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Abstract

Efficient Resource discovery mechanism is one of the

fundamental requirement for Grid computing systems, as

it aids in resource management and scheduling of applica-

tions. Resource discovery involves searching for resources

that match the user’s application requirements. Various

kinds of solutions to Grid resource discovery have been de-

veloped, including the centralised and hierarchical infor-

mation server approach. However, these approaches have

serious limitations in regards to scalability, fault-tolerance
and network congestion.

To overcome such limitations, we propose a decen-

tralised Grid resource discovery system based on a spatial

publish/subscribe index. It utilises a Distributed Hash Ta-

ble (DHT) routing substrate for delegation of d-dimensional
service messages. Our approach has been validated using

a simulated publish/subscribe index that assigns regions of

a d-dimensional resource attribute space to the Grid peers
in the system. We generated the resource attribute distri-

bution using the configurations obtained from the Top 500
Supercomputer list. The simulation study takes into account

various parameters such as resource query rate, index load

distribution, number of index messages generated, over-

lay routing hops and system size. Our results show that

grid resource query rate directly affects the performance

of the decentralised resource discovery system, and that at

higher rates the queries can experience considerable laten-

cies. Further, contrary to what one can expect, system size

does not have a significant impact on the performance of

the system, in particular the query latency.

1 Introduction

An efficient resource discovery mechanism is a manda-
tory requirement of Grid systems (such as desktop grids,
resource brokers, work-flow engines), as it aids in resource
management and scheduling of applications. Traditionally,
Grid resource brokering services such as Nimrod-G [1],
Condor-G [6], Grid workflow engine [4] used services of

centralised and hierarchical information services (such as
R-GMA [20], Hawkeye [19], MDS-2,3,4 [5]). However,
these approaches have several design limitations includ-
ing: (i) single point of failure; (ii) lack scalability; (iii) high
network communication cost at links leading to the infor-
mation server (i.e. network bottleneck, congestion); and
(iv) computational power required to serve a large number
of resource look-up and update queries on the machine run-
ning the information services. Recent studies conducted by
Zhang et al. [20] verified that existing systems including
R-GMA, MDS, and Hawkeye fail to scale beyond 300 con-
current users i.e. the throughput begins to decline below
acceptable levels. As regards to response time performance
metric, MDS-2 performs the worst, superseded by R-GMA
and Hawkeye.

Several grids (e.g., APACGrid 1, TeraGrid, and China-
Grid) have been setup in different countries to serve e-
Science applications. The APAC (Australian Partnership
for Advanced Computing) Grid interconnects various Grid
sites distributed across Australian institutions and universi-
ties. The APACGrid uses a hierarchical information ser-
vice MDS-2. The VPAC (Victorian Partnership for Ad-
vance Computing) which a part of the APACGrid hosts the
centralised GIIS (Grid Index Information Service) (a com-
ponent of MDS-2), while the remaining Grid sites run the
GRIS (Grid Resource Information Service) that connects to
the VPAC GIIS. A Grid resource broker that wishes to ac-
cess the APACGrid has to contact the VPAC GIIS, as con-
tacting one of the other Grid sites running a GRIS would
only allow access to information about that particular re-
source. The ChinaGrid is also organised using the hierar-
chical model. This isolation in resource information organ-
isation among grids results in Grid users getting access to
only a small pool of resources. Further, the resource bro-
kering services undertake scheduling decisions based on the
resource information gathered from isolated indexing ser-
vices. Hence, they often tend to formulate conflicting ap-
plication schedules.

