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Abstract—Given the changing workloads from the tenants,
it is not uncommon for a service composition running in the
multi-tenant SaaS cloud to encounter under-utilization and over-
utilization on the component services. Both cases are undesirable
and it is therefore nature to mitigate them by recomposing the
services to a newly optimized composition plan once they have
been detected. However, this ignores the fact that under-/over-
utilization can be merely caused by temporary effects, and thus
the advantages may be short-term, which hinders the long-term
benefits that could have been created by the original composition
plan, while generating unnecessary overhead and disturbance via
recomposition. In this article, we propose DebtCom, a framework
that determines whether to trigger recomposition based on the
technical debt metaphor and time-series prediction of workload.
In particular, we propose a service debt model, which has been ex-
plicitly designed for the context of service composition, to quantify
the debt. Our core idea is that recomposition can be unnecessary if
the under-/over-utilization only cause temporarily negative effects,
and the current composition plan, although carries debt, can gen-
erate greater benefit in the long-term. We evaluate DebtCom on a
large scale service system with up to 10 abstract services, each of
which has 100 component services, under real-world dataset and
workload traces. The results confirm that, in contrast to the state-
of-the-art, DebtCom achieves better utility while having lower cost
and number of recompositions, rendering each composition plan
more sustainable.

Index Terms—Optimization, service composition, software
adaptation, technical debt.

I. INTRODUCTION

S ERVICE composition has emerged as a standard way of
building software application by composing multiple exist-

ing web services [1]. The resulted software application, namely
composite service, is often deployed in the cloud, forming the
basics of modern Software-as-a-Service (SaaS). A pronounced
benefit of composite service in the SaaS cloud is the realization
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of multi-tenancy, where multiple tenants1 are simultaneously
served by the same composite service based on shared re-
sources [2]. However, the workload of composite service can be
changed rapidly during execution, causing dynamic behaviour
of the composite services. On one hand, increasing workload
can cause over-utilization for the component services2 within
a composite service, which in turn, would negatively affect
the Quality of Service (QoS) and violate Service Level Agree-
ments (SLAs) [3]. On the other hand, decreasing workload may
lead to under-utilization of the capacity of component services,
reducing the revenue that should have been achieved as the
infrastructural resources also impose monetary cost. All those
bring a challenging task: when to (re)compose the component
services such that the utility over time is maximized?

While service recomposition (or reconfiguration) has been
widely studied [4], [5], [6], [24], existing researches have ig-
nored a perhaps obvious, but complicated fact: a short-term
degradation of the utility may not necessarily be a bad results;
in fact, it can be the source that stimulates largely increased
utility in the long term. For example, under-utilization could
be desirable temporarily in order to be prepared for a largely
increased workload for the long-term. Similarly, over-utilization
may be acceptable in the short term, as long as the workload is
only a ‘spike’ and the loss can be paid off by long term benefits.
Simply ignoring such fact is non-trivial, because despite trig-
gering recomposition immediately upon over-/under-utilization
my have short-term advantages, it can easily create instability
and hinder the possibility of achieving higher benefits for the
composite services in the long-term.

To address the mentioned challenges and limitations, in this
paper, we contribute to an economic-driven approach, namely
DebtCom, for triggering dynamic service recomposition lever-
aging the principle of technical debt—a well-known software
engineering concept [9], [10]. In particular, we argue that the
technical debt could be the consequences of making poorly jus-
tified run-time decisions for recomposing the composite service
during execution. Obviously, a rapidly changing workload on
the composite service may lead to sub-optimal3 utilization of
the capacity of component services during execution. Therefore,
sub-optimal composite service execution attributes the debt in
a way to provide higher capacity component web services in

1Tenants denote the end-users in SaaS Cloud
2Component service refers a web service in composition.
3Sub-optimal utilization denotes the condition of under-/over- utilization of

component service capacity.
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the composition than the service demand by the tenant. Conse-
quently, the operation cost may outweigh the service revenue
which is denoted as the accumulation of debt on the com-
posite service execution. Furthermore, under-/over utilization
of component service may incur interest over the debt. For
example, over-utilization of service capacity may encounter the
SLA violation and the penalty cost against the response time
violation could be counted as interest over the technical debt.
Here, technical debt indicates the cost of engineering efforts for
maintaining end-user SLA.

However, our key idea is that the recomposition can be unnec-
essary if the under-/over-utilization only occur at a short-term,
and the composition plan, although carries debt, can generate
greater benefit in the long-term. What makes DebtCom unique
is that it takes the long-term benefits of the current composition
plan into account, and may therefore temporarily and intention-
ally accept the negative effects caused by under-/over-utilization,
as long as they can be paid off in the long-term. Further, Debt-
Com provides one with the ability to make trade-off between
short-term advantages and long-term benefits via a single value,
denoted as k.

In a nutshell, the key contributions of this paper are summa-
rized as follows:
� We propose technical debt as a novel metric for service

recomposition and based on that a model, namely service
debt that explicitly map the metaphor of technical debt in
the contexts of service composition.

� We present an in-depth discussion and reasons that moti-
vate our design of the service debt model, which signifi-
cantly extends our prior work [7]. Such a model is capable
of quantifying both good and bad debt accumulated in
service composition.

� We tailor a time-series prediction method, namely
ARFIMA model, into the service debt model for pre-
dictably learning future debt in composite service execu-
tion.

� The proposed service debt model, enhanced by the time-
series prediction, allows us to build a utility model based
on which an algorithm is proposed with an ability to decide
whether to trigger recomposition or not, considering long-
term benefits. In particular, the trade-off between short-
term advantages and long-term benefits can be controlled
by a single value k.

� We combine all components and develop a holistic debt-
aware framework for recomposing services in SaaS cloud,
namely DebtCom.

� We evaluate DebtCom on a service system in a SaaS cloud
with up to 10 abstract services, each of which has 100
component services, under different QoS values derived
from the real-world WS-DREAM dataset [23] and FIFA98
workload [25], as well as over ten Docker containers that
are of diverse capacity. The results demonstrate the effec-
tiveness of the service debt model and the superiority of
DebtCom over the state-of-the-art approaches.

