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a b s t r a c t

Scientific applications require large computing power, traditionally exceeding the amount that is available
within the premises of a single institution. Therefore, clouds can be used to provide extra resources
whenever required. For this vision to be achieved, however, requires both policies defining when and
how cloud resources are allocated to applications and a platform implementing not only these policies
but also the whole software stack supporting management of applications and resources. Aneka is a
cloud application platform capable of provisioning resources obtained from a variety of sources, including
private and public clouds, clusters, grids, and desktops grids. In this paper, we present Aneka’s deadline-
driven provisioning mechanism, which is responsible for supporting quality of service (QoS)-aware
execution of scientific applications in hybrid clouds composed of resources obtained from a variety of
sources. Experimental results evaluating such amechanism show that Aneka is able to efficiently allocate
resources from different sources in order to reduce application execution times.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Cloud computing [1] platforms are rapidly emerging as the
preferred option for hosting applications in many business con-
texts. Start-up companies are relying on public cloud infrastruc-
tures to deploy their applications, which helps in reducing their
initial costs. Larger companies are also adopting clouds, either
public clouds for expanding their existing infrastructures or rapid
deployment of test environments, or private clouds for dynamic
on-demand provisioning of virtual resources among their internal
divisions.

The same widespread adoption of cloud platforms for appli-
cation deployment is not yet observed in the case of scientific
computing applications. Scientific computing, or computational
science, is the field of study concerned with devising mathemat-
ical models and numerical techniques aiming to address prob-
lems in science and engineering. These problems typically involve
long-term computer simulations, huge dataset processing, and
other types of large-scale computations which, in many cases, re-
quire the availability of large IT infrastructures. Traditionally, these
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needs have been addressed on the internal computing infrastruc-
ture of research institutions, which are typically composed of clus-
ters or resources from local area networks (desktop grids).

Later, with the advent of grid computing [2], larger infrastruc-
tures were made available to scientists. The availability of both
software and infrastructure for grid computing significantly influ-
enced the growth of scientific computing research. As a result, sci-
entific applications became the major user of grid facilities, and
many public grids have been deployed for supporting these ap-
plications. However, high utilization rates observed in grids, along
with technical and bureaucratic issues, limit their utilization.

Moreover, these resourcesmaybe insufficient in certain periods
of time. For example, peak demand for scientific resources may
be seen in some parts of the year, which can lead to long waiting
times for utilization of these resources, or the available resources
for one applicationmay be insufficient to complete the application
before its deadline. In these cases, scientific resources may be
complemented by cloud resources. Moreover, by leasing cloud
computing services on a pay-per-use basis, evenminor institutions
can easily access a large number of resources, which are utilized
and paid for only for the time they are actually utilized.

For this vision to be achieved, however, middleware supporting
provisioning of resources from both local infrastructures and pub-
lic clouds (known as hybrid clouds) is required, so that applications
can transparently migrate to public virtual infrastructures [3].

Aneka [4] is a software platform for building and managing a
wide range of distributed systems, allowing applications to receive
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resources provisioned from different sources, such as desktop
grids, scientific grids, clusters, private clouds, and public clouds.
Such a hybrid cloud builtwith resources froma variety of sources is
managed transparently by Aneka. Therefore, this platform enables
the execution of scientific applications in hybrid clouds.

The contribution of this paper is twofold. First, it describes
Aneka’s features that are responsible for supporting the quality of
service (QoS)-aware execution of scientific applications in hybrid
clouds composed of resources obtained from a variety of sources.
Second, it presents experimental results of the utilization of these
features in an actual hybrid cloud. Results show that Aneka is able
to efficiently allocate resources from different sources in order to
reduce application execution times.

The rest of this paper is organized as follows. Section 2 presents
an overview of scientific applications and current support for them
in the cloud. Section 3 presents a general overview of the Aneka
framework. Section 4 describes the provisioning mechanism in
Aneka and how it supports different resources. Section 5 presents
the algorithms for deadline-driven resource provisioning in Aneka.
Section 6 presents the results of using Aneka’s capabilities for the
execution of a scientific application in a hybrid cloud. Section 7
presents related works, and Section 8 concludes the paper.