To overcome the above stated limitations, we present a
Grid resource discovery service using the DHT-based spa-

1http://grid.apac.edu.au/
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tial publish/subscribe index presented in [9]. The pro-
posed Grid resource discovery service organises data by
maintaining a logical d-dimensional publish/subscribe in-
dex over a network of distributed Grid brokers/Grid sites.
Fig. 1 shows such a Grid computing environment organi-
sation based on a decentralised resource discovery system.
Thee Grid brokers create a Chord overlay [16], which col-
lectively maintain the logical publish/subscribe index to fa-
cilitate a decentralised resource discovery process. Note
that, basically any DHT could be utilised for routing of d-
dimensional index. Depending on the DHT (such as Pas-
try [13], CAN [12]) the complexity for routing table size,
look-up, and peer join/leave would be different (refer to Ta-
ble 1). But basically they all can support the proposed re-
source discovery service. We present more details about
the publish/subscribe index in Section 3. Fig. 1 depicts
the proposed resource discovery system involving Grid bro-
kers and Grid sites (shown as dark coloured blocks on the
Chord ring). Resource brokering services such as a Grid-
Federation Agent (GFA) [11], Condor-G etc. issue a Re-
source Lookup Query (RLQ) by subscribing for a publica-
tion object that matches a user’s application requirement.
Grid resource providers update their resource status by pub-
lishing information at periodic intervals through a Resource
Update Query (RUQ).

The main contributions of this work include: (i) exten-
sion of the DHTs with Grid resource discovery capability;

Table 1. Summary of the complexity of struc­
tured P2P systems

DHT Routing ta-

ble size

Routing com-

plexity

join/leave

overhead

Chord O(log n) O(log n) O((log n)2)
Pastry O(logb n) O(b logb n + b) O(log n)

CAN O(2 d) O(d n1/d) O(2 d)
Tapestry O(logb n) O(b logb n + b) O(log n)

(ii) a decentralised Grid resource discovery system based on
a spatial and peer-to-peer publish/subscribe index; and (iii)
extensive simulations for evaluating the feasibility and per-
formance of the proposed resource discovery system. We
now summarise some of our findings:

• The Resource query rate i.e. RLQ and RUQ rate di-
rectly affects the performance of the decentralised re-
source discovery system. At higher rates, Grid re-
source queries can experience considerable latencies.

• Contrary to what one can expect, the system size does
not have a significant impact on the performance of the
system, in particular the query latency.

The rest of the paper is organized as follows. In sec-
tion 2, we present a brief overview of a Grid resource bro-
kering service model and its indexing requirement. Sec-
tion 3 presents details about the underlying d-dimensional
publish/subscribe index that we leverage for this work. In
section 4, we summarise the average message and routing
hop complexity involved with routing of RLQ/RUQ objects.
Section 5 presents the simulation model that we utilise for
evaluating the performance of Grid resource discovery sys-
tem. In section 6, we present various experiments and dis-
cuss our results. Section 7 summarises current state of the
art in resource discovery system design. We end this paper
with summary and our future vision in Section 8.

2 Grid resource brokering service and
queries

2.1 Grid System Model

A Grid resource brokering service is one that performs:
“scheduling of jobs across Grid resources such as com-
putational clusters, parallel supercomputers, and desktop
machines that belong to different administrative domains”.
Brokering in computational grids is facilitated by special-
ized Grid schedulers/brokers such as the Grid Federation
Agent, Nimrod-G, Condor-G and workflow engine [4]. In
general, a broker service requires two basic types of queries:
(i) an RLQ, a query issued by a broker service to locate re-
sources matching the user’s application requirements; and
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(ii) an RUQ, is an update query sent to a resource dis-
covery service by a Grid site owner about the underlying
resource conditions. Since, a Grid resource is identified
by more than one attribute, an RLQ or RUQ is always d-
dimensional. Further, both of these queries can specify dif-
ferent kinds of constraints on the attribute values. If a query
specifies a fixed value for each attribute then it is referred
to as a d-dimensional Point Query (DPQ). However, in case
the query specifies a range of values for attributes, then it
is referred to as a d-dimensional Window Query (DWQ) or
a d-dimensional Range Query (DRQ). In database litera-
ture, a DWQ or an DRQ is also referred to as a spatial range
query.

