
Journal of Parallel and Distributed Computing 126 (2019) 121–133

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Dynamic replication and migration of data objects with hot-spot and
cold-spot statuses across storage data centers
Yaser Mansouri ∗, Rajkumar Buyya
Cloud Computing and Distributed Systems (CLOUDS) Laboratory, School of Computing and Information Systems, The University of Melbourne, Australia

h i g h l i g h t s

• Proposing a cost model which consists of storage, read, write, and potential migration costs.
• Optimizing cost of dynamic data replication of across Geo-distributed storage services.
• Migrating data between storage classes based on the status of data to optimize cost.

a r t i c l e i n f o

Article history:
Received 15 September 2017
Received in revised form 9 March 2018
Accepted 11 December 2018
Available online 21 December 2018

Keywords:
Storage data center
Data replication
Data migration
Hot-spot data
Cold-spot data

a b s t r a c t

Cloud Storage Providers (CSPs) offer geographically dispersed data stores providing several storage classes
with different prices. A vital problem faced by application providers is how to exploit price differences
across data stores to minimize monetary cost of applications that include hot-spot objects that are
accessed frequently and cold-spot objects that are often accessed far less. This monetary cost consists of
replica creation, storage, Put, Get, and potential migration costs. To optimize such costs, we first propose
the optimal solution that leverages dynamic and linear programming techniqueswith the assumption that
the workload on objects is known in advance. We also propose a lightweight heuristic solution, inspired
from an approximate algorithm for the Set Covering Problem, which does not make any assumption on
the object workload. This solution jointly determines object replicas location, object replicas migration
times, and redirection of Get (read) requests to object replicas so that the monetary cost of data storage
management is optimized while the user-perceived latency is satisfied. We evaluate the effectiveness of
the proposed lightweight algorithm in terms of cost savings via extensive simulations using CloudSim
simulator and traces from Twitter. In addition, we have built a prototype system running over Amazon
Web Service (AWS) and Microsoft Azure to evaluate the duration of objects migration within and across
regions.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Well known Cloud Storage Providers (CSPs) such as Amazon
Web Service (AWS), Microsoft Azure, and Google offer several
storage classes with different prices. The price of storage classes
is different across CSPs, and it is directly proportional to the per-
formance metrics like availability, durability, etc. For example,
Reduced Redundant Storage (RRS) is an AWS’s storage class that
enables users to reduce their cost with lower levels of redundancy
as compared to Simple Storage Service (S3).

CSPs also charge their users/application providers for network
resources in different prices. They charge users for outgoing data,
while the cost for ingoing data is often free. They may also charge
their users at a lower cost when the data are transferred across DCs

∗ Corresponding author.
E-mail address: yase@student.unimelb.edu.au (Y. Mansouri).

operated by the same cloud provider (e.g., AWS). This diversifica-
tion of the storage and network prices plays an essential role in
the optimization of the monetary cost spent on using cloud-based
storage resources. This cost also affected by the expectedworkload
of an object in online social networks (OSNs). The object might be
a photo, a tweet, or even an integration of these items that share
similar Get (read) and Put (write) access rate pattern. The object
workload is determined by how often it is read and updated. There
is a strong correlation between the object workload and the age
of object, as observed in online social networks [17]. That is, the
object uploaded to OSNs receives dominating more Gets and Puts
during its early lifetime, and such object is in hot-spot status and is
said to be network-intensive. Then the object cools over time and
receives fewer and fewer Gets and Puts. Such object is in cold-spot
status and is said to be storage-intensive.

Therefore, with time-varying workload and different prices
of storage classes, acquiring the cheapest network and storage
resources in the appropriate time of the object lifetime plays a vital

https://doi.org/10.1016/j.jpdc.2018.12.003
0743-7315/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jpdc.2018.12.003
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2018.12.003&domain=pdf
mailto:yase@student.unimelb.edu.au
https://doi.org/10.1016/j.jpdc.2018.12.003

122 Y. Mansouri and R. Buyya / Journal of Parallel and Distributed Computing 126 (2019) 121–133

role in the cost optimization of data management in OSNs across
CSPs. This cost consists of replica creation, storage, Get, Put, and
potential migration costs. To optimize these costs, cloud users are
required to answer the following questions: (i) which storage class
from which CSP should host the object (i.e., placing), (ii) which
replica should serve the specific Get (i.e., Get requests redirection),
and (iii) when the object replica should probably bemigrated from
a storage class to another one operated by the similar or different
DCs.

We previously investigated some of these questions in a dual
cloud-based storage architecture that optimizes the cost of object
between two DCs with two storage classes [14]. The findings in
terms of cost savings obtained from this architecture motivated us
to extend it across multiple data stores [15]. In [15], we proposed
object placement algorithms that determine the location of limited
and fixed number of object replicas with time-varying workloads.
These algorithms fail to dynamically determine the number of
object replicas. Moreover, they suffer from high time complexity
when the object receives Gets and Puts from a wide range of DCs,
and consequently demands many replicas to provision Gets and
Puts within the latency constraints specified by users. To tackle
these issues and answer the aforementioned questions, we pro-
pose a lightweight algorithm that demands low time complexity,
thereby making it tailored for applications (e.g., OSN) that host a
large number of objects.

The lightweight algorithm makes a three-fold decision for cost
optimize of the data storage management: replicas location, repli-
cas migration time from a storage class to another one operated
by a single DC or two DCs, and redirection of Gets to replicas. In
addition to the cost optimization, the response time of Puts and
Gets is also a vital performance criterion from the perspective
of users. We consider the latency constraint as a service level
objective (SLO) and define it as the elapsed time between issuing a
Get/Put fromadata center (DC) and retrieving/writing the required
object from/into the data store.

In summary, by wisely taking into account the pricing differ-
ences for storage and network resources across CSPs and time-
varying workloads of objects, we are interested in reducing the
cost of data storage management (i.e., replica creation, storage,
Get, Put, and migration costs) so that the response time for Gets
and Puts is met. To address this issue, we make the following key
contributions:

• We introduce a cost model that includes replica creation,
storage, Get, Put, and potential migration costs. This cost
model integrates the response time for Gets and Puts in a cost
optimization problem.
• We solve this optimization problem by exploiting linear and

dynamic programming where the exact future workload is
assumed to be known a priori. Due to the requirement of high
time complexity, we propose a lightweight algorithm that
makes key decisions on replica placement, Get requests redi-
rection, and replicas migration time without any knowledge
of the future workloads of objects.
• We conduct extensive experiments to show the effectiveness

of the proposed solution in termsof cost savings byusing real-
world traces from Twitter [11] in the CloudSim simulator [2].
• In addition, we have built a prototype system running over

AWS and Microsoft Azure cloud providers to measure the
duration of objects migration within a region and across
regions.

The rest of this paper proceeds as follows. Section 2 discusses
the relatedwork. Section 3presents the systemmodel and formally
defines the optimization problem. Section 4 is devoted to the pro-
posed solutions. Sections 5 and 6 provide experimental evaluation

of the proposed lightweight solution. Finally, Section 7 concludes
the paper with future directions.

2. Related work

Pricing differences within and across cloud storage services
have attracted recent research attentions in cost optimization of
data storage management. Here, we investigate the state-of-the-
art literature in this respect.

FCFS framework [18] used two storage services (i.e., a cache and
a storage class) in a single data store. In FCFS, two online algorithms
have been deployed to optimize the cost of cloud file systems.
This framework did not leverage pricing differences across data
stores. The solution deployed in FCFS is not applicable for our cost
optimization problem. This is because (i) FCFS need not to deal
with latency constraints, potential migration cost, and optimizing
writing cost, and (ii) it makes a decision just on when data is
migrated from cache to storage and vice versa (i.e., time) while we
require tomake a two-fold decision:whendata should bemigrated
to which storage class operated by a single DC or two DCs. That is,
we need to make a decision on the time and place.

SPANStore [21] optimized cost by using pricing differences
among CSPs while the required latency for the application is guar-
anteed. It used a storage class across CSPs for all objects without
considering their read/write requests, and consequently it did not
require to migrate objects between storage classes. Different from
SPANStore, our work utilizes two storage classes to save more
cost based on the objects statuses. This causes object migration
between storage classes. Moreover, the time complexity of the
algorithmused in SPANStore exponentially growswith thenumber
of DCs, as compared to the quadratic growth of the proposed
heuristic solution.