2. Scientific computing in the cloud

With the advent of grid computing, large computing infrastruc-
tures became available to academic and research institutions for
deploying and executing scientific applications. These infrastruc-
tures are either contained within the boundaries of an institution,
such as a University or a high-performance computing (HPC) fa-
cility, or span across several organizations and spread worldwide
as in the case of the Enabling Grid for E-sciencE (EGEE) [5], Tera-
Grid [6], and Open Science Grid (OSG) [7].

Because grid resources are shared worldwide, it is necessary
to provide users with controlled access to these resources, which
leads to competitive use of these facilities that favors large research
institutions and more expensive projects. In addition, technical
issues related to the specific nature of the runtime environment
provided by grids limit the widespread use of these facilities: in
many cases, applications have to be written either according to a
specific programming model (e.g., Message Passing Interface [8],
Bag of Tasks, or workflows) or for a specific operating system,
mostly Unix-like.

Cloud computing provides an alternative approach that solves
some of these problems. Such technology delivers IT infrastructure
and services on demand on pay-per-use basis. The use of such a
billing scheme makes clouds accessible to everyone, from large
academic institutions to minor research groups. Moreover, clouds
are able to provide distributed systems that grow and shrink
dynamically according to the requirements of users, which can
identify convenient trade-offs between cost and performance for
experiments.

Moreover, virtualization technologies remove many of the
technical issues previouslymentioned. For example, Infrastructure
as a Service (IaaS) solutions allow scientists to prepackage and
configure the basic building blocks required for carrying out their
experiments. This allows a higher degree of customization that
helps cover a wider range of scenarios for scientific computing
applications. Finally, provisioning on demand of cloud resources
simplifies their integration into existing infrastructures. Academic
institutions already have their computing facilities, and these
infrastructures can be extended by adding virtual resources
or services leased from the cloud, which creates a hybrid
infrastructure that serves the institution for the time needed to
perform huge computations or large-scale experiments.
Although the use of cloud computing for scientific applications
is still limited, the first steps towards this goal have been
already made. One of the first cloud-based infrastructures for
computational science, Science Cloud [9], has been deployed by the
joint efforts of the University of Chicago, the University of Illinois,
Purdue University, and Masaryk University.

From a research point of view, studies have been conducted on
the feasibility of using clouds for scientific computing. A study by
Evangelinos and Hill [10] shows that HPC scientific applications
deployed in regular Amazon instances have performance similar
to the performance achieved with low-cost clusters, whereas a
study by Deelman et al. [11] shows that the cost of cloud for
HPC applications is acceptable. From a public cloud provider’s
perspective, there are initiatives such as Amazon EC2’s cluster
computing instances,1 which offer HPC resources connected via
a high-throughput network. Such an initiative from Amazon
provides a platform with better performance for HPC applications
than the regular platform evaluated by Evangelinos and Hill,
making the adoption of clouds more compelling to researchers.

The aim of using hybrid public/private clouds is a core feature
of the Aneka platform, which enables not only utilization of such
clouds, but also utilization of virtually any kind of computational
resource available for applications, including idle desktops from
local networks, clusters, and grids. TheAneka platform is presented
in the next section, and the deadline-driven provisioning of
resources for scientific applications is presented in Section 4.

3. Aneka: an extensible cloud application platform

Aneka [4] is a software platform and a framework for
the development of distributed applications in the cloud. It
harnesses the computing resources of a heterogeneous network of
workstations, clusters, grids, servers, and data centers, on demand.
It implements a Platform as a Service model, providing developers
with Application Programming Interfaces (APIs) for transparently
exploiting physical and virtual resources. In Aneka, application
logic is expressed with a variety of programming abstractions and
a runtime environment on top of which applications are deployed
and executed. System administrators leverage a collection of
tools to monitor and control the cloud, which can be a public
virtual infrastructure available through the Internet, a network of
computingnodes in thepremises of an enterprise, or a combination
of them.

The core feature of the framework is its service-oriented
architecture that allows customization of each cloud according to
the requirements of users and applications. Services are also the
extension point of the infrastructure: by means of services, it is
possible to integrate new functionalities and to replace existing
ones with different implementations. In this section, we briefly
describe the architecture and categorize the fundamental services
that compose the infrastructure.