The rest of the paper is organized as follows. Section II
presents the background of technical debt and a motivating
scenario. Section III describes technical debt in the context

of service composition and identify some critical situations in
composite service execution environment that significantly con-
tributes the technical debt. Section IV describes the time-series
prediction method of service workload in DebtCom. Section V
specifies the proposed notion of service debt, which is the core
of DebtCom. Section VI illustrates the debt-aware triggers of
recomposition in DebtCom, grounded on the time-series pre-
diction and service debt model. Section VII explains the archi-
tecture and implementation details of DebtCom. Section VIII
discusses the experimental results, particularly with respect to
the state-of-the-art. Sections IX, X, and XI specified the threats
to validity, related work and conclusion, respectively.

II. PRELIMINARIES

A. Technical Debt

Technical debt is a widely recognized metaphor in software
development [8], [9], [11]. Its core idea is to describe the extra
cost incurred by actions that compromises long-term benefits
of the developed software, e.g., maintainability, in order to gain
short-term advantages (e.g. timely software release).

The technical debt metaphor was initially introduced by Cun-
ningham [10] in the context of agile software development,
where the definition is described as:

“Shipping first-time code is like going into debt. A little debt
speeds development so long as it is paid back promptly with a
rewrite. The danger occurs when the debt is not repaid. Every
minute spent on not quite right code counts as interest on that
debt.”

In this regards, technical debt is often used in an economic-
driven decision approach for communicating technical trade-
off between short-term advantages and long-term benefits in
software projects [11].

Intuitively, technical debt makes an analogy with financial
debt as described in economics [12]. Often, financial debt is
employed to refer to the initial loan and the interest that ac-
cumulated over time. In this regards, technical debt leverages
the similar concept of principal and interest; for example, the
situation in which development team decides to take shortcuts
(e.g., by skipping some technical tasks in software development)
for getting benefits in terms of releasing timely software product.
In this case, technical debt denotes the cost of the fact that some
tasks are skipped and interest that may incur due to the extra
cost of maintaining the software. Despite the similarities on the
concepts, technical debt metaphor is not treated in the same
way as the financial debt, because the interest associated with
technical debt may or may not be paid off [3], [10]. However, the
intuitive nature of technical debt allows the software engineers
to reason about the trade-off between the related short-term
advantages and long-tern benefits, aiming to make informed
decisions based on when (or whether) the technical debt can
be paid off [12].

B. Motivating Scenario

As shown in Fig. 1, the SaaS providers lease the IaaS providers
infrastructure and deploys several functionally equivalent web
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Fig. 1. A service composition scenario.

services into different computing capacities(e.g., container) at
IaaS platform. According to an overall workflow of abstract
services, the component services are selected and composed
together, each of which matches the functional requirement of an
abstract service, to form a service composition. The component
services for an abstract service implement similar functionalities
in the SaaS cloud but offer diverse levels of Quality of Services
(QoS). The goal is to improve the QoS of the composite service,
since there is a SLA that specific penalty for any violation. At
the same time, low operation cost of the service composition is
also desirable.

Given the changing workloads from tenants in this context,
under-/over-utilization on each of the component services are
likely to occur. In particular, under-utilization refers a situation
in which a component service capacity is not fully utilized
in the composition due to receiving less number of requests
workload than request processing capacity (service throughput).
As result, it reduces the service revenue and also accumulates
the unnecessary debt on the service provider. In contrast, service
over-utilization causes SLA violation due to receiving higher
requests workload than the service processing capacity. Again,
it negatively impacts the service revenue due to paying penalty
cost against each request violation. Simply trigger recomposi-
tion as soon as over-/under-utilization is detected may provide
short-term advantages to resolve the situation to some extends,
but it could also hinder the long-term benefits that could have
been created by the original composition plan, creating extra
operation cost, and more importantly, generating instability. In
contrast, doing nothing may suffer the risk that the situation
would not change at all. The essential point is that, regardless
to the negative effects and accumulated costs, both cases could
be accepted as long as the costs can be paid off by benefit in
the long-term. However, the fundamental difficulty is how to
quantify such cost and benefit, especially taking into account
the trade-off between short-/long-term effects.

In this regards, the technical debt metaphor naturally supports
intuitive understanding and quantification on the trade-off be-
tween short-term advantages and long-term benefits for service
recomposition. In particular, the over-/under-utilization caused
by the current composition plan can be viewed as debt, which
may be temporarily and intentionally accepted as long as they
can be cleared and start to create added values by a reasonable
point in the long-term. However, the fundamental challenges are
to identify what type of technical debt the service composition

has (e.g. good or bad)?; how much debt has been incurred? and
when it will be paid off for improving overall utility?; and finally
to answer the question of when to trigger recomposition? These
questions motivate the need of DebtCom, a technical debt-
aware framework for recomposing services, which we propose
in this paper.

III. TECHNICAL DEBT IN SERVICE COMPOSITION

During composite service execution, there are many situations
when a composite service requires recomposition due to SLA
violation, service failure, insufficient service revenue than op-
erating cost (business objective), or QoS fluctuations, etc [24],
[34]. We argue that, in this regard, the technical debt could be
associated with an inappropriate engineering decision or poorly
justified runtime decision of service recomposition that carries
short-term advantages in terms of improving instant service
utility but not geared for long-term benefits or future value
creation. However, a little debt is not always bad if it can help the
developers to speed the development process [14]. We look this
argument as a valid point in service recomposition for creating
long-term values and avoiding unnecessary recomposition that
contributes extra overhead and cost. This is of high significance
as recomposition comes with the operation cost, especially in
SaaS cloud where the underlying resources are leased. Notably,
technical debt could be incurred intentionally in service compo-
sition when we decide to defer the recomposition decision by
taking into account the possibility of generating future values
in current service composition. For example, we can accept
such debt in a way to consider the future demand for scaling-up
the service capacity that transforms the accumulated debt into
future value creation. As a result, technical debt-aware decisions
saves unnecessary service recomposition cost and improve the
composite service utility in the SaaS execution environment.

