
91

Data Storage Management in Cloud Environments:

Taxonomy, Survey, and Future Directions

YASER MANSOURI, ADEL NADJARAN TOOSI, and RAJKUMAR BUYYA, The University of

Melbourne, Australia

Storage as a Service (StaaS) is a vital component of cloud computing by offering the vision of a virtually

infinite pool of storage resources. It supports a variety of cloud-based data store classes in terms of avail-

ability, scalability, ACID (Atomicity, Consistency, Isolation, Durability) properties, data models, and price

options. Application providers deploy these storage classes across different cloud-based data stores not only

to tackle the challenges arising from reliance on a single cloud-based data store but also to obtain higher

availability, lower response time, and more cost efficiency. Hence, in this article, we first discuss the key ad-

vantages and challenges of data-intensive applications deployed within and across cloud-based data stores.

Then, we provide a comprehensive taxonomy that covers key aspects of cloud-based data store: data model,

data dispersion, data consistency, data transaction service, and data management cost. Finally, we map vari-

ous cloud-based data stores projects to our proposed taxonomy to validate the taxonomy and identify areas

for future research.

Categories and Subject Descriptors: C.4 [Performance of Systems]: Reliability, availability, and service-

ability; C.2.4 [Computer-Communication Networks]: Distributed Systems

General Terms: Data Management, Data Storage, and Data Replication

Additional Key Words and Phrases: Data management, data storage, data replication, data consistency, trans-

action service, and data management cost

ACM Reference format:

Yaser Mansouri, Adel Nadjaran Toosi, and Rajkumar Buyya. 2017. Data Storage Management in Cloud Envi-

ronments: Taxonomy, Survey, and Future Directions. ACM Comput. Surv. 50, 6, Article 91 (December 2017),

51 pages.

https://doi.org/10.1145/3136623

1 INTRODUCTION

The explosive growth of data traffic driven by social networks, e-commerce, enterprises, and other
data sources has become an important and challenging issue for IT enterprises. This growing speed
is doubling every two years and augments tenfold between 2013 and 2020—from 4.4 to 44 ZB.
The challenges posed by this growth of data can be overcome with aid of using cloud computing
services. Cloud computing offers the illusion of infinite pool of highly reliable, scalable, and flexible

Authors’ addresses: Y. Mansouri, A. N. Toosi, and R. Buyya, are with the Cloud Computing and Distributed Systems

(CLOUDS) Laboratory, School of Computing and Information Systems, The University of Melbourne, Parkville Campus,

VIC 3010, Australia; email: yase@student.unimelb.edu.au, {anadjaran,rbuyya}@unimelb.edu.au.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2017 ACM 0360-0300/2017/12-ART91 $15.00

https://doi.org/10.1145/3136623

ACM Computing Surveys, Vol. 50, No. 6, Article 91. Publication date: December 2017.

https://doi.org/10.1145/3136623
mailto:permissions@acm.org
https://doi.org/10.1145/3136623

91:2 Y. Mansouri et al.

Fig. 1. Data elements in cloud storage.

computing, storage, and network resources in a pay-per-use manner. These resources are typically
categorized as Infrastructure as a Service (IaaS), where Storage as a Service (StaaS) forms one of
its critical components.

StaaS provides a range of cloud-based data stores (data stores for short) that differs in data model,
data consistency semantic, data transaction support, and price model. A popular class of data
stores, called Not only SQL (NoSQL), has emerged to host applications that require high scala-
bility and availability without having to support the ACID properties of relational database (RDB)
systems. This class of data stores—such as PNUTS (Cooper et al. 2008) and Dynamo (DeCandia
2007)—typically partitions data to provide scalability and replicates the partitioned data to achieve
high availability. Relational data store, as another class of data stores, provides a full-fledged rela-
tional data model to support ACID properties, while it is not as scalable as NoSQL data store. To
strike a balance between these two classes, NewSQL data store was introduced. It captures the ad-
vantages of both NoSQL and relational data stores and initially was exploited in Spanner (Corbett
et al. 2013).

To take the benefits of these classes, application providers store their data either in a single or
multiple data stores. A single data store offers the proper availability, durability, and scalability.
But reliance on a single data store has risks like vendor lock-in, economic failure (e.g., a surge in
price), and unavailability as outages occur, and probably leads to data loss when an environmental
catastrophe happens (Borthakur et al. 2011). Geo-replicated data stores, on the other hand, mit-
igate these risks and also provide several key benefits. First, the application providers can serve
users from the best data store to provide adequate responsiveness since data is available across
data stores. Second, the application can distribute requests to different data stores to achieve load
balance. Third, data recovery can be possible when natural disaster and human-induced activities
happen. However, the deployment of a single or multiple data stores causes several challenges
depending on the characteristics of data-intensive applications.

Data-intensive applications are potential candidates for deployment in the cloud. They are cat-
egorized into transactional (referred to as online transaction processing (OLTP)) and analytical (re-
ferred to as online analytical processing (OLAP)) that demand different requirements. OLTP appli-
cations embrace different consistency semantics and are adaptable with row-oriented data model,
while OLAP applications require rich query capabilities and compliance with column-oriented
data model. These requirements are faced with several challenges, and they mandate that we in-
vestigate the key elements of data management in data stores as shown in Figure 1. The first five
key elements are mature topics in the context of distributed systems and require how to apply them
to data stores with possible modifications and adoptions if needed. The last element, data man-
agement cost, is a new feature for cloud storage services and it is important for users to optimize
it while their Service Level Agreements (SLAs) are guaranteed.

The first element is data model that reflects how data is stored in and retrieved from data stores.
The second element is data dispersion with three schemes. Data replication scheme improves avail-
ability and locality by moving data close to the user, but it is costly due to usually storing three

ACM Computing Surveys, Vol. 50, No. 6, Article 91. Publication date: December 2017.

Data Storage Management in Cloud Environments 91:3

replicas for each object in data stores. Erasure coding scheme alleviates this overhead, but it re-
quires structural design to reduce the time and cost of recovery. To make a balance between these
benefits and shortcomings, a combination of both schemes is exploited. We clarify these schemes
and identify how they influence availability, durability, and user-perceived latency.

Other elements of data management are data consistency and data transaction that refer to co-
ordination level between replicas within and across data stores. Based on CAP theorem (Gilbert
and Lynch 2002), it is impossible to jointly attain Consistency, Availability, and Partition tolerance
(referred to the failure of a network device) in distributed systems. Thus, initially data stores pro-
vide eventual consistency—all replicas eventually converge to the last updated value—to achieve
two of three these properties: availability and partition tolerance. Eventual consistency is some-
times acceptable, but not for some applications (e.g., e-commerce) that demand strong consistency
in which all replicas receive requests in the same order. To obtain strong consistency, the recent
endeavours bring transactional isolation levels in NoSQL/NewSQL data stores at the cost of extra
resources and higher response time.

The last element is data management cost as the key driver behind the migration of application
providers into the cloud that offers a variety of storage and network resources with different prices.
Thus, application providers have many opportunities for cost optimization and cost trade-offs, such
as storage vs. bandwidth, storage vs. computing, and so on.