Cosplay [9] optimized the cost of datamanagement acrossDCs –
belonging to a single cloud – through swapping the roles (i.e., mas-
ter and slave) of data replicas in the OSN. ES3 [12] leveraged
all pricing models to determine the reservation amount on DCs
belonging to different CSPs to optimize the data management cost.
It also used a genetic algorithm based method to further optimize
the reservation benefit. In contrast to Cosplay and SPANStore, ES3
explicitly leverages the tiered pricing and outperforms SPANStore
in cost savings as experimentally demonstrated. Compared to our
work, both Cosplay and ES3 did not utilize two storage classes
though they are orthogonal to our work for further cost optimiza-
tion. Chen et al. [3] investigated the problem of placing replicas
and distributing requests (issued by users) to optimize cost while
meeting QoS requirements in a Content Delivery Network (CDN)
utilizing cloud storage offered by a single CSP. In contrast, ourwork
considers write requests which raise the cost of consistency as a
matter.

There are several factors affecting data migration: the changes
to the parameters of cloud storage (e.g.,price), optimization re-
quirements, and data access patterns. In respect to the second
factor, Qiu et al. [19] designed a dynamic control algorithm to
optimally migrate data from private clouds to public ones. Wu
et al. [22] focused on predicting access rate to video objects (read-
only objects), and based on this observation the objects are dynam-
ically migrated across DCs. In contrast, our study exploits pricing
differences across data stores with different storage classes and
dynamic migration to minimize the cost of objects that receive
Gets and Puts. Puts on objects raise cost of consistency as a matter.
Mseddi et al. [16] designed a scheme to create/migrate replicas
across data stores with the aim of avoiding network congestion,
ensuring availability, and minimizing the time of data migration.
While our proposed solution optimizes monetary cost of data
storage management.

In contrast to all described solutions above, our proposed al-
gorithm exploits pricing differences across data stores (offered

Y. Mansouri and R. Buyya / Journal of Parallel and Distributed Computing 126 (2019) 121–133 123

by different CSPs) with different storage classes. This work is in
line with our previous studies [14,15] and aims at reducing the
monetary cost when objects receive Gets and Puts from a wide
range of DCs. This work is closely aligned with applications that
host a large number of users since it uses a lightweight solution as
compared to [15].

3. Systemmodel, cost model, and cost optimization problem

3.1. System model

Our systemmodel employs different cloud providers that oper-
ate Geo-distributed DCs. DCs from different cloud providers may
be co-located, but they offer several storage classes with different
prices and performance metrics. Using each storage class can be
determined by the user’s objective (e.g., monetary cost optimiza-
tion).

In our system, each user is assigned to his/her closest DC among
the DCs as his/her home DC. A user creates objects (e.g., tweet or
photo) and posts on his/her Twitter Feed or Facebook Timeline.
The object is replicated in several DCs based on its Gets and Puts,
the number of the user’s friends/followers, and the required access
latency to serve Gets. These replicas are named slave replicas, as
opposed to the master replica stored in the home DC. The mas-
ter/slave replica of the object is in hot-spot status if it receivesmany
Gets and Puts, and in cold-spot status if it receives a few. These
statuses of the object replica probably lead to the replicamigration
between storage classes. To do this, our system uses the stop and
copy migration technique in which the Gets are served by the DC
that the object must be migrated from (called source DC) and the
Puts are handled by the other DC that the object must be migrated
to (called destination DC) [20]. The unit of data migration is the
bucket abstraction which is the same as that in Spanner [5]. The
bucket consists of the objects owned by a specific user.

In the system model, a DC is referred as a client DC if it issues
a Get/Put for an object. A DC is named as a server DC if it hosts a
replica of an object. A DC is a client and server DC at the same time
for an object if it stores a replica of the object and serves the Puts
and Gets for that object.

3.2. Cost model

We assume a time-slotted system in which each slot lasts for
t ∈ [1 . . . T]. This system is represented as a set of independent
DCs, D, where each DC d is associated with a tuple of four cost
elements. (i) S(d) denotes the storage cost per unit size per unit
time (e.g., bytes per hour) in DC d. (ii) O(d) defines out-network
cost per unit size (e.g., byte) in DC d. (iii) tg (d) and tp(d) represent
transaction cost for a bulk of Gets and Puts in DC d, respectively

Assume that a set of objects is created in time slot t . Let rdc (t)
and wdc (t), respectively, be the number of Gets and Puts for the
object with size v(t) from client DC dc(t) in t . For Gets, let client
dc(t) is served by server DC dr (t) that hosts a replica of the object in
t . This is denoted by dc(t) → dr (t), which is binary, being 1 if dc(t)
is served by dr (t) and being 0 otherwise. Note that it is no need for
assignment of dc(t)s to dr (t)s for Puts since these requests issuing
from dc(t)smust be submitted to all dr (t)s. The number of replicas,
denoted by r , for each object is variable in each time slot, and
depends on the object workload, the required access latency, and
the number of clientDCs issuingGets/Puts. Table 1 summarizes key
notations used in this paper.

We define an objective function as to choose the placement
of the object replicas (dr (t)s) and to determine the assignment of
client DCs dc(t) to a server DC dr (t) so that the replica creation,
storage, Get, Put, and potential migration costs for the object dur-
ing t ∈ [1 . . . T] are minimized. To find the objective function, we
formally define the following costs.

Algorithm 1: The lower-bound number of replicas
Input : D: a set of DCs d, Dc : a set of client DCs dc , latency

between each pair of DCs, and latency constraint L
Output: ⌊r⌋

1 Initialize: ⌊r⌋← 0
2 forall d ∈ D do
3 forall dc ∈ Dc do
4 if l(d, dc) ≤ L then
5 Assign DC dc to DC d as a potential DC dp
6 end
7 end
8 end
9 Sort DCs dp according to their assigned number of dcs in
descending order.

10 while Dc ̸= ∅ do
11 Select DC dp as dr and remove its assigned dcs from Dc as

well as from the set of client DCs assigned to other
potential DCs dp which still are not selected as a server
DC dr .

12 ⌊r⌋← ⌊r⌋+1
13 end

Replica Creation Cost: Once user creates an object in his/her
homeDC, the systemmay need to replicate this object in the DCs d.
To do so, the system first reads the object from either the home DC
dh or the server DC dr and then writes it into the DCs d. We refer to
this cost as a replica creation cost, which is minimized for r replicas
as below. (i) The systemdirectly reads the object from the homeDC
dh and replicates in (r−1) DCs. This cost equals v× (r−1)×O(dh)
(Fig. 1(a)). It is worth noticing that the object in the home DC is
considered as a replica. (ii) The system first reads the object from
the home DC dh and replicates in the DC d, and from this DC the
object is read and is replicated in (r − 2) DCs (Fig. 1(b)). In this
case, the cost is v × (O(dh) + (r − 2) × O(d)) and is minimized
by computing the cost for each DC d ∈ D − {dh} as a server DC.
Therefore, the replicas creation cost is

mind\dh [(r − 1)× O(dh),O(dh)+ (r − 2)×mind O(d)] × v. (1)

Since in this step, the number and the location of replicas
still have not been specified, the system requires to calculate the
lower-bound number of replicas as summarized in Algorithm 1.
This algorithm assigns client DCs dc to each DC d as DC dp if the
latency between DCs dc and d is within the latency constraint
(lines 2–8). Then, the algorithm sorts DCs dp according to their
number of assigned client DCs dc (line 9), and finally selects the
DC dp one after another as a server DC dr until all DCs dc are served
by a server DC dr (lines 10–13).

Storage Cost. The storage cost of an object in time slot t is equal
to the storage cost of all its replicas inDCs dr . Thus, this cost is equal
to∑
dr

S(dr)× v. (2)

Get Cost. The Gets cost of an object in time slot t is the cost of
Gets issued from all DCs dc and the network cost for retrieving the
object from DCs dr . Hence, this cost is given by∑
dr

∑
dc

(dc → dr)× rdc × [tg (dr)+ v × O(dr)]. (3)

Put Cost: The Puts cost of the object in time slot t is the cost
of Puts issued by all client DCs and the propagation/consistency
cost to synchronize all replicas. As shown in Fig. 2(a), in the first
step the client DC updates its server DC and the home DC for which

124 Y. Mansouri and R. Buyya / Journal of Parallel and Distributed Computing 126 (2019) 121–133

Table 1
Summary of key notations.
Symbol Meaning

D A set of DCs

T Number of time slots

Dx If ‘‘x= c’’, Dc is the set of client DCs.
If ‘‘x= r’’, Dr is the set of server DCs.
If ‘‘x= p’’, Dp is the set of potential DCs to host a replica.

dx If ‘‘x= c’’, dc is a client DC.
If ‘‘x= r’’, dr is a server DC.
If ‘‘x= p’’, dp is a potential DC to host a replica.
If ‘‘x= h’’, dh is a home DC.