On the other hand, unintentional technical debt may be the
consequences of inappropriate or poorly justified runtime de-
cisions of selecting component services in the recomposition
process that produces weak composite service; which fails to
process incoming requests workload generated by end-users in
the SaaS environment. Consequently, weak composite service
violates the end-user SLA and the cost of penalty against each
request violation could be count as interest over the incurred
technical debt. In this case, unintentional technical debt indi-
cates the cost of efforts required to maintain end-user SLA by
recomposing a new service composition plan to get better service
utility value in changing request workload or to reduce the debt
in current service composition. However, it is a rear condition
when all participating component services (web services) in
service composition are meeting the full utilization of their
capacity. Therefore, technical debt always exists during service
composition. Our objectives are to reduce the technical debt and
avoid unnecessary recomposition towards improving composite
service utility.

IV. PREDICTING SERVICE WORKLOAD

Proactive decision making is not uncommon, especially in
the software development context where the concept of technical
debt was originally created [17], [18]. Often, the fact of whether a
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debt can be paid off depends on the present and future cost of the
debt [19]. This is also an equivalent and important concept in our
research, and therefore we seek to predict the future workload
of the component services, which in turn, enabling proactive
decision making an debt estimation of recomposition.

To predict the requests workload of each component service
in the composition, we adopt a widely used time series model
named Autoregressive Fractionally Integrated Moving Average
model (ARFIMA) [26] in the DebtCom framework because
our time-series data contains non-standard time series features
such as high volatility and long memory patterns. Moreover,
variance changes over time with high or low volatility and
long memory may cause slower decay of the autocorrelation
function than would be implied by Autoregressive Integrated
Moving Average ARIMA model [38], [39]. However, ARFIMA
model is equipped with both phenomena and guarantees a better
prediction accuracy than ARIMA [40] as shown in the Table II.

The workload prediction is required to capture an instant frac-
tion of time (e.g., seconds), in which a request is either processed
successfully or failed (SLA violation). Therefore, a time-series
data (e.g., requests workload data) should handle such time
patterns and the length of time-series interval can be adjustable
to better fit the estimation. Accordingly, we prepared the data at
each time point to contain a number of observed requests at each
time interval (e.g., second) and feed this time-series data as an
input to the ARFIMA for predicting the future requests workload
at every timestep. The general expression of ARFIMA (p, d, q)
for the process Xt is written as:

Φ(B)(1−B)dXt = Θ(B)εt, (1)

where (1−B)d is the fractional differencing operator and the
fractional number d is the memory parameter, such that d ∈
(−0.5, 0.5). Φ(B) = 1− φ1B − φ2B

2 − · · · − φpB
p is the

autoregressive polynomial of order p and Φ(B) = 1 + θ1B +
θ2B

2 + · · ·+ θqB
q is the moving average polynomial of order

q in the lag operator B. The operator B is the backward shift
operator;BXt = Xt−1 and εt represent the white noise process.

The prediction process inDebtCom is written as ARFIMA (p,
d, q) process, in which we estimate the value of memory param-
eter d using fdGPH() function from the R forecast package
proposed by Geweka and Porter-Hudak [21]. Specifically, the
value of memory parameter d must be between -0.5 and 0.5 that
confirms long memory patterns in time-series. The value of p is
the autoregressive order that indicates the number of differenced
lags appearing in the forecasting equation, and q is the moving
average order that shows the number of lagged forecast error
in the prediction equation. The values of p and q are identified
based on the autocorrelation function and partial autocorrelation
function, respectively, as supported by the fdGPH() function.

V. SERVICE DEBT IN SERVICE COMPOSITION

To quantify the debt in service composition at SaaS cloud,
we adopt the notions of principal and interest [9], [12], [13]
from technical debt metaphor into a contextualized model for
the analysis. In DebtCom, we present a formal model, namely

service debt, which connects these notions such that they are
made readily available to our problem.

A. Definitions

In the following, we provide an overview of the key definitions
that are transformed from the technical debt metaphor into the
context of service composition.

Definition 5.1. Service debt: The service debt is a transfor-
mation of the technical debt concept particularly for the context
of service composition in SaaS cloud. Similar to the technical
debt, it quantifies the debt incurred for a certain period of time.
In particular, it has two major components:
� Recomposition principal: This is the one-off cost of the

processes that related to recompose a new set of component
services.

� Accumulated interest: This is the cost of over-/under-
utilization caused by workload changes, QoS fluctuation
and inappropriate composition plan. The actual cost can
be related to the penalty of SLA violation or the rented
resources have not been fully utilized.

Definition 5.2. Good debt: A good debt is the service debt
that will be paid off in the by the time k in the future. Specifically,
this can be reflected by the fact that, by time k, the debt has been
made smaller or the overall utility has been improved. A good
debt often imply that no future recomposition is required.

Definition 5.3. Bad debt: Opposed to the good debt, a bad
debt is the service debt that will not be paid off by the time k in
the future. That is, by time k, there is no sign of improvement
on either the service debt and the overall utility. The presence
of a bad debt implies that the current composition plan needs to
be changed to breakout from the existing situation.

B. Recomposition Principal

In the context of service composition, we use principal to
denote the invested cost of recomposing the entire composite
service for improving service utility. The principal can be de-
rived from the resources usages, such as the CPU time or the
effort spent by software engineer for the decision making of the
service composition. Specifically, we compute the principal for
recomposing a service using 2.

Principal = E × Ccpu (2)

Suppose that the recomposition process requires 2 seconds
(denoted as E) and the execution cost of CPU is $0.0025 per
second (denoted as Ccpu), then it takes a principal as 2 ×
0.0025 = $0.005. The time for recomposing the services can
be easily known by averaging the time for previous rounds of
recomposition.

