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a b s t r a c t

Nowadays, cloud storage systems are usually constructed by heterogeneous disks with reconfigurable
speed for energy efficiency. Scheduling tasks with diverse QoS (Quality of Service) requirements
to disks with different speeds is seldom considered in state-of-the-art mainstream disk scheduling
algorithms. This paper proposes a multi-QoS disk scheduling strategy (MQDS), aiming to support
energy-saving and diverse QoS constraints towards reconfigurable heterogeneous cloud storage sys-
tems. Three algorithms are designed in MQDS: Time Prior Disks Algorithm (TPDS) for time-sensitive
tasks, Cost Prior Disks Algorithm (CPDS) for cost-sensitive tasks, and Benefit Function-based Disks
Algorithm (BFDS) for tasks with time-varying QoS requirements. CloudSimDisk simulator is extended
to evaluate the response time, energy consumption and cost expenditure performance of the proposed
algorithms, for comparison with the extended Robin Round Disk scheduling algorithm (E-RRDS).
Extensive experimental results demonstrate that the three proposed algorithms outperform E-RRDS.
TPDS consumes shortest response time and CPDS has the least cost; and BFDS achieves balance
between TPDS and CPDS, which provide more options to users. It is worth mentioning that all the
algorithms in MQDS are more energy efficient than E-RRDS. As a whole, the proposed MQDS is energy
efficient and able to accommodate diverse QoS constraints well.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Cloud computing offers utility-oriented computing services to
sers on a pay-as-you-go basis [1,2]. One of the important reasons
or its success is that it provides transparent computing and
toring services to users with diverse QoS requirements. In cloud
omputing environments, different users have different QoS re-
uirements. Some tasks are time-sensitive, such as live video and
cientific computing tasks. For those time-sensitive tasks, users
sually increase the budget in exchange for rapid data access.
ome tasks are not time-sensitive but more cost concerned, such
s file replication and data archiving tasks. Furthermore, there
re tasks switching between time or cost sensitivity in different
ime intervals. In other words, their QoS requirements are time-
arying. As is well-known, how to reasonably schedule resources
o satisfy users’ diverse QoS is one of the most challenging prob-
ems in resource scheduling domain [3–6]. Users with different
oS requirements can be charged for different rates in cloud
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167-739X/© 2021 Elsevier B.V. All rights reserved.
computing systems. Economic mechanism is an efficient means
for managing distributed resources [7–9]. Moreover, the cloud
storage systems for energy efficiency are usually constructed
by reconfigurable disks [10–12]. The disks with different speeds
are with different transfer rates and different energy consum-
ing rates. One the one hand, how to schedule the tasks with
diverse QoS requirements to the reconfigurable heterogeneous
cloud storage system is becoming more and more important,
which was seldom considered in the state-of-the-art mainstream
disk scheduling algorithms. On the other hand, the energy con-
sumption of the storage parts in a datacenter is rapidly growing.
Many studies show that the energy consumed by the storage
parts is exceeding the energy consumed by the computing parts
in datacenters [13–17]. Most recently, Ding et al. proposed a
dynamic task scheduling method based on Q-learning for energy-
efficient cloud computing [18], however, the factors of energy
consumption and diverse QoS requirements have not been fully
addressed. It is the same in current state-of-the-art mainstream
disk scheduling algorithms for cloud storage systems. Under this
situation, accommodating diverse QoS requirements to speed
reconfigurable disks and achieving energy efficiency is a n urgent
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ssue to be resolved, not only for improving users’ experience, but
lso for reducing the rapid growing energy consumption of cloud
torage.
In this paper, a data scheduling strategy with three different

isk scheduling algorithms is designed for a reconfigurable het-
rogeneous cloud storage system. It is energy efficient and can
atisfy diverse QoS requirements. The key contributions of the
roposed data scheduling strategy are as follows:
(i) An energy-saving data scheduling strategy with diverse QoS

onstraints towards reconfigurable heterogeneous disks architec-
ure (MQDS) is designed and implemented, where users can sub-
it different QoS requirements according to the characteristics of

heir tasks.
(ii) Time Prior Disk scheduling algorithm (TPDS), Cost Prior

isk scheduling algorithm (CPDS) and Benefit Function-based
isk scheduling algorithm (BFDS) are implemented in the MQDS
ramework, aiming to accommodate diverse QoS requirements
nd achieve the energy efficiency.
(iii) Effective extensions are implemented in CloudSimDisk

imulator. In the extended simulator, tasks with diverse QoS re-
uirements can be scheduled to disks with reconfigurable speeds
hrough the proposed TPDS, CPDS, BFDS and E-RRDS (Extended
rom the current mainstream disk scheduling algorithm for cloud
torage system with speed reconfigurable disks). Furthermore,
he traditional performance metric of response time, the new
erformance metric of energy consumption and cost expenditure
an be obtained in the extended simulator.
(iv) Extensive experiments are conducted in the extended

loudSimDisk simulator to evaluate the three proposed disk
cheduling algorithms (TPDS, CPDS, BFDS) against the E-RRDS.
riven by the real wiki-workload with 5000 tasks requests with
iverse QoS requirements, the obtained simulation experimental
esults demonstrate that the proposed MQDS is more energy
fficient than the E-RRDS while accommodating all the diverse
oS requirements. The simulation experimental results provide
aluable references to implement new forms of cloud resource
harging with diverse QoS requirements in real cloud environ-
ents. Moreover, although the proposed MQDS are evaluated
n HDDs (Hard Disk Drive) with reconfigurable speeds, it can
e generalized to storage resources with reconfigurable modes,
uch as SDDs (Solid State Drive) or the emerging NVMs (Non-
olatile Memory) [19,20], as the MQDS is a high level scheduling
lgorithm abstracted upon the storage resources.
The rest of the paper is organized as follows: Section 2 dis-

usses the related work on task scheduling and disk scheduling.
ection 3 describes the proposed scheduling strategy (MQDS) in
etail, where the framework of MQDS and the three algorithms
re explained. Performance evaluation of MQDS and comparison
ith the extended Robin Round Disk scheduling algorithm E-
RDS are conducted in Section 4. Finally, our paper is concluded
n Section 5 with the future work.