The main contributions of this paper are as follows:

—Comparison between cloud-based data stores and related data-intensive networks,
—Delineation on goals and challenges of intra- and inter-cloud storage services, and deter-

mination of the main solutions for each challenge,
—Discussion on data model taxonomy in three aspects: data structure, data abstraction, and

data access model; and comparison between different levels/models of each aspect,
—Providing a taxonomy for different schemes of data dispersion, and determining when (ac-

cording to the specifications of workload and the diversity of data stores) and which scheme
should be used,

—Elaboration on different levels of consistency and determination on how and which consis-
tency level is supported by the state-of-the-art projects,

—Providing a taxonomy for transactional data stores, classifying them based on the provided
taxonomy, and analyzing their performance in terms of throughput and bottleneck at
message,

—Discussion on the cost optimization of storage management, delineation on the potential
cost trade-offs in data stores, and classifying the existing projects to specify the research
venue for future.

This survey is divided into seven sections. Section 2 compares cloud-based data stores to other
distributed data-intensive networks and then discusses the architecture, goals, and challenges
of a single and multiple cloud-based data stores deployments. Section 3 describes a taxonomic
of data model, and Section 4 discusses different schemes of data dispersion. Section 5 elaborates
on data consistency in terms of level, metric, and model. Section 6 details the taxonomy of transac-
tional data stores, and Section 7 presents the cost optimization of storage management. Section 8
concludes the paper and presents future directions in the context of data storage management.

2 OVERVIEW

This section discusses a comparison between cloud-based data stores and other data-intensive
networks (Section 2.1), the terms used throughout this survey (Section 2.2), the characteristics of

ACM Computing Surveys, Vol. 50, No. 6, Article 91. Publication date: December 2017.

91:4 Y. Mansouri et al.

Table 1. Comparison between Data-intensive Networks in Charachteristics and Objectives

Property Cloud-Based Data Stores Data Grids
Content Delivery
Network (CDN) Peer to Peer (P2P)

Purpose Pay-as-you-go model,
on-demand provisioning
and elasticity

Analysis, generating,
and collaboration over
data

File sharing and content
distribution

Improving
user-perceived latency

Management
Entity

Vendor Virtual Organization Single organization Individual

Organization Tree-based (Wang et al.
2014)†
Fully optical Hybrid

Hierarchy Federation Hierarchy Unstructured Structured
Hybrid (Venugopal et al.
2006)

Service Delivery IaaS, PaaS, and SaaS IaaS IaaS IaaS

Access Type Read-intensive
Write-intensive Equally
of both

Read-intensive with rare
writes

Read-only Read- intensive with
frequent writes

Data Type Key-value
Document-based
Extensible record
Relational

Object-based (Often big
chunks)

Object-based (e.g.,
media, software, script,
text)

Object/file-based

Replica
Discovery

HTTP requests Replica
Catalog

Replica Catalog HTTP requests Distributed Hash
Table††, Flooded
requests

Replica
Placement

Section 4.1.6 Popularity Primary
replicas

A primary copy Caching Popularity without
primary replica

Consistency Weak and Strong Weak Strong Weak

Transaction
Support

Only in relational data
stores (e.g., Amazon
RDS)

None None None

Latency
Management

Replication, caching,
streaming

Replication, caching,
streaming

Replication, caching,
streaming

Caching, streaming

Cost
Optimization

Pay-as-you-go model (in
granularity of byte per
day for storage and byte
for bandwidth)

Generally available for
not-for-profit work or
project-oriented

Content owners pay
CDN operators, which,
in turn, pays ISPs to host
contents

Users Pay P2P to receive
sharing files.

†Tree-based organization has a flexible topology, while fully optical (consisting of a “pure” optical switching network)

and hybrid (including switching network of electrical packet and optical circuit) organizations have a fixed topology.

Google and Facebook deploy fat tree topology, a variant of tree topology, in their datacener architecture. †† Distributed

hash table is used for structured organization and flooded requests for the unstructured organization.

data-intensive applications deployed in data stores (Section 2.3), and the main goals and challenges
of a single and multiple data stores leveraged to manage these applications (Section 2.4).

2.1 A Comparison of Data-Intensive Networks

Table 1 highlights similarities and differences in characteristics and objectives between cloud-
based data stores and (i) Data Grid in which storage resources are shared among several
industrial/educational organizations as Virtual Organization (VO), (ii) Content Delivery Network
(CDN) in which a group of servers/datacenters (DCs) are located in several geographical locations
to serve users contents (i.e., application, web, or video) faster, and (iii) Peer-to Peer (P2P) in which
a peer (i.e., server) shares files with other peers.

Cloud-based data stores share more overlaps with Data Grids in the properties listed in Table 1.
They deliver more abstract storage resources (due to more reliance on virtualization) for different
types of workloads in an accurate economic model. They also provide more elastic and scalable re-
sources for different demands in size. These opportunities result in the migration of data-intensive

ACM Computing Surveys, Vol. 50, No. 6, Article 91. Publication date: December 2017.

Data Storage Management in Cloud Environments 91:5

Fig. 2. Relational and NoSQL schemas. Fig. 3. NewSQL Schema (Shute et al. 2013).

applications to the clouds and cause two categories of issues. One category is more specific to
cloud-based data stores and consists of issues such as vendor lock-in, multi-tenancy, network con-
gestion, monetary cost optimization, and so on. Another category is common between cloud-based
data stores and Data Grids and includes issues like data consistency and latency management.
Some of these issues require totally new solutions, and some of them have mature solutions and
may be applicable either wholly or with some modifications based on the different properties in
cloud-based data stores.

2.2 Terms and Definitions

A data-intensive application system consists of applications that generate, manipulate, and analyze
a large amount of data. With the emergence of cloud-based storage services, the data generated
from these applications are typically stored in single data store or Geo-replicated data stores (several
data stores in different worldwide locations). The data is organized as dataset, which is created and
accessed across DCs by users/application providers. Metadata describe the dataset with respect to
the several attributes such as name, creation time, owner, replicas location, and so on.

A dataset consists of a set of objects or records that are modeled in relational databases (RDBs) or
NoSQL databases. The data store that manages RDBs and NoSQL databases are, respectively, called
as relational data store and NoSQL data store. As shown in Figure 2, RDBs have fixed and predefined
fields for each object whereas NoSQL databases do not. NoSQL data stores use key-value data model
(or its variations such as graph and document) in which each object is associated with a pair of key
and value. Key is unique and is used to store and retrieve the associated value of an object. NewSQL
data stores follow a hierarchical data model, which introduces a child-parent relation between each
pair of table where the child table (Campaign in Figure 3) borrows the primary key of its parent
(e.g., Customer) as a prefix for its primary key. In fact, this data model has a directory table (e.g.,
Customer in Figure 3) in the top of hierarchical structure and each row of directory table together
with all rows in the descendant tables (e.g., Campaign and AdGroup) constructs a directory.

A complete or partial replica of the dataset is stored in a single data store or different data
stores across Geo-distributed DCs based on the required QoS (response time, availability, dura-
bility, monetary cost). An operation to update an object can be initially submitted to a predefined
replica (called single master) or to any replicas (multi-master) based on predefined strategy (e.g.,
the closest). Replicas are consistent when they have the same value for an object. Replicas are in
weak/strong consistency status if replicas return (probably) different/same values for a read op-
eration. A transaction is a set of reads and writes, and it is committed if all reads and writes are
conducted (on all replicas of data); otherwise, it is aborted.

ACM Computing Surveys, Vol. 50, No. 6, Article 91. Publication date: December 2017.

91:6 Y. Mansouri et al.

Service Level Agreement (SLA) is a formal commitment between the cloud provider (e.g.,
Amazon and Microsoft Azure) and the application providers/users. For example, current cloud
providers compensate users with service credit if the availability of a data store would be below a
specific value in percent.

