
Chapter 5
Dynamic Resource-Efficient Scheduling
in Data Stream Management Systems
Deployed on Computing Clouds

Xunyun Liu, Yufei Lin, and Rajkumar Buyya

Contents

5.1 Introduction . 133
5.2 Background . 136
5.3 Dynamic Resource-Efficient Scheduling . 138

5.3.1 Problem Formulation . 139
5.3.2 Heuristic-Based Scheduling Algorithm. 141
5.3.3 Complexity Analysis . 144

5.4 Implementation of D-Storm Prototype . 144
5.5 Performance Evaluation . 147

5.5.1 Experiment Setup . 147
5.5.2 Evaluation of Applicability. 151
5.5.3 Evaluation of Cost Efficiency . 156
5.5.4 Evaluation of Scheduling Overhead . 157

5.6 Related Work . 158
5.7 Conclusions and Future Work. 160
References . 161

5.1 Introduction

Big data processing has gained increasing popularity by proposing new paradigms
and infrastructure for handling big-volume and high-velocity data, which greatly
extends the capacity of traditional data management systems. High velocity, as one
of the core characteristics of big data, requires processing inputs in real-time to
exploit their volatile value. For example, the statistics of share market are collected
and analysed in real-time to avoid investment losses, while the ongoing user posts

X. Liu · Y. Lin (�)
Academy of Military Science, Beijing, P.R. China
e-mail: linyufei@nudt.edu.cn

R. Buyya
Cloud Computing and Distributed Systems (CLOUDS) Lab, School of Computing and
Information Systems, The University of Melbourne, Parkville, VIC, Australia
e-mail: rbuyya@unimelb.edu.au

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
R. Buyya et al. (eds.), New Frontiers in Cloud Computing and Internet of Things,
Internet of Things, https://doi.org/10.1007/978-3-031-05528-7_5

133

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05528-7_5&domain=pdf

 885 51863 a 885 51863 a

mailto:linyufei@nudt.edu.cn

 885 56845 a 885 56845 a

mailto:rbuyya@unimelb.edu.au

 5249 61494 a 5249 61494
a

https://doi.org/10.1007/978-3-031-05528-7_5

134 X. Liu et al.

on a social media website are aggregated continuously to suggest trending topics on
hype. As the Internet started to connect everything, the generation of high-velocity
data is also contributed by a variety of IoT (Internet-of-Things) driven applications
such as smart cities [1], RFID (Radio Frequency Identification) systems [2] and
sensor networks [3]. To cater for the real-time processing requirement, stream pro-
cessing emerges as a new in-memory paradigm that handles continuous, unbounded
inputs on a record-by-record basis. Such once-at-a-time processing model performs
independent computations on a smallish window of data upon arrival, delivering
incremental results with merely sub-second processing latencies.

Despite the diversity of real-time use cases, most of the streaming applications
in existence are built on top of a Data Stream Management System (DSMS) to
reap the benefits of better programmability and manageability. Apache Storm, for
example, is a state-of-the-art distributed DSMS that provides a unified data stream
management model for semantic consistency and supports the use of an imperative
programming language to express user logic. It also offers user-transparent fault
tolerance, horizontal scalability and state management by providing the abstraction
of streaming primitives and simplifying the coordination of distributed resources at
the middleware level.

Scheduling of streaming applications is one of the many tasks that should be
transparently handled by the DSMSs [4]. As the deployment platform of DSMS
shifts from a homogeneous on-premise cluster to an elastic cloud resource pool,
new challenges have arisen in the scheduling process to enable fast processing of
high-velocity data with minimum resource consumption. First, the infrastructural
layer can be composed of heterogeneous instance types ranging from Shared Core to
High-CPU and High-memory machines,1 each equipped with different computing
power to suit the diverse resource needs of different streaming operators. This
could also be motivated by economic considerations when users have made a long-
term commitment to a few specific instance configurations, which makes it more
economically viable to build a heterogeneous cluster with reserved instances at
hand. In these cases, the assumption of homogeneous resources becomes invalid,
and the node differences must be captured in the scheduling process to avoid
resource contention. Additionally, the distance of task communication needs to be
optimised at runtime to improve application performance. In stream processing
systems, intra-node communication (i.e. information exchange between stream-
ing tasks within a single node) is much faster than inter-node communication
as the former does not involve cumbersome processes of data (de)serialisation,
(un)marshalling and network transmission [4, 5]. Therefore, it is up to the dynamic
scheduling process to convert as much inter-node communication as possible into
intra-node communication. Last but not least, the dynamics of real-time applications
lead to unpredictable stream data generation, requiring the processing system to be
able to manage elastic resources according to the current workload and improve cost
efficiency at runtime.

1 https://cloud.google.com/compute/docs/machine-types.

 -1446 58376 a -1446 58376 a

https://cloud.google.com/compute/docs/machine-types

5 Dynamic Resource-Efficient Scheduling in Data Stream Management. . . 135

Therefore, to maximise application performance and reduce the resource foot-
prints, it is of crucial importance for the DSMS to schedule streaming applications
as compact as possible, in a manner that fewer computing and network resources
are consumed to achieve the same performance target. This motivates the needs of
resource-aware scheduling, which matches the resource demands of streaming tasks
to the capacity of distributed nodes. However, the default schedulers adopted in the
state-of-the-art DSMSs, including Storm, are resource agnostic. Without capturing
the differences of task resource consumptions, they follow a simple round-robin
process to scatter the application tasks over the cluster, thus inevitably leading to
over/under-utilisation and causing execution inefficiency. A few dynamic schedulers
have also been proposed recently to reduce the network traffics and improve the
maximum application throughput at runtime [6–12]. However, they all share the
load-balancing principle that distributes the workload as evenly as possible across
participating nodes, thus ignoring the need of resource consolidation when the input
is small. Also, without application isolation, the scheduling result may suffer from
severe performance degradation when multiple applications are submitted to the
same cluster and end up competing for the computation and network resources on
every single node.

To fill in this gap, Peng et al. [13] proposed a resource-aware scheduler that
schedules streaming applications based on the resource profiles submitted by users
at compile time. But the problem is only partially tackled for the following reasons:

1. The resource consumption of each task is statically configured within the appli-
cation, which suggests that it is agnostic to the actual application workload and
will remain unchanged during the whole lifecycle of the streaming application.
However, the resource consumption of a streaming task is known to be correlated
to the input workload, and the latter may be subject to unforeseeable fluctuations
due to the real-time streaming nature.

2. The scheduler only executes once during the initial application deployment,
making it impossible to adapt the scheduling plan to runtime changes. Its
implementation is static, which tackles the scheduling problem as a one-time
item packing process, so it only works on unassigned tasks brought by new
application submissions or worker failures.

In this chapter, we propose a dynamic resource-efficient scheduling algorithm
to tackle the problem as a bin-packing variant. We also implement a prototype
named D-Storm to validate the efficacy and efficiency of the proposed algorithm.
D-Storm does not require users to statically specify the resource needs of streaming
applications; instead, it models the resource consumption of each task at runtime
by monitoring the volume of incoming workload. Secondly, D-Storm is a dynamic
scheduler that repeats its bin-packing policy with a customisable scheduling
interval, which means that it can free under-utilised nodes whenever possible to
save resource costs.

This chapter is a significant extension of our previous work [14]. The main
contributions reported in this chapter are summarised as follows:

136 X. Liu et al.

• We formulate the scheduling problem as a bin-packing variant using a fine-
grained resource model to describe requirements and availability. To the best of
our knowledge, this work is the first of its kind to dynamically schedule streaming
applications based on bin-packing formulations.

• We design a greedy algorithm to solve the bin-packing problem, which gen-
eralises the classical First Fit Decreasing (FFD) heuristic to allocate multi-
dimensional resources. The algorithm is capable of reducing the amount of
inter-node communication as well as minimising the resource footprints used
by the streaming applications.

• We implement the prototype on Storm and conduct extensive experiments in a
heterogeneous cloud environment. The evaluation involving realistic applications
such as Twitter Sentiment Analysis demonstrates the superiority of our approach
compared to the existing static resource-aware scheduler and the default sched-
uler.

It is worth noting that though our D-Storm prototype has been implemented as an
extended framework on Storm, it is not bundled with this specific platform. The fact
that D-Storm is loosely coupled with the existing Storm modules and the design of
external configuration make it viable to be generalised to other operator-based data
stream management systems as well.

The remainder of this chapter is organised as follows: we introduce Apache
Storm as a background system in Sect. 5.2 to explain the scheduling problem.
Then, we formulate the scheduling problem, present the heuristic-based algorithm
and provide an overview of the proposed framework in Sects. 5.3 and 5.4. The
performance evaluation is presented in Sect. 5.5, followed by the related work and
conclusions in Sects. 5.6 and 5.7, respectively.

5.2 Background

This section introduces Apache Storm, explains the concept of scheduling and
uses Storm as an example to illustrate the scheduling process in the state-of-the-
art DSMSs. Apache Storm is a real-time stream computation framework built for
processing high-velocity data, which has attracted attention from both academia and
industry over the recent years. Though its core implementation is written in Clojure,
Storm does provide programming supports for multiple high-level languages such
as Java and Python through the use of Thrift interfaces. Being fast, horizontally
scalable, fault tolerant and easy to operate, Storm is considered by many as the
counterpart of Hadoop in the real-time computation field.