S(d) The storage cost of DC d per unit size per unit time

O(d) Out-network price of DC d per unit size

tg (d) Is transaction/request cost for a bulk of Gets in DC d

tp(d) Is transaction/request cost for a bulk of Puts in DC d

v(t) The size of the object in time t

rdc (t) Number of read requests from dc in time slot t

wdc (t) Number of write requests issued from dc in time slot t

r Number of replicas of the object

tdrm Migration time of a replica in DC dr
αd(t) A binary variable indicating whether a replica is in DC d in time slot t or not

dc (t)→ dr (t) A binary variable, being 1 if the DC dc is served by DC dr and being 0 otherwise.

Cx(.) If ‘‘x= R", CR(.) is the residential cost.
If ‘‘x=M", CM (.) is the migration cost.

Cdr
B (t) Is the cost–benefit for a replica of the object in DC dr in time slot t .

Cdr
L (tm, t) Is the lost cost–benefit for a replica in DC dr during [t

dr
m , t].

L An upper bound of delay on average for Gets and Puts to receive response

l(dc , dr) The latency between DC dc and DC dr

Fig. 1. Replica creation via (a) home DC and (b) potential DCs D1, D2, and D3.

Fig. 2. Put propagation policy. (a) Client DC first updates its server DC and the home DC. DCs hosting a replica are updated via (b) the client DC, (c) the home DC, and (d) the
server DC (i.e., DC D1) that serves the client DC. (e) The relayed propagation via DC D3 which is updated by the home DC.

strong consistency is guaranteed. Other replicas are then updated
to guarantee eventual consistency. Thus, a DC with the minimum
cost in network (either already updated or not updated) is selected
as shown in Figs. 2(b)–2(e). If the selected DC has already been

updated, as shown in Figs. 2(b)–2(d), then it updates other replicas
in D2, D3, andD4. Otherwise, as depicted in Fig. 2(e), if the selected
DC has not already been updated (e.g., D3), then it requires to be
synchronized via one of the updated DCs, and then propagates

Y. Mansouri and R. Buyya / Journal of Parallel and Distributed Computing 126 (2019) 121–133 125

data to other DCs (D2 and D4). This process is repeated for all DCs
(i.e., D2, D3, and D4 in Fig. 2) not updated in the first step to exploit
the discount on thenetwork cost of thoseDCs operated by the same
cloud providers. Formally, Puts cost is defined as∑

dc

[wdc × (
{

v(O(dc))+ tp(dh), if dc ∈ Dr (t)
v(2O(dc))+ tp(dh)+ tp(dc → dr), o.w.

+

min
dp

∑
d\dh∧dc→dr

⎧⎨⎩
v(O(dp))+ tp(d), if dp is dc, dh, or dc → dr

min
d′\dc ,dh,dc→dr

(vO(d′)+ tp(dp))

+v(r − 2)O(dp + tp(d)), o.w.

)]

(4)

In the above Equation, the first set bracket calculates the up-
dated cost of the home DC and the server DC that serves the client
DC. The second set bracket calculates the minimum propagation
cost to update r − 2 replicas.1

MigrationCost:When access pattern on the object changes, the
object transits from hot-spot status to cold-spot status and vice
versa. This transition of the object across DCs incurs a migration
cost which is minimized if the object migrates from dr ∈ Dr (t − 1)
with the minimum network cost to dr ∈ Dr (t). Thus, the migration
cost for each replica in dr ∈ Dr (t − 1) is

Cdr
M (t − 1, t)

=

{
0 if dr ∈ Dr (t − 1) ∧ Dr (t)

min
dr∈Dr (t−1)

O(dr)× v(t − 1) o.w. (5)

As seen in Eqn. (5), if the placement of the replica in t and t−1 is the
same, then migration cost is zero. Otherwise, the replica migrates
from DC dr ∈ Dr (t − 1) to dr ∈ Dr (t), and application providers
incur a migration cost and make a cost–benefit. The cost–benefit is
the difference between the residential cost of the replica in the old
location dr ∈ Dr (t − 1) and the one in the new location dr ∈ Dr (t).
The cost–benefit obtained from replica migration is very important
for users to make a decision on whether to migrate the replica or
not. Algorithm 2 summarizes a wise decision in this respect.

For ease of algorithm explanation, we introduce three nota-
tions. Assume that tdrm denotes the last time of migration for the
replica object in DC dr . Also suppose Cdr

B (t) is a cost–benefit for DC
dr in time t and Cdr

L (tm, t) is the summation of cost–benefits which
have been lost for the replica in DC dr during period [tdrm , t]. This
happens when Cdr

L (tm, t) cannot compensate the migration cost of
replica from the old location in tdrm to the new one in t .

Algorithm 2 excludes the object replicas which have the same
location in t−1 and t since these replicas do not require migration
(line 1). For those replicas having potential to be migrated, the
algorithm first calculates the total of migration cost and residential
cost of the replica stored in dr ∈ Dr (t), i.e., C(dr , t)– (line 3). Then,
the algorithm computes the residential cost of the replica as if it is
stored in each d′r ∈ Dr (t − 1), i.e., CR(.)– (line 5).

According to these two values, C(dr , t) and CR(.), cost–benefit
Cd′r
B (t) is calculated in t (line 6). Now Algorithm 2 makes decision

on the replica migration in the following cases. Case 1: If the
summation of lost cost–benefit during [tm, t − 1] and the cost–
benefit in t is more than the migration cost (i.e. line 8), then it is
cost effective to migrate the replica from the old location in t − 1
(d′r ∈ Dr (t−1)) to the newone in t (dr ∈ Dr (t))–(line 6). In this case,
the DC dr is added toD∗r (t), and the DC d′r is removed fromDr (t−1)
to avoid comparison with the next DCs whichmay host a migrated
replica (lines 9–10). Also, Cdr

L (tm, t) is set to zero and the migration

1 Some cloud providers offer discount on the network cost if data is transferred
among their DCs. For simplicity, this discount is not formulated in the Put and
Migration costs, though it is considered in the performance evaluation in Section 5.

Algorithm 2: Optimization of replicas migration
Input : Dr (t − 1), Dr (t), latency between each pair of DCs,

and latency constraint L
Output: D∗r (t): the optimized location of replicas in t

1 Find the intersection set of Dr (t − 1) and Dr (t) sets and
remove DCs in the intersection set from both Dr (t − 1) and
Dr (t).

2 forall dr ∈ Dr (t) do
3 C(dr , t)← Calculate residential cost according to Eqns.

(1) - (4) and the migration cost based on Eqn. (5) .
4 forall d′r ∈ Dr (t − 1) do
5 CR(d′r (t − 1), dc(t) → d′r (t − 1))←Assume as if all

dcs assigned to dr are served by d′r subject to
l(dc, d′r) ≤ L and calculate the residential cost based
on Eqns. (1) - (4) .

6 Cd′r
B (t)← [CR(d′r (t − 1), dc(t) → d′r (t − 1))− C(dr , t)]

7 /*Migration happens*/
8 if Cdr

L (tm, t − 1)+ Cdr
B (t) ≥ Cdr

M (t − 1, t) then
9 D∗r (t)← D∗r (t) ∪ dr

10 Dr (t − 1)← Dr (t − 1)− {d′r}
11 Cdr

L (tm, t)← 0, tdrm ← t
12 break.
13 end
14 end
15 /*Migration does not happen*/
16 if dr /∈ D∗r (t) then
17 Find mind′r C(d

′
r , t)

18 D∗r (t)← D∗r (t) ∪ d′r
19 Dr (t − 1)← Dr (t − 1)− {d′r}
20 Cdr

L (tm, t)← Cdr
L (tm, t − 1)+ [CR(d′r (t − 1), dc(t) →

d′r (t − 1))− C(dr , t)]
21 end
22 end

time of replica in the DC dr is updated to the current time t in order
to evaluate the next potential migration time for this replica (line
11). Case 2: Otherwise, if the cost–benefit during period [tm, t] is
less than the migration cost of replica from the DC d′r in tm to the
DC dr in t , then the replica migration does not happen (line 16).
Thus, Algorithm 2 finds the DC d′r with the minimum residential
cost (i.e., mind′r Cr (d′r , t)), and then it adds the DC d′r ∈ Dr (t − 1)
to D∗r (t) and removes it from Dr (t − 1) (lines 17–19). Also, it adds
the lost cost–benefit in t to the summation of those during period
[tm, t − 1] (line 20).