2.3 Data-intensive Applications

In respect to the cloud characteristics, two types of data-intensive applications can be nominated
for the cloud deployment (Abadi 2009).

Online transaction processing (OLTP) applications must guarantee ACID properties and provide
an “all-or-nothing” proposition that implies each set of operations in a transaction must com-
plete or no operation should be completed. Deploying OLTP applications across data stores is
not straightforward, because achieving the ACID properties requires acquiring distributed locks,
executing complex commit protocols and transferring data over network, which in turn causes
network congestion across data stores and introduces network latency. Thus, OLTP should be
adapted to ACID properties at the expense of high latency to serve reads and writes across data
stores. Online Analytical Processing (OLAP) applications usually use read-only databases and often
need to handle complex queries to retrieve the desired data for data warehouse. The updates in
OLAP are conducted on regular basis (e.g., per day or per week), and their rate is lower than that
of OLTP. Hence, the OLAP applications do not need to acquire distributed locks and can avoid
complex commit protocols.

Both OLTP and OLAP should handle a tremendous volume of data at incredible rates of growth.
This volume of data is referred to as big data, which has challenges in five aspects: volume refers to
the amount of data; variety refers to the different types of generated data; velocity refers to the rate
of data generation and the requirement of accelerating analysis; veracity refers to the certainty of
data; and value refers to the determination of hidden values from datasets. Schema-less NoSQL
databases easily cope with two of these aspects via providing an infinite pool of storage (i.e., vol-
ume) in different types of data (i.e., variety). For other aspects, NoSQL data stores are controversial
for OLTP and OLAP. From the velocity aspect, NoSQL data stores like BigTable (Chang et al. 2008),
PNUTS (Cooper et al. 2008), Dynamo (DeCandia 2007), and Cassandra (Lakshman and Malik 2010)
facilitate OLTP with reads and writes in low latency and high availability at the expense of weak
consistency. This is a part of the current article to be discussed. From velocity, veracity and value
aspects (the last two aspects are more relevant to OLAP), OLAP requires frameworks like Hadoop,1

Hive (Thusoo et al. 2010), and Pig,2 as well as algorithms in big data mining to analysis and opti-
mize the complex queries in NoSQL data stores. It is worth to mention these frameworks lack rich
query processing on the cloud and change into the data model is a feasible solution that is out of
the scope of this article. In the rest of this section, we focus on goals and challenges of data stores
that suit OLTP applications.

2.4 Architecture, Goals, and Challenges of Intra-Cloud Storage

This section first describes a layered architecture of data store and then discusses the key goals
and challenges of deploying a single data store to manage data-intensive applications.

2.4.1 Architecture of Intra-Cloud Storage. Cloud storage architecture shares a storage pool
through either a dedicated Storage Area Network (SAN) or Network Attached Storage (NAS).3

1http://wiki.apache.org/hadoop.
2http://hadoop.apache.org/pig/.
3A NAS is a single storage device that operates on file system and makes TCP/IP and Ethernet connections. In contrast, a

SAN is a local network of multiple devices that operates on disk blocks and uses fiber channel interconnections.

ACM Computing Surveys, Vol. 50, No. 6, Article 91. Publication date: December 2017.

http://wiki.apache.org/hadoop
http://hadoop.apache.org/pig/.

Data Storage Management in Cloud Environments 91:7

Table 2. Intra-Cloud Storage Goals

Goals Techniques (Examples) Section(s)

Performance and cost saving Combination of different storage services Section 7

Fault tolerance and availability Replication (Random replication, Copyset, MRR)
Erasure coding

Section 4.1
Section 4.2

Multi-tenancy Shared table (saleforce.com (Lomet 1996))
Shared process (Pisces (Shue et al. 2012), ElasTras (Das et al. 2013a))
Shared machine (Commercial DaaS, like Amazon RDS)

—

Elasticity and load balancing Storage-load-aware (Dynamo, BigTable)
Access-aware ((Chen et al. 2013))

—

The architecture is composed of a distributed file system, Service Level Agreement (SLA), and
interface services. It divides the components by physical and logical functions boundaries and re-
lationships to provide more capabilities (Zeng et al. 2009). In the layered architecture, each layer
is constructed based on the services offered by its underneath layer. These layers from bottom to
top are as follows:

(1) Hardware layer consists of distributed storage servers in a cluster of several racks, and each
of which has disk-heavy storage nodes. (2) Storage management provides services for managing
data in the storage media. It consists of the fine-grained services like data replication and erasure
coding management, replica recovery, load balancing, consistency, and transaction management.
(3) Metadata management classifies the metadata of stored data in a global domain (e.g., storage
cluster) and collaborates with different domains to locate data when it is stored or retrieved. For
example, Object Table in Window Azure Storage (Calder et al. 2011) has a primary key containing
three properties: AccountName, PartitionName, and ObjectName that determine the owner, loca-
tion, and name of the table, respectively. (4) Storage overlay is responsible for storage virtualization
that provides data accessibility and is independent of physical address of data. It converts a logical
disk address to the physical address by using metadata. (5) User interface provides users with prim-
itive operations and allows cloud providers to publish their capabilities, constraints, and service
prices to help subscribers to discover the appropriate services based on their requirements.

2.4.2 Goals of Intra-Cloud Storage. Table 2 introduces the five main goals of data-intensive
applications deployment in a single data store. These goals are as follows:

• Performance and cost saving. Efficient utilization of resources has a direct influence on cost
saving as data stores offer the pay-as-you-go model. To achieve both these goals, a combi-
nation of storage services varying in price and performance yields the desired performance
(i.e., response time) with a low cost as compared to relying on one type of storage service.
To make an effective combination, the decision on when and which type of storage services
to use should be made based on hot- and cold-spot statuses of data, respectively, receiv-
ing many and a few read/write requests, and the required QoS. Current data stores do not
guarantee SLA in terms of performance and only measure latency within the storage ser-
vice (i.e., the time between when a request was served at one of the storage nodes and when
the response left the storage node) and the latency over the network (i.e., for the operation
to travel from the VM to the storage node and for the response to travel back) via enabling
logging.4

• Fault tolerance and availability. Failures arise from faulty hardware and software in two mod-
els. Byzantine model presents arbitrary behavior and can be survived via 2f + 1 replicas (f

4Log format in Amazon: http://docs.aws.amazon.com/AmazonS3/latest/dev/LogFormat.html.

ACM Computing Surveys, Vol. 50, No. 6, Article 91. Publication date: December 2017.

http://docs.aws.amazon.com/AmazonS3/latest/dev/LogFormat.html

91:8 Y. Mansouri et al.

is the number of failures) along with non-cryptographic hashes or cryptographic primitives.
Crash-stop model silently stops the execution of nodes and can be tolerated via data repli-
cation and erasure coding in multiple servers located in different racks, which in turn are in
different domains. This failure model has two types: correlate and independent. The random
placement of replicas used in current data stores only tackles independent failures. Copy-
set (Cidon et al. 2013) replicates an object on a set of storage nodes to tolerate correlated
failures, and multi-failure resilient replication (MRR) (Liu and Shen 2016) places replicas of
a single chunk in a group of nodes (partitioning into different sets across DCs) to cope with
both types of failure.