Storm also resembles Hadoop from the structural point of view—there is
a Nimbus node acting as the master to distribute jobs across the cluster and
manage the subsequent computations; while the rests are the worker nodes with
the worker processes running on them to carry out the streaming logic in JVMs.
Each worker node has a Supervisor daemon to start/stop worker processes as per
Nimbus’s assignment. Zookeeper, a distributed hierarchical key-value store, is used

5 Dynamic Resource-Efficient Scheduling in Data Stream Management. . . 137

B1

B2

A1
C2

C1

A1

B1

B2

C1

C2

A B C

Topology View

Task View

Worker View

Operator
Paralleliza�on

Task Scheduling

Cluster View

Nimbus
(Master)

ZookeeperZookeeper
Zookeeper

Task

Worker Process
Executor

Supervisor

Worker Node

(a) (b)

Fig. 5.1 The structural view and logical view of a Storm cluster, in which the process of task
scheduling is illustrated with a three-operator application

to coordinate the Storm cluster by serving as a communication channel between the
Nimbus and Supervisors. We refer to Fig. 5.1a for the structural view of a Storm
cluster.

From the programming perspective, Storm has its unique data model and
terminology. A tuple is an ordered list of named elements (each element is a key-
value pair referred to as a field) and a stream is an unbounded sequence of tuples.
The streaming logic of a particular application is represented by its topology, which
is a Directed Acyclic Graph (DAG) of operators standing on continuous input
streams. There are two types of operators: spouts act as data sources by pulling
streams from the outside world for computation, while the others are bolts that
encapsulate certain user-defined processing logic such as functions, filtering and
aggregations.

When it comes to execution, an operator is parallelised into one or more tasks
to split the input streams and concurrently perform the computation. Each task
applies the same streaming logic to its portion of inputs which are determined
by the associated grouping policy. Figure 5.1b illustrates this process as operator
parallelisation. In order to make efficient use of the underlying distributed resources,
Storm distributes tasks over different worker nodes in thread containers named
executors. Executors are the minimal schedulable entities of Storm that are spawned
by the worker process to run one or more tasks of the same bolt/spout sequentially,
and Storm has a default setting to run one executor per task. The assignment of

138 X. Liu et al.

all executors of the topology to the worker processes available in the cluster is
called scheduling. Without loss of generality, in this work, we assume each executor
contains a single task so that executor scheduling can be interpreted as a process of
task scheduling.

Since version 0.9.2, Storm implements inter-node communications with Netty2

to enable low-latency network transmission with asynchronous, event-driven I/O
operations. However, the data to be transferred still needs to be serialised, then
hit the transfer buffer, the socket interface and the network card at both sides
of communication for delivery. By contrast, intra-node communication does not
involve any network transfer and is conveyed by the message queues backed by
LMAX Disruptor,3 which significantly improves the performance as tuples are
deposited directly from the Executor send buffer to the Executor receive buffer.

As compared to newer stream processing systems such as Apache Flink4 and
Apache Beam,5 Storm does not support lossless migration of operator states during
the scheduling process, which means users need to implement that functionality at
the application layer to handle the relocation of operator internal states. The default
scheduler in Storm is implemented as a part of Nimbus function that endeavours
to distribute the same number of tasks over the participating worker nodes, where a
round-robin process is adopted for this purpose. However, as pointed out in Sect. 5.1,
such a simple scheduling policy may lead to over/under resource utilisation.

On the other hand, the scheduler proposed by Peng et al. [13] is the most relevant
to our work and is widely adopted in the Storm community because it is resource-
aware, bin-packing-related and readily available within the standard Storm release.
However, it can only partially tackle the problem of over/under resource utilisation
due to the limitation of being static in nature and requiring users to input the
correct resource configuration prior to execution. In Sect. 5.5, we conduct a thorough
comparison of our approach and Peng et al.’s work with performance evaluation in
a real environment.

5.3 Dynamic Resource-Efficient Scheduling

The dynamic resource-efficient scheduling exhibits the following characteristics:
(1) each task has a set of resource requirements that are constantly changing along
with the amount of inputs being processed; (2) each machine (worker node) has a
set of available resources for accommodating tasks that are assigned to it; and (3)
the scheduling algorithm is executed on-demand to take into account any runtime
changes in resource requirements and availability.

2 https://netty.io/.
3 https://lmax-exchange.github.io/disruptor/.
4 https://flink.apache.org/.
5 https://beam.apache.org/.

 -1446 54390 a -1446 54390 a

https://netty.io/

 -1446 55719 a -1446 55719
a

https://lmax-exchange.github.io/disruptor/

 -1446 57047 a -1446 57047 a

https://flink.apache.org/

 -1446 58376 a -1446 58376
a

https://beam.apache.org/

5 Dynamic Resource-Efficient Scheduling in Data Stream Management. . . 139

5.3.1 Problem Formulation

For each round of scheduling, the essence of the problem is to find a mapping of
tasks to worker nodes such that the communicating tasks are packed as compact
as possible. In addition, the resource constraints need to be met—the resource
requirements of the allocated tasks should not exceed the resource availability in
each worker node. Since the compact assignment of tasks also leads to reducing
the number of used machines, we model the scheduling problem as a variant of the
bin-packing problem and formulate it using the symbols illustrated in Table 5.1.

In this work, the resource consumptions and availability are examined in two
dimensions—CPU and memory. Though memory resources can be intuitively
measured in terms of megabytes, the quantification of CPU resources is usually
vague and imprecise due to the diversity of CPU architectures and implementations.
Therefore, following the convention in literature [13], we specify the amount of
CPU resources with a point-based system, where 100 points are given to represent
the full capacity of a Standard Compute Unit (SCU). The concept of SCU is similar
to the EC2 Compute Unit (ECU) introduced by Amazon Web Services (AWS). It
is then the responsibility of the IaaS provider to define the computing power of
an SCU, so that developers can compare the CPU capacity of different instance
types with consistency and predictability regardless of the hardware heterogeneity
presented in the infrastructure. As a relative measure, the definition of an SCU can
be updated through benchmarks and tests after introducing new hardware to the data
centre infrastructure.

Table 5.1 Symbols used for dynamic resource-efficient scheduling

Symbol Description

n The number of tasks to be assigned

τi Task i, i ∈ {1, . . ., n}
m The number of available worker nodes in the cluster

νi Worker node i, i ∈ {1, . . ., m}
W

νi
c CPU capacity of νi , measured in a point-based system, i ∈ {1, . . ., m}

W
νi
m Memory capacity of νi , measured in Mega Bytes (MB), i ∈ {1, . . ., m}

ω
τi
c Total CPU requirement of τi in points, i ∈ {1, . . ., n}

ω
τi
m Total memory requirement of τi in Mega Bytes (MB), i ∈ {1, . . ., n}

ρ
τi
c Unit CPU requirement for τi to process a single tuple, i ∈ {1, . . ., n}

ρ
τi
m Unit memory requirement for τi to process a single tuple, i ∈ {1, . . ., n}

ξτi ,τj
The size of data stream transmitting from τi to τj , i, j ∈ {1, . . ., n}, i �= j

Θτi
The set of upstream tasks for τi , i ∈ {1, . . ., n}

Φτi
The set of downstream tasks for τi , i ∈ {1, . . ., n}

	 The volume of inter-node traffic within the cluster

Vused The set of used worker nodes in the cluster

mused The number of used worker nodes in the cluster

140 X. Liu et al.

In this chapter, we assume that the IaaS cloud provider has followed the example
of Amazon to create a vCPU as a hyperthread of an Intel Xeon core,6 where 1
SCU is defined as the CPU capacity of a vCPU. Therefore, every single core in the
provisioned virtual machine is allocated with 100 points. A multi-core instance can
get a capacity of num_of_cores * 100 points, and a task that accounts for p% CPU
usages reported by the monitoring system has a resource demand of p points.

As reported in [15], task τi’s CPU and memory resource requirements can be
linearly modelled with regard to the size of the current inputs, which are illustrated
in Eq. (5.1).

ω
τi
c =

(∑
τj ∈Θτi

ξτj ,τi

)
∗ ρ

τi
c

ω
τi
m =

(∑
τj ∈Θτi

ξτj ,τi

)
∗ ρ

τi
m .

(5.1)

Note that i and j in Eq. (5.1) are just two generic subscripts that represent certain
values within a range defined in Table 5.1. Therefore, ξτj ,τi

has a similar meaning
of ξτi ,τj

that denotes the size of data stream transmitting from the former task to the
latter.

Having modelled the resource consumption at runtime, each task is considered
as an item of multidimensional volumes that needs to be allocated to a particular
machine during the scheduling process. Given a set of m machines (bins) with
CPU capacity W

νi
c and memory capacity W

νi
m (i ∈ {1, .., m}), and a list of n tasks

(items) τ1, τ2, . . ., τn with their CPU demands and memory demands denoted as
ω

τi
c , ω

τi
m (i ∈ {1, 2, .., n}), the problem is formulated as follows:

minimise 	(ξ , x) =
∑

i,j∈{1,..,n}
ξτi ,τj

⎛
⎝1 −

∑
k∈{1,..,m}

xi,k ∗ xj,k

⎞
⎠

subject to
m∑

k=1

xi,k = 1, i = 1, . . ., n,

n∑
i=1

ωτi
c xi,k ≤ Wνk

c k = 1, . . ., m,

n∑
i=1

ωτi
mxi,k ≤ Wνk

m k = 1, . . ., m,

(5.2)

where x is the control variable that stores the task placement in a binary form:
xi,k = 1 if and only if task τi is assigned to machine νk .

