower
availability. Also, placing communicating tasks in the vicinity and making sure that the bandwidth
of network link is not over-utilised can help reduce the risk of message delivery errors [101].

9.7 Energy-efficient Scheduling

Reducing the total energy consumption is of great interests to the scheduling process [144, 147].
The total energy consumption is unnecessarily increased by the under-utilised computing nodes,
so it is preferable to perform workload consolidation periodically to put the low-load nodes into
shut-down or low-power mode [98]. Another critical source of energy consumption is the contin-
uous communication among different streaming tasks. Depending on the distance of data transfer
as well as the implementation of the underlying network infrastructure, the actual energy con-
sumption of conveying a tuple over a message channel can vary significantly. This implies that
the scheduler should also be aware of energy consumptions when deciding the stream routing,
putting a large volume of internal streams on wired and reliable network connections rather than
channels that are susceptible to interferences to reduce the possibility of retransmission.

10 SCHEDULING METHODS

The previous section covers the various objectives of scheduling but provides little explanation
on how these targets can be achieved. In this section, we categorise different scheduling methods
into four groups and explain the design and implementation of associated schedulers in detail.

10.1 Heuristic-based Scheduling

The scale of the scheduling problem increases exponentially along with the growing application
and platform complexity. Since finding the optimal schedule in such a huge solution space is an NP-
complete problem, heuristic methods are preferred over exact algorithms to trade off optimality,
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completeness, and accuracy for speed. Aniello et al. [4] pioneered the dynamically scheduling of
streaming tasks to improve application performance at runtime, where a greedy heuristic is ap-
plied to minimise inter-node traffic and avoid load imbalances among all the nodes. T-Storm [163]
extended their work by allowing hot-swapping of scheduling algorithms and fine-grained control
over worker node consolidation. The proposed traffic-aware scheduling algorithm has a greedy-
based heuristic in its kernel that keeps trying to assign streaming tasks to available nodes with
minimum incremental traffic load. Chatzistergiou et al. [27] also proposed an improved heuristic
that utilises the domain-specific group-wise communication pattern between streaming tasks to
minimise the communication cost, which guarantees to produce a schedule in linear-time out-
performing the existing quadratic-time solutions in practical cases. Similarly, Rizou et al. [125,
126] came up with a task placement heuristic to minimise the network load, which is calculated
as the bandwidth-delay product of data streams between operators. Sun et al. [147] proposed an
energy-efficient heuristic that differentiates the scheduling of critical and non-critical operators
to minimise the response time and system fluctuations. R-Storm modelled the scheduling problem
as a multi-dimensional Knapsack problem, for which they proposed a heuristic algorithm to put
communicating tasks in proximity while ensuring no resource constraints on CPU and memory
are violated [120]. The list of heuristic-based schedulers goes on with works done by Cammert
et al. [14], Sun et al. [146], and Heinze et al. [56, 57].

It is also worth mentioning that heuristic can play a complementary role alongside the exact
algorithms for better execution efficiency. The SODA scheduler [160] for System S, a proprietary
DSPS developed at IBM, uses a local search heuristic as a backup solution to the main approach of
mixed-integer optimisation. The heuristic method steps in when the CPLEX-based solution fails
or becomes too slow to converge. In addition, meta-heuristic has been employed in the sched-
uling process to improve method adaptivity. Smirnov et al. [143] investigated the use of genetic
algorithms to yield throughput improvement as compared to the greedy heuristics, where the task
placement is adapted as an evolutionary process utilising the performance statistics gathered at
runtime.

10.2 Graph-Partitioning-based Scheduling

As we have discussed in Section 9.5, the scheduling process can be formulated as a graph-
partitioning problem where the communication graph is reduced to a set of sub-graphs by parti-
tioning its nodes into mutually exclusive groups. The quality of partitioning is often measured by
the total amount of inter-partition communications, the degree of load balance across the platform,
and the time required to work out a partition plan. Compared to vanilla heuristics approaches,
graph-partitioning-based scheduling takes a different perspective to formulate the problem and
is inherently resource-aware and communication-aware. However, it also tends to underestimate
the cost of scheduling as the solution is often developed from scratch rather than being gradually
optimised from the current placement to achieve the scheduling objective.