• Multi-tenancy. Multi-tenancy allows users to run applications on shared hardware and soft-
ware infrastructure so their isolated performance is guaranteed. It brings benefits for cloud
providers to improve infrastructure utilization by eliminating to allocate the infrastructure
to the maximum load; consequently, cloud providers run applications on and store data
in less infrastructure. This, in turn, reduces the monetary cost for users. However, multi-
tenancy causes variable and unpredictable performance, and multi-tenant interference and
unfairness (Shue et al. 2012), which happen to different multi-tenancy models (from the
weakest to the strongest): shared table model in which applications/tenants are stored in
the same tables with an identification field for each tenant, shared process model in which
applications share the database process with an individual table for each tenant, and shared
machine model in which applications only share the physical hardware, but they have an
independent database process and table. Among these models, shared process has the best
performance as a database tenant is migrated, while shared machine brings inefficient re-
source sharing among tenants and shared table is not suitable for applications with different
data models (Das et al. 2013a). Examples of each model are shown in Table 2.

• Elasticity and load balancing. Elasticity refers to expansion (scaling up) and consolidation
(scaling down) of servers during load changes in a dynamic system. It is orthogonal with
load balancing in which workloads are dynamically moved from one server to another un-
der skewed query distribution so all servers handle workloads almost equally. This improves
the infrastructure utilization and even reduces monetary cost. There are two approaches to
achieve load balancing. Storage-load-aware approach uses key range (i.e., distributing tuples
based on the value ranges of some attributes) and consistent hash-algorithm (DeCandia 2007)
techniques to distribute data and balance load across storage nodes. These techniques, used
by almost all existing data stores, are not effective when data-intensive applications experi-
ence hot- and cold-spot statuses. These applications thus deploy the access-load-aware ap-
proach for load balancing (Chen et al. 2013). Both approaches use either stop and copy migra-
tion, which is economic in data transferring, or live migration, which is network-intensive
task but incurs fewer service interruptions when compared to the former migration tech-
nique (Tran et al. 2011). Nevertheless, current cloud providers support auto-scaling mecha-
nisms in which the type, maximum and minimum number of database instances should be
defined by users. Thus, they cannot provide a fine-grained SLA in this respect.

2.4.3 Challenges of Intra-Cloud Storage. Table 3 introduces what challenges application
providers confront with the deployment of their applications within a data store. These challenges
are as follows:

• Unavailability of services and data lock-in. Data replication across storage nodes in an ef-
ficient way (instead of random replica placement widely used by current data stores) and
erasure coding are used for high availability of data. Using these schemes across data stores

ACM Computing Surveys, Vol. 50, No. 6, Article 91. Publication date: December 2017.

Data Storage Management in Cloud Environments 91:9

Table 3. Intra-Cloud Storage Challenges

Challenges Solutions Section(s)/References

Unavailability of services
and data lock-in

Data replication
Erasure coding

Section 4.1
Section 4.2

Data transfer bottleneck (i) Workload-aware partitioning (for OLTP)
(ii) Partitioning of social graph, co-locating
the data of a user and his friends along with
the topology of DC (for social networks)
(iii) Scheduling and monitoring of data
flows

(Kumar et al. 2014; Kamal et al. 2016;
Tang et al. 2015; Chen et al. 2016;
Zhou et al. 2017)

(Al-Fares et al. 2010; Das et al. 2013b;
Shieh et al. 2011)

Performance
unpredictability

(i) Data replication and redundant requests
(ii) Static and dynamic reservation of
bandwidth
(iii) Centralized and distributed bandwidth
guarantee
(iv) Bandwidth guarantee based on
network topology and application
communications

(Stewart et al. 2013; Shue et al. 2012)
(Ballani et al. 2011; Xie et al. 2012)

(Jeyakumar et al. 2013; Ballani et al.
2011; Popa et al. 2013; Guo et al. 2014)
(Lee et al. 2014)

Data security (i) Technical solutions (encryption
algorithms, audit third party (ATP), digital
signature)
(ii) Managerial solutions
(iii) A combination of solutions (i) and (ii)

(Shin et al. 2017)

also mitigates data lock-in in the face of the appearance of new data store with a lower
price, mobility of users, and change in workload that demands data migration.

• Data transfer bottleneck. This challenge arises when data-intensive applications are de-
ployed within a single data store. It reflects the optimality of data placement that should
be conducted based on the characteristics of the application as listed for OLTP and social
networks in Table 3. To reduce more network congestion, data flows should be monitored in
the switches, and they should be then scheduled (i) based on the data flow prediction (Das
et al. 2013b), (ii) when data congestion occurs (Al-Fares et al. 2010), and (iii) for integrated
data flows (Shieh et al. 2011) rather than individual data flow. In addition, data aggregation
(Costa et al. 2012), novel network typologies (Wang et al. 2014), and optical circuit switching
deployment (Chen et al. 2014) are other approaches to drop network congestion.

• Performance unpredictability. Shared storage services face the challenges like unpredictable
performance and multi-tenant unfairness, which result in degrading the response time of re-
quests. In Table 3, the first two solutions solve challenge with respect to storage, where
replicas placement and selection should be considered. The last two solutions cope the
challenges related to network aspect, where fairness in allocated network bandwidth to
cloud applications and maximizing of network bandwidth utilization should be taken into
consideration. These solutions are: (i) static and dynamic reservation of bandwidth where
the static approach cannot efficiently utilize bandwidth, (ii) centralized and distributed band-
width guarantee where the distributed approach is more scalable, and (iii) bandwidth guar-
antee based on the network topology, and application communications, which is more ef-
ficient (Lee et al. 2014). Such solutions suffer from data delivery within deadline, and they
thus are suitable for batch applications, but not for OLTP applications, which require the
completion of data flows within deadline (Vamanan et al. 2012).

• Data security. This is one of the strongest barriers in the adoption of public clouds to store
users’ data. It is a combination of (i) data integrity, protecting data from any unauthorized
operations; (ii) data confidentiality, keeping data secret in the storage (iii) data availability,
using data at any time and place; (iv) data privacy, allowing data owner to selectively reveal

ACM Computing Surveys, Vol. 50, No. 6, Article 91. Publication date: December 2017.

91:10 Y. Mansouri et al.

their data; (v) data transition, detecting data leakage and lost during data transfer into the
storage; and (vi) data location, specifying who has jurisdiction and legislation over data in
a transparent way. Many solutions were proposed in recent decades to deal with concerns
over different security aspects except data location where data is probably stored out of
users’ control. These solutions are not generally applicable, since unlike the traditional sys-
tems with two parties, the cloud environment includes three parties: users, storage services,
and vendors. The last party is a potential threat to the security of data, since it can provide
a secondary usage for itself (e.g., advertisement purposes) or for governments.
Solutions to relieve concerns over data security in the cloud context can be technical, man-
agerial, or both. In addition to technical solutions as listed in Table 3, managerial solutions
should be considered to relieve security concerns relating to the geographical location of
data. A combination of both types of solutions can be: (i) designing location-aware al-
gorithms for data placement as data are replicated to reduce latency and monetary cost,
(ii) providing location-proof mechanisms for user to know the precise location of data (e.g.,
measuring communication latency and determining distance), and (iii) specifying privacy
acts and legislation over data in a transparent way for users. Since these acts, legislation, and
security and privacy requirements of users are a fuzzy concept, it would be relevant to de-
sign a fuzzy framework in conjunction of location-aware algorithms. This helps users to find
storage services, which are more secure in respect to rules applied by the location of data.

A better approach to achieve the discussed goals and avoid the above challenges is to store data
across data stores. In the rest of the section, we discuss the benefits of this solution as well as the
challenges that arise from it.

2.5 Architecture, Goals, and Challenges of Inter-Cloud Storage

This section describes the layered architecture of Inter-Cloud storage deployment along with its
key benefits and challenges.