3.1. Framework overview

Fig. 1 provides a layered view of the framework. Aneka provides
a runtime environment for executing applications by leveraging
the underlying infrastructure of the cloud. Developers express
distributed applications by using the API contained in the Software
Development Kit (SDK) or by porting existing legacy applications
to the cloud. Such applications are executed on the Aneka cloud,
represented by a collection of internetworked nodes hosting
the Aneka Container. One of the nodes runs the Aneka master,
which provides resource management and application scheduling
capabilities, and the other nodes run Aneka workers that process
tasks that compose the application.

1 http://aws.amazon.com/ec2/.
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Fig. 1. Aneka framework.

Aneka Container is the building block of the middleware, and it
represents the runtime environment for executing applications; it
contains the core functionalities of the system and is constituted
of an extensible collection of services that allow administrators to
customize the Aneka cloud. There are three classes of services that
characterize the Container.
• Execution services: these services are responsible for schedul-

ing and executing applications. Each programming model sup-
ported by Aneka defines specialized implementations of these
services for managing the execution of a work unit defined in
the model.
• Foundation services: these services are the core management

services of the Aneka Container. They are in charge of metering
applications, allocating resources, managing the collection of
available nodes, and keeping the services registry updated.
• Fabric services: these services constitute the lowest level of the

services stack of Aneka and provide access to the resources
managed by the cloud. An important service in this layer is the
Resource Provisioning Service, which enables horizontal scaling
(e.g., increase and decrease in the number of resources) in the
cloud. Resource provisioning makes Aneka elastic and allows it
to grow and shrink dynamically to meet the QoS requirements
of applications.

The Container relies on a Platform Abstraction Layer that in-
terfaces with the underlying host, whether this is a physical or a
virtualized resource. Thismakes the Container portable over differ-
ent runtime environments that feature an implementation of the
ECMA 335 (Common Language Infrastructure) specification [12].
Two well-known environments that implement such a standard
are the Microsoft.NET framework2 and the Mono open source.NET

2 http://www.microsoft.com/net/.
framework.3 Therefore, Aneka is fully supported in bothWindows-
based and Linux-based systems.

Security in Aneka is carried out by specific Aneka services.
The same pluggable interface that allows new services to be
added to the container also allows different security mechanisms
to be attached to the Aneka container, so that the security
requirements of specific installations can be served. For example,
if secure and encrypted file transferring is required between the
master and the workers, a Secure File Transfer Protocol (SFTP)
module can be plugged into Aneka and activated on demand.
Regarding communication among nodes, Aneka provides a built-in
security based on 256-bit symmetric cryptography. Moreover, the
framework implements its own security system, allowing users to
selectively access services.

Scalability in Aneka is handled by elastically increasing the
installed base of nodes when required: the framework was
successfully used to harness and manage up to 200 nodes
without significant delays or bottlenecks. Regarding management
of applications, Aneka was successfully used for hosting the
execution of multiple applications at the same time and to
handle the execution of massive applications composed by tens
of thousands (between 10,000 and 20,000) tasks. In a worst-case
scenario, some bottlenecks were identified in the data transfer
facilities, which can be avoided with replication of data sources in
order to distribute requests for data required by tasks.

3.2. Aneka application programming models

Developers express the logic of applications by using program-
ming models. A programming model is represented by a collection
of abstractions that are used by a developer to define the applica-
tion components, and a set of services that constitute the runtime
environment for these abstractions. Generally, the implementation
of a programming model includes execution and scheduling ser-
vices whose coordinated activity provide runtime support for the
model. The programming models currently supported by Aneka
are as follows.
• Bag of Tasks: allows expressing a distributed application as a

collection of independent tasks that can be executed in any
order.
• Distributed Threads: provides an implementation of concurrent

threads with shared memory and locks.
• MapReduce: implements the programming model proposed by

Google [13] for data-intensive applications based on the map
and reduce functions borrowed from functional programming.
• Actors: supports the SALSA [14] programming language for the

execution of Actors-oriented programs on top of Aneka clouds.
• Workflow: allows expressing a distributed application as

a collection of interrelated tasks whose dependencies are
expressed by a directed acyclic graph.

Additional programming models can be integrated into the
infrastructure if the required implementations of the abstractions
are provided and the runtime services required for their execution
are added to the Container.