C. Accumulated Interest

An interest can be accumulated over time on the component
service which may be under-utilized or over-utilized. In such
context, the interests may be accumulated over time on the
yth component service for the xth abstract service (denoted as
CSxy). For such a component service, the interests accumulated
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from the last recomposition time m to n can be derived from the
actual service capacity (i.e., service throughput denoted as T )
and the workload at time t (i.e., Wt), which may be the actual
workload or predicted one from 1, as shown below:

Int(CSxy)m,n

=

⎧⎨
⎩
∑n

t=m((T −Wt)× C) if Wt ≤ T∑n
t=m

((
(Wt ×RCSxy

)

T
−Rsla

)
× P

)
otherwise

(3)

Clearly, the interests are different depending on two different
scenarios of utilizing the capacity of a component service:
� (a) Service under-utilization: When the component service

is under-utilized, i.e., the workload is smaller than or
equals to the capacity of component service (Wt ≤ T ),
interest can be calculated as the accumulated cost of unused
service capacity. For example, on a component service,
suppose that the execution cost of processing each request
is $0.00015 (denoted as C), and a component service has
the capacity to process 55 requests per second while the
workload on this component service is 48 requests per
second. Assuming that the accumulated interests till now
is $1.02, then this component service will carry the interest
as $1.02 + (55-48) × 0.0015= $1.0305.

� (b) Service over-utilization: When the component service
is over-utilized, i.e., the workload is greater than the capac-
ity of component service (Wt > T ), the SLA requirement
on latency (denoted asRSLA) would often be violated [20],
if current service latency (RCSxy

) is larger than the defined
SLA latency, and thus a penalty rate (denoted as P ) would
be used to compute the extra cost to be paid. Suppose again,
for a component service, that the accumulated interests till
now is $1.02, and that a given SLA contains the require-
ment of 2 seconds latency and the penalty rate of latency
violation is $0.0025 per second. Now, assuming that the
average service latency, derived from the workload and its
capacity, is 3.5 seconds, then the interest would be $1.02 +
(3.5-2.0) × 0.0025 = $1.0237. However, the penalty cost
would not be counted if the end-user requests workload
goes above a certain request rate defined in the SLA.

Finally, from the last recomposition time m to time n, the
accumulated service debt (denoted as Dm,n) of a decision of
recomposing the services can be identified and estimated ac-
cording to the principal and accumulated interests, as shown in
4:

Dm,n = Principal +

h∑
x=1

Int(CSxy)m,n (4)

where h is the total number of abstract services and CSxy is
the selected component service (e.g., suppose that it is the yth
component service) for the xth abstract service.

VI. DEBT-AWARE RECOMPOSITION

Deriving from the model of service debt, together with the
time-series prediction, we developed a technical debt-aware

decision approach to recompose services as part of Debt-
Com. In this approach, the service debt model is used to
quantify the debt and utility for the period since the last re-
composition. The quantified results would be used to com-
pare with the quantification of future debt and utility, sup-
ported by the time-series prediction, and thereby taking into
account the long term utility. The outcome is then used to
trigger the optimization of recomposition plan if there is a
needed.

A. Utility Model

To this end, quantifying the utility of service composition
is important. To begin with, the revenue and the operation cost,
which are fundamental parts in the utility of service composition,
can be computed as follows:

R(CSxy) = Wt × Ctenants (5)

C(CSxy) = Wt × C, (6)

whereby Wt indicates the requests workload at time t, Ctenants

is the charge to the tenants per request, which directly contribute
to the revenue generated by the composite service. C is again
the cost per request to the SaaS provider for using a component
service and its infrastructure.

The utility at the nth timesteps, denoted as Un, can be calcu-
lated as:

Un =

h∑
x=1

R(CSxy)−
h∑

x=1

C(CSxy)−Dm,n, (7)

where h is again the total number of abstract services. In
particular, such an equation can measure the actual utility of
the service composition at time n, including the service debt
accumulated from time m to n. Further, with the support of the
time-series prediction, the utility can be used to quantify the
future timesteps.

B. Good and Bad Debt

Our debt-aware trigger leverages on the notions of good and
bad debt to drive the recomposition. According to our definition
about the good and bad debt in Section V, the debt depends
on the service utility and service debt over a period of time. In
particular, the current service debt from the period between the
last recomposition point (time m) and n, denoted as Dm,n, is
good or bad with respect to a future timen+ k can be determined
as follows:

Dm,n =

{
Dbad if Un > Un+k and Dm,n < Dn,n+k

Dgood otherwise
(8)

whereby Un and Dm,n is the utility for time n and service debt
from the last point of recomposition m to time n, receptively.
Similarly, Un+k and Dn,n+k are respectively the estimated
utility at time n+ k and service debt between time n and time
n+ k. WhenUn ≤ Un+k orDm,n ≥ Dn,n+k, the implication is
that the estimated utility and accumulated service debt between
n and n+ k would become better, therefore the current service
debt should be accepted. This is because the any service debts
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Algorithm 1: Debt-Aware Recomposition Trigger.

would be paid off by time n+ k, leading to an anticipated
improvement on the overall utility. Otherwise, the service debt
would not be paid off at time n+ k, in which case another
recomposition process should be triggered to seek alternative
breakthrough.

C. Trigger and Decision Making of Recomposition

Deriving from the service debt model and time-series predic-
tion, the basic idea of the debt-aware trigger in DebtCom is
that if the current debt (at time n) is ‘good’ with respect to a
future point in time, denoted as n+ k, then no recomposition
is needed. Otherwise, a recomposition should be trigger at the
furthest future point from time n to n+ k by which the current
debt is considered as ‘good,’ as this is the longest period of time
before the current debt becomes ‘bad’.

The algorithmic procedure of the debt-aware triggers and
decision making process have been shown in Algorithm 1, which
runs on the next timestep after each recomposition triggered. As
can be seen, we calculate the utility since the last recomposition
point till now as the current utility, denoted as Un; the service
debt for the same period is denoted asDm,n (line 4-5). Likewise,
by leveraging the time-series prediction up to the future timestep
n+ k, the utility at time j (n < j ≤ n+ k) and service debt up
to that timestamp can be estimated, denoted as Uj and Dn,j ,
receptively (line 7-8).