2.5.1 Architecture of Inter-Cloud Storage. The architecture of inter-cloud storage does not fol-
low standard protocols. So far, several studies exploit multiple data stores diversity for different
purposes with a light focus on the architecture of Inter-cloud storage (e.g., RACS (Abu-Libdeh et al.
2010) and ICStore (Cachin et al. 2010)). Spillner et al. (2011) focused more on the Inter-cloud stor-
age architecture that allows user to select a data store based on service cost or minimal downtime.
Inspired by this architecture, we pictorially clarify and discuss a layered inter-cloud architecture
as shown in Figure 4.

• Transport layer represents a simple data transport abstraction for each data store in its un-
derneath layer and transfers data to data store specified in the upper layer by using its trans-
port module. This layer implements a file system (e.g., the Linux Filesystem in Userspace5)
to provide protocol adaptor for the data store.

• Data management layer provides services for managing data across data stores and
consists of services such as load balance, replication, transaction, encryption, and decryption.
Load balance service monitors the submitted requests to each data store and reports to
replication service to store a new replica or write/read the object in/from data store with
the lowest load. Replication and transaction services can be configured in the layered
architecture and collaborate with each other to provide the desired consistency. Encryption

5http://fuse.sourceforge.net.

ACM Computing Surveys, Vol. 50, No. 6, Article 91. Publication date: December 2017.

http://fuse.sourceforge.net.

Data Storage Management in Cloud Environments 91:11

Fig. 4. Inter-cloud storage architecture.

and decryption services can be deployed to make data more secure and reduce the storage
and network overheads.

• Integration layer allows user to access and manipulate the data through client library (API),
which is exploited by the client application to issue operations to data stores (often the
closest one).

• Metadata component plays as an essential component in the architecture and collaborates
with data management layer for writing (respectively, reading) objects in (respectively,
from) data stores. It contains object metadata (e.g., in the form of XML) to determine the
location of object replicas and is stored by all DCs in which the application is deployed.

As an example in Figure 4, an issued Get (read) request from client library is usually directed
to the closest DC (e.g., DC1), and the requested object is searched in metadata stored at DC. If
the object exists, then the application code in VM retrieves the object from the local data store
and returns it to the client. Otherwise, the DC sends the request to DC, which hosts the object
according to the metadata. For a Put (write) request, after finding the location of replicas, first the
object is written in VM’s application and the metadata in VM is changed, and then the VM library
invokes the Put in client library to store the object in local data store via transport layer. Finally, the
Put is propagated to other replicas to guarantee eventual consistency (Put in DC2) or, in a simple
way, all replicas are locked and the Put is synchronously propagated to them to provide strong
consistency (Put in DC1).

2.5.2 Goals of Inter-Cloud Storage. Table 4 lists the key goals of leveraging Geo-replicated data
stores. These are as follows:

• High availability, durability, and data lock-in avoidance. These are achievable via data
replication scheme across data stores owned by different cloud providers. A 3-way data
replication provides availability of 7 nines (Mansouri et al. 2013), which is adequate for
most applications. This is inadequate for protecting data against correlated failures, while
two replicas are sufficient for guarding data against independent failures (Cidon et al.
2015). Erasure coding scheme is another way to attain higher durability even though it

ACM Computing Surveys, Vol. 50, No. 6, Article 91. Publication date: December 2017.

91:12 Y. Mansouri et al.

Table 4. Inter-Cloud Storage Goals

Goals Techniques/Schemes Section(s)

High availability, durability,
and data lock-in avoidance

Data replication
Erasure coding

Section 4.1
Section 4.2

Cost benefit Exploitation of pricing differences across data stores and
time-varying workloads

Section 7

Low user-perceived latency Placing replicas close to users
Co-locating the data accessed by the same transactions
Determining the location and roles of replicas (master and
slave) in a quorum-based configuration (Sharov et al. 2015)

—

High data confidentiality,
integrity, and auditability

Cryptographic protocols with erasure coding and RAID
techniques

—

degrades data availability in comparison to data replication. Both schemes prevent data
lock-in.

• Cost benefit. Due to pricing differences across data stores and time-varying workloads, ap-
plication providers can diversify their infrastructure in terms of vendors and locations to
optimize cost. The cost optimization should be integrated with the demanding QoS level
like availability, response time, consistency level, and so on. This can be led to a trade-off
between the cost of two resources (e.g., storage vs. computing) or the total cost optimization
based on a single-/multi-QoS metrics (Section 7).

• Lowe user-perceived latency. Application providers achieve lower latency through deploying
applications across multiple cloud services rather than within a single cloud services. Ap-
plications can further decrease latency via techniques listed in Table 4. In spite of these ef-
forts, users may still observe the latency variation, which can be improved through caching
data in memory (Nishtala et al. 2013)), issuing redundant reads/writes to replicas (Wu et al.
2015)), and using feedback from servers and users to prevent requests redirection to satu-
rated servers (Suresh et al. 2015)).

• High data confidentiality, integrity, and auditability. Using Cryptographic protocols with era-
sure coding and RAID techniques on top of multiple data stores improves security in some
aspects as deployed in HAIL (Bowers et al. 2009) and DepSky (Bessani et al. 2011). In such
techniques, several concerns are important: scalability, cost of computation and storage
for encoding data, and the decision on where the data is encoded and the keys used for
data encryption are maintained. A combination of private and public data stores and ap-
plying these techniques across public data stores offered by different vendors improve data
protection against both insider and outsider attackers, especially for insider ones who re-
quire access to data in different data stores. Data placement in multiple data stores, on the
other hand, brings a side effect, since different replicas are probably stored under different
privacy rules. Selection of data stores with similar privacy acts and legislation rules would
be relevant to alleviate this side effect.

2.5.3 Challenges of Inter-Cloud Storage. The deployment of data-intensive applications across
data stores is faced with the key challenges as listed in Table 5. These are discussed as follows:

• Cloud interoperability and portability. Cloud interoperability refers to the ability of different
cloud providers to communicate with each other and agree on the data types, SLAs, and so
on. Cloud portability means the ability to migrate application components and data across
cloud providers regardless of APIs, data types, and data models. Table 5 lists solutions for
this challenge.

ACM Computing Surveys, Vol. 50, No. 6, Article 91. Publication date: December 2017.

Data Storage Management in Cloud Environments 91:13

Table 5. Inter-Cloud Storage Challenges

Challenges Solutions Example Section(s)

Cloud
interoperabiliy
and portability

Standard protocols for IaaS
Abstraction storage layer
Open API

n/a†
CASL (Hill and Humphrey 2010)
JCloud††

—

Network
congestion

Dedicating redundant links across DCs
Store and forward approach

Software-Defined Networking (SDN)

n/a
Postcard (Feng et al. 2012; Wu et al.
2017)
B4 (Jain et al. 2013; Wu et al. 2017)

—

Strong
consistency and
transaction
guarantee

Heavy-weight coordination protocols
Contemporary techniques

See Appendices C, D, and E Section 5,
Section 6

†n/a: not applicable, †† JCloud: https://jclouds.apache.org/.

• Network congestion. Operating across Geo-DCs causes network congestion, which can be
time-sensitive or non time-sensitive. The former, like interactive traffic, is sensitive to delay,
while the latter, like transferring big data and backing up data, is not so strict to delay and
can be handled within deadline (Zhang et al. 2015) or without deadline (Jain et al. 2013). The
first solution for this challenge, listed in Table 5, is expensive, while the second solution in-
creases the utilization of network. The last solution is Software-Defined Networking (SDN)
(Kreutz et al. 2015). SDN separates control plane that decides how to handle network traffic,
and data paths that forwards traffic based on the decision made from control plane. All these
solutions answer a part of this fundamental question: how to schedule the data transfer so
it is completed within a deadline and budget subject to the guaranteed network fairness and
throughput for jobs that processes the data.