4. Resource provisioning in Aneka

Aneka provides seamless access to different computational re-
sources such as Linux desktops, Windows desktops, grids, clusters,
private clouds, and public clouds. The Resource Provisioning Ser-
vice, which is part of the Fabric Services of Aneka, enables dynamic
provisioning of various types of resources [3]. Next, we present
how each type of resource is supported in Aneka.

3 http://www.mono-project.com.
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4.1. Desktop grids

Desktop grid resources are examples of Aneka static resources.
In the context of Aneka, a static resource is a resource that receives
a static configuration and thus can be promptly accessed by Aneka
and become part of the Aneka private cloud [3]. This allows them
to be provisioned to applications without further interaction with
other Aneka architectural elements. The only requirements for
this type of resource is being accessible via a network, having a
configuration that allows remote access from, and running, the
Aneka container.

This type of resource can be used by Aneka either opportunis-
tically, i.e., they are made available when they are not in use by
local users, or in a dedicated way, i.e., they are accessed only via
Aneka and are available as part of the Aneka cloud at all times.
These methods allow Aneka to access resources from both Linux
and Windows desktops.

4.2. Public and private clouds

Public and private cloud resources are provisioned dynamically
by Aneka. Dynamic resources, in the context of Aneka, are
resources that do not receive a static configuration and thus join
the Aneka cloud on demand [3]. These resources are the result
of dynamic provisioning, which is managed by the Resource Pool
Manager. The Resource Pool Manager is responsible for managing
resource pools, which are composed of resources obtained from
the same source. Because different resources have different
management systems and are accessed and used in different ways,
the operation and management of Resource Pools vary depending
on the specific source of resources.

In the case of private clouds, local data centers, and other
organizational resources allocated in the form of Virtual Machines
(VMs), there is one Resource Pool able to support each specific data
center/cluster. For example, if the company has one virtualized
cluster running Xen, another one running VMware, and a data
center managed via Eucalyptus software, three Resource Pools
have to be instantiated, and each one is managed according to the
particularities of each resource type.

In the case of private clouds, it is also necessary to have
one Resource Pool per provider, because typically each provider
deploys its own API and access tools, and they are incompatible
with other provider’s tools and APIs.

In both cases, resources are provisioned in the form of virtual
machines that once started activate an Aneka container previously
configured and stored in the VM image. The Aneka container in the
initiated VM triggers the process of joining the Aneka cloud.

4.3. Grids and clusters

Aneka is also able to provision resources from typical scientific
computing infrastructures, such as grids and clusters. How these
resources are made available to Aneka depends on whether
virtualization technology is applied in the grid/cluster or not.

If the grid or cluster is also virtualized, its utilization is similar to
the utilization of clouds: a Resource Pool able to make allocations
in the specific infrastructure must be available. Also similar to
the approach for clouds, a VM image with a preconfigured Aneka
container is required, so VMs join the Aneka cloud once they are
initiated in the grid/cluster. Once the resource is available to Aneka,
it is used similarly to any other type of resource.

If the grid or cluster does not support virtualization technology,
its utilization in Aneka is slightly different. Even though VMs are
not created in the resource, these resources still require allocation,
deallocation, and management, and thus a Resource Pool having
ability to interact with the Resource Management System of
the grid/cluster is required. Once resources are allocated by the
Resource Pool, an Aneka container is loaded in each allocated node
so these resources join Aneka cloud like desktop grid resources.

One key difference between clouds and grids (and clusters)
is that the latter requires definition of an allocation time during
resource acquisition. This is because in grids and clusters the period
of time in which the resources are required is typically decided
before allocation. On clouds, on the other hand, allocation time is
not previously decided, and thus Resource Pools release resources
only when they are not required. Poor decisions of providing
allocation time in clusters and grids may cause applications to
be canceled during their execution if they do not finish before
the allocation time expires. Therefore, Resource Pools for these
resources have to consider this extra issue during resource
allocation.

5. Deadline-driven resource provisioning algorithm

Fig. 2 presents an overview of Aneka’s provision mechanism.
Besides aspects related to the management of resources from
different sources, other important aspects to be considered are
(i) when such a process of resource allocation takes place and
how many resources are requested, and (ii) which of the available
resource sources are used in a particular provisioning request.