Table 2. Notations

Symbol Meaning

n number of Grid Federation Agents (GFAs)/peers in the Grid network.

ci resource access cost at GFA i.
pi number of processors at GFA i.

ui,j ith user from jth GFA/resource.

Ji,j,k i-th job from the j-th user of k-th GFA.

ri,j,k an RLQ for Ji,j,k .

Ui an RUQ for the i-th GFA/peer/resource.

pi,j,k number of processor required by Ji,j,k .

bi,j,k assigned budget to Ji,j,k .

di,j,k assigned deadline to Ji,j,k .

ρi resource utilisation for resource at GFA i.
xi processor architecture for resource at GFA i.
φi operating system type for resource at GFA i.

λin total incoming RLQ/RUQ arrival rate at a network queue i.

λout outgoing RLQ/RUQ rate at a network queue i.
µ average network queue service rate at a Grid peer i.
µr average query reply rate for index service at GFA/peer i.
dim dimensionality or number of attributes in the Cartesian space.

λin
u incoming RUQ (publish) rate at a application service i.

λin
l incoming RLQ (subscribe) rate at a application service i.

λin
a incoming query rate at a Chord routing service i from the local application

service.

d number of dimensions for the CAN.

b base of the identifier space for Pastry.

K network queue size .

M random variable denoting number of of messages generated in mapping an

RLQ or RUQ.

T random variable denoting number of disjoint query path undertaken in

mapping an RLQ or RUQ.

λin
index incoming index query rate at a application service i from its local Chord

routing service.

In this paper, we consider a Grid system model that ag-
gregates distributed resource brokering and allocation ser-
vices [11] as part of a generalised resource sharing envi-
ronment, which is referred to as the Grid-Federation. The
Grid brokering model aggregates topologically and admin-
istratively separated computational Grid resources such as
clusters, supercomputers, and desktops. Resource broker-
ing, indexing and allocation in the Grid-Federation is fa-
cilitated by a new Resource Management System (RMS)
known as the Grid Federation Agent (GFA). More details
about general Grid-Federation brokering, and the resource
owner’s local resource allocation services can be found in
the articles [11].

In general, compute Grid resources have two types of at-

tributes: (i) static attributes–such as the type of operating
system installed, network bandwidth (both Local Area Net-
work (LAN) and Wide Area Network (WAN) interconnec-
tion), processor speed and storage capacity (including phys-
ical and secondary memory); and (ii) dynamic attributes–
such as processor utilization, physical memory utilization,
free secondary memory size, current usage price and net-
work bandwidth utilization.

Every GFA in the federation publishes its local resource
information with the decentralised resource discovery sys-
tem. An RUQ or a publish object consists of a resource
description Ri, for a cluster i. Refer to Table- 2 for the
notations and model parameters that we use in rest of the
paper. Ri includes information about the CPU architec-
ture, number of processors, RAM size, secondary storage
size, operating system type, resource usage cost etc. In this
work, Ri = (pi, xi, µi, øi, ρi, ci) which includes the num-
ber of processors, pi, processor architecture, xi, their speed,
µi, their utilization, ρi, installed operating system type, øi,
and a cost ci for using that resource, configured by the site
owner. A site owner charges ci per unit time or per unit
of million instructions (MI) executed, e.g. per 1000 MI. A
GFA publishes the Ri into distributed resource discovery
system by encapsulating it into an RUQ object, Ui.

A job in the Grid-Federation system is written as Ji,j,k,
to represent the i-th job from the j-th user of the k-th re-
source. A job specification consists of the number of pro-
cessors required, pi,j,k, processor architecture, xi,j,k, the
job length, li,j,k (in terms of instructions), the budget, bi,j,k,
the deadline or maximum delay, di,j,k , and operating sys-
tem required, øi,jk . A GFA aggregates these job charac-
teristics including pi,j,k, xi,j,k, øi,j,k with a constraint on
maximum speed, cost and resource utilization into an RLQ
object, ri,j,k and sends it as a subscription object to the re-
source discovery system. More details about the job model
can be found in the paper [11].