By assuming the streaming tasks cannot move after their initial placement, Xing et al. [162]
employed a static partitioning method to select an operator placement plan resilient enough to
withstand different input rate combinations. For dynamic scheduling, Fischer et al. [43] collected
the communication behaviour of applications, built the communication graph at runtime, and then
set a partitioning objective function in the METIS software to reduce network loads and balance
the CPU usage and bandwidth consumption over the platform. Similarly, Khandekar et al. [81]
proposed a minimum-ratio cut subroutine to achieve hierarchical partitioning of the operator
graph in System S. Eskandari et al. [41] also discussed hierarchical scheduling of streaming tasks
with METIS, proposing a two-phase approach that improves on the traditional k-way partition-
ing method by allowing to dynamically compute the number of computing nodes required in the
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platform. Ghaderi et al. [50] employed a randomised scheduling algorithm with a theoretically
provable guarantee on low-complexity, which enables a smooth trade-off between the cost of ap-
proaching the optimal partitioning and the queueing performance. In Li et al.’s work [92], the
streaming tasks are first partitioned based on the dependency graph of communication, while de-
termining the actual task assignment further involves joint optimisation on the topology structure,
inter-node traffic and worker node load-balancing.

The theoretical aspect of graph partitioning in the context of streaming task scheduling has
been investigated by Eidenbenz et al. [40]. They proved that optimal partitioning is an NP-hard
problem and proposed an approximation algorithm that deterministically achieves a constant-
factor approximation under a few consumptions on resource provisioning and processing cost.

10.3 Constraint-Satisfaction-based Scheduling

Constraint satisfaction problems (CSPs) regard the entities of interest as set of objects whose state
must satisfy a number of constraints or limitations. Thinking the placement of tasks as objects, task
scheduling in stream processing can be naturally considered as a constraint satisfaction problem
subject to various resource and SLA constraints and requiring efficient search methods to be solved
in a reasonable time. When comparing to the heuristic-based scheduling discussed in Section 10.1,
constraint-satisfaction-based scheduling emphasises more on the result optimality and tends to
traverse a large area of the solution space to maximise the objective function.

Cardellini et al. [18, 21] formulated an optimal scheduling problem considering the application
and resource heterogeneity. The objective function is to minimise migration costs, and the con-
straints are modelled as the satisfaction of the application SLA. The problem is then solved by
CPLEX, a widely used integer programming toolkit. Jiang et al. [74] also formulated a mixed inte-
ger program on scheduling to achieve max-min fairness in resource allocation for multiple stream-
ing applications, where the non-convex constraints are converted to several linear constraints
using linearisation and reformulation techniques. Schneider et al. [136] proposed a scheduling al-
gorithm for the ordered streaming runtime to minimise synchronisation, global data and access
locks, which allows any thread to execute any operator while maintaining the constraints of tu-
ple order in operator communication. Load-balancing is added as an implicit constraint by Zhang
et al. [168] to ensure more task assignment will be assigned to the node with the lowest CPU
and memory consumptions. For a similar purpose, Liu et al. [102] proposed a runtime-adaptive
scheduler that assigns tasks loads in proportion to the processing capacity of nodes. By dynam-
ically migrating tasks assignment from slow nodes to fast nodes, the latency difference between
the fastest and slowest nodes is mitigated. Buddhika et al. [13] formulated a resource-constrained
problem on scheduling to reduce interference that adversely impacts the performance of stream-
ing computations. They proposed a proactive scheduling algorithm that accounts for the changes
in the stream packet arrivals and cluster resource utilisations, which utilises a new data structure
of prediction ring to track the amount of workload expected in a given time window.

Constraint satisfaction problems can also be solved by exhausted search. Li et al. [93] trained
a model with Support Vector Regression (SVR) on a collection of monitored features to predict
metrics like the average latency of tuple processing and the average size of tuple transfer. The
resulting scheduler algorithm is essentially an exhaust search algorithm that traverses the whole
solution space to find the optimal schedule with the minimised end-to-end latency.