. Related work

Resource accounting is one of the key tasks for a distributed
rid computing system. In cloud computing era, public clouds
ave been providing services with resource accounting. Services
re selected not only depending on the performance and capacity
f the cloud system (e.g. computing power, storage and trans-
ission capacity), but also on the cost that users are willing

o pay. Users can submit different QoS requirements according
o the characteristics of their tasks, aiming to achieve an op-
imal balance of these arguments. Furthermore, employing an
conomic mechanism can help achieve the maximum profit for
he whole system. To address the time or cost-based comput-
ng problems, Rajkumar Buyya research group firstly proposed
253
and designed the scheduling algorithms with time prior or cost
prior for grid computing systems. Heterogeneous resources were
allocated from the economic perspective in their scheduling al-
gorithms, which was a new form of resource scheduling and
achieved good performance [21]. GridSim simulator was designed
to evaluate their proposed scheduling algorithms, where the re-
sources were priced. Resources with different computing power
or capacity are charged at different rates. Users pay price for
the chosen resources. On the one hand, when submitting jobs
(Gridlets in the simulator) to their system, parameters of Deadline
and Budget should be submitted in the meantime. The submitted
jobs must be finished within the Deadline. The overall cost of all
the tasks must be under the Budget. On the other hand, users can
set the scheduling parameter as OPTIMIZATION_TIME to choose
the time prior scheduling algorithm, and set the parameter as OP-
TIMIZATION_COST to choose the cost prior scheduling algorithm.
Time prior or cost prior scheduling algorithm can satisfy users’
QoS requirements in some degree.

Time prior scheduling algorithm always performs better than
the cost prior algorithm in terms of response time, while the cost
prior scheduling algorithm performs better than the time prior al-
gorithm in terms of cost expense. Users can choose the time prior
one to execute their emergent jobs, exchanging cost for time.
If a job is time-insensitive, exchanging time for cost. Srikumar
Venugopa extended the time prior and cost prior scheduling algo-
rithms by considering the position of input data [22]. A resource
allocation and science workflow scheduling strategy was also
proposed in IaaS cloud [23], where an optimization technology
based on meta-heuristic and particle swarm algorithms was used
to reduce the execution cost of the whole workflow with the
budget and deadline constraints. The implementation process of
ARIMA model was described in [24], where the workload of a
Web server was predicted by ARIMA. It was verified that ARIMA
could improve the resource utilization under QoS constraints.

Moreover, a dynamic pricing based energy cost optimization
mechanism was proposed by Wang et al. in 2013 [25], where a
uniform relationship model between the service price and energy
cost was constructed. It aimed to maximize the profit of the
data center, in which users’ QoS requirements were not con-
sidered. Based on the research of distributed storage systems
in cloud computing environments, Liao et al. designed a QoS-
aware dynamic replica deleting strategy (DRDS). Experimental
results demonstrated that the proposed DRDS could save the disk
storage space and distributed storage system maintenance cost
while satisfying the user’s QoS [26]. However, the energy con-
sumption and dynamic QoS requirements were not considered
in DRDS, which are important factors in current Cloud Storage
Systems. Considering the dynamic characteristics of computing
grid environments, Jiang et al. integrated the Multi-agent system
(MAS) cooperative technology and market biding game model
to conduct resource scheduling. It was proved that the resource
could be allocated reasonably [27]. However, the energy con-
sumption was not the optimization objective in the system. A
resource scheduling algorithm (called Senior) with dual con-
straints of deadline and bandwidth was proposed by Chen et al.
The proposed Senior could achieve an optimal resource utiliza-
tion with QoS constraints [28]. In Senior, dynamic users’ QoS
requirements were not considered. And the energy consumption
was not adopted as the performance index. A SLA-aware resource
algorithm was proposed in [33], in which node space utilization
and I/O throughout were its optimization objectives. A dynamic
management framework for IoT devices in cloud (DMFIC) algo-
rithm was proposed to evaluate and schedule requests and sensor
data [34], in which the energy consumption but without diverse
QoS requirement was considered. More recent works were also
reviewed [35,36], but none of them considered energy consump-
tion or dynamic QoS requirements. The aforementioned resource
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able 1
omparison between the proposed MQDS and related main work.
Work or Name Optimizing

objective
Task scheduling Disk scheduling Deadline and

budget constraint
Flexible QoS
considered

Disk speed-aware Energy
consumption-
aware

Buyya et al [21]. Time or Cost ✔ – ✔ – – –
Venugopa et
al [22]

Time or Cost ✔ – ✔ – – –

Buyya et al [23] Time ✔ – ✔ – – –
ARIMA model was
described in [24]

Resource
utilization

✔ – ✔ – – –

Wang et al in
2013 [25]

Energy Cost ✔ – ✔ – – ✔

DRDS [26] Storage space and
system
maintenance cost

✔ – – – – –

MAS [27] Resource
utilization

✔ – – – – –

Senior [28]. Resource
utilization

✔ – – – – –

Minerva [29] Overall throughput – ✔ – – – –
Dash et al [30]. Seek time,

rotational latency
and transfer time

– ✔ – – – –

Sarkar et al [31] Traditional
performance
parameters

– ✔ – – – –

RRDS [32] Response Time – ✔ – – – –
Our work Energy

consumption and
Benefit

– ✔ ✔ ✔ ✔ ✔
scheduling algorithms are usually focusing on scheduling the task
with different QoS requirements to nodes but not to the disks
with reconfigurable speeds. The allocation mechanisms and the
description of diverse QoS requirements instead provide valuable
references for designing our reconfigurable disk scheduling algo-
rithms, where the QoS information should be perceived at disk
level.