• Strong consistency and transaction guarantee. Due to high communication latency between
DCs, coordination across replicas to guarantee strong consistency can drive users away. To
avoid high communication latency, some data stores compromise strong consistency at the
expense of application semantics violations and stale data observations. Others, on the other
hand, provide strong consistency in the cost of low availability. To achieve strong consis-
tency without compromising with availability and scalability, coordination across replicas
should be reduced or even eliminated.

Our survey article focuses on some of these discussed goals and challenges. In particular, the
rest of the article discusses the five elements of data storage management specified in Figure 1.

3 DATA MODEL

Data model reflects how data is logically organized, stored, retrieved, and updated in data stores.
We thus study it from different aspects and map data stores to the provided data model taxonomy
in Figure 5.

3.1 Data Structure

Data structure affects the speed of assimilation and information retrieving. It has three categories.
(i) Structured data refers to data that defines the relationship between the fields specified with
a name and value, for example, RDBs. It supports a comprehensive query and transaction pro-
cessing facilities. (ii) Semi-structured is associated with the special form of structured data with a
specific schema known for its application and database deployments (e.g., document and extensi-
ble DBs). It supports primitive operations and transaction facilities as compared to structured data.
(iii) Unstructured data refers to data that have neither pre-defined data model nor organized in a
pre-defined way (e.g., video, audio, and heavy-text files). It takes the simplest data access model,

ACM Computing Surveys, Vol. 50, No. 6, Article 91. Publication date: December 2017.

https://jclouds.apache.org/

91:14 Y. Mansouri et al.

Fig. 5. Data model taxonomy.

that is, key-value, that delivers high scalability and performance at the cost of sacrificing data
consistency semantic and transaction support.

In these logical data structures, data is internally organized row-by-row, column-by-column
closely related to database normalization, or combination of both schemes- called hybrid—within
a block. Structured data can be organized in all schemes, semi-structured in row-by-row and hybrid
schemes, and Unstructured data in a row-by-row scheme.

3.2 Data Abstraction

This refers to different levels of storage abstraction in data stores. These levels are as follows:

(1) Block-level provides the fastest access to data for virtual machine (VM). It is classified
into (i) directed-attached storage coming with a VM that provides highly sequential I/O
performance with a low cost, and (ii) block storage that pairs with a VM as a local disk.

(2) File-level is the most common form of data abstraction due to its ease of management via
simple API. It is provided in the forms of (i) object storage that enables users to store large
binary objects anywhere and anytime, and (ii) online drive storage that provides users with
folders on the Internet as storage.

(3) Database mode offers storage in the forms of relational data store and semi-structured data
storage, which, respectively, provide users with RDB and NoSQL/NewSQL databases. RDB
exploiting the SQL standard does not scale easily to serve large web applications but guar-
antees strong consistency. In contrast, NoSQL provides horizontal scalability by means of
shared nothing, replicating, and partitioning data over many servers for simple operations.
In fact, it preserves BASE (Basically Available, Soft state, Eventually consistent) properties
instead of ACID ones to achieve higher performance and scalability. NewSQL—as a combi-
nation of RDB and NoSQL—targets delivering the scalability similar to NoSQL, meanwhile
maintaining ACID properties.

Table 6 compares different levels of storage abstractions in several aspects as well as their ap-
plicability. This comparison indicates that as the storage abstraction (ease of use) level increases,
the cost and performance of storage reduce.

ACM Computing Surveys, Vol. 50, No. 6, Article 91. Publication date: December 2017.

Data Storage Management in Cloud Environments 91:15

Table 6. Comparison between Different Storage Abstractions

Ease of use† Scalability Performance†† Cost [Applicability]

File-level File-level Block-level Block-level [OLAP applications]
Database mode Block-level Database mode Database mode [OLTP applications with low latency queries]
Block-level Database mode File-level File-level [Backup data and web content static]

†The levels of storage abstract are listed from high to low for each aspect listed in each column. ††Performance is defined

in terms of accessibility.

Table 7. Comparison between NoSQL (The First Three Databases) and Relational Databases

Database Simplicity Flexibility Scalability Properties Data Structure SLA Application [Query] type
key-value High High High — (Un-/)structured Weak OLAP [Simple]
Document High Moderate Moderate BASE Semi-structured Weak OLAP [Moderate]
Extensible record High High High ACID (Semi-/)structured Weak OLTP [Moderate, repetitive]
Relational Low Low Low ACID Structured Weak OLTP [Complex]

3.3 Data Access Model

This reflects storing and accessing model of data that affect on consistency and transaction man-
agement. It has four categories as follows:

(1) Key-value database stores keys and values that are indexed by keys. It supports primitive
operations and high scalability via keys distribution over servers. Data can be retrieved
from the data store based on more than one attribute if additional key-value indexes are
maintained.

(2) Document database stores all kinds of documents indexed in the traditional sense and pro-
vides primitive operations without ACID guarantee. It thus supports eventual consistency
and achieves scalability via asynchronous replication, shard (i.e., horizontal partition of
data in the database), or both.

(3) Extensible record database is analogous to table in which columns are grouped, and rows
are split and distributed on storage nodes (Cattell 2011) based on the primary key range
as a tablet representing the unit of distribution and load balancing. Each cell of the table
contains multiple versions of the same data that are indexed in decreasing timestamps
order, thereby the most recent version can always read first (Sakr et al. 2011). This scheme
is called NewSQL, which is equivalent with entity group in Megastore (Baker et al. 2011),
shard in Spanner (Corbett et al. 2013), and directory in F1 (Shute et al. 2013).

(4) Relational database (RDB) has a comprehensive pre-defined scheme and provides manipu-
lation of data through SQL interface that supports ACID properties. Except for small-scope
transactions, RDB cannot scale the same as NoSQL.

Table 7 compares different databases in several aspects and indicates which type of application
and query can deploy them. NoSQL databases offer horizontal scalability and high availability
by scarifying consistency semantic, which makes them unsuitable for the deployment of OLTP
applications. To provide stronger consistency semantic for OLTP applications, it is vital to carefully
partition data within and especially across data stores and to use the mechanisms that exempt or
minimize the coordination across transactions. Moreover, these databases have several limitations
relating to big data for OLAP applications. All these disk-based data stores cannot suitably facilitate
OLAP applications in the concept of velocity and thus most commercial vendors combine them
with in-memory NoSQL/relational data stores (e.g., Memcached,6 Redis,7 and RAMCloud (Rumble

6https://memcached.org/.
7https://redis.io/.

ACM Computing Surveys, Vol. 50, No. 6, Article 91. Publication date: December 2017.

https://memcached.org/.
https://redis.io/.

91:16 Y. Mansouri et al.

et al. 2014)) to further improve performance. These databases also cannot be completely fitted with
the concept of velocity relating to big data for OLAP applications, which receive data with different
formats. It is thus required a platform to translate these formats into a canonical format. OLAP
applications can combat the remaining limitations (i.e., veracity and value) arising from using
these databases in the face of large data volumes via designing indexes to retrieve data. Moreover,
NoSQL data stores guarantee weak SLA in terms of availability (Sakr 2014) and auto-scaling, and
without any SLA in the case of response time. In fact, they measure response time as data is stored
and retrieved, and they also replicate data across geographical locations on users’ request.