2.2 An Example RUQ and RLQ

Every GFA periodically sends an RUQ to the distributed
resource discovery system. The publish, or resource update
object includes a resource description set Ri:

Publish: Total-Processors= 100 && Processor-

Arch=“pentium“ && Processor-Speed= 2 GHz &&

Operating-System = Linux && Utilization= 80 &&

Access-Cost=1 Dollar/min.

Note that, the above RUQ is a DPQ. However, an RUQ
can also be compiled as a DRQ depending on a Grid site
configuration. As jobs arrive the GFAs (on behalf of the
Grid-Federation users) issue an RLQ to the distributed
resource discovery system to acquire information about
active resource providers in the system. An RLQ has the
following semantics:
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Subscribe: Total-Processors ≥ 70 && Processor-

Arch=“pentium“ && 2 GHz ≤ Processor-Speed ≤
5GHz && Operating-System = Solaris && 0.0 ≤ Utiliza-
tion≤ 90 && 0 Dollar/min≤ Access-Cost≤ 5 Dollar/min .

3 P2P-Based Spatial Publish/Subscribe In-
dex

In this section, we describe the features of the P2P-based
publish/subscribe index that we utilise for our Grid resource
discovery system. Providing background work and details
on this topic is beyond the scope of this paper; here we only
give a high level picture.

In this work, we utilise the spatial publish/subscribe in-
dex proposed in the work [9]. The publish/subscribe in-
dex uses a logical d-dimensional domain space for mapping
subscription and publication objects. The MX-CIF Quad-
tree spatial hashing technique [14] is used to hash the logi-
cal d-dimensional index onto a DHT network.

The publish/subscribe index utilises a content-based ap-
proach. It builds a d-dimensional cartesian space based on
the Grid resource attributes, where each attribute represents
a single dimension. The logical d-dimensional index as-
signs regions of space to the Grid peers in the resource dis-
covery system. If a Grid peer is assigned a region (cell) in
the d-dimensional space, then it is responsible for handling
all the activities related to the RLQs and RUQs associated
with the region. More details on this spatial hashing tech-
nique can be found in the article [17].

The cartesian space has a tree structure due to two types
of division process, explained as follows:

3.1 Minimum division (fmin)

This process divides the cartesian space into multiple in-
dex cells when the d-dimensional publish/subscribe index
is first created. The cells resulted from this process re-
main constant throughout the life of the publish/subscribe
domain and serve as entry points for subsequent RLQ (sub-
scribe) and RUQ (publish) processes. The number of cells
produced at the minimum division level is always equal to
(fmin)dim, where dim is dimensionality of the cartesian
space. Every Grid peer in the network has basic information
about the cartesian space coordinate values, dimensions and
minimum division level.

3.2 Load division

This process is performed by the cells (at fmin) when
their storage capacities are undermined by heavy RLQ
workload. An overloaded cell subdivides itself to produce
multiple child cells, which collectively undertake the work-
load. This is a dynamic process that is repeated by the child
cells, if they also become overloaded. This growing pro-
cess introduces the parent-child relationship, where a cell at

level m is always a child of a particular cell at level m-1. To
minimise the amount of information that needs to be known
by the cells for correct routing, the parent-child relationship
is limited at one level. It means that every cell only has a
direct relationship with its child cells. Note that, the maxi-
mum depth (fmax) of the distributed index tree is curbed by
constraining the load division process after a certain num-
ber of executions. Although such a constraint provides con-
trollable performance benefits, it may lead to query load-
imbalance in some cases.