From the current timen to a future timestepn+ k, comparing
the above utilities and service debt values allow us to verify the
need of recomposition based on the future opportunity on value
creation at each point in time in the future, as shown at line 9. In
particular, if the accumulated debt Dm,n is recorded as ‘good’
with respect to a future timestep n+ k, then no further action is
required (line 17-19) and the loop breaks. Otherwise, the Dm,n

would be recorded as ‘bad’ with respect to n+ k (line 10-12),
in which case the loops continue backwards till time n+ 1, and
the recomposition would be triggered at the furthest timestep
based on which the Dm,n is considered as ‘good’ (line 20-23).
If all the timesteps between n and n+ k would make Dm,n

‘bad,’ then the recomposition happens at the next timestepn+ 1
(line 13-15). Here, the actual recomposition process is based
on search-based evolutionary optimization, as derived from our
previous work [22].

It is worth noting that, the k value controls the preference
between short-term advantages and long-term benefit. A larger k
implies stronger preference towards long-term benefit, in which
case it is likely that less number of recompositions is required
but could intentionally accept more bad debt. On the other hand,
smaller k favors short term advantages by taking relatively
immediate recomposition, which could hinder the benefits in
long-term and generate too much operation cost. Indeed, it is
possible that the benefit of DebtCom can be related to k, and
therefore in Section VIII-H, we experimentally examine the
sensitivity of DebtCom to k in terms of both the utility and
running time.

VII. ARCHITECTURE OF DebtCom

This section presents the architecture of DebtCom for debt-
aware service composition in SaaS cloud. This architecture is
designed into three hierarchical levels: runtime management
level, Service execution level, and Back-end process and data
repositories level as shown in Fig. 2. Briefly, in the following,
we discuss the general interaction between the components of
these levels.
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Fig. 2. The architecture of DebtCom.

A. Runtime Management Level

In the SaaS cloud, the end-users can be distinguished based
on what type of SLA they have retained, which is often handled
by the Service Broker. At this level, the services offered by
SaaS provider have been designed into a Abstract Business Pro-
cess, which is written in Business Process Execution Language
(BPEL) [21]. Moreover, abstract business workflow represents
the interaction of services in the composition structure. At run-
time, Broker invokes the business process workflow component
based on the request type.

The Adaptation Manager is the core component where our
debt-aware trigger is implemented. In particular, it is responsible
for carrying out runtime adaptation action (e.g. service recom-
position) while determining the need of a new composite service
plan in order to meet the end-users requirements. As shown in
Fig. 2, Adaptation Manager comprises three sub-components:
Adaptive Controller, SLA Monitor and TD Monitor. Here, the
SLA Monitor observes the runtime behaviour of service compo-
sition and proactively captures dynamic changes (e.g., workload
or arrival/departure of users in service pool) in the execution
environment that may contribute to SLA violation.

Similarly, the TD Monitor examines the running service com-
position from a debt point of view by using the service debt
model discussed in Section V. In particular, the TD Monitor
continuously observes the accrued debt and service utility car-
ried by a currently executed service composition plan. Further-
more, it interacts with the Request Predictor from the lowest
level, supported by time-series prediction, for monitoring the
predicted workload over the composite service, based on which
the proactive estimation of the future service debt and utility
becomes possible.

Finally, the Adaptive Controller takes the information from
the SLA Monitor and TD Monitor, after which it determine
whether to trigger the recomposition based on the the approach
discussed in Section VI.

B. Service Execution Level

When a recomposition is indeed required, this level enables
runtime decision making for optimizing the composition plan
and invokes component services in the service composition.

The BPEL Engine is a software platform (e.g., WSO2
BPS [41]) that executes the business process, which represents
the composite service produced by the Service Execution Plan-
ner as requested by the Service Broker. The Service Execution
Planner also dynamically binds the end-users’ request to the
endpoint that exposes the service operation. The service end-
points are identified and selected from the Concrete Web Service
pool based on the service composition plan generated by the
Composition Engine.

In DebtCom, we design the Composition Engine based on
our prior work [22], which is an evolutionary algorithm based
optimization approach. It is worth noting that the Composition
Engine is triggered only when the Adaptation Manager from the
above level requires a new service composition plan.

C. Back-End Process and Data Repository Level

Here, as discussed in Section IV, the Request Predictor ex-
amines the past patterns of requests workload (Requests Log)
generated by the system and predicts the requests workload
over the executed composite service. The QoS values of each
component service are stored in the Web Service QoS Data
repository (e.g., WS- Dream QoS dataset [23]).

VIII. EXPERIMENTAL EVALUATION

In this section, our goal is to assess the effectiveness ofDebt-
Com in contrast to the baseline and state-of-the-art approaches
for service composition in SaaS cloud. Further, we seek to un-
derstand whether the individual components of DebtCom, i.e.,
the time-series prediction and the debt-aware trigger, can indeed
create benefit. Specifically, our experiments aim to answer the
following research questions.
� RQ1: How accurate does DebtCom predict the workload?
� RQ2: Whether DebtCom can outperform the traditional

baseline approach?
� RQ3: In contrast to the state-of-the-art, whether the time-

series prediction and the debt-aware trigger in DebtCom
can create benefit individually?

� RQ4: What is the running overhead of DebtCom?
� RQ5: What is the sensitivity of DebtCom to the k value?
� RQ6: How DebtCom can help improving the response

time?

A. Experimental Setup

For experimental purpose, we developed an e-commerce ap-
plication, which is formed as a service composition where there
are 10 abstract services connected by sequential and paral-
lel connectors. To emulate an environment of SaaS cloud, an
abstract service can select 100 component services, each of
which is deployed over 10 Docker containers with different
capacities. Each of the component service exhibits different QoS
values, which are randomly chosen from the WSDream [23]. The
relevant setups of the subject service systems have been shown
in Table I, which are the results of several runs of trial-and-error
and tend to be the most reasonable settings as we observed in
our experiment runs.
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TABLE I
EXPERIMENTS PARAMETERS

To emulate realistic workload for each component service, we
extract the FIFA98 World Cup website trace [25] for the length
of 6 hours, which forms the workload dataset. We pre-processed
the first 4 hours workload trace as the samples for training the
prediction model, while the remaining 2 hours workload data,
which equals to 7200 seconds, is used for testing the accuracy. In
DebtCom, we feed the training data into the ARFIMA, which
is implemented using the ARFIMA package in R [26]. In all
experiments, thek, which determines how many future timesteps
to be predicted, is set to 5. This means that DebtCom predicts
the service debt associated with 5 timestep ahead and take it
into account when deciding whether to trigger recomposition.
Notably, the k value of 5 is the most ideal trade-off between
short-term advantages and long-term benefits, achieving the
best utility as discussed within the the sensitivity analysis of
DebtCom in Section VIII-H. Note that we use a sampling
interval of 1 s in our experiments.