10.4 Decentralised Scheduling

A decentralised scheduler is not a tangible entity that collects global information from the deploy-
ment platform and makes holistic scheduling decisions for the whole streaming system. Instead,
it offloads the scheduling logic to the individual streaming operator or computing node, regarding
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each as an independent agent that collaborates with each other to converge to a feasible scheduling
plan. The first prominent benefit of decentralised scheduling is robustness, which eliminates the
single point of failure and allows graceful degradation in the presence of computing node crashes—
the nodes that are not actively cooperating will be excluded from the scheduling resource pool.
The second merit of this design is that it can base the scheduling decision on the accurate predic-
tion of communication latency between different hosts, which is of crucial importance for dealing
with streaming systems that are geographically distributed on Edge and Fog cloud.

Specifically, the Vivaldi algorithm [32] —a decentralised approach that has linear complexity
with respect to the number of network locations—is often employed to calculate accurate coor-
dinates of distributed nodes in a latency network. Pietzuch et al. [121] pioneered the use of the
Vivaldi algorithm to make continuous optimisation in stream processing scheduling without the
global knowledge of the system. In their work, a stream-based overlay network is proposed to map
the upper streaming system and the underlying physical network, so that the task placement is
determined by searching in a multi-dimensional cost space in a decentralised manner. Cardellini
et al. [17] presented a distributed and self-adaptive QoS-aware scheduler based on the Vivaldi algo-
rithm, which can deal with infrastructure with non-negligible latencies. Rizou et al. [127] employed
the Vivaldi algorithm to form a continuous latency space, and the proposed scheduler ensures that
the QoS guarantee on latency is fulfilled while the network load incurred is reduced.

Repantis et al. [124], however, designed a set of fully distributed algorithms to discover and eval-
uate the reusability of data streams and processing components, enabling sharing-aware compo-
nent composition while being consistent with QoS requirements. Chaturvedi et al. also studied the
reusability of distributed streams in the context of Storm to improve resource efficiency, proposing
dataflow reuse algorithms that identify the intersection of reusable tasks and streams to collabo-
ratively reuse the outputs of overlapping dataflow [26]. Zhou et al. [172] proposed a decentralised
and asynchronous scheduling algorithm that improves load balancing by dynamically migrating
operators from overloaded nodes to lightly loaded ones.

Unless otherwise stated, the schedulers surveyed in the other subsections are centralised de-
signed, which are often collocated on the master node of the deployment platform for the conve-
nience of metric collection and scheduling coordination.

11 GAP ANALYSIS AND FUTURE DIRECTIONS

Although many research efforts have investigated the resource management and scheduling in
distributed streaming systems, there exist theoretical and technical gaps to the prospect of an SLA-
aware and cost-efficient framework that relieves the deployment burden for application providers.
In this section, we discuss the identified gaps and shed light on the future directions on this front.

11.1 Fine-grained Profiling

Accurate profiling of application and system metrics plays an important role in the decision-
making process as they reflect the current state of the streaming system and indicate whether
the desired SLA requirements have been satisfied. However, most of the existing work based their
deployment decisions on coarse-grained metrics such as application throughput, end-to-end la-
tency, operator capacity and the volume of internal streams. These metrics collected at the oper-
ator or application level are too general to reveal the actual bottleneck of the data stream, so that
the amendments can only be made on a best-effort basis with little guarantee on the adjustment
effects. To capture the real culprit that throttles the application performance, a fine-grained pro-
filing mechanism is required to fulfill the following expectations. (1) It should be installed at the
task level to obtain fine-grained information such as the lengths of input/output queue, the task
capacity on different infrastructure, and the average resource cost for processing a single tuple.
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A recent work done by Shukla et al. has explored this idea, proposing a fine-grained profiling
approach to collect statistics on the peak input tuple rate supported by the task, as well as the cor-
responding CPU and memory usage [141]. (2) The application metric collected from the DSPS tier
should be cross-validated with the system metrics to identify the probable cause and the severity
of the processing bottleneck, allowing accurate amendments to be made in the next adjustment
cycle. (3) Proper sampling and quantisation techniques should be employed to reduce the profiling
overhead while providing strong enough guarantee on result accuracy.