3.3 Query mapping.

This action involves the identification of the cells in
the cartesian space to map an RLQ or RUQ. For mapping
RLQs, the search strategy depends whether it is a DPQ or
DRQ. For a DPQ type RLQ, the mapping is straight for-
ward since every point is mapped to only one cell in the
cartesian space. For a DRQ type RLQ, mapping is not al-
ways singular because a range look-up can cross more than
one cell. To avoid mapping a range RLQ to all the cells that
it crosses (which can create many unnecessary duplicates) a
mapping strategy based on diagonal hyperplane of the carte-
sian space is utilised. This mapping involves feeding an
RLQ candidate index cells as inputs into a mapping func-
tion, Fmap. This function returns the IDs of index cells to
which given RLQ should be mapped (refer to Algorithm 1).
Spatial hashing is performed on these IDs (which returns
keys for Chord space) to identify the current Grid peers re-
sponsible for managing the given keys. A Grid peer service
use the index cell(s) currently assigned to it and a set of
known base index cells obtained at initialisation as the can-
didate index cells.

Similarly, the RUQ/publish process also involves the
identification of the cell in the cartesian space using the
same algorithm. An RUQ is always associated with an event
region and all cells that fall fully or partially within the event
region will be selected to receive the corresponding RUQ.
The calculation of an event region is also based upon the
diagonal hyperplane of the cartesian space.

Algorithm 1 Subscribing or publishing

1: index cell(s) = Fmap(candidate index cells, subscription

or publication)

2: if index cell is not null then

3: ID = spatial hash(index cell)

4: end if

5: Lookup Grid peer through Chord routing network

based on ID, to either store the subscription or match

the publication to stored subscriptions.

3.4 Query routing.

Using the query mapping policies, the resource discov-
ery service searches for a cell (from minimum division) in
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the cartesian space that overlaps with area sought by an
RLQ. When this cell is found, the service starts the RLQ
mapping process by contacting the peer (in the network)
that owns the cell. When the cell receives an RLQ, two
cases are considered:

• In the first case, the cell has undergone a load division
process and it routes the RLQ to the child cell that is re-
sponsible for the region in which the RLQ is mapped.

• In the second case, the cell has not undergone any load
division process. Hence, there will be no further rout-
ing and the cell keeps the RLQ for future event notifi-
cation.

4 Message complexity and routing hop anal-
ysis

In this section, the complexity analysis for message and
routing hop is presented. We denote the number of mes-
sages generated in mapping a DRQ by a random variable
M . The distribution of M is function of the problem param-
eters including query size, dimensionality of search space,
query rate, division threshold and data distribution. As the
dimensionality increases, the order of the tree increases and
each tree node has more children. If the height of the tree
is kept constant, then increasing the cartesian space dimen-
sions does not increase the maximum hop length. However,
constraining the maximum height of the tree, may lead to
load imbalance at some Grid peers. Note that, the deriva-
tion presented in this paper assumes that the Chord method
is used for delegation of service messages in the network.

Essentially, a control point at the fmin level of the
logical d-dimensional cartesian space can be reached in
Θ(log n) routing hops with high probability (using the
Chord method). Since each Grid peer at fmin level of the
index tree controls its division with the child cells, there-
fore every control point owner can maintain a cache of IP
address for its child cells. The child cells are created as a
result of dynamic load division process. Hence, the num-
ber of routing hops required to delegate an index message
beyond the fmin reduces to O(1).

Based on above discussion, in order to compute the worst
case message lookup and routing complexity one additional
random variable T is considered. T denotes the number
of disjoint query path undertaken in mapping an RLQ or
RUQ. In the worst case, every disjoint query ends up at the
maximum allowed depth of the tree i.e. fmax. Hence every
disjoint path would undertake Θ(log n+fmax−fmin) rout-
ing hops with high probability. Hence, the expected value
of M is given by:

E[M ] = Θ(E[T ]× (log n + fmax − fmin))
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5 Simulation Model

In our message queueing model, a Grid peer
node (through its Chord routing service) is connected
to an outgoing message queue and an incoming link from
the Internet (as shown in Fig. 2). The network messages
delivered through the incoming link (effectively coming
from other Grid peers in the overlay) are processed as soon
as they arrive. Further, the Chord routing service receives
messages from the local publish/subscribe index service.
Similarly, these messages are processed as soon as they
arrive at the Chord routing service. After processing, Chord
routing service queues the message in the local outgoing
queue. Basically, this queue models the network latencies
that a message encounters as it is transferred from one
Chord routing service to another on the overlay. Once a
message leaves an outgoing queue it is directly delivered
to a Chord routing service through the incoming link.
The distributions for the delays (including queueing and
processing) encountered in an outgoing queue are given by
the M/M/1/K [2] queue steady state probabilities.