Another class of database is relational. This class of database compromise high availability and
scalability for stronger consistency semantics and for providing higher query processing facilities.
Current cloud providers offer this class of database in the form of Database-as-a-Service (DaaS)
such as Amazon RDS, SQL Azure, and Google cloud SQL. DaaSs allow application providers to use
the full capabilities of MySQL, MariaDB, PostgreSQL, Oracle, and Microsoft SQL Server DB en-
gines. In fact, DaaSs support complex queries, distributed transactions, stored procedures, views,
and so on, while they confront with several limitations mainly elasticity, strong consistency, trans-
action management across geographical locations, and live migration for purposes like multi-
tenancy and elasticity. Moreover, similar to NoSQL databases, DaaSs support almost the same
SLA and only can scale out/down based on manual rules defined by users according to the work-
load. DaaSs require more complex mechanisms to guarantee SLA, because they should manage
resources like CPU, RAM, and disk. For more details on challenges and opportunities, the readers
are referred to the survey on cloud-hosted databases proposed by Sakr (2014).

Figure 5 provides examples of discussed classes of databases, and Table 1 in the Appendix sum-
marizes them in several main aspects. For more details on these databases, readers are referred
to Sakr et al. (2011).

4 DATA DISPERSION

This section discusses the second element of data management in storage, data dispersion schemes,
as shown in Figure 1.

4.1 Data Replication

Data replication improves availability, performance (via serving requests by different replicas),
and user-perceived latency (by assigning requests to the closest replica) at the cost of replicas
coordination and storage overheads. This is affected by facets of data replication based on the
taxonomy in Figure 6.

4.1.1 Data Replication Model. There are two replication models for fault-tolerant data stores
(Pedone et al. 2000): The first model is state machine replication (SMR) in which all replicas re-
ceive and process all operations in a deterministic way (in the same order) using atomic broadcast
(Section 6.1.3). This implies SMR is abort-free and failure transparency, which means if a replica
fails to process some operations those are still processed in other replicas. However, SMR has
low throughput and scalability for read and write (RW) transactions, since all servers process
each transaction. Thus, the scalability and throughput are confined by the processing power of a
server. Scalable-SMR (S-SMR) (Bezerra et al. 2014) solves this issue across data stores via (i) parti-
tioning database and replicating each partition and (ii) using cache techniques to reduce commu-
nication between partitions without compromising consistency. SMR and S-SMR are suitable for
contention-intensive and irrevocable transactions that require abort-free execution.

The second model is Deferred-update replication (DUR). It resembles single/multi-master repli-
cation approach and scales better than SMR due to locally executing RW transactions on a server

ACM Computing Surveys, Vol. 50, No. 6, Article 91. Publication date: December 2017.

Data Storage Management in Cloud Environments 91:17

Fig. 6. Data replication taxonomy.

Table 8. Comparison between Replication Models

Replication Models Advantages Disadvantages Consistency semantic

State machine replication† Failure transparency
Abort-free

Low throughput and scalability
for RW transactions

Linearizability

Deferred-update replication High throughput and scala-
bility for RO transactions

Stale data
Replica divergence

non-Linearizability

†It is also called active replication.

Table 9. Comparison between Full and Partial Replications

Properties Comparison Reason/Description

Scalability Partial > Full Due to access to a subset of DCs not all DCs
Complexity Partial > Full Due to the requirement for the exact knowledge where data reside
Storage Cost Partial < Full Due to data replication in a subset of data stores

Applicability
Partial > Full If read requests come from a specific DCs, or when objects are write-intensive
Partial < Full If read requests come from all DCs, or when transactions are global

and then propagating updates to other servers. Thus, in DUR, the RW transactions do not scale
with the number of replicas in comparison to the read-only (RO) transactions executed only on
a server without communication across servers using a multiversion technique. Scalable-DUR (S-
DUR) (Sciascia et al. 2012) and Parallel-DUR (P-DUR) (Pacheco et al. 2014) allow RW transactions
to scale with the number of servers and the number of cores available for a replica, respectively.
In respect to pros and cons summarized in Table 8, the scalability and throughput of transactions
can be improved through borrowing the parallelism in DUR and abort-free feature in SMR (Kobus
et al. 2013).

4.1.2 Data Replication Degree. Data replication can be either partial or full. In partial (respec-
tively, full) replication each node hosts a portion (respectively, all) of data items. For example, in
the context of Geo-DCs, partial (respectively, full) replication means that certain (respectively, all)
DCs contain a replica of certain (respectively, all) data items.

Table 9 shows that partial replication outperforms full replication in storage services cost due
to access to a subset of data stores deployed across DCs. It is also better than full replication in
scalability, because full replication is restricted by the capacity of each replica that certifies and

ACM Computing Surveys, Vol. 50, No. 6, Article 91. Publication date: December 2017.

91:18 Y. Mansouri et al.

processes transactions. These advantages demand more complex mechanisms for consistency and
transaction support in partial replication, which potentially degrades response time. Many partial
replication protocols provide such mechanisms at the expense of communication cost same as full
replication (Armendáriz-Iñigo et al. 2008). This is due to unpredictable overlapping transactions
in which the start time of transaction Ti is less than the commit time of transaction Tj and the
intersection of write set Ti and Tj is not empty. The deployment of genuine partial replication
solves such issue and enforces a transaction to involve only the subset of servers/DCs containing
the desired replicas for coordination. In terms of applicability, partial replication is suitable for
write-intensive objects (due to submitting each request to a subset of DCs (Shen et al. 2015)), and
full replication is proper for execution of global (multi-shard) transactions.

Therefore, the characteristics of workload and the number of DCs are main factors in making a
decision on what data replication degree should be selected. If the number of DCs is small, then full
replication is preferable; otherwise, if global transactions access few DCs, then partial replication
is a better choice.

4.1.3 Data Replication Granularity. This defines the level of data unit that is replicated, ma-
nipulated, and synchronized in data stores. Replication granularity has two types: single row and
multi-row/shard. The former naturally provides horizontal data partitioning, thereby allowing high
availability and scalability in data stores like Bigtable, PNUTS, and Dynamo. The latter is the first
step beyond single row granularity for new generation web-applications that require attaining
both high scalability of NoSQL and ACID properties of RDBs (i.e., NewSQL features). This type of
granularity has an essential effect on the scalability of transactions, and according to it, we classify
transactions from granularity aspect in Section 6.1.5.

4.1.4 Update Propagation. This reflects when updates take place and is either eager/synchronous
or lazy/asynchronous. In eager propagation, the committed data is simultaneously conducted on all
replicas, while in lazy propagation the changes are first applied on the master replica and then on
slave replicas. Eager propagation is applicable on a single data store like SQL Azure (Campbell et al.
2010) and Amazon RDS, but it is hardly feasible across data stores due to response time degradation
and network bottleneck. In contrast, lazy propagation is widely used across data stores to improve
response time.

4.1.5 Update Initiation. This refers to where updates are executed in the first place. Three ap-
proaches for update initiation are discussed as follows:

Single master approach deploys a replica at the closest distance to the user or a replica receiving
the most updates as the master replica. All updates are first submitted to the master replica and
then are propagated either eagerly or lazily to other replicas. In single master with lazy propa-
gation, replicas receive the updates in the same order accepted in the master and might miss the
latest versions of updates until the next re-propagation by the master. Single master approach has
advantages and disadvantages as listed in Table 10. These issues can be mitigated somehow by
multi-master approach in which every replica can accept update operations for processing and in
turn propagates the updated data to other replicas either eagerly or lazily. Thus, this approach
increases the throughput of read and write transactions at the cost of stale data, while replicas
might receive the updates in the different order, which results in replicas divergence and thus the
need for conflict resolution.