A decision about the former is made by the Scheduler Service.
This decision is driven by the application QoS, which is expressed
in terms of the deadline for application completion. The deadline-
driven policy is a best-effort algorithm that considers the time
left for the deadline and the average execution time of tasks that
compose an application to determine the number of resources
required by it, as shown in Algorithm 1. For each request with QoS
constraints, the Scheduler Service considers its deadline, number
of tasks, and task runtime estimation to determine if the deadline
can be met (Line 4). If the Service detects that the deadline cannot
be met, it determines the number of extra resources required
and submits a request, containing the request and the number of
resources, to the Provisioner Service (Lines 5–7).

Notice that this process takes place either to scale a single
application across multiple sites or to provide dynamic resources
to multiple applications in execution in the Aneka cloud, and the
process is repeated every time a new request is received by Aneka
and every time a task completes or fails. On the other hand, if the
Scheduling Service detects that the request does not require all the
resources currently allocated to it, it indicates to the Provisioner
Service that some of these resources can be released to be used by
other requests (Lines 8–21).

For a decision about the specific source of resources to be used
for each resource request, Algorithm 2 presents the algorithm
applied by the Provisioning Service, which is called in Algorithm 1,
Line 7. By default, resources are allocated first from local static
and dynamic resources (e.g., desktop grids and private clouds),
then from ‘‘free’’ resource pools (such as grids), and finally from
public clouds. Inside each of these classes of resource sources
(e.g., different public Cloud providers in the case of paid external
resources), the source of resources and the preferred order is
defined by the Aneka administrator in an input configuration file.
Notice that this algorithm operates in a best effort manner: if
the provisioner cannot allocate the exact number of resources
requested by the scheduler, it returns asmuch as it can get from all
the available sources (Line 16). Moreover, the time for preparation
of the system (e.g., start up of VMs) is not taken into account by
the provisioning mechanism, and thus there may be small delays
in task processing.

Other policies, which consider data locality and monetary and
performance costs of file transferring, have currently to be defined
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Fig. 2. An overview of Aneka’s dynamic provisioning infrastructure.
Algorithm 1: Deadline-driven provisioning in Aneka.
1 foreach request with QoS constraints do
2 resources← available resources for the application;
3 pendingTasks← number of tasks in the queue;
4 eft ← pendingTasks

resources × averageTaskRuntime;
5 if eft > applicationTimeRemaining then
6 extraResources← pendingTasks×averageTaskRuntime

applicationTimeRemaining ;
// Invokes Algorithm 2 for resource

provisioning
7 Provisioner.selectResources(applicationId,

extraResources);
8 else
9 toRelease← 0;

10 if pendingTasks<resources then
11 toRelease← pendingTasks− resources;
12 end
13 else
14 pendingTasks← pendingTasks+ runningTasks;
15 eft ← pendingTasks

resources × averageTaskRuntime;
16 if eft < applicationTimeRemaining then
17 toRelease←

resources− ⌈ pendingTasks×averageTaskRuntime
applicationTimeRemaining ⌉;

18 end
19 end
20 Provisioner.releaseResources(applicationId,

toRelease);
21 end
22 end

by the system administrator, though these policies are planned to
be automatically provided by Aneka in the future.

Once dynamic resources join the Aneka cloud, they must be
properly managed, since these resources are typically subject to
Algorithm 2: Resource pool selection in Aneka.
1 Provisioner.selectResources(applicationId,
extraResources)

2 providerList ← list of local static resource pools;
3 providerList ← providerList ∪ list of local dynamic

resource pools;
4 providerList ← providerList ∪ list of remote free resource

pools;
5 providerList ← providerList ∪ list of remote paid

resource pools;
6 req← extraResources;
7 resourceList ← ∅;
8 foreach resourcePool rp in providerList do
9 av← available resources from rp;

10 resourceList ←
resourceList ∪ rp.allocate(min(req, av));

11 if |resourceList| = extraResources then
12 break;
13 end
14 req← req− av;
15 end
16 Scheduler.addResources(applicationId, resourceList);
17 end

a usage cost. In particular, current practices for billing by use of
cloud resources consider their usage in terms of time blocks whose
granularity varies among providers. For example, in Amazon EC2,
the value of the time block is set to one hour. In this case, there is no
advantage in shutting down the virtual resources before the time
block expiration time. Therefore, even if the application that first
required the external resources already released it, they are kept in
the pool, and thus they are made available for other requests that
need extra resources, until the current time block expires.