To show how this algorithm works, we will give a simple ex-
ample as shown in Fig. 3. In this example, the set of DCs that hosts
replicas in time t − 1 are D1, D2, D3, D5, and D6. Assume the set of
potential DCs can store replicas in time t are D1, D4, D7, D8, andD6.
Since D1 (as home DC) and D6 are in both sets, they are excluded
from replica migration process. Thus, Algorithm 2 should make a
decision onwhether tomigrate replicas to newDCs D4, D7, and D8
in time t .

As shown in Fig. 3(b), Algorithm 2 calculates residential and
migration costs of the replicas in new DCs. For example these
values for D8 are 4 and 2 respectively. Then, it calculates the
residential cost of the replica as if it stays in the old DCs D2, D3,
and D5, as represented in parenthesis. Now the cost of the replica
in D4 is compared to that in D2, D3, and D5. Since the cost of the
replica in D4 (3+2) is equal to the residential cost of the replica
in D3 (5), the replica remains in D3 (marked with asterisk), and
D4 is excluded for the next decision on the replica placement. For
the next decision, as shown in Fig. 3(c), the residential cost of the

126 Y. Mansouri and R. Buyya / Journal of Parallel and Distributed Computing 126 (2019) 121–133

Fig. 3. An example of illustrating the replica migration between two consecutive time slots.

replica is calculated as if it is stored in old DCs D2 and D5. Since the
residential and migration costs of the replica in D7 (2+2) is less
than the residential cost in D2 (6) and D5 (5), D7 is selected to host
another object replica. Thus, D7 and D2 are excluded for the next
decision. In the same way, D5 is selected to host the last replica of
the object. Thus, two replicas remain in the old DCs D3 and D5, and
one replica migrates to the new DC D7.

The above discussed strategy uses the stop and copy tech-
nique [20] deployed by the single cloud system such as HBase2 and
ElasTraS [6], and in Geo-replicated systems [20]. As we desire to
minimize the monetary cost of migration, we use this technique
in which the amount of data moved is minimal as compared to
other techniques leveraged for live migration at shared process
level of abstraction.3 We believe that this technique does not
affect our system performance since the duration of migration for
transferring a bucket (at most 50 MB, the same as in Spanner [5])
among DCs is considerably low as shown in Section 6.

Therefore, with the defined residential and migration costs
based on Eqs. (1)–(5), the total cost of the object replicas in t is
defined as

CR(dr (t), dc(t) → dr (t))+ Cdr
M (t − 1, t), (6)

where CR(.) as a residential cost is the summation of costs in Eqs.
(1)–(4).

Besides the total cost optimization, our system respects the
latency Service Level Objective (SLO) for Gets and Puts. The latency
for a Get or Put is considered the time taken from when a user
issues a Get or Put from the DC dc to when he/she gets a response
from the DC dr that hosts the object. The latency between dc and
dr is denoted by l(dc, dr) and is evaluated based on the round
trip times (RTT) between these two DCs since the size of objects
is typically small (e.g., tweets, photos, small text file), and thus
data transitions are dominated by the propagation delays, not
by the bandwidth between the two DCs. For applications with
large objects, the measured l(dc, dr) values capture the impact
of bandwidth and data size as well. This performance criterion
is integrated in the cost optimization problem discussed in the
following subsection.

2 Apache HBase. https://hbase.apache.org/book.html.
3 In cloud-based transactional database, techniques such as stop and copy, it-

erative state replication, and flush and migrate in the process level are used. The
interested readers are referred to [8] and [7].

3.3. Cost optimization problem

Given the defined system and cost models, we are required to
determine the location of object replicas (dr) and the client DCs
(issuing Gets and Puts) assignment to a server DC (dc(t) → dr (t))
so that the overall cost for the object replicas (Eqn. (6)) during
t ∈ [1 . . . T] is minimized. This is defined as the following cost
optimization problem:

min
dr (t)

dc (t)→ dr (t)

∑
t

CR(.)+ CM (.) (7)

s.t. (repeated for ∀t ∈ [1 . . . T])
(a)

∑
dc dc(t)→ dr (t) = 1, ∀dr ∈ Dr (t)

(b)
∑

dr dc(t) → dr (t) = |Dc(t)|, ∀dc ∈ Dc(t)

(c)
∑

dr
∑

dc rdc (t)×l(dc (t),dr (t))∑
dc rdc (t)

≤ L, ∀dc ∈ Dc(t), dr ∈ Dr (t)

(d)
∑

dr dc(t) → dr (t) = |Dr (t)|, ∀dc ∈ Dc(t), Puts
(e) l(dc(t), dc(t)→ dr (t)) ≤ L ∀dc ∈ Dc(t), dr ∈ Dr (t).
To optimally solve the above problem, we are required to replace
dr (t) with αd(t) that is associated to DC d. The introduced variable
αd(t) is binary, being 1 if the DC d ∈ D hosts a replica of the object,
otherwise 0. Thus, we apply a constraint as below:
(f)

∑
d∈D αd(t) ≥ 1, ∀d ∈ D.

In this cost optimization problem, CR(.) + CM (.) is calculated
based on Eqn. (6), and L is as the upper bound of delay for Gets
and Puts on average to receive response. The value of L is defined
by users as their SLO. To reflect the real-world practicality, we con-
sider the following constraints. Constraint (a) ensures that a single
server DC dr for every client DC dc . Constraint (b) guarantees all
client DCs are served. Constraint (c) enforces the average response
time of Gets in range of L. Constraints (d) and (e) indicate that the
Puts are received by all server DCs in the average response time L.
Constraint (f) ensures at least a replica of the object is stored in DCs
at any time.

4. Cost optimization solution

We first provide a brief demonstration of the optimal solution
for the cost optimization problem, and then propose a heuristic
solution to perform well in practice.

https://hbase.apache.org/book.html

Y. Mansouri and R. Buyya / Journal of Parallel and Distributed Computing 126 (2019) 121–133 127

4.1. Optimal solution

To optimally solve the cost optimization problem, we should
find the values of αd(t)s and dc(t)→ dr (t)s, the same as that dis-
cussed in [15]. The value of dc(t)→ dr (t)s can be determined via
linear programming once the value of αd(t)s is fixed. To enumerate
value of all αd(t)s, we need to enumerate all r−combinations
of a given set of DCs (i.e.,

(
|D|
r

)
). Since the value of r can be

ranged between 1 and |D|, the number of combination of αd(t)s
is

∑
|D|
r=1

(
|D|
r

)
= 2|D| − 1.4

To find the optimal solution, we use a dynamic algorithm the
same as one in [15], which only differs in the number of combi-
nations of αd(t)s (i.e., the combinations of DCs with r (1 ≤ r ≤
|D|) replicas. Thus, the algorithm calculates the cost for (2|D| −
1)2 combinations of DCs for each time slot t ∈ [1 . . . T]. This
calculation takes time complexity of O ((2|D|−1)2TTlp), where Tlp is
the required time to solve the linear programming for finding the
value of dc(t)→ dr (t)s. As the optimal solution is computationally
intractable, we seek a practical heuristic solution.

4.2. Heuristic solution

We first propose Replica Placement based on Covered Load
Volume (RPCLV) Algorithm. This algorithm makes the iterative
decision on the assignment of client DCs to the potential DCs
which arewithin the latency constraint L. Then, by using the RPCLV
algorithm, Algorithms 1 and 2, we propose the heuristic solution
summarized in Algorithm 4.

4.2.1. Replica Placement based on Covered Load Volume (RPCLV)
Algorithm

The RPCLV algorithm is inspired from an approximation algo-
rithm for the Set Covering Problem [4]. This algorithm stores a
replica of the object in the potential DC which has the minimum
proportion of the residential cost (Eqns. (1)–(4)) and potential
migration cost (Eqn. (5)) to the volume data (in bytes) read from
and written into the potential DC by the client DCs. Clearly, these
client DCs are within the latency constraint L of the potential DC,
but they are not assigned yet. The algorithm selects this potential
DC as a server DC and finds the next best potential DC to host a
replica. This process is repeated until all client DCs are assigned to
a potential DC as a server DC. The details are given in Algorithm 3.