Compared with the attention gained in tasks scheduling to
odes, disk scheduling algorithms received less concerns in cloud
omputing environments [37,38]. According to the QoS in mul-
itier and multitenant cloud environments, Malensek et al. de-
igned a proactive disk scheduling algorithm named Minerva [29].
inerva is based on predictive model and client-side coordi-
ation, to deal with the scheduling problem on high-capacity
echanical disks, which can influence the overall throughput
nd responsiveness of a cluster in data-intensive computing en-
ironments. However, the heterogeneous properties of the cloud
torage disks have not been considered. Dash et al. proposed
n optimized disk scheduling algorithm in order to manage the
ad-sector of a disk, aiming to reduce the seek time, rotational
atency and transfer time [30]. The diverse QoS requirements
nd the disks’ heterogeneities in cloud environments were not
onsidered in their disk scheduling algorithm. Sarkar et al. used
isk scheduling technique to enhance the performance of cloud
ased storage [31], which optimized the traditional performance
arameters. Known from our investigation, the heterogeneities
f disks have not been fully considered when scheduling tasks
o disks. The mainstream disk scheduling algorithm used in cur-
ent cloud storage platforms is the Robin Round Disk scheduling
RRDS) [32], which is disk speed aware. In this paper, we ex-
end RRDS to E-RRDS, with both the diverse QoS requirements
nd disks’ speed reconfigurable properties considered. E-RRDS is
hosen as the baseline to evaluate our proposed disk scheduling
lgorithms TPDS, CPDS and BFDS.
As a whole, compared with the existing task scheduling al-

orithms and resource allocation strategies, the disk scheduling
trategy with diverse QoS constraints (MQDS) proposed in this

aper has the following distinct differences.

254
(i) In previous research, computing resources were usually
the main factor to be considered in QoS constrained resource
allocation. Some researchers focused on the storage resource
allocation, but only the storage capacity was considered. In our
proposed MQDS, the rotation rate of the disk, the transfer rate
and energy consumption rate of the disk in heterogeneous cloud
computing environments are also considered, besides of these
aforementioned factors.

(ii) Users’ QoS requirements are represented in a more flexible
manner in our MQDS framework. Besides of the time prior or
cost prior QoS requirements, a benefit function is constructed
to profile the time-varying QoS requirements, expressing users’
actual demands more preciously.

(iii) Traditional system performance metrics such as average
response time are the main optimization objectives of current
QoS constraint related research. While constructing scheduling
algorithms, the reconfigurable property of the storage resources
is considered in the proposed MQDS, aiming to reduce the en-
ergy consumption while satisfying the diverse QoS requirements,
which is particularly important for cloud storage systems.

Furthermore, the comparison between the proposed MQDS
and related main work is illustrated in Table 1.

3. MQDS: Multi-QoS Disk scheduling strategy

The Energy-saving scheduling strategy with diverse QoS con-
straints (MQDS) proposed in this paper aims to reduce the en-
ergy consumption of the cloud storage systems consisting of
reconfigurable disks. Furthermore, it schedules tasks to disks in
different running modes to satisfy users’ diverse QoS require-
ments. The proposed framework, procedure and algorithms will
be introduced in the following subsections.

3.1. Terminologies and definitions

To help understand the following subsections, important terms
and definitions used are listed in Table 2.
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able 2
erminologies and definitions.
Terms Definitions

Budget Cost that can be spent by a user to finish their data request tasks. It is usually measured in units $. Budget is one
of the important constraint conditions for a multi-speed scheduler. If the cost spent on one certain disk exceeds the
Budget, the scheduler will not schedule tasks to that disk.

Deadline By the time that a user’s tasks must be finished. It is usually measured in unit of seconds. If the completion time
exceeds the deadline, the tasks will not be scheduled to the disk by the scheduler.

Time Prior OoS requirement Short for TP, designed for time-sensitive tasks. The scheduler schedules tasks to disks with the fastest speed under
the Budget constraint.

Cost Prior OoS requirement Short for CP, designed for time-insensitive but cost-sensitive tasks. The scheduler schedules tasks to disks with the
lowest cost under the Deadline constraint.

Benefit Function-based QoS requirement Short for BFB, designed for tasks with dynamic QoS requirements. The QoS requirements are encapsulated in a
benefit function. The multi-speed scheduler schedules tasks to disks according to the benefit function, where the
benefit is time-varying. Under this condition, our scheduler tries to maximize the benefit under the dual constraints
of Budget and Deadline.
Fig. 1. Framework of the Multi-QoS Disk scheduling strategy (MQDS).
3.2. Framework of MQDS

The framework of MQDS is shown in Fig. 1. There are three
layers: Cloudlets Layer, Resource Allocation Layer and Resource
Layer. At the Cloudlets Layer, different kinds of tasks will be
encapsulated by Cloudlets and submitted to the Resource Allo-
cation Layer. Usually, tasks in cloud related environments can
be categories into 3 types according to their QoS requirements:
255
time-sensitive tasks, cost-sensitive tasks and dynamic require-
ment tasks. User submits different types of tasks (TP, CP or BFB) to
the MQDS through a shared queue. The proposed data scheduling
strategy MQDS is implemented at the Resource Allocation Layer,
which schedules the aggregated Cloudlets to disks with different
running mode according to their QoS’ requirements, and disks’
workload and price information. The real-time workload infor-
mation on the every disk is collected by the Workload Collector,
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Table 3
Symbol meanings in the three algorithms.
Term Symbol Meaning