Other issues that are relevant to the hybrid provisioning
mechanism, such as cross-boundary security, load balance, and
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data transfer, are managed by different components of the Aneka
container. Cross-boundary security is enforced by specific security
modules that execute the Aneka container in confined sandboxes
on remote resources, so the application is protected against
unauthorized access by other applications. The cross-boundary
load balance is handled by the Scheduler Service, which ensures
that workers receive new tasks to run whenever they become idle,
regardless of whether the corresponding resources are locally or
remotely provisioned. Cross-boundary data transfer is secured via
security modules defined by users, which might be in this case
either secure copy (SCP) or SFTP.

6. Performance evaluation

In this section, we present an experiment to demonstrate
Aneka’s features supporting the execution of scientific applications
in hybrid Cloud environments. The hybrid cloud used in the
experiment is shown in Fig. 3.

Static resources are part of a private cloud containing five Linux
machines (one master node and four worker nodes). Dynamic
resources are composed of EC2 resources provisioned when local
resources are not able to meet the application deadline. The EC2
resource pool policy in use allocates only Large Standard Amazon
EC2 instances, which are dual core machines with 1.7 GB of RAM
memory costing US$0.17 per hour. These instances have similar
capacity, regarding the number of cores and processor speed, to
that of the local machines used in this experiment.

Because local resources are part of the local infrastructure and
are supplied in a best-effort basis (i.e., they can leave the Aneka
cloud at any time if there is a local user accessing themachine) and
thus they offer limitedQoS for the task’s execution, their usage cost
is not considered in this experiment.

The scientific application executed in the cloud is a multi-
objective evolutionary optimizer called EMO [15]. EMO is based
on Genetic Algorithms [16] and its initial implementation is single
threaded [15]. Subsequently, a Bag of Tasks version of EMO has
beendeveloped [17]. Such a version addresses the issue of reducing
the computation time for non-trivial problems running in grids
and other HPC platforms. The application suits the purpose of the
experiment since it is a CPU-intensive task that generates a small
amount of data in terms of output files (less than 1 MB).

To evaluate Aneka’s deadline-driven provisioning mechanism,
we first submitted distributed EMO to execution in Aneka without
setting a deadline for the application. Later, we repeated execution
of the same scenario with different deadlines, showing how
the provisioning infrastructure behaves. By running the first
experiment, we can estimate the expected execution time of the
application, which will allow us to impose a deadline triggering
the resource provisioning in the other experiments.

One single execution of EMO in our experiment generates a job
composed of 40 tasks. The first test identified that the execution of
a single task (the evaluation of the DLTZ6 benchmark functionwith
a population of 300 individuals and an evolutionary process of 150
generations) takes on average 6 min and 49 s. This means that a
possible upper bound for the execution by only leveraging static
resources is 70 min (when each of the four worker nodes executes
ten tasks sequentially).

The test was then repeated considering different deadlines. The
results of various execution scenarios are presented in Table 1.
Aneka’s provisioning algorithm is able to provision resources
and schedule the execution of the application in time for larger
deadlines, with a small budget spent to allocate resources from
EC2. As the deadline becomes stricter, the estimation of execution
time is more important for successfully executing the application,
because underestimation makes the provisioning allocate fewer
resources than are really necessary. Moreover, the time required
by the virtual resources to join the Aneka cloud also affects the
results. In particular, our experiments revealed that the delay for
initialization of VMs provisioned from EC2 is on average 90 s, and
it varies according to the number of resources requested.

Therefore, our conclusion is that both the deployment time
in external resources and delays caused by particularities of the
environments have to be considered when providing the Aneka
scheduler with an estimation of the execution time of tasks in
the cloud. Historical information about previous executions of the
application, even if in a different infrastructure, together with
the size of the transferred files and network details can help in
providing a better estimation of the application runtime.

Nevertheless, even without considering such a deployment
delay, the Aneka scheduler is able to reduce the application
execution time by delivering resources from different sources,
which enables execution of the application with small violation
of the deadline. With mechanisms for better estimation of the
execution time of tasks, it is expected that there will be an
improvement in the performance of scientific applications in
hybrid clouds.