The RPCLV algorithm first assigns client DCs to each potential
DC dp ∈ D if the latency between the client DC dc and the
potential DC dp is within the latency constraint L (lines 3–10).
Then, it calculates PCV (dp) as the proportion of the residential and
migration costs of the replica stored in the DC dp to the total data
read and written by the set of client DCs assigned to dp (i.e., Ddp

c)–
lines 14–16. After that, RPCLV repeats the following process until
every client DC is assigned to a server DC. (i) RPCLV selects dp as
dr with the minimum value of PCV for storing a replica, adds dr to
Dr , and removes dp from Dp (lines 17–18). (ii) It also removes all
client DCs assigned to this dp from the client DCs (i.e.,Dc) as well as
removes them from those client DCs covered by theDC dp′ for every
p′ ̸= p (line 19). Finally, RPCLV revises the replicas creation cost
since in RPCLV the replica creation cost is calculated based on the
lower-bound number of replicas (i.e., ⌊r⌋) specified by Algorithm1.
Thus, RPCLV adds cost |(|Dr |− ⌊r⌋)×mindr∈DrO(dr)| to the replicas
creation cost if |Dr | > ⌊r⌋; Otherwise if |Dr | < ⌊r⌋, it subtracts this
value from the replicas creation cost (line 22). Clearly, if |Dr | = ⌊r⌋
there is no need to change the replicas creation cost.

4 Note that neither Algorithm 1 nor Algorithm 2 is used in optimal solution
since this solution enumerates all values of r as well as all combinations of object
migration between dr ∈ Dr (t − 1) and dr ∈ Dr (t).

Algorithm 3: Replica Placement based on Covered Load Vol-
ume (RPCLV)

Input : Dc , latency between each pair of DCs, and latency
constraint L

Output: Dr : the location of replicas in t
1 Initialize: Dr ← ∅

2 /*Assign feasible client DCs to the potential DCs. */
3 forall d ∈ D do
4 forall dc ∈ Dc do
5 if l(dc, d) ≤ L then
6 Consider the DC d as a potential DC dp which can

host a replica of the object
7 Ddp

c ← assign dc to the DC dp
8 end
9 end

10 Dp ← Dp ∪ dp
11 end
12 /*Assign client DCs to the potential DCs based on the

cost–volume ratio until all client DCs are covered. */
13 while Dc ̸= ∅ do
14 forall dp ∈ Dp do

15 PCV (dp) =
∑

dc→dp CR(dc ,dc→dp)+C
dp
M (t−1,t)∑

dc→dp (rdc+wdc)×v

16 end
17 Find mindpPCV (dp) and store a replica of the object in dp as

dr
18 Dr ← Dr ∪ dr , Dp ← Dp − dp
19 Dc ← Dc − Ddp

c , D
dp′
c ← D

dp′
c − Ddp

c
20 end
21 /*revise the replica creation cost */
22 Add |(|Dr |− ⌊r⌋)×mindr∈DrO(dr)| to replicas creation cost if

(|Dr |> ⌊r⌋) and subtract it if (|Dr |< ⌊r⌋).

Algorithm 4: The Cost Optimization Algorithm
Input : T .
Output: Cove: The overall cost

1 Initialize: Cove← 0
2 t← 1
3 Call the RPCLV algorithm and determine Dr (t) as well as Ddr

c
for each dr ∈ Dr (t)

4 Cove ← Calculate the residential Cost CR(.) based on Eqns.
(1)-(4)

5 for t ← 2 to T do
6 Call the RPCLV algorithm and determine Dr (t) as well as

Ddr
c for each dr ∈ Dr (t)

7 /*CR(.) and CM (.) are calculated based on Eqn. (6)*/
8 if Dr (t − 1) ̸= Dr (t) then
9 Call the optimization of replicas migration algorithm

(Algorithm 2)
10 Cove ← Cove + CR(.)+ CM (.)
11 else
12 Cove ← Cove + CR(.)
13 end
14 end

4.2.2. Cost optimization algorithm
Cost Optimization: Algorithm 4 gives the pseudocode of the

proposed heuristic solution which is composed of Algorithms 1,
2, and 3. In Algorithm 4, first RPCLV is invoked to determine the
locations of replicas (i.e., dr (t)) as well as the assigned client DCs to

128 Y. Mansouri and R. Buyya / Journal of Parallel and Distributed Computing 126 (2019) 121–133

Table 2
The time complexity of Algorithms 1–3.
Algorithm Total time complexity

Algorithm 1 O(|D|2) + O(|D|log|D|)+ O(|D|) =O(|D|2)
Lines (2–8) Line (9) Lines (10–14)

Algorithm 2 O(|D|) + O(|D|2) =O(|D|2)
Line (1) Lines (2–18)

Algorithm 3 O(|D|2)+ O(|D|2)+ O(|D|) =O(|D|2)
Lines (3–11) Lines (13–21) Line (23)

server DCs (i.e., dc(t)→ dr (t)). According to the values of dr (t) and
dc(t) → dr (t), first the residential cost of the replicas (i.e., CR(.))
based on Eqns. (1)–(4) is calculated for time slot t = 1 (lines 2–4).
Then, for each time slot t ∈ [2 . . . T], similarly Algorithm 4 finds
the replicas location and the assignment of client DCs to server DCs
(line 6) and checks whether the location of replicas in t − 1 and t
are different or not. If they are different (i.e., Dr (t − 1) ̸= Dr (t)),
Algorithm 2 is called to determine which replicas of the object
can be migrated and then the residential and migration costs are
calculated based on Eqn. (6) (lines 8–10). Otherwise (i.e., Dr (t −
1) = Dr (t)), the migration of replicas does not happen and only
the residential cost of replicas is calculated (line 12).

Metadata: At the beginning of each time slot, the metadata is
updated according to the replication policy dictated by
Algorithm 4. Themetadata is stored in all client DCs for a particular
object in the form of a table consisting of (object id → server DCs)
mapping, (server DC → client DC(s)) mapping, and how the put
operations are conducted on the replicas of the object. The former
mapping shows the replicas location for a particular object and
the later one demonstrates which server DC serves the client DC
issuing Get request for this object.

Time Complexity: Table 2 summarizes the time complexity of
the heuristic solution (Algorithm 4). Algorithm 4 invokes Algo-
rithm 3 which takes O(|D|2)-line 3. Then, for each t ∈ [2 . . . T], it
invokes RPCLV with the time complexity of O(|D|2), and also runs
Algorithm 2 with the time complexity of O(|D|2) if the replicas
migration happens. Thus, the heuristic solution yields the time
complexity of O(|D|2T).

5. Performance evaluation

Weevaluate the proposed solution for replicas placement of the
objects acrossGeo-distributeddata storeswith two storage classes.
Our evaluations explore three key questions: (i) How significant is
our solution in the cost saving?, (ii) how sensitive is our solution to
different parameters settings which are likely to have effect on the
cost saving?, and (iii) Howmuch time is required tomigrate objects
within and across regions? We explore the first two questions
via trace-driven simulations using the CloudSim discrete event
simulator [2] and the Twitter workload [11]. Simulation studies
enable us to evaluate our solution on a large scale (thousands
of objects). We answer the last question via the implementation
of our proposed solution on Amazon and Microsoft Azure cloud
providers in Section 6. This implementation allows us to measure
the latencies that are required for datamigrationwithin and across
regions in a real test-bed.

5.1. Experimental setting

We use the following setup for DC specifications, objects work-
load, users location, and experiment parameters setting.

DCs specifications: We model 18 DCs in CloudSim Toolkit [36],
and among these DCs, nine are modeled according to Amazon
and nine according to Microsoft Azure in different regions: 7 in
America, 4 Europe, and 7 in Asia Pacific.We use two storage classes
from each cloud providers: S3 and RRS from Amazon and ZRS

and LRS from Microsoft Azure. S3 and ZRS host objects with hot-
spot status and the remaining storage classes store objects with
cold-spot status. The price of these storage classes and network
services are set for each DC based on AWS and Microsoft Azure as
of November 2016.5

Objects workload: We use Twitter traces [11] which includes
users profile, a user friendship graph, and tweet objects sent by
users over a 5-year period. We focus on tweet objects posted by
the users and their friends on their timeline, and obtain the number
of tweets (i.e., number of Puts) from the dataset. Since the dataset
does not contain information of accessing the tweets (i.e., number
of Gets), we set a Get/Put ratio of 30:1, where the pattern of Gets
on the tweets follows Longtail distribution [1]. This patternmimics
the transition status of the object fromhot- to cold-spot status. The
size of each tweet object varies from 1 KB to 100 KB in the trace.