Disk Set DN = {dn1, dn2, . . . dnn} Total set of disks in a cloud storage system
Data _Set DU = {du1, du2, . . . duu} Data set submitted by a user for storage
Data _Size DS = {ds1, ds2, . . . dsu} Data size of every data in a data set
Partitioning _Number PN = {pn1, pn2, . . . pnu} Partitioning number of every data in a data set
parallel_number D = {d1, d2, . . . du} Parallel number calculated based on the Partitioning Number
Workload _List WL = {wl1,wl2, . . .wln} Workload list of every disk in a disk set
Disk _Price _List DP = {dp1, dp2, . . . dpn} Price list of every disk in a disk set
Response_Time_Estimator RT = {rt1, rt2, . . . rtn} Estimating the response time of every disk in a disk set
Candidate Disk CN Disks that can satisfy the QoS requirements of a user
Bandwidth BWs−t The bandwidth from the source node of cloudlet submitted to

the target node to be scheduled
Waiting Queue Q = {q1,q2, · · · qL} Waiting queue of the ith disk
Transfer rate of disk TFdisk The transfer rate of a disk to process certain data request
Initial price of disk IPdisk The initial price of a disk set in the beginning of the

experiments
DB_Function DB_Function Function to calculate the benefit of time consumption
BB_Function BB_Function Function to calculate the benefit of cost consumption
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while the consumed cost of the corresponding disk is collected by
the Price Collector. According to the QoS requirements and the
collected information, MQDS chooses different disk scheduling
algorithms to allocate the tasks onto suitable disks, with the aim
of minimizing the energy consumption of the whole cloud storage
system and satisfying the QoS requirements.

3.3. Algorithms in MQDS

According to users’ different QoS requirements, the MQDS
ramework executes different scheduling algorithms: Time Prior
isk scheduling Algorithm (TPDS), Cost Prior Disk scheduling
lgorithm (CPDS), or Benefit Function Based Disk scheduling Al-
orithm (BFDS). They are described in Algorithm 1, Algorithm 2,
nd Algorithm 3, respectively.
Symbols used in the three algorithms are listed in Table 3.

.3.1. Time Prior Disk scheduling algorithm (TPDS)
The main idea of the Time Prior Disk scheduling algorithm

s optimizing the energy consumption and sub-optimizing the
esponse time while satisfying users’ QoS requirements. That is
hen sorting candidate disks (with QoS requirements satisfied),
he energy consumption is ordered the first, the response time
s the second and the cost expenditure is the last. The proposed
PDS is described in ALGORITHM 1.

.3.2. Cost Prior Disk scheduling algorithm (CPDS)
The main idea of the Cost Prior disk scheduling algorithm is

ptimizing the energy consumption and sub-optimizing the cost
hile satisfying the users’ QoS requirements. That is when sorting
andidate disks (with QoS requirements satisfied), the energy
onsumption is ordered the first, the cost is the second and the
esponse time is the last. The proposed Cost Prior Disk scheduling
lgorithm is described in ALGORITHM 2.

.3.3. Benefit Function-based Disk scheduling algorithm (BFDS)
As described before, time-sensitive tasks will be scheduled by

PDS and cost-sensitive tasks will be scheduled by CPDS. How-
ver, there are tasks that are more sensitive to time at a certain
oint. Beyond this point, they may be more sensitive to cost, or
ice versa. That is the task’s QoS requirements are time-varying,
.g. the data archiving tasks. When allocating this type of tasks,
f they are cost-sensitive at the beginning, they will be scheduled
o disks in low speed mode with cheaper cost and slow transfer
ate. When the time is close to the Deadline and they become
ime-sensitive, they can be scheduled to disks in high speed
ode. Similar situations exist in the scientific computing tasks or
eep learning training tasks. They are time-sensitive initially and
256
need to be scheduled to disks in high speed mode at expensive
cost. When the cost is close to the Budget, they may become
cost-sensitive and prefer disks in the low speed mode. To the
best of our knowledge, there are still no scheduling algorithms
dealing with this kind of scenarios up to now. The proposed BFDS
schedules tasks with time-varying QoS requirements first, with
profiling the dynamic QoS requirements by the benefit function.

The benefit function is constructed first in BFDS. The objective
is using the function to profile user’s varying benefits by the
elapsed time and expended cost. It provides a basis for MQDS
to select a suitable algorithm to maximize user’s benefit. User
can define different benefit functions to profile the dynamic QoS
requirements. Fig. 2 depicts four common forms of benefit func-
tions, in which β is the varying benefit value with the elapsed
time or expended cost. The cross point of the horizontal axis and
the vertical axis represents the Deadline or Budget point.

β =

{
a, t < bD
a − c (t − bD) , t ≥ bD

(1)

The function form in Fig. 1 and Fig. 2(c) is adopted in our
FDS, which represents user’s requirements in cloud environ-
ents more precisely according to our observation. It is expressed
y formula (1), where a, b, c are constants defined by user. More
etails about the benefit function and the values selected for a,
, c and d in the formula (1) will be discussed in Performance
valuation Section, in formula (2) (3) and Table 5
The main idea of the Benefit Function based Disk schedul-

ng Algorithm is reducing the energy consumption to the maxi-
um extent while satisfying the Budget and Deadline constraints.
ased on the time-based benefit function or cost-based bene-
it function submitted by user, BFDS chooses TPDS or CPDS to
chedule the time-varying requests to maximize the benefits.
The proposed Benefit Function-based Disk scheduling algo-

ithm is described in ALGORITHM 3.