All experiments were carried out on a machine with Intel Core
i7 2.60 GHz. CPU, 8 GB RAM and Windows 10.

B. Compared Baseline and State-of-The-Art

According to the literature, we compare DebtComwith three
different approaches for service composition in SaaS cloud.
They are specified as follows.
� Baseline: We implemented a traditional service recom-

position approach from the literature as the baseline [24].
In the approach, a neighborhood region of component ser-
vices is predefined for each abstract services. The recom-
position occurs whenever the violation of SLA has been
detected, after which an exhaustive search is conducted to
find the best composition plans based on different neigh-
borhood regions, which forms a relatively small search
space.

� Passive: Another state-of-the-art method that triggers
the recomposition based upon the detection of SLA viola-
tion [6]. In this work, to achieve a fair comparison, we have
applied the evolutionary optimization approach to search
the composition plans, which are equivalent to DebtCom.

� Proactive: This is the state-of-the-art method that trig-
gers recomposition when the workload is predicted to
cause SLA violation [28]. However, the debt model is not
explicitly captured during the triggering process. Again, we
use the same ARFIMA for workload prediction as Debt-
Com. Further, similar toPassive, the acutal optimization
mechanism is also the same.

TABLE II
ACCURACY OF TIME-SERIES PREDICTION FOR WORKLOAD

C. Metrics

We have used the standard metrics such as accuracy, utility
and running overhead [24], [28], [31] for evaluating the perfor-
mance ofDebtCom. Further, to conduct the rigorous analysis of
DebtCom’s performance we have chosen the most appropriate
metrics according to experiment design.
� Accuracy: By using Root Mean Squared Error (RMSE)

and Mean Absolute Error (MAE), we assess the accuracy
of the ARFIMA in DebtCom for predicting workload of
component services.

� Utility: For all approaches, we plot the utility of service
composition over all timesteps, using (7). We show both the
individual value (i.e., for each timestep) and accumulated
result throughout the time series.

� Service Debt: We examine the service debt incurred for all
timesteps by using Equation (4). Again, we plot both the
value for each timestep and accumulated result throughout
the time series.

� Operation Cost: We assess the resulted cost for all
timesteps, using Equation (6). Simlar to the others, we plot
both the value for each timestep and accumulated result
throughout the time series.

� Good/Bad Debt Count: We count the number of good and
bad debt produced by the approaches.

� Running Overhead: We evaluate the running overhead of
the approaches in terms of the required running time.

� Response Time: We examine the service response time
yield by all approaches.

D. RQ1: Accuracy on Workload Prediction

To answer RQ1, we plot the mean accuracy when Debt-
Com predicts the workload for all component services using
different metrics, as shown in Table II. Further, we evaluate the
prediction accuracy of our DebtCom prediction model namely
ARFIMA [26] by comparing the results obtained from the
state-of-the art ARIMA model [40] in Table II. Considering that
the general workload varies between around 35 and 60 requests
per second, the MAE and RMSE are in fact relatively low in
ARFIMA model and thus the accuracy is acceptable. In addition,
we also report on the Theil’s coefficient, which indicates a good
prediction if it lies between 0 and 1; or the prediction is deemed
as poor otherwise [29]. As can be seen, the resulted Theil’s
coefficient is in between 0 and 1, and thereby suggesting a
sufficient accuracy.

As a more detailed example, Fig. 3 illustrates the workload
trace for a selected component service. As we can see, although
there are some deviations between the predicted and the actual
workload, the prediction has been able to capture the general
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Fig. 3. Predicted and actual workload on the component services.

TABLE III
IDENTIFIED GOOD AND BAD DEBT

pattern of trace of, e.g., the spike between 4000 and 5000 s
point. We therefore conclude that:

Answering RQ1: The workload prediction of ARFIMA in
DebtCom is sufficiently accurate, as the deviation is small
and the pattern of trace can be generally captured.

E. RQ2: Results of DebtCom Against Baseline

To investigate RQ2, we compare DebtCom with the Base-
line approach as discussed in Section VIII-B. In particular, we
assess their utility, service debt and operation cost for recom-
posing the services under the testing period of the workload.

Fig. 4 shows the accumulated utility, service debt and opera-
tion cost of both approaches. As we can see, in contrast toBase-
line, DebtCom performs significantly better on reducing the
accumulated debt while keeping less accumulated operation
cost. This has in turn, leading to considerably better result on
the accumulated utility. Notably, the improvement of DebtCom
on the utility and debt can be achieved with even less operation
cost. To conduct a more detailed review, in Figs. 5 and 6, we
illustrate the utility, service debt and operation cost measured
at each timestep. It is clear to see that DebtCom outperforms
Baseline on every timestep in terms of the operation cost.
As for the service debt and overall utility, DebtCom is only
slightly better before the point of 4000 s, because of the fact
that the workload fluctuation till that point is relatively light.
However, following the spike between 4000 and 5000 s points,
the superiority of DebtCom becomes much more obvious, as
the service debt and utility are both significantly improved for
the long term. All the above evidence the ability of DebtCom to
handle sudden changes, especially for making decision of wether
to recompse that takes the long term benefits into account.