6 https://aws.amazon.com/ec2/instance-types/.

 -1446 59704 a -1446 59704 a

https://aws.amazon.com/ec2/instance-types/

5 Dynamic Resource-Efficient Scheduling in Data Stream Management. . . 141

Through the formulation, we quantify the compactness of scheduling by counting
the total amount of inter-node communication resulted from the assignment plan,
with the optimisation target being reducing this number to its minimal.

Specifically, the expression (1− ∑
k∈{1,..,m}

xi,k ∗ xj,k) is a toggle switch that yields

either 0 or 1 depending on whether task τi and τj are assigned to the same node. If
yes, the result of (1 − ∑

k∈{1,..,m}
xi,k ∗ xj,k) becomes 0 which eliminates the size of

the data stream ξτi ,τj
to make sure that only inter-node communication is counted

in our objective function.
There are three constraints formulated in Eq. (5.2): (1) each task shall be assigned

to one and only one node during the scheduling process; (2) the CPU resource
availability of each node must not be exceeded by the accrued CPU requirements
of the allocated tasks; and (3) the memory availability of each node must not be
exceeded by the accrued memory requirements of the allocated tasks.

Also, Eq. (5.3) shows that x can be used to reason the number of used worker
nodes as the result of scheduling:

Vused =
{

νj | ∑
i∈{1,...,n}

xi,j > 0, j ∈ {1, . . ., m}
}

mused = |Vused|
(5.3)

5.3.2 Heuristic-Based Scheduling Algorithm

The classical bin-packing problem has proved to be NP-Hard [16], and so does
the scheduling of streaming applications [13]. There could be a massive amount of
tasks involved in each single assignment, so it is computationally infeasible to find
the optimal solution in polynomial time. Besides, streaming applications are known
for their strict Quality of Service (QoS) constraints on processing time [17], so the
efficiency of scheduling is even more important than the result optimality to prevent
the violation of the real-time requirement. Therefore, we opt for greedy heuristics
rather than exact algorithms such as bin completion [18] and branch-and-price [19],
which have exponential time complexity.

The proposed algorithm is a generalisation of the classical First Fit Decreasing
(FFD) heuristic. FFD is essentially a greedy algorithm that sorts the items in
decreasing order (normally by their size) and then sequentially allocates them into
the first bin with sufficient remaining space. However, in order to apply FFD in our
multidimensional bin-packing problem, the standard bin-packing procedure has to
be generalised in three aspects as shown in Algorithm 1.

Firstly, all the available machines are arranged in descending order by their
resource availability so that the more powerful ones get utilised first for task
placement. This step is to ensure that the FFD heuristic has a better chance to convey
more task communications within the same machine, thus reducing the cumbersome

142 X. Liu et al.

Algorithm 1 The multidimensional FFD heuristic scheduling algorithm
Input: A task set τ = {τ1, τ2, . . . , τn} to be assigned
Output: A machine set ν = {ν1, ν2, . . . , νmused } with each machine hosting a disjoint subset of τ ,

where mused is the number of used machines
1 Sort available nodes in descending order by their resource availability as defined in Eq. (5.4)
2 mused ← 0
3 while there are tasks remaining in τ to be placed do
4 Start a new machine νm from the sorted list;
5 if there are no available nodes then
6 return Failure
7 end
8 Increase mused by 1
9 while there are tasks that fit into machine νm do
10 foreach τ ∈ τ do
11 Calculate
(τi , νm) according to Eq. (5.5)
12 end
13 Sort all viable tasks based on their priority
14 Place the task with the highest
(τi , νm) into machine νm

15 Remove the assigned task from τ

16 Update the remaining capacity of machine νm

17 end
18 end
19 return ν

serialisation and de-serialisation procedures that would have been necessary for
network transmissions. Since the considered machine characteristics—CPU and
memory are measured in different metrics, we define a resource availability function
that holistically combines these two dimensions and returns a scalar for each node,
as shown in Eq. (5.4).

℘(νi) = min

⎧⎪⎨
⎪⎩

nW
νi
c∑

j∈{1,...,n}
ω

τj
c

,
nW

νi
m∑

j∈{1,...,n}
ω

τj
m

⎫⎪⎬
⎪⎭. (5.4)

Secondly, the evaluation of the task priority function is dynamic and runtime-
aware, considering not only the task communication pattern but also the node to
which it attempts to assign. We denote the attempted node as νm, then the task
priority function
(τi, νm) can be formulated as a fraction—the greater the resulting
value, the higher priority τi will have to be assigned into νm.

The numerator of this fraction quantifies the increase of intra-node communica-
tions as the benefit of assigning τi to νm. It is a weighted sum of two terms, which
are namely: (1) the amount of newly introduced intra-node communication if τi is
assigned to νm, and (2) the amount of potential intra-node communication that τi

can bring to νm in the subsequent task assignments. It is worth noting that we stop
counting the second term in the numerator when the node νm is about to be filled
up, so tasks capable of bringing more potential intra-node communications will be
left for other nodes with more available resources.

5 Dynamic Resource-Efficient Scheduling in Data Stream Management. . . 143

On the other hand, the denominator of this fraction depicts the resource costs
that νm spends on accommodating τi . Inspired by the Dominant Resource Fairness
(DRF) approach used in Apache Mesos [20], we evaluate the resource costs of τi

in terms of its usages of critical resource, where “critical resource” is defined as
the most scarce and demanding resource type (either being CPU or memory) at the
current state. Therefore, tasks occupying less critical resources will be preferred
in the priority calculation, and the resulting resource usages are more likely to be
balanced across different resource types.

After introducing the rationales behind our priority design, the mathematical
formulation of
(τi, νm) is given as follows:

1(τi, νm) =
∑

j∈{1,...,n}
xj,νm(ξτi ,τj

+ ξτj ,τi
)

2(τi, νm) =
∑

j∈Φτi

⎛
⎝1 −

∑
k∈{1,...,m}

xj,k

⎞
⎠ ξτi ,τj

+
∑

j∈Θτi

⎛
⎝1 −

∑
k∈{1,...,m}

xj,k

⎞
⎠ ξτj ,τi

�νm =max

⎧⎪⎨
⎪⎩

∑
j∈{1,...,n}

ω
τj
c xj,νm

W
νm
c

,

∑
j∈{1,...,n}

ω
τj
m xj,νm

W
νm
m

⎫⎪⎬
⎪⎭

3(τi, νm) = �xτi ,νm
=1

νm − �xτi ,νm
=0

νm

(τi, νm) =

⎧⎪⎨
⎪⎩

α
1(τi, νm) + β
2(τi, νm)

3(τi, νm)
�νm ≤ DThreshold

α
1(τi, νm)

3(τi, νm)
otherwise;

(5.5)

In Eq. (5.5),
1(τi, νm) represents the sum of introduced intra-node communica-
tion if τi is assigned to νm, while
2(τi, νm) denotes the sum of communications
that τi has with an unassigned peer, which effectively translates to the potential
intra-node communication gains in the subsequent task assignments. After that,
�νm represents the current usage of critical resources in νm by the percentage
measurement, and
3(τi, νm) calculates the difference of �νm after and before
the assignment to reflect the resource costs of νm accommodating τi . In the end,

(τi, νm) is defined as a comprehensive fraction of the benefits and costs relating to
this assignment. In Eq. (5.5), α and β are the weight parameters that determine the
relative importance of the two independent terms in the numerator, and DThreshold is
the threshold parameter that indicates when the node resources should be considered
nearly depleted.

144 X. Liu et al.

Designing
(τi, νm) in this way makes sure that the packing priority of the
remaining tasks is dynamically updated after each assignment, and those tasks
sharing a large volume of communication are prioritised to be packed into the same
node. This is in contrast to the classical FFD heuristics that first sort the items in
terms of their priority and then proceed to the packing process strictly following the
pre-defined order.

Finally, our algorithm implements the FFD heuristic from a bin-centric per-
spective, which opens only one machine at a time to accept task assignment. The
algorithm keeps filling the open node with new tasks until its remaining capacity is
depleted, thus satisfying the resource constraints stated in Eq. (5.2).

5.3.3 Complexity Analysis

We analyse the workflow of Algorithm 1 to identify its complexity in the worst
case. Line 1 of the algorithm requires at most quasilinear time O(mlog(m)) to
finish, while the internal while loop from Line 9 to Line 17 will be repeated for
at most n times to be either complete or failed. Diving into this loop, we find that
the calculation of
(τi, νm) at Line 11 consumes linear time of n, and the sorting at
Line 13 takes at most O(nlog(n)) time to complete. Therefore, the whole algorithm
has the worst case complexity of O(mlog(m) + n2log(n)).

5.4 Implementation of D-Storm Prototype

A prototype called D-Storm has been implemented to demonstrate dynamic
resource-efficient scheduling, which incorporates the following new features into
the standard Storm framework:

• It tracks streaming tasks at runtime to obtain their resource usages and the
volumes of inbound/outbound communications. This information is critical for
making scheduling decisions that avoid resource contention and minimise inter-
node communication.