Users location: We assign each user to a DC as his/her home
DC based on the following policies. (i) Closest-based policy: with
the help of Google Maps Geocoding API,6 we convert the locations
of users in their profiles to Geo-coordinates (i.e., latitude and
longitude). Then, according to the coordination of users and DCs,
we assigned users to the nearest DC based on their locations. In
the case of two (ormore) DCswith the samedistance from the user,
one of these DCs is randomly selected as the home DC for the user.
(ii) Network-based policy: users are directed to the cheapest DC
in the network cost. (iii) Storage-based policy: users are mapped
to the cheapest DC in the storage cost. In the last two policies, the
selected DC must be within the SLO defined by users, and in the
case of two (or more) DCs with the same cost in either network
or storage, one of the closest DC is selected as the same way used
in the first policy. We use closest-based policy to assign friends of
the user to a DC. The user’s friends are derived from the friendship
graph of dataset.

Experiment parameters setting: We measured inter-DCs latency
(18*18 pairs) over several hours using instances deployed on all 18
DCs.We run Ping operations for this purpose, andused themedium
latency values as the input for our experiments. We consider two
SLOs for the values of Get and Put latencies: 100 ms and 250 ms.
Recall that the Put latency is the latency between the client DC to
the server DC that serves it. The stored data in the system depends
on the size of tweet objects, the number of friends of the users and
the rate of Get (write) [14]. To understand the effects of the total
stored data size in data stores on the cost performance, we define
‘‘quantile volume’’ parameter. This parameter with the value of ‘‘x’’
means that all data stores only store ‘‘x’’ percent of the generated
total data size. We use one-month (Dec. 2010) of Tweeter traces
with more than 46 K users, posting tweet on their timeline, for our
experiments conducted over a 60-day period.

5 Amazon S3 storage and data transfer pricing. https://aws.amazon.com/s3/
pricing/ Azure storage pricing. https://azure.microsoft.com/en-us/pricing/details/
storage/ Azure data transfer pricing. https://azure.microsoft.com/en-us/pricing/
details/data-transfers/.
6 The Google maps geocoding API. https://developers.google.com/maps/docum

entation/geocoding/intro.

https://aws.amazon.com/s3/pricing/
https://aws.amazon.com/s3/pricing/
https://azure.microsoft.com/en-us/pricing/details/storage/
https://azure.microsoft.com/en-us/pricing/details/storage/
https://azure.microsoft.com/en-us/pricing/details/data-transfers/
https://azure.microsoft.com/en-us/pricing/details/data-transfers/
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro

Y. Mansouri and R. Buyya / Journal of Parallel and Distributed Computing 126 (2019) 121–133 129

Fig. 4. Cost CDF vs. Cost saving of closest-, network-, and storage-based polices under tight (100 ms) and loose (250 ms) latency.

5.2. Results

We compare the cost savings gained by the proposed heuristic
solution with the following benchmark algorithm. We also inves-
tigate the effects of parameters as their values are changed.

Benchmark Algorithm and the Range of Parameters: This algo-
rithm permanently stores the objects in the home DC. It also
replicates a replica of objects in the client DCs, upon issuing Get
requests, via the home DC. The replica is stored in the client
DCs until they receive Gets and Puts, and thus the replica is not
allowed tomigrate to another DC. This algorithm, though simple, is
effective tomeasure the cost performance of using data storeswith
two storage classes offered by different DCs. In all experiments, we
normalize the incurred cost of the heuristic solution to the cost of
the benchmark algorithm by varying parameters in Table 3. Each
parameter has a default value and a range of values for studying
their impact of the parameter variations on the cost performance.

Cost performance:We present simulation results in Fig. 4, where
the CDF of the normalized cost savings is grouped by the default
value of quantile volume and latency. From the results, we ob-
serve the following remarks. First, there is a hierarchy between
policies in the cost savings, where the network-based policy out-
performs the storage-based policy, which in turn outweighs the
closest-policy. This is because that the network-based policy al-
lows users to select DC which is cheaper than their closest DC.
When we go deep into the cost savings obtained from each in-
dividual DC, we realized that users in California select cheaper
DC within their specified SLO instead of Amazon’DC in California.
Second, all policies provide cost savings for write-intensive objects
(R/W = 1) higher than read-intensive objects (R/W = 30). For
example, as shown in Figs. 4(a) and 4(b), all policies cut costs up to
50% for all read-intensive objects, while they save similar costs for
half of write-intensive objects and between 50%–80% for another

half. Third, all policies cut costs for almost all objects, apart from
2%–3% of the objects that incur slightly more costs than as if they
were replicated in each client DCs according to the benchmark
algorithm.

Table 4 summarizes the average cost saving for each group of
default values of quantile volume, R/W, and latency. We can see
that the network-based policy achieves the highest cost saving,
while the closest-based policy obtains the lowest, where the dif-
ference between these two policies is at most 6%. From the highest
cost saving on average obtained by the network policy for each
group of default parameters and the corresponding results in Fig. 4,
we realize the following facts. As shown in Fig. 4(a), all policies
save costs more than the highest cost saving on average for at
least 45% (25%) of write-intensive (read-intensive) objects. As the
quantile volume increases from0.2 to 1, all policies save costsmore
than the highest average cost saving for 50% of read- and write-
intensive objects (Fig. 4(c)). Likewise, results remain the same, or
even more improvements are experienced, for objects under loose
latency (Figs. 4(b) and 4(d)). Thus, we can say that all policies cut
costs for most of objects more than the highest cost saving on the
average obtained from the network-based policy.

We now investigate the effect of different parameters on the
cost saving. For the sake of brevity, from hereafter, we report the
results only for default values of parameters.We consider ‘‘closest’’
as the default policy since users often aremapped to the closest DC.

Fig. 5 shows the effect of quantile volume by varying it from 0.2
to 1 with the step size of 0.2 on the cost savings. As the quantile
volume increases from 0.2 to 1, cost savings slightly decrease by
about 6%–7% for write-intensive objects under both latency con-
straints. The rational is thatwhen quantile volume= 0.2, the cost is
dominated by write cost and our solution can optimize more cost.
As the quantile volume increases to 1, the effect of this domination
reduces. In contrast, cost savings increase by about 9% for read-
intensive objects under both tight (100 ms) and loose (250 ms)

130 Y. Mansouri and R. Buyya / Journal of Parallel and Distributed Computing 126 (2019) 121–133

Table 3
Summary of simulation parameters.

Policy Quantile
Volume

SLO
Latency (ms)

Read to Write
Ratio

Default Closest-based 0.2,1 100, 250 1,30

Range Closest-, network-,
Storage-based

0.2–1 50–250 1–30

Table 4
Average cost savings normalized to the benchmark algorithm cost.
Quantile
volume

Policy Latency= 100 ms Latency= 250 ms

R/W= 1 R/W= 30 R/W= 1 R/W= 30

0.2
Closest 44.78% 13.61% 49.21% 17.12%
Network-based 50.82% 18.78% 54.31% 22.32%
Storage-based 46.00% 13.98% 50.48% 17.51%

1
Closest 38.00% 22.79% 42.05% 26.80
Network-based 40.11% 25.43% 44.06% 29.89%
Storage-based 39.91% 23.88% 44.08% 27.96%

Fig. 5. Cost saving of closest-based policy vs. quantile volume.

Fig. 6. Cost saving of closest-based policy vs. latency.

latency constraints. This is because that as the value of quantile
volume increases, the effect of read cost reduces and storage cost
becomes more dominant.

Fig. 6 illustrates the effect of latency on the cost savings. As
the latency increase from 50 ms to 250 ms, as expected more
improvements are observed in the cost savings for all default
values of quantile volume and read to write ratio. This implies that
there is awider selection ofDCs availablewith lower cost in storage
and network resources for optimization under loose latency in
comparison to tight latency.