In Table III, we compare the number of good/bad service
debt achieved by DebtCom and Baseline. To achieve a fair

comparison for Baseline, we assess its debt only on the
timesteps thatDebtCom has checked whether the current debt is
good or bad, and thereby the total number of debt to be compared
is equivalent. As can been seen, Baseline produce more bad
debt than the good ones, i.e., 1132 against 1268; whileDebtCom
achieves 1417 good debt, which is around 44% more than the 983
bad debt. This is a significant improvement, as higher number
of good debt implies that DebtCom requires less number of
recomposition, as each composition plan is more sustainable,
thanks to the awareness of debt enabled by our service debt
model. To conclude, we can summarize that:

Answering RQ2: DebtCom performs significantly better
than Baseline on the utility, service debt and operation
cost. The benefits cover not only the accumulated results,
but also the outcome of each individual timestep. In addition,
DebtCom is more robust to the sudden spike in the workload,
providing much more good debt than the bad ones, as it takes
the long term benefits into account when recomposing the ser-
vices in SaaS cloud. Noteworthily, the benefit of DebtCom
can be produced with less cost/number of recomposition, as
each composition plan is more sustainable.

F. RQ3: Effectiveness of Workload Prediction and Debt-Aware
Trigger in DebtCom Against State-of-The-Art

To assess the effectiveness of workload prediction and debt-
aware trigger, which are the core components in DebtCom, we
compare the results between Passive and Proactive, as
well as those betweenProactive andDebtCom. From Fig. 8,
we see that Proactive achieves better utility with less service
debt than that of Passive. This indicates that the workload
prediction is indeed beneficial to the service composition. It is
also obvious that DebtCom outperforms Proactive on both
metrics, which proves that the debt-aware trigger, supported by
the service debt model and workload prediction, create greater
benefit in the long term.

When observing the result for each timestep, as shown in
Fig. 7, similar conclusion can be drawn. In particular, the ability
of prediction in Proactive makes it robust to the spike after
4000 s point, but the fact that it only aims for short time benefit
has caused a few suddenly increased debt (sudden drop on the
utility). In contrast, DebtCom does not suffer such issue, thanks
to the service debt model. As a result, we conclude that:

Answering RQ3: Both the workload prediction and debt-
aware trigger in DebtCom are effective in reducing the
service debt, leading to better utility of service composition
in SaaS cloud in contrast to the state-of-the-art methods.

G. RQ4: Running Overhead of DebtCom

To understand RQ4, we evaluate the running overhead of
the decision making process in DebtCom, including both the
reasoning process of service debt and the optimization process

Authorized licensed use limited to: University of Melbourne. Downloaded on November 03,2023 at 02:45:39 UTC from IEEE Xplore.  Restrictions apply. 



2554 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 4, JULY/AUGUST 2023

Fig. 4. Accumulated debt, accumulated operation cost and accumulated utility achieved by DebtCom and Baseline over all timesteps.

Fig. 5. Serivce debt, operation cost and utility achieved by Baseline over all timesteps.

Fig. 6. Service debt, operation cost and utility achieved by DebtCom over all timesteps.

that find the actual composition plan. We proceed such by
comparingDebtComwithBaseline. To this end, we run both
approaches for 30 times and report on the minimum, average and
maximum time required.

As shown in Fig. 9, we see that DebtCom clearly runs faster
than Baseline. Although the margin differs in the scale of
milliseconds, it is worth noting that the need of recomposition
can be rapid in service composition at SaaS cloud, which im-
plies a matter of 10 ms faster can be seen as a considerable
improvement. For RQ4, our answer is that:

Answering RQ4: DebtCom runs considerably faster than
Baseline when recomposing services in SaaS cloud.

H. RQ5: Sensitivity of DebtCom to k Value

To answer RQ5, we compare the utility and running time
of DebtCom under five different k values that represent dif-
ferent preference between short-term advantages and long-term
benefits. In particular, we repeat 120 runs for assessing running
time and 7200 timesteps for the utility. The boxplots of the
results are shown in Fig. 10. As can been seen, DebtCom can
be indeed sensitive to the k value, in which k = 5 tends to
be the optimal setting, but neither the utility nor the running
time exhibit clear monotonic trace. The results also suggest
that both too small and too large k could be harmful, as they
failed to gain long-term benefits and accept too much bad debt,
respectively.
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Fig. 7. Utility and service debt achieved by Passive, Proactive and DebtCom over all timesteps.

Fig. 8. Accumulated utility and accumulated debt achieved by Passive,
Proactive and DebtCom over all timesteps.

Fig. 9. Running time.

Clearly, although the case of k = 5 is better than the
others on both metrics, their margins tend to be relatively
small. Therefore, to confirm the statistical significance on
the sensitivity of DebtCom to k value, we perform Kruskal
Wallis test with Bonferroni correction4 and calculate the η2 as
the effect size, which can be interpreted following the guidance

4We use. 05 as the significance level, which becomes. 005 after correction.

Fig. 10. Sensitivity of DebtCom to k values in terms of utility and running
time.

by Tomczak and Tomczak [30]. The results reveal that the
sensitivity of DebtCom to k value is statistically significant
on both utility and running time, with p < .005 and non-trivial
effect size. In conclusion, the answer for RQ5 is that:

Answering RQ5: DebtCom is indeed sensitive to the k
value in terms of both utility and running time, with statistical
significance and non-trivial effect size. In particular, both sets
of sensitivity exhibits non-monotonic traces, which implies
potentially complex trade-off between short-term advantages
and long-term benefits.

I. RQ6: Comparison of Service Response Time

Since the response time can be a critical QoS attribute to
consider, we also compare all the approaches under such a
metric. As shown in the box-plots of Fig. 11, when compar-
ing the response time, DebtCom has a smaller variance than
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Fig. 11. Comparing response time QoS metric.

Passive and Proactive, and also achieves better response
time. However, Passive and Proactive approaches have
a better mean response time but violate the SLA.5 Further,
Baseline outperforms other three approaches but it accu-
mulates higher operating cost than DebtCom as shown in
Fig. 4(b).

Answering RQ6: Overall, DebtCom achieves stable re-
sponse time on the lower operating cost when compare other
state-of-the-art approaches have higher variance.