6 Experimental evaluation

In this section, we perform simulations to capture the
interplay among various Grid resource query and P2P net-
work parameters and their contribution to the overall per-
formance of Grid resource discovery system.

6.1 Experimental setup

We start by describing the test environment setup.
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6.1.1 Broker network simulation:

Our simulation infrastructure was modeled by combin-
ing two discrete event simulators namely GridSim [3],
and PlanetSim [7]. GridSim offers a concrete base frame-
work for simulation of different kinds of heterogeneous re-
sources, services and application types. PlanetSim is an
event-based overlay network simulator. It can simulate both
unstructured and structured overlays.

6.1.2 Simulation configuration

This section explains the distributions for simulation
parameters.

Network configuration: The experiments were con-
ducted using a 32 bit Chord overlay i.e. 32 bit node and
key ids. The network size, n, was fixed at 128 broker
nodes/Grid sites for Exp-1. In Exp-2, the system size is
scaled from 100 to 500 in steps of 100. The network queue
message processing rate, µ, at a Grid peer was fixed at
500 messages per second. We vary the value for network
message queue size, K , as 102, 103, and 104 in Exp-1.
While in Exp-2, we fixed K to 104. In Exp-2 we basically
simulate a large message queue size such that no message
is dropped by the resource discovery system. All the broker
nodes/Grid peer join the system at the same time, stabilise
their finger tables and initialize their logical index space.
Over the simulation period, we do not consider a Grid peer
join or leave activity.

Query rate configuration: We vary the RLQ rate, λin
l ,

and RUQ rate, λin
u , from 1 to 100 queries per simulation

second. At every step the RLQ rate is always equal to the
RUQ rate. In Exp-2, the RLQ and RUQ rate are fixed at 1
query per second for different system sizes.

Publish/subscribe index configuration: The min-
imum division, fmin of the logical d-dimensional
publish/subscribe index was set to 3, while the maximum
height of the index tree, fmax, was also limited to 3.
This means we basically do not allow the partitioning of
index space beyond the fmin level. In this case, a cell at
a minimum division level does not undergo any further
division. Hence, no RLQ/RUQ object is stored beyond the
fmin level. The index space resembles a Grid-like structure
where each index cell is randomly hashed to a Grid peer
based on its control point value. The publish/subscribe
cartesian space had 6 dimensions including number of
processors, pi, resource access cost, ci, processor speed,
mi, processor utilisation, ρi, processor architecture, xi,
and operating system type, φi. Hence, this configuration
resulted to 729 (36) Grid index cells at the fmin level. On
an average, 7 index cells are hashed to a Grid peer in a
network comprising of 128 Grid sites.

Indexed data distribution: We generated an uniform

resource type distribution using the resource configuration
obtained from the Top 500 Supercomputer list 2. The list
included 22 distinct processor types, so in our simulated
Grid resource index space, the probability of occurrence of
a particular processor type is 1/22. We utilised the resource
attributes including processor architecture, its number, its
speed, and installed operating system from the Supercom-
puter list. The values for ci and ρi were fabricated. The val-
ues for ci and ρi were uniformly distributed over the interval
[0, 10] and [5, 80] respectively. Every RLQ was constrained
such that it always subscribed for the operating system type,
processor architecture, maximum number of processors re-
quired which was also available on the local site. An RLQ
is thrashed from the system, once it matches with an RUQ.
Following this, a match event notification is sent to the con-
cerned broker service. A load of 200 RLQ and 200 RUQ
objects is injected into the resource discovery system by
a broker service over the simulation period during Exp-1.
While in case of Exp-2 we configured a broker service to
inject only 50 RLQ and 50 RUQ objects.