. Performance evaluation

To evaluate the MQDS on metrics such as response time,
nergy consumption and cost expenditure, we further extend the
loudSimDisk simulator for simulation experiments. The related
arameter settings and adopted workload are listed in Table 4 or
rofiled in Fig. 3 and Fig. 4 respectively.
The time-based benefit function and the cost-based benefit

unction are represented by formula (2) and formula (3), respec-
ively.

Benefit =

⎧⎨⎩
a1 if d1 × T ≤ b1 × Deadline
a1 − c1 × (d1 × T − b1 × Deadline) (2)
if d1 × T > b1 × Deadline
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BBenefit =

⎧⎨⎩
a2 if d2 × Cost ≤ b2 × Budget
a2 − c2 × (d2 × Cost − b2 × Budget)

if d2 × Cost > b2 × Budget
(3)

The parameters in the formulas are listed in Table 5.
Evaluating strategies or algorithms using simulator is an ef-

ficient way to testing their efficiency and effectiveness for large
257
scale distributed environments. As we know, CloudSim [39] is a
simulator designed for simulating the cloud environment to eval-
uate scheduling strategies. Its effectiveness has been widely veri-
fied in past years [40]–[41]. CloudSimDisk is one of its extensions
for evaluating energy-aware disk scheduling algorithms [32].
CloudSimkDisk is commonly used and chosen as the simulator
in this paper.
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Table 4
Software and hardware configuration in the experiments.
Equipment/software Type/version

CPU Intel(R) Core(TM) i5-4590 CPU @ 3.30 GHz 3.3 GHz
Memory size 4.0 GB
Hard disk 1TB(TOSHIBA DT01ACA100 ATA Device)
Network card Realtek PCIe GBE Family Controller
Operating system Energy-aware Disk Simulator Windows 10 CloudSimDisk1.0
Cloud environment simulator CloudSim 4.0
258
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Fig. 2. Common forms of benefit functions.
To evaluate the three disk scheduling algorithms (TPDS, CPDS,
nd BFDS) in our MQDS and compare with the extended main-
tream state-of-the-art disk scheduling algorithm (E-RRDS), the
ynthetic workload actuated by a real access trace from wiki
wiki-workload) is used in our experiments, which is one kind of
lassical workload in real cloud environments. In the CloudSimDisk
imulator, every request in wiki-workload is represented as a
loudlet. As shown in Fig. 3, 5000 Cloudlets are submitted within
s through 1200 iterations, and the arrival time of every Cloudlet
259
is profiled in Fig. 3. We simulate the way of submission according
to the numbers shown in Fig. 3 during the experiments. The
file size requested by each Cloudlet is different. The file size
distribution of the 5000 requests is profiled in Fig. 4, which
randomly falls within the range of 1 MB–10 MB. The average size
is about 6 MB, which is important information for constructing
our cloud storage system in the simulated environment. Based
on that information, the capacity of the storage system needed in
the simulated environment can be obtained.
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Fig. 3. Time distribution of wiki-workload in the experiments.
Fig. 4. File size distribution of the Cloudlet requests.
Table 5
Parameters and values related to the
benefit functions.
Parameter Value

Deadline 10000 s
Budget 1000000$
a1 1000
b1 1
c1 1
d1 1000
a2 1000
b2 0.001
c2 1
d2 1

The three disk scheduling algorithms (TPDS, CPDS, BFDS) are
ompared with the extended Robin Round Disk scheduling al-
orithm (E-RRDS) under the above parameters settings. All the
our algorithms are evaluated in terms of response time, cost
onsumption, and energy consumption under two types of cloud
nvironments. The first is a cloud storage system consisting of
260
homogeneous speed reconfigurable disks, and the other consists
of heterogeneous speed reconfigurable disks. Although HDDs are
selected in our experiments, other kinds of storage devices with
reconfigurable ability are also applicable, such as SDDs or NVMs,
as the framework is devices independent. The reason of selecting
a certain type of storage device is that it is easy to obtain the
publicly available parameter details.

4.1. Experiments in the cloud storage system with homogeneous
disks with reconfigurable speeds

The type of disks used in this part of experiments is
HUC109090CSS600 produced by Hitachi Company. Because our
proposed strategy is designed for speed reconfigurable disks,
the disks in the simulated cloud storage systems have different
modes: high speed and low speed. In order to evaluate the per-
formance of response time, energy consumption and cost of the
proposed algorithms, we set the disk capacity and related param-
eters to calculate these metrics values in each mode. Therefore,

the following parameters are set:
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Fig. 5. Response time of the four scheduling algorithms under different high-speed disk clusters configuration.
able 6
arameter list of Disk HUC109090CSS600 by Hitachi.
Parameter Value

Capacity 900G
Average rotate latency 0.003 s
Average location latency 0.004 s
Maximum transfer rate in high speed mode 198 MB/s
Minimum transfer rate in low speed mode 59 MB/s
Cost for storing file 0.003 Cent/MB*day
Cost for processing file in high speed mode 10.0 Cent/MB
Cost for process file in low speed mode 3.3 Cent/MB
Power at active state in high speed mode 5.8 W
Power at idle state in high speed mode 3.0 W
Power at active state in low speed mode 4.1 W
Power at idle state in low speed mode 1.3 W

• High Speed Mode: Capacity, Average Rotate Latency, Av-
erage Location Latency, Maximum Transfer Rate; Cost for
Storing File, Cost for Processing File; Power at Active State;
and Power at Idle State;

• Low Speed Mode: Minimum Transfer Rate; Cost for Process
File; Power at Active State; and Power at Idle State.