• It endeavours to pack streaming tasks as compact as possible without causing
resource contention, which effectively translates to the reduction of resource
footprints while satisfying the performance requirements of streaming applica-
tions.

• It automatically reschedules the application whenever a performance issue is
spotted or possible task consolidation is identified.

To implement these new features, D-Storm extends the standard Storm release
with several loosely coupled modules, thus constituting a MAPE-K (Monitoring,
Analysis, Planning, Execution and Knowledge) framework as shown in Fig. 5.2.
This architectural concept was first introduced by IBM to design autonomic

5 Dynamic Resource-Efficient Scheduling in Data Stream Management. . . 145

Fig. 5.2 The extended
D-Storm architecture on top
of the standard Storm release,
where the newly introduced
modules are highlighted in
grey

Nimbus

Worker Node Worker Node
Supervisor Supervisor

Topology
Adapter

D-Storm
Scheduler

Zookeeper

Task
Task Wrapper

Task
Task Wrapper

Task
Task Wrapper

Task
Task Wrapper

Worker Process Worker Process

System
Analyser

Scheduling
Solver

Control Flow
Data Stream

Flow

Metric Flow
Custom Scheduler

systems with self-capabilities, such as self-managing, self-healing [21] and self-
adapting [22]. In this work, the proposed MAPE-K framework incorporates self-
adaptivity and runtime-awareness into D-Storm, allowing it to tackle any perfor-
mance degradation or mismatch between resource requirements and availability at
runtime.

The MAPE-K loop in D-Storm is essentially a feedback control process that
considers the current system metrics while making scheduling decisions. Based
on the level at which the metrics of interest are collected, the monitoring system
generally reports three categories of information—application metrics, task metrics
and OS (Operating System) metrics.

The application metrics, such as the topology throughput and complete latency,7

are obtained through the built-in Storm RESTful API and used as a coarse-
grained interpretation of the application performance. The volume of incoming
workloads is also monitored outside the application in order to examine the system’s
sustainability under the current workload.

The task metrics, on the other hand, depict the resource usages of different tasks
and their communication patterns within the DSMS. Acquiring this information
requires some custom changes to the Storm core, so we introduce the Task Wrapper
as a middle layer between the current task and executor abstractions. Each task
wrapper encapsulates a single task following the decorator pattern, with monitoring
logic transparently inserted into the task execution. Specifically, it obtains the CPU
usages in the executemethod by making use of the ThreadMXBean class, and it logs
the communication traffics among tasks using a custom metric consumer which is
registered in the topology building process.

7 Complete latency: the average time a tuple tree takes to be completely processed by the topology.

146 X. Liu et al.

Apart from higher level metrics, Collectd,8 a lightweight monitoring daemon,
is installed on each worker node to collect statistics on the operating system level.
These include CPU utilisation, memory usage and network interface access on every
worker node. It is worth noting that due to the dynamic nature of stream processing,
the collected metrics on communication and resource utilisation are all subject to
non-negligible instantaneous fluctuations. Therefore, the monitor modules average
the metric readings over an observation window and periodically report the results
to Zookeeper for persistence.

The analysing phase in the MAPE-K loop is carried out by the System Analyser
module, which is implemented as a boundary checker on the collected metrics to
determine whether they represent a normal system state. There are two possible
abnormal states defined by the comparison of the application and OS metrics. (1)
Unsatisfactory performance—the monitored application throughput is lower than
the volume of incoming workloads, or the monitored complete latency breaches the
maximum constraint articulated in the Quality of Service (QoS). (2) Consolidation
required—the majority of worker nodes exhibit resource utilisations below the
consolidation threshold, and the monitored topology throughput closely matches
the volume of incoming workloads. Note that for the sake of system stability, we do
not alter the scheduling plan only because the resulting resource utilisation is high.
Instead, we define abnormal states as strong indicators that the current scheduling
plan needs to be updated to adapt to the ongoing system changes.

The Scheduling Solver comes into play when it receives the signal from the
system analyser reporting the abnormal system states, with all the collected metrics
passed on to it for planning possible amendments. It updates the model inputs with
the retrieved metrics and then conducts scheduling calculation using the algorithm
elaborated in Sect. 5.3. The passive design of invocation makes sure that the
scheduler solver does not execute more frequently than the pre-defined scheduling
interval, and this value should be fine-tuned to strike a balance between the system
stability and agility.

Once a new scheduling plan is made, the executor in the MAPE-K loop—D-
Storm Scheduler takes the responsibility to put the new plan into effect. From a
practical perspective, it is a jar file placed on the Nimbus node which implements
the IScheduler interface to leverage the scheduling APIs provided by Storm. The
result of assignment is then cross-validated with the application metrics retrieved
from the RESTful API to confirm the success of re-scheduling.

The Knowledge component of the MAPE-K loop is an abstract module that
represents the data and logic shared among the monitoring, analysing, planning
and execution functions. For the ease of implementation, D-Storm incorporates the
scheduling knowledge into the actual components shown in Fig. 5.2, which includes
background information on topology structures and user requirements, as well as the
intelligent scheduling algorithm based on which the self-adaptation activities take
place.

8 https://collectd.org/.

 -1446 58376 a -1446 58376
a

https://collectd.org/

5 Dynamic Resource-Efficient Scheduling in Data Stream Management. . . 147

In order to keep our D-Storm scheduling framework user-transparent to the
application developers, we also supply a Topology Adapter module in the Storm
core that masks the changes made for task profiling. When the topology is
built for submission, the adapter automatically registers the metric consumer and
encapsulates tasks in task wrappers with logic to probe resource usages and
monitor communication volumes. In addition, developers can specify the scheduling
parameters through this module, which proves to be an elegant way to satisfy the
diverse needs of different streaming scenarios.

5.5 Performance Evaluation

In this section, we evaluate the D-Storm prototype using both synthetic and
realistic streaming applications. The proposed heuristic-based scheduling algorithm
is compared against the static resource-aware algorithm [13], as well as the round-
robin algorithm used in the default Storm scheduler.

Specifically, the performance evaluation focuses on answering the following
independent research questions:

• Whether D-Storm applies to a variety of streaming applications with diverse
topology structures, communication patterns and resource consumption
behaviours. Whether it successfully reduces the total amount of inter-node
communication and improves the application performance in terms of latency.
(Section 5.5.2)

• How much resource cost is incurred by D-Storm to handle various volumes of
workload? (Section 5.5.3)

• How long does it take for D-Storm to schedule relatively large streaming
applications? (Section 5.5.4)

5.5.1 Experiment Setup

Our experiment platform is set up on the Nectar Cloud,9 comprising 1 Nimbus
node, 1 Zookeeper node, 1 Kestrel10 node and 12 worker nodes. The whole cluster
is located in the availability zone of National Computational Infrastructure (NCI)
to avoid cross data centre traffic, and there are various types of resources present
to constitute a heterogeneous cluster. Specifically, the 12 worker nodes are evenly
created from three different instance flavours, which are (1) m2.large (4 VCPUs, 12
GB memory and 110 GB disk space); (2) m2.medium (2 VCPUs, 6 GB memory

9 https://nectar.org.au/research-cloud/.
10 https://github.com/twitter-archive/kestrel.

 -1446 57047 a -1446 57047
a

https://nectar.org.au/research-cloud/

 -1088 58376
a -1088 58376 a

https://github.com/twitter-archive/kestrel

148 X. Liu et al.

Topology

D-Storm Cluster

Message
Queue

Message
Generator

Metric
Reporter

Data Stream Flow

Metric Flow
VMs

Performance Monitor

Op Op Op Op

Fig. 5.3 The profiling environment used for controlling the input load. The solid lines denote the
generated data stream flow, and the dashed lines represent the flow of performance metrics

and 30 GB disk space) and (3) m2.small (1 VCPUs, 4 GB memory and 30 GB disk
space). On the other hand, the managing and coordination nodes are all spawned
from the m2.medium flavour. Note that we denote the used instance types as “large”,
“medium” and “small” hereafter for the convenience of presentation.

As for the software stack, all the participating nodes are configured with Ubuntu
16.04 and Oracle JDK 8, update 121. The version of Apache Storm on which we
build our D-Storm extension is v1.0.2, and the comparable approaches—the static
resource-aware scheduler and the default scheduler are directly extracted from this
release.

In order to evaluate the performance of D-Storm under different sizes of
workload, we have set up a profiling environment that allows us to adjust the size of
the input stream with finer-grained control. Figure 5.3 illustrates the components of
the profiling environment from a workflow perspective.

The Message Generator reads a local file of tweets and generates a profiling
stream to the Kestrel node using its message push API. The workload file contains
159,620 tweets in JSON format that were collected from a time span of 24/03/2014
to 14/04/2014 utilising the Twitter’s Streaming API.11 To avoid shortage of tweets
during evaluation, the Message Generator loops over the workload file repeatedly
after loading it into memory, and the size of the generated data stream is externally
configurable. TheMessage Queue running on the Kestrel node implements a Kestrel
queue to cache any message that has been received but not pulled by the streaming
application. It serves as a message buffer between the message generator and the
streaming application to avoid choking either side of them in the case of mismatch.