Other challenges associated with performance evaluation of DSPS include the availability of rel-
evant stream processing workloads and the lack of stable virtual/simulation environments. Yahoo
Streaming Benchmark has simulated an advertisement analytics pipeline where the campaign and
advertisement data in JSON format are used as workloads [30]. A recent work done by Karimov
et al. benchmarked Apache Storm, Apache Spark, and Apache Flink with monitoring data derived
from an online video game [78]. But these workloads all fall short on evaluating DSPS at scale for
motivated applications domains like IoT, which further requires a fresh design of virtual/simulation
environments to reliably measure and retrieve various metric data such as maximum sustainable
throughput and resource availability.

11.2 Straggler Mitigation

A straggler is a slow-running entity that adversely impacts the performance of the whole stream-
ing system. It could be a streaming task enduring severe resource contention or data skew or a
computing node that is over-utilised or affected by the performance variation of the host cloud.
In either case, the local performance degradation caused by the straggler will soon propagate
throughout the topology structure due to the the producer and consumer communication model.
The first path of propagation is through the operator DAG —with a straggler, the upstream oper-
ator will be throttled by the accumulated backlogs, and the downstream operators will stagnate
without receiving sufficient inputs. The second path of propagation is through the performance
correlation of sibling tasks belonging to the same operator. If one of these tasks becomes a strag-
gler and performs significantly worse than the others, then the logic of tuple emitting will reduce
the volume of data stream sent to the other sibling tasks to not overwhelm the straggler. This
could lead to under-utilisation on other nodes as the healthy sibling tasks could have been placed
in different places processing more inputs.

The straggler mitigation techniques have been initially studied in batch processing systems and
then ported to most stream processing systems with micro-batch paradigm. Spark Streaming, for
example, has a built-in speculative straggler mitigation technique applicable to various workloads,
regardless of being either CPU, disk, or network throttled. This is made possible by having specu-
lative backup copies of slow tasks run in neighbouring nodes. Through extensive evaluation, Khan
et al. [80] suggest that using mean/standard deviation instead of median for straggler detection,
and that using a confidence level to decide if a task can be executed on a node with a history of
abnormal behaviours rather than blacklisting that node entirely.

However, there still lacks enough research attention on detecting and mitigating stragglers for
canonical stream processing systems, partially because the one-tuple-at-a-time processing model
is more dynamic and less trackable. A straggler mitigation mechanism needs to quickly identify
the root cause of the performance deterioration and cuts the chain of propagation with active in-
tervention. A straggling computing node can be detected by its soaring resource usages and slow
response time, while a straggler streaming task is revealed by the extended average tuple pro-
cessing time or the sudden rise in resource consumption. In the context of resource management
and scheduling, the possible measures to mitigate stragglers include provisioning new resources,
adding more parallelism, or rescheduling the straggler on a different node.
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11.3 Transparent State Management

An integrated state management system consists of two parts: (1) State elasticity, which allows
dynamically scaling up and down the operator parallelism with a state repartitioning and migra-
tion mechanism, supporting the relocation of the operator internal state and providing a guarantee
on the semantic correctness during the scaling process. (2) State persistence, which backups the
computational states to persistent storage or a different node to mask the loss of states caused
by JVM or node crashes. There are some preliminary efforts from both academia and industry to-
ward achieving transparent state management [22, 23, 101, 108]. ChronoStream [161], for example,
treats the internal state as a first-class citizen and provides state elasticity to cope with workload
fluctuation and dynamic resource allocation. However, significant gaps still present in the follow-
ing aspects. First, there is limited support for the diverse representation of operator state. In most
existing state management frameworks, the abstraction and presentation of operator states are
limited to key-value mapping for the ease of implementation. But it is possible that computational
states exist in other forms such as graphs, hashes and trees that can hardly be indexed by certain
keys. One promising research direction would be supporting arbitrary data structure for operator
state representation while keeping the repartitioning and migration process entirely transparent
to the end-users. The second gap is to reduce the excessive overhead of state migration, which
could be overwhelming if the adaptation of resource provisioning, operator parallelism, and task
scheduling have not considered the current state placement. Particularly, there is little research
on gradual, stepwise task scheduling that eventually converges to the state satisfying the SLA
requirements without incurring too much state migration overhead over a short adjustment pe-
riod. In contrast, most scheduling algorithms in existence determine a new task mapping from
scratch by re-applying the scheduling heuristic, re-invoking a graph partitioning algorithm, or
re-conducting an exhausting search in the solution space.