J. Summary

In answering all these research questions, we investigated
the effectiveness of the DebtCom framework by evaluating the
core components, such as the prediction model and service debt
model. We have also used a variety of metrics to make a fair com-
parison between the approaches. In particular, we examined the
importance of workload prediction in DebtCom by comparing
the passive approach that cannot make a predictive recompo-
sition decision and only react whenever an SLA violation is
detected. The results discussed in RQ3 show that DebtCom
outperforms the passive approach on all the metrics. Further,
we used the same workload prediction model in the Proactive
approach and DebtCom. After that, we examined what brings
the predictive model by integrating it into the service debt model
for making a proactive debt-aware decision for recomposing the
service. From the results in Figs. 7 and 8, we observed that
DebtCom produced higher service utility and accumulated less
debt than the Proactive approach. Similarly, in RQ2 and RQ4, we
assess theDebtCom performance against the Baseline approach
and running overhead by executing these approaches several
times on the same experimental setup. Apart from that, we
examined the sensitivity of DebtCom controlled by a numerical
value k, which is the number of forecasted timesteps monitored
byDebtCom for making proactive recomposition decisions. We
estimated multiple timesteps and identified the best case value
of k as discussed in RQ5.

5One second is the maximum service response time defined in the SLA.

TABLE IV
COMPARISON TO RELATED WORK

IX. THREATS TO VALIDITY

Threats to construct validity are used to determine whether
the metrics can undoubtedly reflect what we aim to measure.
In this paper, we set up our experiments with a broad range of
metrics for evaluating different aspects of DebtCom, includ-
ing accuracy, utility (e.g., generated revenue), operation cost,
amongst others.

Threats to internal validity can be mainly related to the value
of the parameters for the DebtCom. Particularly, the setup
has been designed in a way that it produces good trade-off
between the quality of services composition and the recompo-
sition overhead. Further, threats to internal validity could be
related to the randomness of the results obtained from different
runs. Indeed, the actual optimization of recomposition plan is
achieved by using our prior work [22], which relies on stochastic
algorithm. To mitigate such, we repeat all the experiments across
different timesteps and runs. We have also assess the sensitivity
of DebtCom to the k value, which determines the preference
between short-/long-term benefits, based on statistical analysis
and effect sizes.

Threats to external validity can be associated with the testing
environment and the dataset that are used in this experiment.
To improve generalization of the results, we developed a real-
world ecommerce system as a testing environment, with up to
10 abstract service, each of which has possible 100 component
services and 10 dockers. Further, DebtCom has been evaluated
on the reald-world WSDream dataset [23] and FIFA98 workload
trace [25].

X. RELATED WORK

Over decades, different approaches have been presented for
reconfiguring the composite service with QoS requirements [5],
[6], [24], [31], [32], [36], [37]. Among others, most of the
work is based on passive recomposition. For example, Lin
et al. [24] described a multi-steps algorithmic approach; in
which an expand region algorithm is proposed that identifies the
reconfiguration region of faulty services, each of which would be
recomposed locally. However, recomposition is triggered upon
the detection of SLA violation. Canfora et al. [31], [32] present
algorithm that continuously monitors the QoS of composite
service and triggers the service recomposition once the SLA is
violated. To address QoS constraints, Ren et al. [42] studied QoS
uncertainty and service behavior in the dynamic environment,
where constraint-satisfied service composition is formulated as
Markow Decision Process (MDP) and solved using a Q-learning
algorithm. Chattopadhyay et al. [43] presented a graph-based
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abstraction refinement approach that explores the substantially
smaller space for constructing a complete service composition
graph. First, they created a set of abstractions and corresponding
concrete service refinements to form the service groups. After-
wards, a dependency graph is generated to compose the service
by selecting a representative service from each group.

Beyond deterministic optimization, evolutionary optimiza-
tion based approaches have been presented by Chen et al. [36],
[37], they seed the multi-objective evolutionary algorithm with
pre-selected solutions to optimize service composition. The
recomposition is triggered in every timestep, aiming to main-
tain optimality throughout the lifecycle of service composition.
However, the passive nature of triggering recomposition has
limited the ability to proactively response to changes. As we
have shown, acting proactively to likely changes in DebtCom
would create extra benefits and improve the overall utility.

Indeed, workload prediction enables proactive service recom-
position. In literature, many cloud workload prediction methods
have been discussed [44], [45], [46], [47].for example, Calheiros
et al. [44] utilized the ARIMA method for predicting the HTTP
requests workload on the cloud application. However, Deep
Learning-based prediction models such as Recurrent Neural
Network (RRN) perform poorly on the time-series data con-
taining long-term memory patterns and high volatility [45].
Further, there is work that have been conducted to achieve
proactive recomposition of services [28], [33], [34], [35]. For
example, Dai et al. [33] presented a self-healing approach for
service composition. They rely on performance prediction to
trigger recomposition. Aschoff et al. [34] presented a ProAdapt
framework for proactive adaptation of service composition due
to changes in composite service. They used the exponential
weighted moving average (EWMA) that models the response
time of service operation, which would then trigger recomposi-
tion when likely degradation of response time is detected. Nev-
ertheless, those approaches do not take the concept of technical
debt into account. This means that they do not have the ability
to reason about short-term and long-term benefits, blurring the
potential effectiveness of each recompositions less sustainable.
Indeed, as we have shown, explicitly considering technical debt
inDebtCom help to achieve much better utility in the long-term,
which make the composition plan more sustainable. In Table 4,
we provide the comparative summary of closely related works.

XI. CONCLUSION

In this paper, we propose a technical debt aware framework,
namely DetbCom, for service recomposition in SaaS Cloud. In
particular, we transform the notion of technical debt metaphor
to form a new model called service debt, which fits explicitly
within the context of service composition. Such a service debt
model, together with time-series prediction using ARFIMA,
forms a utility model based on which an algorithm is designed
to make decision about when to trigger recomposition. Experi-
ments have been conducted under a large scale service system
based on real-world dataset and workload trace. The results
confirm the superiority of DetbCom over the state-of-the-art,
such that better overall utility can be obtained with less number

of recomposition required, which implies that each composition
plan becomes more sustainable.
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