The D-Storm cluster runs the D-Storm prototype as well as the streaming
application, where different scheduling algorithms are evaluated for efficiency.
The Metric Reporter is responsible for probing the application performance, i.e.
throughput and latency, and reporting the volume of inter-node communication
in the forms of the number of tuples transferred and the volume of data streams
conveyed in the network. Finally, the Performance Monitor is introduced to examine
whether the application is sustainably processing the profiling input and if the

11 https://developer.twitter.com/en/docs/tutorials/consuming-streaming-data.

 -1088 59704 a -1088 59704
a

https://developer.twitter.com/en/docs/tutorials/consuming-streaming-data

5 Dynamic Resource-Efficient Scheduling in Data Stream Management. . . 149

application performance has satisfied the pre-defined Quality of Service (QoS), such
as processing 5000 tuples per second with the processing latency no higher than
500ms.

5.5.1.1 Test Applications

The evaluation includes five test applications—three synthetically made and two
drawn from real-world streaming use cases. The acknowledgement mechanism is
turned on for all these applications to achieve reliable message processing, which
guarantees that each incoming tuple will be processed at least once and the complete
latency is automatically tracked by the Storm framework. We also set the Storm
configuration MaxSpoutPending12 to 10,000, so that the resulting complete latency
of different applications can be reasonably compared in the same context.

Synthetic Applications (Micro-Benchmark) the three synthetic applications are
collectively referred to as micro-benchmark. They are designed to reflect various
topological patterns as well as mimic different types of streaming applications, such
as CPU bound, I/O bound and parallelism bound computations.

As shown in Fig. 5.4a, the micro-benchmark covers three common topological
structures—Linear, Diamond and Star, corresponding to operators having (1)
one-input-one-output, (2) multiple-outputs or multiple-inputs and (3) multiple-
inputs-multiple-outputs, respectively. In addition, the synthetic operators used in the

(a) The topologies of the micro-benchmark synthetic application

(b) The topology of the URL-
converter application

Op1 Op3 Op4 Op7 Op8 Op9 Op10 Op11

Op2 Op5 Op6

(c) The topology of the twitter sentiment analysis application

Fig. 5.4 The topologies of test applications. (a) Is synthetically designed while the rest two are
drawn from realistic use cases

12 The maximum number of unacknowledged tuples that are allowed to be pending on a spout task
at any given time.

150 X. Liu et al.

Table 5.2 The configurations of synthetic operators in the micro-benchmark

Symbol Configuration description

Cs The CPU load of each synthetic operator

Ss The selectivitya of each synthetic operator

Ts The number of tasks that each synthetic operator has,

also referred to as operator parallelism
a
Selectivity is the number of tuples emitted per tuple consumed; e.g. selectivity = 2 means the
operator emits 2 tuples for every 1 consumed

micro-benchmark can be configured in several ways to mimic different application
types, which are summarised in Table 5.2.

From the implementation point of view, the configuration items listed in Table 5.2
have a significant impact on the operator execution. Specifically, Cs determines how
many times the method of random number generation Math.random() is invoked
by the operator upon any tuple receipt (or tuple sending for topology spout), with
Cs = 1 representing 100 invocations. Therefore, the higher Cs is set, the larger CPU
load the operator will have. Besides, Ss determines the selectivity of this operator as
well as the size of internal communication stream within the application, while Ts

indicates the operator parallelism which is the number of tasks spawned from this
particular operator.

URL-Converter it is selected as a representative of memory-bound applications.
Social media websites, such as Twitter and Google, make intensive use of short
links for the convenience of sharing. However, these short links eventually need
to be interpreted by the service provider to be accessible on the Internet. The
URL-Converter is a prototype interpreter, which extracts short Uniform Resource
Locators (URLs) from the incoming tweets and replaces them with complete
URL addresses in real-time. As depicted in Fig. 5.4b, there are four operators
concatenated in tandem: Op1 (Kestrel Spout) pulls the tweet data from the Kestrel
queue as a stream of JSON strings; Op2 (Json Parser) parses the JSON string for
drawing the main message body; Op3 (URL Filter) identifies the short URLs from
the tweet content; andOp4 (Converter) completes the URL conversion with the help
of the remote service. This application results in significant memory usages, as it
caches a map of short and complete URLs in memory to identify the trending pages
from the statistics and prevent checking the remote database again upon receiving
the same short URL.

Twitter Sentiment Analysis (TSA) the second realistic application is adapted
from a comprehensive data mining use case—analysing the sentiment of tweet
contents by word parsing and scoring. Figure 5.4c shows that there are 11
operators constituting a tree-like topology, with the sentimental score calculated
using AFFINN—a list of words associated with pre-defined sentiment values. We
refer to [23] for more details of this analysis process and [15] for the application
implementation.

5 Dynamic Resource-Efficient Scheduling in Data Stream Management. . . 151

5.5.1.2 Parameter Selection and Evaluation Methodology

In our evaluation, the metric collection window is set to 1 minute and the scheduling
interval is set to 10 minutes. These values are empirically determined for D-Storm
to avoid overshooting and mitigate the fluctuation of metric observations on the
selected test applications. As for the heuristic parameters, we configure DThreshold to
80%, α to 10, and β to 1, putting more emphasis on the immediate gain of each task
assignment rather than the potential benefits. Additionally, the latency constraint of
each application is set to 500ms, which represents a typical real-time requirement
for streaming use cases.

For all conducted experiments, we deployed the test application using the same
approach recommended by the Storm community.13 Specifically, the number of
worker processes is set to one per machine and the number of executors is configured
to be the same as the number of tasks, thereby eliminating unnecessary inter-process
communications. Once the test application is deployed, we supply the profiling
stream to a given volume and only collect performance results after the application
is stabilised.

Also, the performance of the static resource-aware scheduler largely depends
on the accuracy of resource profile. As the scheduler required that users submit
the static resource profile at compile time [13], we conducted pilot run on test
applications, probing their up-to-date resource profile and leading to a fair compar-
ison between the dynamic and static resource-aware schedulers. In particular, we
utilised the LoggingMetricsConsumer14 from the storm-metrics package to probe
the amount of memory/CPU resources being consumed by each operator, and we
associate each pilot run with a particular application setting, so that the resource
profile can be properly updated whenever the application configuration is changed.

5.5.2 Evaluation of Applicability

In this evaluation, we ran both the synthetic and realistic applications under the
same scenario that a given size of profiling stream needs to be processed within the
latency constraint. Different schedulers are compared in two major aspects: (1) the
amount of inter-node communications resulted from the task placement, and (2) the
complete latency of the application in milliseconds.

To better examine the applicability of D-storm, we configure micro-benchmark
to exhibit different patterns of resource consumption. These include CPU intensive
(varying Cs), I/O intensive (varying Ss) and parallelism intensive (varying Ts). In
addition, we alter the volume of profiling stream (Ps) for all the applications to
test the scheduler performance under different workload pressures. Table 5.3 lists

13 https://storm.apache.org/documentation/FAQ.html.
14 https://storm.apache.org/releases/1.0.2/javadocs/org/apache/storm/metric/
LoggingMetricsConsumer.html.

 -1088 57269 a -1088 57269
a

https://storm.apache.org/documentation/FAQ.html

 -1088 58597 a -1088 58597 a

https://storm.apache.org/releases/1.0.2/javadocs/org/apache/storm/metric/LoggingMetricsConsumer.html
https://storm.apache.org/releases/1.0.2/javadocs/org/apache/storm/metric/LoggingMetricsConsumer.html

152 X. Liu et al.

Table 5.3 Evaluated
configurations and their
values (defaults in bold)

Configuration Value

Cs (for micro-benchmark only) 10, 20, 30, 40
Ss (for micro-benchmark only) 1, 1.333, 1.666, 2
Ts (for micro-benchmark only) 4, 8, 12, 16
Ps (all applications) 2500, 5000, 7500, 10,000

Fig. 5.5 The change of the inter-node communication when varying the configurations of the
micro-benchmark. We repeated each experiment for 10 times to show the standard deviation
of the results. In the legend, RAS stands for the Resource-Aware scheduler. (a) Varying Cs

(Synthetic linear). (b) Varying Ss (Synthetic linear). (c) Varying Ts (Synthetic linear). (d) Varying
Ps (Synthetic linear). (e) Varying Cs (Synthetic diamond) (f) Varying Ss (Synthetic diamond). (g)
Varying Ts (Synthetic diamond). (h) Varying Ps (Synthetic diamond). (i) Varying Cs (Synthetic
star). (j) Varying Ss (Synthetic star). (k) Varying Ts (Synthetic star). (l) Varying Ps (Synthetic star)

the evaluated values for the application configurations, where the default values are
highlighted in bold. Note that when one configuration is altered, the others are set
to their default value for fair comparison.

Figure 5.5 presents the changes of inter-node communication while altering
the micro-benchmark configurations listed in Table 5.3. We find that our D-Storm

5 Dynamic Resource-Efficient Scheduling in Data Stream Management. . . 153

prototype always performs at least as well as the static counterpart and often results
in significant communication reduction as compared to the default scheduler.

Specifically, a study of Fig. 5.5a, e and i reveals that D-Storm performs slightly
better than, or at least similarly to the static Resource-Aware Scheduler (RAS)
when applied to CPU-intensive use cases. In most instances, D-Storm achieves
the similar communication reduction as the static RAS, with the difference also
reaching as high as 17% when Cs is set to 20 for the Star topology. We interpret
this performance similarity in that all streaming tasks are created homogeneously
by their implementation, which makes the job easy for the static method to probe
accurate resource profiles through a pilot run. Moreover, as the scheduling of
CPU-intensive application reduces to a typical bin-packing problem, both resource-
aware approaches performed well in the beginning by utilising the large nodes
first for assignment. On average, they saved 63.9%, 57.7% and 80.1% inter-node
traffic compared to the default scheduler in the linear, diamond and star topology,
respectively.