11.4 Resource-availability-aware Scheduling

The existing schedulers have often falsely assumed that, once provisioned, the same amount of
resources will be offered to the streaming system throughout its standing lifecycle. Therefore, few
of them has considered the fluctuation of node resource availability and what implication it might
have for the performance of the streaming system. A notable exception is a recent work done by
Cardellini et al. [19], who take the modelling of node and link availability into consideration when
studying the problem of optimal operator parallelisation and task placement.

It is common and inevitable to experience fluctuation of resource availability in a distributed
cloud environment thanks to two major contributing factors. (1) Multitenancy: multiple tenants of
a shared platform may experience performance interference as they compete for limited resources,
despite mechanisms like virtualisation and cgroups have provided a certain level of isolation for
resource allocation. The temporal and spatial performance variations on Amazon EC2, as reported
by Kumbhare et al. [88], can be as severe as 23% of VMs having a normalized core performance
worse than 80% of the expectation. (2) Background activities: unexpected background events, such
as scheduled system backup, security update, and initialisation of another collocated application
could take up a portion of resources that were previously made available to the streaming system.
Having a scheduler that is aware of node resource availability can help the streaming system avoid
resource contentions.

Resource-availability-aware scheduling is particularly useful when there are no further spare
resources for the system to scale out due to the limitation of budget or other performance con-
straints. In that case, we are interested in changing the mapping of tasks to underlying resources
so that the local resource shortage can be amortised over the whole platform. For instance, Imai
et al. [68] and Buddhika et al. [13] discussed how to optimize the usage of the available resources
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through remapping of tasks without expanding the resource pool. The basic idea is that, if tasks of
different operators in the topology process less workload accordingly, their resource consumption
is expected to be reduced proportionally. So there is an increasing possibility to find a new task
mapping that satisfies the updated resource allocation constraints affected by the fluctuation of
availability. Such informed scheduling decision will allow the application performance to degrade
gracefully without causing straggler problems discussed in Section 11.2.

11.5 Energy-efficient Scheduling

Apart from reducing the total energy consumption through active workload consolidation, it is also
of great interests to cut back the proportion of brown energy consumption through task schedul-
ing.

Over the last several years, the energy supply of the infrastructure of streaming systems has
been enriched by the green power generated from renewable sources such as sun, wind, water, and
biomass waste. Energy-efficient scheduling intends to reduce the carbon emission and other neg-
ative impacts on our environment by scheduling computational-intensive tasks on nodes driven
by green power, as well as allocating a large chunk of communication on links powered by green
energy. To do this, the scheduler needs to exploit suitable forecast mechanisms to predict the sup-
ply of renewable energy in an online fashion, as renewable energy can be intermittent and much
more variable than conventional energy from the grid. The scheduler is then committed to pro-
duce a task mapping that satisfies the energy supply constraints while trying to maximise the use
of green energy. If the DSPS adopts a lambda architecture that span stream and batch process-
ing, then energy-efficient scheduling can postpone the execution of batch jobs, if their deadline
permits, until there is enough supply of green energy.

It is also common that saving energy on computation and communication are two conflicting
targets that cannot be achieved at the same time through the scheduling of streaming tasks. So a
theoretical or empirical model on energy consumption is required to evaluate and compare differ-
ent scheduling plans, ensuring the overall optimal in the reduction of brown energy consumption.