Fig. 7 plots the effect of read to write ratio, varying from 1
(write-intensive objects) to 30 (read-intensive objects), on the

Fig. 7. Cost saving of closest-based policy vs. read to write ratio.

cost savings. As the value of the ratio increases, the cost saving
decreases. Under both latency constraints, the results show a 66%
reduction in cost savings for quantile volume = 0.2, and corre-
spondingly at most a 42% reduction for quantile volume = 1. This
implies that the proposed solution is more cost-effective for write-
intensive objects in comparison to the read-intensive objects due
to efficient utilization of network resources for Puts.

6. Empirical studies in latency evaluation

We implemented a prototype system to provide data access
management across Amazon Web Service (AWS) and Microsoft
Azure cloud providers. For this purpose, we use JAVA-based AWS
S37 and Microsoft Azure8 storage REST APIs. With this prototype,
an individual end-user can manage data across two well-known
cloud providers, and measure the perceived latency for data mi-
gration.

6.1. Data access management modules

Our prototype system provides a set of modules that facilities
users to store, retrieve, delete, migrate, list data across AWS and

7 Amazon S3 REST API: http://docs.aws.amazon.com/AmazonS3/latest/API/Wel
come.html.
8 Azure storage REST API: https://docs.microsoft.com/en-us/rest/api/storageser

vices/fileservices/azure-storage-services-rest-api-reference.

http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/azure-storage-services-rest-api-reference

Y. Mansouri and R. Buyya / Journal of Parallel and Distributed Computing 126 (2019) 121–133 131

Fig. 8. An overview of prototype.

Fig. 9. Web services components used in the prototype.

Microsoft Azure data stores [13].9 All these services are RESTful
web services that utilize AWS S3 and Microsoft Azure storage
APIs in Java. They produce response in the JavaScript Object No-
tations (JSON) format in successful cases and error message in
the error cases. We use JSON format because it is a lightweight
data-interchange format and easy to understand. We discuss the
provided web services in more detail in [13].

6.2. Measurement of data migration time

We design a simple prototype as shown in Fig. 8. The way in
which the deployed virtual machines (VMs) should serve Puts and
Gets for each object is dictated by a central replica placement and
migration (RPM) manager. The RPM manager makes decision on

9 Data management across Amazon and Microsoft Azure. https://github.com/
ymansouri/AmazonAzurePrototype.

replica placement and migration across data stores based on the
proposed heuristic solution. The RPM issues Http requests (REST
call) to theVMsdeployed in cloud sites and receivesHttp responses
(JSON objects). The VMs process the received requests via the de-
ployedweb services that are implemented based on SpringModel-
View-Controller (MVC) framework [10] as illustrated in Fig. 9.

Tomeasure the time spent on datamigration acrossDCs,we uti-
lize the federation of cloud sites fromMicrosoft Azure and Amazon
in our prototype. We span our prototype across 3 Microsoft Azure
cloud sites in Japan West, North Europe, and South Central
US regions and 3 Amazon cloud sites in US East (North Vir-
ginia), US West(Oregon), and US West (North California)
regions. In each Azure cloud site, we create a Container and
deploy a DS3_V2 Standard VM instance. In each Amazon cloud
site, we create a Bucket and deploy a t2.medium VM instance.
All VM instances used in the prototype run Ubuntu 16.04 LTS as
operating system.

https://github.com/ymansouri/AmazonAzurePrototype
https://github.com/ymansouri/AmazonAzurePrototype

132 Y. Mansouri and R. Buyya / Journal of Parallel and Distributed Computing 126 (2019) 121–133

Fig. 10. CDF of data migration time (a) across regions and (b) within US region.

After the set-up,we run the heuristic algorithm for 100 users (in
the Twitter traces) who are assigned to the aforementioned cloud
sites. According to the replication andmigration policy dictated by
the heuristic algorithm, the data are stored in data stores and are
integrated in a folder (analogous to bucket in Spanner [5]) for each
user. When data migration happens we record the time of data
transfer from source cloud site to the destination cloud site.

Fig. 10 shows the CDFs of data migration time observed for
100 buckets (each user is associated to a bucket), each of which
with the size of about 47.35 MB in average. Fig. 10(a) depicts
that data migration can be transmitted in several seconds across
regions. About 60% of buckets are transmitted in 2.5 s from Azure
DC in Japan west (AZ-JAW) to Amazon DC in US west (AWS-USW)
as well as from Azure DC in Europe north (AZ-EUN) to Amazon
DC in US east (AWS-USE). Also, all buckets are transmitted in 3.5 s
from Asia region to US region and likewise 4.5 s from Europe
region to US region. Fig. 10(b) illustrates the data migration time
within US region. About 80% of buckets are migrated from Azure
DC in US center south (AZ-USCS) to Amazon US east (AWS-USE)
below 2 s. In contrast, bucket migration time between Amazon
DC in US west (North California) (AWS-USW(C)) to another
DC in US west (Oregon) (AWS-USW) is between 40–48 s for about
80% of buckets. From the results, we conclude that the duration
of buckets migration is considerably low. In the case of a large
number of buckets,we can transfer data in bulk across DCswith the
help of services such as AWS Snowball,10 and Microsoft Migration
Accelerator.11

7. Conclusions and future directions

We studied the problem of optimizing the monetary cost spent
on the storage services when data-intensive applications with
time-varying workloads are deployed across data stores with sev-
eral storage classes. We formulated this optimization problem and
proposed the optimal algorithm. Since high time complexity is one
of the weaknesses of this optimal algorithm, we proposed a new
heuristic solution formulated as a Set Covering problemwith three
polices. This solution takes advantages of pricing differences across
cloud providers and the status of objects that changes from hot-
spot to cold-spot during their lifetime and vice versa.We evaluated
the effectiveness of the proposed solution in terms of cost saving

10 AWS Snowball. https://aws.amazon.com/snowball/.
11 Microsoft Migration Accelerator. https://azure.microsoft.com/en-au/blog/intr
oducing-microsoft-migration-accelerator/.

via trace-driven simulation using CloudSim simulator and real-
world traces from Twitter. The evaluation results demonstrate that
our solution is capable of reducing the cost of data storagemanage-
ment by approximately two times in some cases when compared
to the widely used benchmark algorithm in which the data are
stored in the closest data store to the users who access them. We
also developed a prototype system to empiricallymeasure the data
migration within and regions that host DCs owned by Amazon
Web Service (AWS) andMicrosoft Azure cloud services. The results
show that the incurred latency to transfer data between DCs is
within a few seconds and is tolerable for users.

Our work can be extended in several research directions. First,
since data-intensive applications experience different access pat-
tern on their data, new algorithms to optimize cost for objects with
more than two statuses (e.g., cold, warm and hot) needs to be ex-
plored and developed. Second, the home DC can be selected based
on the mobility of the users. This selection criterion effects on the
response time of the Gets/Puts issuing by client DCs. Third, using
a quorum-based model for data consistency provides stronger
consistency semantic compared to the eventual consistency as
guaranteed in our work. Fourth, to determine the gap between the
proposed optimal and heuristic algorithms in cost performance, it
is required to compute the competitive ratio defined as the ratio
between theworst incurred cost by the heuristic algorithm and the
cost incurred by the optimal algorithm. For this purpose, we need
to compute the upper-bound cost for the optimization of replicas
migration (Algorithm 2) and replica placement based on covered
load volume (Algorithm 3).

References

[1] D. Beaver, S. Kumar, H.C. Li, J. Sobel, P. Vajgel, Finding a needle in haystack:
Facebook’s photo storage, in: Proceedings of the 9th USENIX Conference on
Operating SystemsDesign and Implementation, OSDI’10, USENIXAssociation,
Berkeley, CA, USA, 2010, pp. 47–60.

[2] R.N. Calheiros, R. Ranjan, A. Beloglazov, C.A.F. De Rose, R. Buyya, CloudSim:
A toolkit for modeling and simulation of cloud computing environments
and evaluation of resource provisioning algorithms, Softw. Pract. Exp. 41 (1)
(2011) 23–50.

[3] F. Chen, K. Guo, J. Lin, T. La Porta, Intra-cloud lightning: Building CDNs in the
cloud, in Proceedings IEEE INFOCOM, 2012, pp. 433–441.

[4] V. Chvatal, A greedy heuristic for the set-covering problem, Math. Oper. Res.
4 (3) (1979) 233–235.