The disk related parameters are extracted from the storage model
in literature [42]. The energy model of the multi-speeds disks is
chosen according to the model in literature [10]. The cost related
parameters are obtained from the approximate average price of
Amazon Cloud, Aliyun and Tencent Cloud after investigation. The
number of disk clusters used in the experiments is six (we think
it is suitable for testing performance of disks running in different
speed modes with consideration of the testing time), each of
which can be set in high or low speed mode. The number of high
speed disk clusters ranges from 0 to 6, and the number of low
speed disk clusters ranges from 6 to 0. Detailed parameters of
HUC109090CSS600 are demonstrated in Table 6. With the above
settings, the experiments are conducted 10 times, each taking
about one day. The average evaluation results (Response Time,
Energy Consumption, Cost) of the three algorithms (TPDS, CPDS,
BFDS) and the E-RRDS are listed in Table 7.

As shown in Table 7, under different disk speeds configura-
ions (high or low), the proposed TPDS, CPDS and BFDS algorithm
ave consistent outcome: TPDS algorithm has the best perfor-
ance on response time for systems with mixed high and low
peed storage for wiki workloads, especially when the numbers
f the high speed clusters and the low speed cluster are roughly
261
equal. CPDS algorithm consumes the least cost. For BFDS, the
performance on response time and cost expense is between those
of TPDS and CPDS. It can also be observed that when the numbers
of high speed disk clusters are 2–5, TPDS outperforms E-RRDS
on response time and energy consumption. Only when all of the
disk clusters are set in high speed mode or in low speed mode,
E-RRDS has slight advantage than TPDS. Table 7 lists the results
of the response time, energy consumption and cost. Meanwhile,
for a more straightforward comparison, the metrics of response
time, energy consumption and cost expenditure of the four disk
scheduling algorithms are visualized in Figs. 5–7.

As shown in Fig. 5, in terms of response time, TPDS has the
best performance. Its advantage is outstanding when the ratio of
high speed and low speed disk is comparable. However, CPDS has
the worst performance on response time because CPDS usually
chooses low speed disks to execute tasks, resulting in longer
storage and processing latency. Fortunately, all of the tasks are
finished before the Deadline by CPDS, proving it is more suitable
for cost-sensitive tasks. The response time of BFDS is longer than
TPDS, but is lower than CPDS.

As shown in Fig. 6, CPDS is the most cost effective except
under the conditions that all of the disks are high speed or low
speed disks. TPDS has the worst performance on cost effective-
ness because it usually deploys high speed disks at relatively
higher prices to conduct the tasks. BFDS can achieve good balance
between cost and time.

As shown in Fig. 7, TPDS consumes the least energy when
compared with the other three disk scheduling algorithms. CPDS
has the worst performance on energy consumption. CPDS usually
chooses the cheapest disks at lower speed, which increases the
process latency and results in more energy consumed. Similarly,
BFDS can achieve good balance among cost, time and energy
consumption.

According to our disk scheduling algorithms, TPDS always
schedules tasks to the fastest disks. When there is only one high
speed cluster, all the tasks are scheduled in that cluster, which
may trigger overload. This is the reason why TPDS is slower
than RRDS in the scenario of only one high speed cluster. Due
to the design of our CPDS, if there are cheaper clusters (slower
clusters), the Cloudlet will be scheduled to the cheapest clus-
ter (slowest cluster) to save energy consumption. In this case,
Cloudlets is scheduled to the only cluster with low speed disks,
resulting in CPDS’s RT being ∼500 s for 0–5 high speed clusters.

E-RRDS schedules the Cloudlets by Round Robin, balancing the
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Table 7
Experimental results of the four disk scheduling algorithms with different disk clusters configurations.
The number of high
speed disk clusters

The number of low
speed disk clusters

Scheduling algorithm Response time (Second) Energy consumption
(Joule)

Cost (Cent)

0 6 E-RRDS 85.42731921 2060.435344 94047.648
0 6 TPDS 85.75055167 2093.826944 94047.648
0 6 CPDS 500.5680729 2059.516938 94047.648
0 6 BFDS 224.0230587 2096.227098 94047.648
1 5 E-RRDS 85.38338564 1886.013038 124659.948
1 5 TPDS 126.4767141 1272.932627 233514.848
1 5 CPDS 500.468222 2059.59755 94047.648
1 5 BFDS 219.9745911 1469.598858 198648.048
2 4 E-RRDS 85.38894818 1709.198656 155821.648
2 4 TPDS 80.90268669 1109.009019 264783.748
2 4 CPDS 500.9154927 2061.200985 94047.648
2 4 BFDS 360.9112241 1743.803663 150959.6813
3 3 E-RRDS 85.41676969 1533.387912 186802.448
3 3 TPDS 57.42395752 1073.872822 272796.948
3 3 CPDS 500.7023951 2060.299767 94047.648
3 3 BFDS 352.9429159 1731.490785 153630.748
4 2 E-RRDS 85.36614608 1359.213578 217582.248
4 2 TPDS 44.68035514 1064.464464 275925.848
4 2 CPDS 500.4989279 2059.425275 94047.648
4 2 BFDS 348.5594036 1727.771671 154673.7147
5 1 E-RRDS 85.42459546 1189.789187 247531.248
5 1 TPDS 36.60511542 1058.889154 277788.448
5 1 CPDS 501.2170156 2059.911143 94637.248
5 1 BFDS 152.7580905 1309.144651 232000.648
6 0 E-RRDS 29.66908043 1009.019718 278860.448
6 0 TPDS 31.17488594 1062.669222 278860.448
6 0 CPDS 173.9446841 1007.185567 278860.448
6 0 BFDS 66.86733548 1048.798309 278860.448
Fig. 6. Cost expenditure of the four scheduling algorithms under different high-speed disk clusters configuration.
nergy consumption constraint and some randomness of the
orkload. Furthermore, as RRDS is the default scheduling algo-
ithm in CloudDisksim Simulator, we only extend the properties
f energy consumption and cost of Cloudlet for speed reconfig-
rable disks for E-RRDS. The response time is achieved directly
rom the system, which is ∼84 s for 0–5 high speed clusters.