This also explains the variation trend we see in the figures: as the appli-
cations become increasingly computational-intensive, the performance gain of
being resource-aware is gradually reduced (from on average 67.2% less to almost
identical). This is because the streaming tasks are forced to spread out to other
nodes as they become more resource-demanding, thus introducing new inter-node
communications within the cluster.

However, it is worth noting that the communication reduction brought by the
static RAS is based on the correct resource profile provided by the pilot run. If this
information were not specified correctly, the static resource-aware scheduler would
lead to undesirable scheduling results, causing over-utilisation and impairing the
system stability.

Figure 5.5b, f and j, on the other hand, showcase the communication changes as
the selectivity configuration is altered, which creates heterogeneous and intensive
communications on the tailing edges of the topology. The results demonstrate that
D-Storm outperforms the static RAS in terms of the communication reduction by
on average 15.8%, 17.4% and 16.2% for the linear, diamond and star topology,
respectively. This is credited to the fact that D-Storm is able to take runtime
communications into account during the decision-making process. By contrast,
the existing resource-aware scheduler can only optimise inter-node communication
based on the number of task connections, which contains only coarse-grained
information and does not reflect the actual communication pattern. We also find
out that the amount of inter-node communication increases rapidly along with the
growing selectivity. Especially, the four-operator linear topology exhibits 5.1, 11.8
and 9.7 times network traffic increase under all the three schedulers when the
selectivity configuration doubles, which proves that the internal communication has
been magnified exponentially by the concatenated selectivity settings.

Figure 5.5c, g and k compare the three schedulers in parallelism intensive test
cases. The analysis of results discovers that the amount of inter-node communication
is relatively insensitive to the variations of the parallelism settings. We found it
is because a single worker node can accommodate more tasks for execution, as

154 X. Liu et al.

2500 5000 7500 10000
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

 In

te
r-

no
de

 c
om

m
un

ni
ca

tio
n

as
 n

et
w

or
k

tr
af

fic
s

(M
B

/s
)

Round Robin
Static RAS
D-Storm

2500 5000 7500 10000
0

20
40
60
80

100
120
140
160
180
200
220
240
260
280
300
320
340
360
380
400
420
440
460
480
500
520
540

 In

te
r-

no
de

 c
om

m
un

ni
ca

tio
n

as
 n

et
w

or
k

tr
af

fic
s

(M
B

/s
)

Round Robin
Static RAS
D-Storm

Fig. 5.6 The change of the inter-node communication when varying the input size of realistic
applications. We repeated each experiment for 10 times to show the standard deviation of the
results. (a) Varying Ps (URL-converter). (b) Varying Ps (TSA)

the resource requirement of each streaming task reduces effectively in inverse
proportion to the parallelism increase. However, it is also worth reporting that
in Fig. 5.5g the static RAS performs noticeably worse than D-Storm, causing an
average of 10.4MB/s more network traffic in the four test cases. We interpret this
result as the static scheduler having overestimated the resource requirement forOp6,
which results in the use of more worker nodes in the cluster. As a matter of fact, the
additional overhead of thread scheduling and context switching increases along with
the parallelism setting, which would be hard for the static RAS to estimate prior to
the actual execution.

Finally, we evaluate the communication changes as the test application handles
different volumes of workload. The results of micro-benchmark are shown in
Fig. 5.5d, h and l, while the results of the realistic applications are presented in
Fig. 5.6. Specifically, D-Storm and the static RAS performed similarly when applied
to the micro-benchmark, which demonstrates that the static method works well on
applications with homogeneous operators. On the other hand, D-Storm achieved
much better performance than its static counterpart in the realistic applications—
Fig. 5.6 shows that D-Storm improves the communication reduction by 14.7%,
21.3%, 18.7% and 15.5% in the URL-Converter, and by 9.3%, 18.8%, 15.5% and
25.3% in the Twitter Sentiment Analysis when Ps is varied from 2500 to 10,000.
Part of this performance improvement is credited to D-Storm being able to handle
uneven load distributions, which is a common problem in realistic applications
due to the hash function based stream routing. As a contrast, the static scheduler
configures resource profile at the operator-level, deeming the spawned streaming
tasks homogeneous in all aspects. Consequently, the increasingly unbalanced
workload distribution among the same-operator tasks is ignored, which leads to the
performance degradation of the static scheduler.

5 Dynamic Resource-Efficient Scheduling in Data Stream Management. . . 155

2500 5000 7500 10000
0

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240

C
om

pl
et

e
la

te
nc

y
(m

ill
is

ec
on

ds
)

Round Robin
Static RAS
D-Storm

2500 5000 7500 10000
0

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240

C
om

pl
et

e
la

te
nc

y
(m

ill
is

ec
on

ds
)

Round Robin
Static RAS
D-Storm

2500 5000 7500 10000
0

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240

C
om

pl
et

e
la

te
nc

y
(m

ill
is

ec
on

ds
)

Round Robin
Static RAS
D-Storm

2500 5000 7500 10000
0

20
40
60
80

100
120
140
160
180
200
220
240
260
280
300
320
340
360
380
400
420
440

C
om

pl
et

e
la

te
nc

y
(m

ill
is

ec
on

ds
)

Round Robin
Static RAS
D-Storm

2500 5000 7500 10000
0

20
40
60
80

100
120
140
160
180
200
220
240
260
280
300
320
340
360
380
400
420
440

C
om

pl
et

e
la

te
nc

y
(m

ill
is

ec
on

ds
)

Round Robin
Static RAS
D-Storm

Fig. 5.7 The application complete latency under different volumes of profiling streams. Each
result is an average of statistics collected in a time window of 10 minutes, so the error bar is
omitted as the standard deviation of latency is negligible for stabilised applications. (a) Varying
Ps (Linear). (b) Varying Ps (Diamond). (c) Varying Ps (Star). (d) Varying Ps (URL-converter). (e)
Varying Ps (TSA)

We also collected the metric of complete latency to examine the application
responsiveness while using different schedulers. As observed in Fig. 5.7, the
complete latency is strongly affected by the combination of two factors—the size
of the profiling stream and the volume of inter-node communications. First of all,
the higher the application throughput, the higher the complete latency is likely to
be yield. If we calculate an average complete latency for these three schedulers, we
can find out the results for the linear, diamond, star, URL-Converter and Twitter
Sentiment Analysis have increased to 5.2, 4.4, 4.3, 2.9 and 3.1 times the original
values, respectively. It also shows that more resources are required for the Twitter
Sentiment Analysis to handle higher throughput without violating the given latency
constraint, as the complete latency has reached as high as 410.4 milliseconds in our
evaluation.

Besides, we notice that reducing the inter-node communication is also beneficial
to improving the application responsiveness. As shown in Fig. 5.7d, e, packing
communicating tasks onto fewer worker nodes allows D-Storm to reduce the com-
munication latency to on average 72.7 and 78% of that of the default scheduler in the
URL-Converter and Twitter Sentiment Analysis, respectively. These results confirm
the fact that conducting communication on networks is much more expensive than

156 X. Liu et al.

inter-thread messaging, as the later avoids data serialisation and network delay
through the use of a low-latency, high-throughput message queue in memory.

5.5.3 Evaluation of Cost Efficiency

Modelling the scheduling problem as a bin-packing variant offers the possibility
to consolidate tasks into fewer nodes when the volume of incoming workload
decreases. In this evaluation, we examine the minimal resources required to process
the given workload without violating the latency constraint. Specifically, D-Strom
scheduler is applied to the test applications, with the size of input stream (Ps) varied
from 10,000 tuples/second to 2500 tuples/second. To intuitively illustrate the cost
of resource usages, we associate each worker node created in the Nectar cloud with
the pricing model in the AWS Sydney Region.15 In particular, a small instance is
billed at $0.0292 per hour, a medium instance costs $0.0584 per hour and a large
instance charges $0.1168 per hour.

All five test applications introduced in Sect. 5.5.1.1 are included in this evalua-
tion, in which the synthetic topologies have configured their settings to the default
values. As shown in Fig. 5.8, the cost of resources used by the D-Storm scheduler
steadily reduces when the input load decreases. Specifically, the diamond topology
is the most resource-consuming synthetic application in the micro-benchmark,
utilising 4 large nodes and 4 medium nodes to handle the profiling stream at 10,000

10000 7500 5000 2500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
on

et
ar

y
co

st
 fo

r
re

so
ur

ce
 u

sa
ge

s
(U

S
D

/h
ou

r) Linear
Diamond
Star

10000 7500 5000 2500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
on

et
ar

y
co

st
 fo

r
re

so
ur

ce
 u

sa
ge

s
(U

S
D

/h
ou

r) URL-Converter
TSA

Fig. 5.8 Cost efficiency analysis of D-Storm scheduler as the input load decreases. The pricing
model in the AWS Sydney region is used to calculate the resource usage cost. (a) Decreasing Ps

(Micro-benchmark). (b) Decreasing Ps (Realistic apps)

15 https://aws.amazon.com/ec2/pricing/.