[5] J.C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J.J. Furman, S. Ghemawat,
A. Gubarev, C. Heiser, P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li, A.
Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito,
M. Szymaniak, C. Taylor, R. Wang, D. Woodford, Spanner: Google’s globally
distributed database, ACM Trans. Comput. Syst. 31 (2013) 8:1–8:22.

https://aws.amazon.com/snowball/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
https://azure.microsoft.com/en-au/blog/introducing-microsoft-migration-accelerator/
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb1
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb1
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb1
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb1
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb1
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb1
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb1
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb2
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb2
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb2
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb2
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb2
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb2
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb2
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb4
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb4
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb4
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb5
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb5
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb5
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb5
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb5
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb5
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb5
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb5
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb5

Y. Mansouri and R. Buyya / Journal of Parallel and Distributed Computing 126 (2019) 121–133 133

[6] S. Das, D. Agrawal, A. El Abbadi, ElasTraS: An elastic transactional data store
in the cloud, in: Proceedings of the Conference on Hot Topics in Cloud
Computing, HotCloud’09, USENIX Association, Berkeley, CA, USA, 2009.

[7] S. Das, S. Nishimura, D. Agrawal, A. El Abbadi, Albatross: Lightweight elasticity
in shared storage databases for the cloud using live datamigration, Proc. VLDB
Endow. 4 (2011) 494–505.

[8] A.J. Elmore, S. Das, D. Agrawal, A. El Abbadi, Zephyr: Live migration in shared
nothing databases for elastic cloud platforms, in: Proceedings of the ACM
SIGMOD International Conference onManagement ofData, SIGMOD ’11, ACM,
New York, NY, USA, 2011, pp. 301–312.

[9] L. Jiao, J. Li, T. Xu, W. Du, X. Fu, Optimizing cost for online social networks on
geo-distributed clouds, IEEE/ACM Trans. Netw. 24 (1) (2016) 99–112.

[10] R. Johnson, J. Hoeller, A. Arendsen, T. Risberg, D. Kopylenko, Professional Java
Development with the Spring Framework, Wrox Press Ltd., Birmingham, UK,
2005.

[11] R. Li, S. Wang, H. Deng, R. Wang, K.C.-C. Chang, Towards social user profiling:
unified and discriminative influence model for inferring home locations, in
The 18th ACMSIGKDD International Conference on KnowledgeDiscovery and
Data Mining, KDD ’12, Beijing, China, August 12-16, 2012, pp. 1023–1031.

[12] G. Liu, H. Shen, Harnessing the power of multiple cloud service providers: An
economical and SLA-guaranteed cloud storage service, in: IEEE 35th Interna-
tional Conference on Distributed Computing Systems, 2015, pp. 738–739.

[13] Y. Mansouri, Brokering Algorithms for Data Replication and Migration Across
Cloud-BasedData Stores (Ph.D thesis), TheUniversity ofMelbourne, Australia,
2017.

[14] Y. Mansouri, R. Buyya, To move or not to move: Cost optimization in a dual
cloud-based storage architecture, J. Netw. Comput. Appl. 75 (2016) 223–235.

[15] Y. Mansouri, A.N. Toosi, R. Buyya, Cost optimization for dynamic replication
andmigration of data in cloud data centers, IEEE Trans. Cloud Comput. (2017).

[16] A. Mseddi, M.A. Salahuddin, M.F. Zhani, H. Elbiaze, R.H. Glitho, On optimizing
replica migration in distributed cloud storage systems, in Proceedings of the
4th IEEE International Conference on Cloud Networking, CloudNet, Niagara
Falls, ON, Canada, October 5–7, 2015, pp. 191–197.

[17] S. Muralidhar, W. Lloyd, S. Roy, C. Hill, E. Lin, W. Liu, S. Pan, S. Shankar, V.
Sivakumar, L. Tang, S. Kumar, f4: Facebook’s warm BLOB storage system, in:
Proceedings of the 11th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 14, USENIX Association, Broomfield, CO, 2014,
pp. 383–398.

[18] K.P. Puttaswamy, T. Nandagopal, M. Kodialam, Frugal storage for cloud file
systems, in: Proceedings of the 7th ACM European Conference on Computer
Systems, EuroSys’12, ACM, New York, NY, USA, 2012, pp. 71–84.

[19] X. Qiu, H. Li, C. Wu, Z. Li, F.C.M. Lau, Cost-minimizing dynamic migration of
content distribution services into hybrid clouds, IEEE Trans. Parallel Distrib.
Syst. 26 (2015) 3330–3345.

[20] N. Tran, M.K. Aguilera, M. Balakrishnan, Online migration for geo-distributed
storage systems, in: Proceedings of the 2011 USENIX Conference on USENIX
Annual Technical Conference, USENIXATC’11, USENIX Association, Berkeley,
CA, USA, 2011, pp. 15–15.

[21] Z. Wu, M. Butkiewicz, D. Perkins, E. Katz-Bassett, H.V. Madhyastha,
SPANStore: Cost-effective geo-replicated storage spanning multiple cloud
services, in: Proceedings of the Twenty-Fourth ACMSymposiumonOperating
Systems Principles, SOSP’13, ACM, New York, NY, USA, 2013, pp. 292–308.

[22] Y. Wu, C.Wu, B. Li, L. Zhang, Z. Li, F.C.M. Lau, Scaling social media applications
into geo-distributed clouds, IEEE/ACM Trans. Netw. 23 (2015) 689–702.

Yaser Mansouri is a Ph.D. student at Cloud Comput-
ing and Distributed Systems (CLOUDS) Laboratory, De-
partment of Computing and Information Systems, the
University of Melbourne, Australia. Yaser was awarded
International Postgraduate Research Scholarship (IPRS)
and Australian Postgraduate Award (APA) supporting his
Ph.D. studies. He received his B.Sc. degree from Shahid
Beheshti University of Tehran and his M.Sc. degree from
Ferdowsi University of Mashhad, Iran in Computer Sci-
ence and Software Engineering. His research interests
cover the broad area of Distributed Systems, with special

emphasis on data management in cloud-based storage services.

Dr. Rajkumar Buyya is a Redmond Barry Distinguished
Professor and Director of the Cloud Computing and Dis-
tributed Systems (CLOUDS) Laboratory at the University
of Melbourne, Australia. He has authored over 625 publi-
cations and seven text books including ‘‘Mastering Cloud
Computing’’ published by McGraw Hill, China Machine
Press, and Morgan Kaufmann for Indian, Chinese and
internationalmarkets respectively. He is one of the highly
cited authors in computer science and software engineer-
ing worldwide (h- index= 123, 79, 000+citations). Soft-
ware technologies for Cloud computing developed under

his leadership have gained rapid acceptance and are in use at several academic
institutions and commercial enterprises in 40 countries around theworld. Dr. Buyya
is recognized as a ‘‘Web of Science Highly Cited Researcher’’ both in 2016 and
2017 by Thomson Reuters, a Fellow of IEEE, and Scopus Researcher of the Year
2017 with Excellence in Innovative Research Award by Elsevier for his outstanding
contributions to Cloud computing. For further information on Dr.Buyya, please visit
his cyberhome: www.buyya.com.

http://refhub.elsevier.com/S0743-7315(18)30909-2/sb6
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb6
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb6
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb6
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb6
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb7
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb7
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb7
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb7
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb7
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb8
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb8
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb8
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb8
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb8
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb8
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb8
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb9
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb9
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb9
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb10
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb10
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb10
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb10
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb10
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb13
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb13
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb13
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb13
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb13
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb14
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb14
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb14
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb15
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb15
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb15
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb17
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb17
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb17
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb17
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb17
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb17
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb17
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb17
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb17
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb18
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb18
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb18
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb18
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb18
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb19
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb19
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb19
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb19
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb19
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb20
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb20
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb20
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb20
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb20
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb20
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb20
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb21
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb21
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb21
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb21
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb21
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb21
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb21
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb22
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb22
http://refhub.elsevier.com/S0743-7315(18)30909-2/sb22
http://www.buyya.com

	Dynamic replication and migration of data objects with hot-spot and cold-spot statuses across storage data centers
	Introduction
	Related Work
	System Model, Cost Model, and Cost Optimization Problem
	System model
	Cost model
	Cost Optimization Problem

	Cost Optimization Solution
	Optimal Solution
	Heuristic Solution
	Replica Placement based on Covered Load Volume (RPCLV) Algorithm
	Cost Optimization Algorithm

	Performance Evaluation
	Experimental setting
	Results

	Empirical Studies in Latency Evaluation
	Data Access Management Modules
	Measurement of Data Migration Time

	Conclusions and Future Directions
	References