As a whole, when the numbers of high speed and low speed
isks are comparable, the three proposed algorithms in MQDS
re more energy efficient than the E-RRDS. In our experiments,
hen the numbers of high speed disk clusters and the number
f low speed disk clusters are both 3, MQDS has an outstanding
erformance on energy efficiency, It can be well observed in
igs. 8–10.
As shown in Fig. 8, although the finishing time of an individual

loudlet is fluctuating for all the four disk scheduling algorithms,
s a whole, the response time of TPDS (red dots) is the shortest,
262
followed by E-RRDS (blue dots). CPDS (green dots) is the longest.
Similarly, the performance of BFDS (purple dots) is between TPDS
and CPDS.

As shown in Fig. 9, although the energy consumption of an
individual cloudlet is fluctuating for all the four disk scheduling
algorithms, as a whole, TPDS (red dots) has the best performance
on energy consumption when finishing the wiki-workload. CPDS
(green dots) consumes the most energy. The energy consump-
tion of BFDS (purple dots) is still between TPDS and CPDS. The
energy consumption of E-RRDS (blue dots) is fluctuating for dif-
ferent Cloudlets. The reason is also obvious: E-RRDS only round-
robins the disks and ignores the processing speed or energy
consumption rate.

As shown in Fig. 10, although the cost expenditure of an
individual cloudlet is fluctuating for all the four disk scheduling
algorithms, as a whole, CPDS (green dots) expends the least cost
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Fig. 7. Energy consumption of the four scheduling algorithms under different high-speed disk clusters configuration.
Fig. 8. Finishing time of different Cloudlets under the homogeneous disk configuration.
Fig. 9. Energy consumption of different Cloudlets under the homogeneous disk configuration.
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Fig. 10. Cost expenditure of different Cloudlets under the homogeneous disk configuration.
hen compared to the other three algorithms. On the contrary,
he cost of TPDS (red dots) is the highest while BFDS (purple dots)
s in between. The cost of E-RRDS (blue dots) is also fluctuating.
osts consumed by some Cloudlets are comparable to CPDS (the
east), and some are comparable to TPDS (the most), which are
lso due to the fact that E-RRDS does not consider the price or
isk speed when scheduling tasks.
As shown in the above tables and figures, under the ho-

ogeneous disk configuration, the proposed algorithms in the
QDS are energy efficient than the current mainstream disk
cheduling algorithm (E-RRDS). Moreover, the proposed MQDS
rovides more options for different QoS requirements in the cloud
nvironment.

.2. Experiments in the cloud storage system with heterogeneous
isks with reconfigurable speed

Disks adopted in this part of experiments are heterogeneous.
s observed from the homogeneous disk experiments, when the
umbers of high speed clusters and the low speed clusters are
ough equal, MQDS can achieve the biggest advantage. Due to the
aper length limit, we evaluate the performance of the four disk
cheduling algorithms when the numbers of the high speed and
f the low speed disk clusters are both 3 with the disks being
eterogeneous. Two of them are HUC109090CSS60 by Hitachi
ompany (1 is set in high speed mode, the other in low), two are
T6000VN0001 by Seagate company (1 in high speed mode, the
ther in low), the remaining 2 disk clusters are MG04SCA500E
y Toshiba company (1 in high speed mode, the other in low).
he disk related parameters of HUC109090CSS60 are extracted
rom the storage model in literature [42]. The parameters of
T6000VN0001 are extracted from literature [43], and the pa-
ameters of MG04SCA500E are extracted from literature [44].
he energy models of the three types of disks are chosen from
iterature [10]. The detailed parameters of three types are demon-
trated in Table 4, Table 8, Table 9, respectively. Under the pa-
ameter settings, the performance of metrics such as response
ime, energy consumption and cost expenditure of the four disk
cheduling algorithms (TPDS, CPDS, BFDS, E-RRDS) are evaluated
ith 5000 Cloudlets finished in 2 s. The experimental results are
emonstrated in Table 10.
As shown in Table 10, TPDS has the best performance on

esponse time and energy consumption under the heterogeneous
isk architecture (disks from different vendors and in different

peed modes). CPDS performs best in cost effectiveness, with cost
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Table 8
Parameters list of Disk ST6000VN0001 by Seagate.
Parameter Value

Capacity 600G
Average rotate latency 0.00416 s
Average location latency 0.0085
Maximum transfer rate in high speed mode 216 MB/s
Minimum transfer rate in low speed mode 64 MB/s
Cost for storing file 0.004 Cent/MB*day
Cost for processing file in high speed mode 12.0 Cent/MB
Cost for process file in low speed mode 4.0 Cent/MB
Power at active state in high speed mode 11.27 W
Power at idle state in high speed mode 6.9 W
Power at active state in low speed mode 8.0 W
Power at idle state in low speed mode 3.0 W

Table 9
Parameters list of Disk MG04SCA500E by Toshiba.
Parameter Value

Capacity 500G
Average rotate latency 0.00417 s
Average location latency 0.009
Maximum transfer rate in high speed mode 215 MB/s
Minimum transfer rate in low speed mode 64 MB/s
Cost for storing file 0.005 Cent/MB*day
Cost for processing file in high speed mode 11.0 Cent/MB
Cost for process file in low speed mode 3.8 Cent/MB
Power at active state in high speed mode 11.3 W
Power at idle state in high speed mode 6.2 W
Power at active state in low speed mode 8.0 W
Power at idle state in low speed mode 2.7 W

Table 10
Experimental results of different types of disk configuration.
Scheduling
algorithm

Response time
(Second)

Energy
consumption
(Joule)

Cost (Cent)