7. Related work

The idea of using public clouds to enhance the capability of
grid resources has been explored theoretically in different works.
Assunção et al. [18] present a simulation-based analysis of different
algorithms for provisioning of resources both in a local cluster and
in the cloud. Such an analysis is based on common grid and cluster
workloads. Kondo et al. [19] present a cost-analysis study of mixed
cloud and desktop grid environments for high-throughput, CPU-
intensive applications. Such a study shows that hybrid approaches
where servers for the desktop grid are hosted in the cloud enable
savings in infrastructure costs.

Regarding actual implementations of systems supporting
hybrid clouds for scientific applications, CometCloud [20] is an
autonomic engine for hybrid grids and cloud systems, which
supports the execution of workflow applications. Aneka, on
the other hand, provides support for different programming
models such as workflow, MapReduce, threads, and Actors-
oriented programming. Moreover, it can also exploit resources
from idle desktopmachines, including those running theWindows
operating system.

The ASKALON grid environment has been extended [21] to
support the execution of workflow applications in both grids and
clouds (either public or private). The CaGridWorkflow Toolkit [22]
performs discovery, data access, service invocation, and execution
of workflows in multiple types of resource. Both systems support
only workflow applications and limited types of resource, whereas
Aneka supports different programming models and computing
environments.

GridWay [23] supports the execution of applications both
in local grids and in different cloud providers with the help
of Globus Nimbus.4 It supports any type of local resource that
can be managed by the Globus middleware, and also supports
programming models supported by the latter. Therefore, both
GridWay and Aneka are able to provision any type of resource
to applications, even though Aneka supports more application
models than GridWay.

Finally, Elastic Site Manager [24] is a resource manager that
is able to dynamically provision resources from private and
public clouds to scientific applications. OpenNebula combined
with Haizea [25] supports the dynamic provision of virtualized
resources from private and public Clouds. Resources managed by
these systems are virtualized resources only,whereas Aneka is able
to leverage applications with both virtualized and non-virtualized
resources simultaneously, due to its provisioning capabilities.

4 http://workspace.globus.org.

http://workspace.globus.org
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Fig. 3. Hybrid cloud used in the experiments.
Table 1
Results of the execution of a Bag of Tasks EMO job in a hybrid Aneka cloud.

Deadline Static resources EC2 VMs leased Execution time (min) Public cloud usage cost (U$)

No deadline 4 0 70 0.00
60 min 4 5 33.3 0.85
40 min 4 6 31 1.02
30 min 4 7 31 1.19
20 min 4 11 25 1.87
8. Conclusions and future directions

Cloud Computing quickly became the platform of choice in
many practical scenarios in a business context. Nevertheless,
its adoption is limited in the context of computational science.
Scientific applications requiring larger amounts of computing
power than can be delivered by local resources within a given time
frame can utilize clouds, which can deliver this required capacity
with minimal effort in terms of the configuration of hardware
platforms.

An obstacle for the adoption of clouds for scientific applications
is taking advantage of such platforms when legacy systems are
still used. Different operating systems, programming languages,
and software platforms supported by each system can make this
integration hard.

Aneka addresses these issues by supporting seamless integra-
tion of resources from a range of sources that include desktop
grids, clusters, grids, public clouds, and private clouds to support
QoS-aware execution of applications. Aneka’s features were
demonstrated in experiments that showed that it is able to ef-
ficiently allocate resources from different sources in order to
reduce application execution times. Improvements in Aneka’s
dynamic resource provisioning are under development, and once
these improvements are available we expect that applications will
run more efficiently in hybrid resources.

The experiment presented in this paper addressed the case of
applications requiring a small amount of data transfer: the input
files, output files, and application togetherwere smaller than 1MB.
Provisioning mechanisms more suitable for data-intensive HPC
applications – such as data location-aware provisioning of hybrid
resources, which attempts to select providers that contains all or
part of the data required by the application – are also the subject
of future research.

We are developing support for the integration of multiple
Clouds in Aneka according to the InterCloud [26] model. In this
model, providers interact via a marketplace where they can either
negotiate resources for serving their jobs or they can outsource
jobs to other Clouds upon a compensation to the party receiving
the job. This will further expand the range of different sources of
resources that can be integrated by Aneka, leading to its ultimate
goal of supporting QoS-aware execution of applications using any
relevant programming model.
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