6.2 Effect of query rate

We identified six metrics to measure the RLQ/RUQ
query performance including latency, % of successful
RLQs, response time, routing hops, total number of mes-
sages generated for mapping RLQs/RUQs, and the total
number of messages in the system over the simulation pe-
riod. Measurements for parameters including latency, re-
sponse time, routing hops is averaged over all the broker
service in the system. While the measurements for the re-
maining parameters are computed by summing up their val-
ues across the broker services.

Fig. 3 and Fig. 4 show the plots for these parameters with
an increasing query rate across the system. Fig. 3(a) shows
results for the average RLQs/RUQs latency, Fig. 3(b) shows
results for the % of successful RLQs and Fig. 3(c) shows
the average response time for the RLQs across the system.
These measurements were conducted for different values of
network message buffer capacity i.e. K . Results show that
for lower values of K (i.e. 102, 103) network drops sig-
nificant number of messages (refer to Fig. 4(a)). Fig. 4(a)
shows total number of messages generated in the system
over the simulation period for different query rates and mes-
sage queue sizes. Hence, for these message queue sizes
successful RLQs/RUQs encounter compratively lower traf-
fic hence leading to almost same latency (refer to Fig. 3(a))
and response time (refer to Fig. 3(c)). But the downside of
this is that at higher rates significantly larger number RLQs
are dropped by the system (refer to Fig. 3(b)). However,
this is not true for the case when the network has higher
buffering capability (i.e. K = 104), in this case the mes-
sages encounter significantly more traffic thus worsening
the queuing and processing delays. Second, with a larger

2Top 500 Supercomputer List, http://www.top500.org/
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Figure 3. Simulation: Effect of query rate
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(a) query rate (RLQ + RUQ) (per sec) vs mes-

sage count
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(b) query rate (RLQ + RUQ) (per sec) vs. rout-

ing hops
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(c) query rate (RLQ + RUQ) (per sec) vs. mes-

sage count

Figure 4. Simulation: Effect of query rate
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(a) system size vs. lookup latency (secs)
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(b) system size vs. routing hops
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(c) system size vs. message count

Figure 5. Simulation: Effect of system size
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message queue size system experiences much higher query
success rates (refer to Fig. 3(b)).

Our results state that the average number of routing hops
for RLQs and RUQs remain constant irrespective of the
query rate in the system (refer to Fig. 4(b)). The main rea-
son for this is the same value for both the index tree depth
parameters i.e. fmin=fmax. Thus, we do not allow the par-
tition of index cell or load distribution between Grid peers
beyond fmin. With different query rates the height of the
distributed index tree remained constant, hence leading to a
similar number of routing hops. Fig. 4(c) shows the results
for the total number of messages generated in the system
for all RLQs/RUQs. As expected the number of messages
generated for the RLQs/RUQs remained constant since the
data distribution was same for all query rates.

Thus it is evident that at higher query rates, the messages
experience greater queuing and processing delays. This can
be directly observed in the RLQ/RUQ latencies which have
significantly larger values at moderately higher query rates.
Further, resource discovery system performance is directly
governed by the underlying network’s message processing
capability.

6.3 Effect of system size

In our second experiment, we examine the resource dis-
covery system’s scalability in terms of the number of partic-
ipating Grid sites. We used the same resource distribution
as before, but scaled it such that the probability of occur-
rences of particular resource types remained constant. We
started from a system size of 100 and increased it till 500.
Fig. 5(a) shows the growth of the RLQ/RUQ latency as a
function of increasing Grid network size. As expected, the
query latencies do not increase significantly, because the
growth rate of latency is a logarithmic function of the Grid
network size n. That is on average an RLQ or RUQ en-
counters Θ(log n) Grid peers before being finally mapped.
Similarly, in Fig. 5(b) we observed that the number of rout-
ing hops undertaken RLQ/RUQ increased slightly with the
system size. At the system size of 100, the RLQs/RUQs un-
dertook 4.12 routing hops on an average. For a system size
of 500, the average query path increased to 5.39 hops i.e.
increased by about 30%.