 -1088 58376 a -1088 58376 a

https://aws.amazon.com/ec2/pricing/

5 Dynamic Resource-Efficient Scheduling in Data Stream Management. . . 157

tuples/second. Such resource configuration also demonstrates that D-Storm avoids
using smaller instances for scheduling unless the larger nodes are all depleted,
which helps minimise the inter-node communication and improve the application
latency. As the volume of the profiling stream drops from 10,000 tuples/second to
2500 tuples/second, the resource consolidation is triggered and the usage cost of the
diamond, linear and star topology reduces to 33.3%, 40.2%, 36.4% of the original
values, respectively.

This same trend is also observed in the evaluation of realistic applications, with
consolidation resulting in 69.2 and 71.43% cost reduction for the URL-Converter
and Twitter Sentiment Analysis, respectively. In particular, Twitter Sentiment
Analysis only requires two large instances to handle the reduced workload whereas
it used to occupy the whole cluster for processing.

However, the comparable schedulers such as the static resource-aware scheduler
and the default Storm scheduler lack the ability to consolidate tasks when necessary.
In these test scenarios, they would occupy the same amount of resources even if the
input load dropped to only one-quarter of the previous amount, which results in
under-utilisation and significant resource waste.

5.5.4 Evaluation of Scheduling Overhead

We also examine the time required for D-Storm to calculate a viable scheduling plan
using Algorithm 1, as compared to that of the static RAS scheduler and the default
Storm scheduler. In this case, the synthetic applications are evaluated with various
parallelism settings, as well as the realistic applications under the default size of the
profiling stream.

Specifically, we utilised the java.lang.System.nanoTime method to probe the
elapsed time of scheduling in nanosecond precision. To overcome the fluctuation
of results, we repeated the clocking procedure for 5 times and present the average
values in Table 5.4.

Studying Table 5.4, we find that the default Storm scheduler is the fastest among
all three comparable schedulers, which takes less than 3 milliseconds to run the
round-robin strategy for all test applications. Its performance is also relatively
insensitive to the increasing parallelism configuration, as there are no task sorting
or comparison involved in the scheduling process.

On the other hand, the static resource-aware scheduler usually takes 3–6 millisec-
onds to run its greedy algorithm. Compared to the default round-robin scheduler, it
consumes roughly twice the time of the former to make sure that the number of
communication connections across different worker nodes is minimised.

In contrast, the algorithm proposed in D-Storm is the slowest among the three, as
it requires dynamically re-sorting all the remaining tasks by their updated priority
after each single task assignment. However, considering the fact that the absolute
value of the time consumption is at the millisecond level, and the analysis in

158 X. Liu et al.

Table 5.4 Time consumed in creating schedules by different strategies (unit: milliseconds)

Schedulers

Test cases

Linear topology

Ts = 4 Ts = 8 Ts = 12 Ts = 16

D-Storm 15.49 18.07 26.52 32.29

Static scheduler 3.01 3.91 4.25 4.51

Default scheduler 1.20 1.64 1.98 2.04

Schedulers

Test cases

Diamond topology

Ts = 4 Ts = 8 Ts = 12 Ts = 16

D-Storm 19.08 22.90 35.89 39.64

Static scheduler 3.29 3.62 5.78 6.01

Default scheduler 1.77 1.51 2.84 2.83

Schedulers

Test cases

Star topology

Ts = 4 Ts = 8 Ts = 12 Ts = 16

D-Storm 13.80 23.66 28.71 32.59

Static scheduler 3.11 5.38 5.76 5.27

Default scheduler 1.36 1.78 2.17 2.47

Schedulers

Test cases

Realistic applications

URL-converter TSA

D-Storm 18.17 42.25

Static scheduler 5.56 5.91

Default scheduler 1.55 2.99

Sect. 5.3.3 has shown that the algorithm is at worst in quadratic time complexity,
we conclude our solution is still efficient and scalable to deal with large problem
instances from the real world.

5.6 Related Work

Scheduling of streaming applications has attracted close attention from both big
data researchers and practitioners. This section conducts a multifaceted comparison
between the proposed D-Storm prototype and the most related schedulers in various
aspects, as summarised in Table 5.5.

Aniello et al. pioneered dynamic scheduling algorithms in the stream pro-
cessing context [12]. They developed a heuristic-based algorithm that prioritises
the placement of communicating tasks, thus reducing the amount of inter-node
communication. The proposed solution is self-adaptive, which includes a task
monitor to collect metrics at runtime and conducts threshold-based re-scheduling

5 Dynamic Resource-Efficient Scheduling in Data Stream Management. . . 159

Table 5.5 Related work comparison

Aspects
Related works

Our work[12] [13] [9] [11] [24] [25] [26] [6]

Dynamic Y N Y Y Y Y N Y Y

Resource-aware N Y N N Y Y Y N Y

Communication-aware Y N Y Y N N Y Y Y

Self-adaptive Y N Y Y N N N Y Y

User-transparent N N Y Y N N N N Y

Cost-efficient N Y N N Y Y N N Y

for performance improvement. However, the task monitor is not transparently set up
at the middleware level and the algorithm is unaware of the resource demands of
each task being scheduled. It also lacks the ability to consolidate tasks into fewer
nodes for improving cost efficiency.

By modelling the task scheduling as a graph partitioning problem, Fisher et
al. [9] demonstrated that the METIS software is also applicable to the scheduling of
stream processing applications, which achieves better results on load balancing and
further reduction of inter-node communication as compared to Aniello’s work [12].
However, their work is also not aware of resource demand and availability, let alone
reducing the resource footprints with regard to the varying input load.

Xu et al. proposed another dynamic scheduler that is not only communication-
aware but also user-transparent [11]. The proposed algorithm reduces inter-node
traffic through iterative tuning and mitigates the resource contention by passively
rebalancing the workload distribution. However, it does not model the resource
consumption and availability for each task and node, thus lacking the ability to
prevent resource contention from happening in the first place.

Sun et al. investigated energy-efficient scheduling by modelling the mathematical
relationship between energy consumption, response time and resource utilisa-
tion [24]. They also studied reliability-oriented scheduling to trade-off between
competing objectives like better fault tolerance and lower response time [25]. But
the algorithms proposed in these two papers require modifying the application
topology to merge operators on non-critical paths. A similar technique is also
seen in Li’s work [6], which adjusts the number of tasks for each operator to
mitigate performance bottleneck at runtime. Nevertheless, bundling scheduling with
topology adjustment sacrifices the user transparency and impairs the applicability of
the approach.

Cardellini et al. [27] proposed a distributed QoS-aware scheduler that aims at
placing the streaming applications as close as possible to the data sources and final
consumers. Differently, D-Storm makes scheduling decisions out of the resource-
saving perspective and regards the minimisation of network communication as
its first-class citizen. Papageorgiou et al. [28] proposed a deployment model for
stream processing applications to optimise the application-external interactions
with other Internet-of-Things entities such as databases or users, while our work

160 X. Liu et al.

focuses entirely on reducing network traffic among streaming operators. Schneider
et al. [29] proposed an elastic scheduling algorithm for the ordered streaming
runtime to minimise thread synchronisation, global data and access locks, allowing
any thread to execute any operator while maintaining the tuple order in operator
communication. Their work focuses on finding the right number of threads to be
used without seeking input from programmers, while D-Storm aims to distribute
working threads with regard to their resource consumption and communication
patterns. Shukla et al. [30] proposed a model-based approach to offer reliable
estimates of the required resource allocation, which makes use of a priori knowledge
of the applications to provide predictable scheduling behaviour. In comparison, our
work does not require building application performance models beforehand and the
resource profile of each task is obtained and updated during runtime. The same
authors also studied robust means to respond to dynamism in the input rates and
task behaviour and provided rapid task migration across VMs [31]. Since Storm
does not support lossless migration of operator states and state management is not
the main focus of our contribution, we have implemented a simple state management
mechanism in test applications utilising Redis in-memory store to support relocation
of the operator internal state.

The static resource-aware scheduler proposed by Peng et al. [13] has been
introduced in Sects. 5.1 and 5.2. The main limitation of their work, as well as
[26, 32], is that the runtime changes to the resource consumptions and availability
are not taken into consideration during the scheduling process.

5.7 Conclusions and Future Work

In this chapter, we proposed a resource-efficient algorithm for scheduling streaming
applications in Data Stream Management Systems and implemented a prototype
scheduler named D-Storm to validate its effectiveness. It tackles new scheduling
challenges introduced by the deployment migration to computing clouds, including
node heterogeneity, network complexity and the need of workload-oriented task
consolidation. D-Storm tracks each streaming task at runtime to collect its resource
usages and communication pattern, and then it formulates a multidimensional bin-
packing problem in the scheduling process to pack communicating tasks as compact
as possible while respecting the resource constraints. The compact scheduling
strategy leads to the reduction of inter-node communication and resource costs, as
well as reducing the processing latency to improve the application responsiveness.
Our new algorithm overcomes the limitation of the static resource-aware scheduler,
offering the ability to adjust the scheduling plan to the runtime changes while
remaining sheer transparent to the upper-level application logic.