11.6 Cost Efficiency with Different Pricing Models

The monetary cost of resource usages in clouds largely depends on the actual pricing and billing
model chosen by the users. Apart from the on-demand pricing model that has been intensively
studied in the literature, a variety of alternative pricing models are also offered by mainstream
cloud service provider like Amazon, Google, and Microsoft to help users tailor their choices on
resource provisioning and reduce the operational cost. To start with, reserved instances with a
fixed-term contract are much cheaper than the on-demand ones, which makes them a good fit to
host the baseline workload while leaving the on-demand instances for scaling out when needed.
Also, the bidding price model can lower the cost of resource usage significantly as these instances
are much cheaper for being hosted on the spare compute capacity in the cloud. However, a stream-
ing system using price-biding instances needs to handle interruptions in infrastructure under a
fairly short notice, which imposes great challenges for the latency-sensitive system to adapt task
placement and migrate the associated computational state accordingly. A comprehensive resource
provisioning and task scheduling model combining the use of on-demand, reserved, and price-
bidding resources is a promising research topic that would be welcomed by industry users.

11.7 Container-based Deployment

Containerisation of clouds allows the services and applications to adapt efficiently and operate at
an unprecedented scale. Containers offer a logical packaging mechanism that decouples the appli-
cations from the environment where they actually run, so there is a clean separation of concerns
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by differentiating the procedures of application development and deployment. The ability of con-
tainers to run virtually anywhere and the isolation of the CPU, memory, storage, and network
resources at the OS-level make it profitable to host streaming applications that are dynamic in
nature [12]. The Akka actor runtime,13 for example, has been extended by Luthra et al. [107] to
build a distributed network of Docker containers for easy deployment in the edge-IoT scenario.

However, resource management and scheduling in streaming systems over containers would
require an overhaul in the design and implementation of existing DSPSs. The most prominent
challenge is transparent state management over the container cloud that is initially designed to
host state-less micro-services. The stateful streaming tasks may have to store their computational
state externally, which could raise new concerns on the performance of state access. FaaS frame-
works, for example, rely on the use of distributed key/value stores for state management. Apache
OpenWhisk uses consul14 as a hierarchical key/value store that is accessible by every component
of the system for various purposes such as dynamic configuration, feature coordination, leader
election, and so on. Besides, the flexibility of arbitrary placement and dynamic scaling of contain-
ers makes it hard to keep track of the destination of each internal stream, so that the tuple emitting
logic needs to be revised to make sure that the provisioned containers are coordinated properly in
sending and receiving messages.

11.8 Integration of Different DSPSs

The diverse user requirements may require different DSPSs to be deployed at the same time to
tackle different use cases. It then raises the questions of how to avoid performance interference
between collocated DSPSs and how to select the appropriate middleware that best improves the
user experience. There are some preliminary efforts to enable federated execution on top of dif-
ferent streaming engines [39, 94]; however, they all lack the ability to theoretically formulate an
engine selection problem for a submitted streaming application, where the objective function and
the resource and performance constraints caused by DSPS collocation are clearly defined. It is also
interesting to investigate how to concatenate different DSPSs together to host a single streaming
application, where each DSPS can handle the part of workload or streaming logic that it excels at
processing.

12 SUMMARY

It is of great interest to study resource management and task scheduling in distributed stream
processing systems to satisfy the SLA requirements with minimal resource cost. This topic has
received extensive research attention in the literature—many have paved the way for SLA-aware,
self-adaptive deployment by proposing enabling techniques such as elastic resource scaling, dy-
namic task scheduling, and runtime operator parallelisation. However, there are still many gaps
between the state-of-the-art and the prospect that the monitoring, tuning, and adaptation bur-
den of deployment can be completely offloaded to a comprehensive resource management and
scheduling framework, which can address key challenges of dynamic workload characteristics,
heterogeneous cloud resources types, and ever-changing SLA requirements without requiring user
intervention.

In this article, we summarise the achievements made on this front and identify the gaps to
bridge by presenting a comprehensive review of resource management and scheduling techniques
in stream processing. Our narrative starts with defining the resource management and task sched-
uling problem and then organising the research topics of interest around a singular context of

13https://akka.io/.
14https://www.consul.io/intro/index.html.
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achieving SLA-awareness and cost-efficiency while deploying stream processing systems on cloud.
We also identified the issues and challenges associated with each research topic and developed a
taxonomy of existing work to differentiate the specific work properties and method features. Fol-
lowing the structure of the taxonomy, we discussed each research topic in detail and compared the
strengths and weaknesses of different methods that fall into the same category. Finally, we shed
light on the promising directions to promote future research in this area.
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