Fig. 5(c) shows the results for the number of messages
generated for RLQs/RUQs and Fig. 6 shows the results
for the total number of messages generated as the system
scaled from 100 to 500 sites. As expected the number of
messages generated for RLQs/RUQs increased with system
size. A system compromising of 100 Grid sites produced
109007 RUQ messages, which increased to 336579.4 mes-
sages when the system scaled to 500 Grid sites (refer to
Fig.5(c) ). We observed a similar growth for RLQ messages
as well with an increase in the system size. The total mes-
sages generated (including RLQ and RUQ) increased sig-
nificantly as the system scaled from 100 to 500 sites (refer
to Fig. 6). Further, in this case we observed 575% increase
in the total number of messages generated in the system.

The main reason for this being as the broker network size
increases the total number of messages generated in the sys-
tem grow as Θ(n log n). In other words, the number of
messages generated is the function of number of brokers,
number of RLQ/RUQs sent and number of routing hops un-
dertaken to map the queries. Hence, in this case we expect
linear or close to linear growth in the total message count.
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Figure 6. system size vs message count

We conclude that contrary to what one may expect, the
Grid system size does not have a significant impact on the
performance of the resource discovery system, in particular
the query latency and the number of message routing hops.

7 Related work

The approach [8] involved a drawback of generating a
large volume of network messages due to flooding. This
system can not guarantee to find the desired resource even
though it exists in the network due Time to Live (TTL)
field associated with query messages. SWORD [10] sys-
tem creates a separate search segment for each attribute
and hence the query routing needs to be augmented with
external techniques for resolving d-dimensional queries.
In contrast, our resource discovery system utilises a spa-
tial publish/subscribe index that hashes a d-dimensional in-
dex space to a 1-dimensional key space of Chord over-
lay. The publish/subscribe index does not require any addi-
tional query resolution and load-balancing heuristic. JXTA
Search [18] does not apply any index for organising the dis-
tributed data. A cross-domain search operation in JXTA
involves a query broadcast to all the advertisement groups
using the query group membership information. The Our-
Grid system utilises JXTA for organising its brokering ser-
vice. In contrast, our resource discovery is based on a de-
terministic routing substrate Chord. Our system does not
require a broadcast primitive for data discovery in a Grid
network, hence is more efficient in terms of number of mes-
sages generated in the system. Squid [15] system applies
Hilbert space filling curves for mapping a d-dimensional in-
dex space to a 1-dimensional key space. Squid maps these
contiguous d-dimensional indices to the overlay key space.
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The approach has issues with index load balance which is
fixed using external technique. In contrast, our proposed re-
source discovery system utilises a spatial publish/subscribe
index that does not need any external load-balancing.

8 Summary and future work

In this paper, we presented a decentralised Grid resource
discovery system. It utilises a peer-to-peer spatial pub-
lish/subscribe index for organising d-dimensional Grid re-
source data. We analysed experimentally how the query
arrival rate and Grid system size affects the system perfor-
mance.

Currently, we are building the proposed resource dis-
covery system using the FreePastry API. We intend to use
the resource discovery system for organising our Alchemi-
based desktop Grid system. Alchemi is a .Net based imple-
mentation that enables coupling of desktop machines run-
ning flavors of the Windows operating systems. In future
work, we plan to evaluate other spatial indices including
Space Filling Curves, MX-CIF Quad-Tree, and R-Tree in
organising the resource discovery system. Further, we also
intend to develop a Grid application scheduling coordina-
tion model based on a spatial publish/subscribe index.
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