E-RRDS 84.90188538 2565.270668 205865.663
TPDS 66.6532607 1933.050016 301667.6175
CPDS 500.1972857 2067.603483 94825.1965
BFDS 355.6826107 2022.752327 163772.6702

consumed being about 30% of the other algorithms. BFDS achieves
a balance between TPDS and CPDS in terms of performance. E-
RRDS outperforms CPDS and BFDS in terms of response time, but
underperforms TPDS algorithm. Meanwhile, E-RRDS consumes
the most energy among the four. Its cost consumption is less than



X. You, D. Sun, X. Lv et al. Future Generation Computer Systems 129 (2022) 252–268
Fig. 11. Finishing time of different Cloudlets under the heterogeneous disks configuration.
Fig. 12. Energy consumption of different Cloudlets under the heterogeneous disks configuration.
that of TPDS, but greater than those of CPDS and BFDS. It can
be seen that under heterogeneous disk configuration, our pro-
posed energy-saving disk scheduling strategy with diverse QoS
constraints is more energy efficient than E-RRDS. Furthermore, it
provides more flexible QoS options to users.

Similarly, the intermediate results of the four algorithms fin-
ishing each Cloudlet under wiki-workload are profiled in Figs. 11–
13 in terms of response time, energy consumption and cost
expenditure.

As shown in Fig. 11, although the finishing time of an in-
dividual cloudlet is fluctuating for all the four disk scheduling
algorithms, as a whole, TPDS (red dots) outperforms the other
three while CPDS (green dots) has the worst performance in
terms of response time for each Cloudlet. Likewise, BFDS (purple
dots) performs between TPDS and CPDS. And E-RRDS (blue dots)
underperforms TPDS.

As shown in Fig. 12, the energy consumption of an individ-
ual cloudlet is fluctuating, however, when it comes to the total
energy consumption, all of the three proposed algorithms are
more energy efficient than E-RRDS (blue dots). As to the energy
consumption of each Cloudlet, TPDS (red dots) and CPDS (green
dots) take the lead in turn.

As shown in Fig. 13, although the cost expenditure of an
individual cloudlet is fluctuating, as a whole, TPDS (red dots)
consumes the highest cost when compared with the other three

algorithms. CPDS (green dots) always performs the best in terms
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of cost effectiveness. Cost expended by BFDS (purple dots) is
between CPDS and TPDS. The performance of E-RRDS (blue dots)
is comparable to that of TPDS.

Extensive experimental results demonstrate that the proposed
three algorithms in MQDS outperform the mainstream E-RRDS.
Whenever under the homogeneous or heterogeneous disk con-
figuration, TPDS consumes shortest response time and CPDS has
the least cost. BFDS achieves balance between TPDS and CPDS,
providing more options to users. Furthermore, all the algorithms
in MQDS are more energy efficient than E-RRDS. That is to say
that the proposed MQDS is energy efficient and can accommodate
diverse QoS constraints well (e.g. requests are processed before
Deadline and under Budget). The advantage of MQDS is very im-
portant for a cloud environment, where diverse QoS requirements
are to be satisfied.

5. Conclusions and future work

An energy-saving scheduling strategy with diverse QoS con-
straints towards reconfigurable disk architecture (MQDS) is pro-
posed in this paper. It supports three algorithms: Time Prior
Disks Algorithm (TPDS) for time-sensitive tasks, Cost Prior Disks
Algorithm (CPDS) for cost-sensitive tasks, and Benefit Function-
based Disks Algorithm (BFDS) for tasks with time-varying QoS
requirements. To verify the proposed strategy, substantial ex-
periments are conducted. Datacenter consisting of speed recon-
figurable disks is simulated in CloudSimDisk simulator. 5000
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Fig. 13. Cost expenditure of different Cloudlets under the heterogeneous disks configuration.
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Cloudlets of wiki-workload are submitted to the disk scheduling
algorithms, seeking suitable disks allocation under different QoS
requirements. The experimental results demonstrate whenever
under the homogeneous or the heterogeneous disks configura-
tion, the three disk scheduling algorithms (TPDS, CPDS, and BFDS)
in our proposed MQDS have performance advantages than E-
RRDS. TPDS performs the best in terms of response time while
CPDS has the best performance on cost effectiveness. As to energy
consumption, all of the three algorithms outperform E-RRDS,
which verifies the energy efficiency of the proposed MQDS. More-
over, BFDS achieves a good balance between TPDS and CPDS in
terms of response time, energy consumption and cost expendi-
ture. BFDS provides more flexible QoS requirement options to
users. When the numbers of different speed disks are roughly
equal, our proposed MQDS achieves the biggest advantage than
the current mainstream algorithm E-RRDS. Moreover, it is worth
mentioning that although our proposed MQDS is evaluated on the
HDDs with reconfigure speeds, it is also applicable to other recon-
figurable storage devices, such as the SDDs or NVMs, because of
the high level abstracting ability of the proposed MQDS. Although
public wiki-workload is used in our simulation experiments, the
designed disk scheduling algorithms are workload independent.
The MQDS is designed in a cloud environment to achieve the
flexible QoS requirements and energy consumption reduction. If
the real workload trace can be obtained, it is also applicable to
other workload types, e.g. scientific, deep learning and video apps.
Moreover, it also supports dynamic disk modes, as the algorithms
collect disks’ status in real-time.

In large scale distributed computing environments, conducting
substantial experiments in Simulator is an important procedure
before implementing the algorithms in real environments. It pro-
vides valuable reference for designing a heterogeneous cloud
storage system constructed by reconfigurable storage devices. In
the future, we will collect more types of workload trace for our
simulation experiments to verify its applicability. The dynamic
disk modes will be simulated in the extended CloudDiskSim
simulator. Furthermore, we will try to integrate the MQDS into
the real cloud environments to further verify its energy efficiency
and the ability of supporting diverse QoS constraints.
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