As for future work, we are currently studying the impact of sudden workload
change to the scheduler performance, as well as improving the design of D-
Storm scheduler with a backpressure mechanism in order to avoid oscillation

5 Dynamic Resource-Efficient Scheduling in Data Stream Management. . . 161

and over-adjustment. We also plan to investigate the use of meta-heuristics to
find a better solution for the scheduling problem. Genetic algorithms, simulated
annealing and tabu search are among the list of candidates that require further
investigation. In addition, we would like to conduct scheduling research in an
Edge and Fog environment, where heterogeneous and geographically distributed
resources are typically connected using wireless technologies that are subject to
network constraints such as limited bandwidth, longer communication delays and
unpredictable interruptions [4]. The proposed scheduling algorithm should take
the networking dimension into consideration to generate an efficient scheduling
strategy, which avoids over-utilising the power-limited Edge devices and puts a large
volume of task communications over links with higher network performance.

Acknowledgments This work is supported by Australian Research Council (ARC) and China
Scholarship Council (CSC). This chapter is a substantial extension of a preliminary conference
paper [14], with an improved algorithm design, new test applications and new experimental results
collected from a heterogeneous cloud environment.

References

1. N. Mitton, S. Papavassiliou, A. Puliafito, K.S. Trivedi, Combining cloud and sensors in a smart
city environment. EURASIP J. Wirel. Commun. Netw. 2012(1), 247–256 (2012)

2. A. Puliafito, A. Cucinotta, A.L. Minnolo, A. Zaia, Making the Internet of things a reality: The
WhereX solution, in The Internet of Things (Springer, New York, 2010), pp. 99–108

3. A. Cuzzocrea, G. Fortino, O. Rana, Managing data and processes in cloud-enabled large-scale
sensor networks: State-of-the-art and future research directions, in Proceedings of the 13th
IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing, ser. CCGRID
’13 (IEEE, Piscataway, 2013), pp. 583–588

4. X. Liu, R. Buyya, Resource management and scheduling in distributed stream processing
systems: a taxonomy, review, and future directions. ACM Comput. Surv. 53(3) (2020). https://
doi.org/10.1145/3355399

5. X. Liu, R. Buyya, Performance-oriented deployment of streaming applications on cloud. IEEE
Trans. Big Data 5(1), 46–59 (2019)

6. C. Li, J. Zhang, Y. Luo, Real-time scheduling based on optimized topology and communication
traffic in distributed real-time computation platform of storm. J. Netw. Comput. Appl. 87(3),
100–115 (2017)

7. D. Sun, R. Huang, A stable online scheduling strategy for real-time stream computing over
fluctuating big data streams. IEEE Access 4, 8593–8607 (2016)

8. L. Cheng, T. Li, Efficient data redistribution to speedup big data analytics in large systems, in
Proceedings of the 23rd IEEE International Conference on High Performance Computing, ser.
HiPC ’16, (2016), pp. 91–100

9. L. Fischer, A. Bernstein, Workload scheduling in distributed stream processors using graph
partitioning, in Proceedings of the 2015 IEEE International Conference on Big Data (IEEE,
Piscataway, 2015), pp. 124–133

10. A. Chatzistergiou, S.D. Viglas, Fast heuristics for near-optimal task allocation in data stream
processing over clusters, in Proceedings of the 23rd ACM International Conference on
Information and Knowledge Management, ser. CIKM ’14 (ACM Press, New York, 2014), pp.
1579–1588

 32220 36721
a 32220 36721 a

https://doi.org/10.1145/3355399
https://doi.org/10.1145/3355399

162 X. Liu et al.

11. J. Xu, Z. Chen, J. Tang, S. Su, T-storm: Traffic-aware online scheduling in storm, in
Proceedings of the 2014 IEEE 34th International Conference on Distributed Computing
Systems, ser. ICDCS ’14 (IEEE, Piscataway, 2014), pp. 535–544

12. L. Aniello, R. Baldoni, L. Querzoni, Adaptive online scheduling in storm, in Proceedings of
the 7th ACM International Conference on Distributed Event-Based Systems, ser. DEBS ’13
(ACM Press, New York, 2013), pp. 207–218

13. B. Peng, M. Hosseini, Z. Hong, R. Farivar, R. Campbell, R-storm: Resource-aware scheduling
in storm, in Proceedings of the 16th Annual Conference on Middleware, ser. Middleware ’15
(ACM Press, New York, 2015), pp. 149–161

14. X. Liu, R. Buyya, D-storm: Dynamic resource-efficient scheduling of stream processing
applications, in Proceedings of the IEEE 23rd International Conference on Parallel and
Distributed Systems (ICPADS) (IEEE, Piscataway, 2017), pp. 485–492

15. X. Liu, R. Buyya, Performance-oriented deployment of streaming applications on cloud. IEEE
Trans. Big Data 14(8), 1–14 (2017)

16. E.G. Coffman Jr., J. Csirik, G. Galambos, S. Martello, D. Vigo, Bin packing approximation
algorithms: Survey and classification, inHandbook of Combinatorial Optimization, ed. by P.M.
Pardalos, D.-Z. Du, R.L. Graham (Springer, New York, 2013), pp. 455–531

17. R. Tolosana-Calasanz, J. Á. Bañares, C. Pham, O.F. Rana, Resource management for bursty
streams on multi-tenancy cloud environments. Futur. Gener. Comput. Syst. 55, 444–459 (2016)

18. A.S. Fukunaga, R.E. Korf, Bin-completion algorithms for multicontainer packing and covering
problems, in Proceedings of the 2005 International Joint Conference on Artificial Intelligence,
ser. IJCAI ’05 (ACM Press, New York, 2005), pp. 117–124

19. J. Desrosiers, M.E. Lübbecke, Branch-price-and-cut algorithms, in Wiley Encyclopedia of
Operations Research and Management Science (Wiley, Hoboken, 2011), pp. 1–18

20. A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, I. Stoica, Dominant resource
fairness : Fair allocation of multiple resource types, in Proceedings of the 8th USENIX
Conference on Networked Systems Design and Implementation, ser. NSDI ’11 (2011), pp. 323–
336

21. S. Caton, O. Rana, towards autonomic management for cloud services based upon volunteered
resources. Concurrency Comput. Pract. Exp. 24(9), 992–1014 (2012)

22. J.O. Kephart, D.M. Chess, The vision of autonomic computing. Computer 36(1), 41–50 (2003)
23. F.A. Nielsen, A new ANEW: Evaluation of a word list for sentiment analysis in microblogs, in

Proceedings of the ESWC2011 Workshop on ‘Making Sense of Microposts’: Big Things Come
in Small Packages (Springer, Berlin, 2011), pp. 93–98

24. D. Sun, G. Zhang, S. Yang, W. Zheng, S.U. Khan, K. Li, Re-stream: real-time and energy-
efficient resource scheduling in big data stream computing environments. Inf. Sci. 319, 92–112
(2015)

25. D. Sun, G. Zhang, C. Wu, K. Li, W. Zheng, Building a fault tolerant framework with deadline
guarantee in big data stream computing environments. J. Comput. Syst. Sci. 89, 4–23 (2017)

26. T. Li, J. Tang, J. Xu, Performance modeling and predictive scheduling for distributed stream
data processing. IEEE Trans. Big Data 7790(99), 1–12 (2016)

27. V. Cardellini, V. Grassi, F.L. Presti, M. Nardelli, On QOS-aware scheduling of data stream
applications over fog computing infrastructures, in Proceedings of the IEEE Symposium on
Computers and Communication (IEEE, Piscataway, 2015), pp. 271–276

28. A. Papageorgiou, E. Poormohammady, B. Cheng, Edge-computing-aware deployment of
stream processing tasks based on topology-external information: Model, algorithms, and a
storm-based prototype, in Proceedings of the 5th IEEE International Congress on Big Data
(IEEE, Piscataway, 2016), pp. 259–266

29. S. Schneider, K.-L. Wu, Low-synchronization, mostly lock-free, elastic scheduling for stream-
ing runtimes, in Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation (ACM Press, New York, 2017), pp. 648–661

30. A. Shukla, Y. Simmhan, Model-driven scheduling for distributed stream processing systems. J.
Parallel Distrib. Comput. 117, 98–114 (2018)

5 Dynamic Resource-Efficient Scheduling in Data Stream Management. . . 163

31. A. Shukla, Y. Simmhan, Toward reliable and rapid elasticity for streaming dataflows on clouds,
in Proceedings of the 38th IEEE International Conference on Distributed Computing Systems
(IEEE, Piscataway, 2018), pp. 1096–1106

32. P. Smirnov, M. Melnik, D. Nasonov, Performance-aware scheduling of streaming applications
using genetic algorithm. Procedia Comput. Sci. 108(6), 2240–2249 (2017)

	5 Dynamic Resource-Efficient Scheduling in Data Stream Management Systems Deployed on Computing Clouds
	Contents
	5.1 Introduction
	5.2 Background
	5.3 Dynamic Resource-Efficient Scheduling
	5.3.1 Problem Formulation
	5.3.2 Heuristic-Based Scheduling Algorithm
	5.3.3 Complexity Analysis

	5.4 Implementation of D-Storm Prototype
	5.5 Performance Evaluation
	5.5.1 Experiment Setup
	5.5.1.1 Test Applications
	5.5.1.2 Parameter Selection and Evaluation Methodology

	5.5.2 Evaluation of Applicability
	5.5.3 Evaluation of Cost Efficiency
	5.5.4 Evaluation of Scheduling Overhead

	5.6 Related Work
	5.7 Conclusions and Future Work
	References