Quorum approach provides a protocol for availability vs. consistency in which writes are sent to
a write set/quorum of replicas and reads are submitted to a read quorum of replicas. The set of read
quorum and write quorum can be different and both sets share a replica as coordinator/leader. The
reads and writes are submitted to a coordinator replica, which is a single master or multi-master.

ACM Computing Surveys, Vol. 50, No. 6, Article 91. Publication date: December 2017.

Data Storage Management in Cloud Environments 91:19

Table 10. Comparison between Update Initiation

Update initiation Advantages Disadvantages Data store(s)

Single Master† Strong consistency††
Conflict avoidance

Low throughput of RW transactions
Single point of failure and bottleneck

Amazon RDS�
PNUT

Multi-master High throughput of RO and RW
transactions, not performance bottleneck

Stale data
Replica divergence

Window Azure
Storage (WAS)

Quorum Adaptable protocol for availability vs.
consistency

Determining the location of coordinator
Determining the read and write quorum

Cassandra, Riak,
Dynamo, Voldemort

†It is also called primary backup. ††Strong consistency is provided with eager propagation, not lazy. �Amazon RDS: https://

aws.amazon.com/rds/.

This protocol suffers from the disadvantages in determining the coordinator location and the quo-
rum of write and read replicas as addressed when workload changes (Sharov et al. 2015). Though
this classical approach guarantees strong consistency, many Geo-replicated data stores achieve
higher availability at a cost of weaker consistency via its adaptable version in which a read/write
is sent to all replicas and is considered successful if the acknowledgements are received from a
quorum (i.e., majority) of replicas. This adapted protocol is configured with write (W) and read
quorum (R) in synchronous writes and reads. The configuration is determined in (i) strict quorum
in which any two quorums have non-empty intersection (i.e.,W + R > N , where N is the number
of replicas) to provide strong consistency, and (ii) partial quorum in which at least two quorums
should not overlap (i.e.,W + R < N) to support weak consistency. Generally speaking, (i) a rise in
W
R

improves the consistency, and (ii) a raise in W reduces availability and increases durability.

4.1.6 Replica Placement. This is related to the mechanism of replica placement in data store and
is composed of four categories. (1) Hash mechanism is intuitively understood as a random place-
ment and determines the placement of objects based on the hashing outcome (e.g., Cassandra).
It effectively balances the load in the system, however, it is not effective for a transactional data
store that requires co-located multiple data items. (2) Closest mechanism replicates a data item in
the node that receives the most requests for this data item. Although closest mechanism decreases
the traffic in the system, it is not efficient for a transactional data store, because the related data
accessed by a transaction might be placed in different locations. (3) Multiget (Nishtala et al. 2013)
seeks to place the associated data in the same location without considering the localized data serv-
ing. (4) Associated data placement (ADP) (Yu and Pan 2015) makes the strike between closest and
multiget mechanisms.

As discussed previously, using each strategy differed on various aspects of replication can affect
the latency, consistency and transaction complexity, and even monetary cost. Among these, the
key challenge is how to make a trade-off between consistency and latency, where update initiation
and propagation are main factors. Data stores provide lesser latency and better scalability as these
factors mandate weaker consistency (Table 2 in the Appendix).

4.2 Erasure Coding

Cloud file system uses erasure coding to reduce storage cost and to improve availability as compared
to data replication. A (k,m)-erasure coding divides an object into k equally sized chunks that hold
original data along with m extra chunks that contain data coding (parity). All these chunks are
stored into n = k +m disks, which increase the storage overhead by a factor of 1/r = k/n < 1 and
tolerates m faults, as opposed to m − 1 faults for m−way data replication with a factor of m − 1
storage overhead. For example, a (3,2)-erasure coding tolerates two failed replicas with a 2/3(=66%)
storage overhead as compared to three-way replication with the same fault tolerance and a 200%
storage overhead. To use erasure coding as an alternative to data replication, we need to investigate
it in the following aspects as shown in Figure 7.

ACM Computing Surveys, Vol. 50, No. 6, Article 91. Publication date: December 2017.

https://penalty -@M aws.amazon.com/rds/

91:20 Y. Mansouri et al.

Fig. 7. Erasure coding taxonomy.

4.2.1 Model. Erasure coding has two models. Systematic model consists of (original) data
and parity chunks, which are separately stored in n −m and m storage nodes. Non-systematic
model includes the coded data (not original data), which is stored in n nodes. Systematic and
non-systematic codes are, respectively, relevant for archival and data-intensive applications due
to, respectively, low and high rate of reads. Systematic codes seem more suitable for data stores,
because they decode data when a portion of data is unavailable. Comparatively, non-systematic
codes decode data whenever data are retrieved due to storing the coded data not the original data.
This may degrade the response time.

4.2.2 Structural Class. This represents the reconstruct-ability of code that is largely reliant on
erasure coding rate (i.e., r), including two classes. The first class is (k,m)-maximum distance sepa-
rable (MDS) code in which the data is equally divided into k chunks, which are stored in n = k +m
storage nodes. A (k,m)-MDS code tolerates any m of n failed nodes and rebuilds the unavailable
data from any k surviving nodes, known as MDS-property. A MDS code is optimal in terms of re-
liability vs. storage overhead while it incurs significant recovery overheads to repair failed nodes.
The second class is non-MDS code. Any code that is not MDS code is called non-MDS code. This
code tolerates less thanm failed nodes and typically rebuilds the failed nodes from less than k sur-
viving nodes. Thus, compared to MDS codes, non-MDS codes are (i) more economical in network
cost to rebuild the failed nodes, which makes them more suitable for deploying across data stores
and (ii) less efficient in the storage cost and fault-tolerance.

4.2.3 Performance Metrics. Erasure coding is evaluated based on the following performance
metrics that have received significant attention in the context of cloud.

(1) Recovery refers to the amount of data retrieving from disk to rebuild a failed data chunk.
Recovery is important in the following aspects.

• Recovery model in which a failed storage node is recovered through survivor nodes has
three models (Suh and Ramchandran 2011). The first is exact-repair in which the failed
nodes are exactly recovered, thus lost parity with their exact original data are restored. The
second is partial exact-repair in which the data nodes are fixed exactly and parity nodes are
repaired in a functional manner by using random-network-coding framework (Dimakis
et al. 2010). This framework allows to repair a node via retrieving functions of stored data
instead of subset of stored data so the code property (e.g., MDS-property) is maintained.
The third is functional repair in which the recovered nodes contain different data from that
of the failed nodes while the recovered system preserves the MDS-code property. Workload
characteristics and the deployed code model determine which recovery model satisfies

ACM Computing Surveys, Vol. 50, No. 6, Article 91. Publication date: December 2017.

Data Storage Management in Cloud Environments 91:21

Table 11. Comparison between Replication, Reed-Solomon Code, and Local Recostruction Code

Recovery Storage

Schemes Structural Class Cost† Overhead Applicability

(m-way) Replication n/a 1 (m-1)X 3-way replication in WAS, S3, and Google storage

(k,m)-RS MDS K (1+ m

k
)X (6,3)-RS in Google and (10,4)-RS in Facebook

(k,l,r)-LRC Non-MDS [r+1,r+l] (1+ l+r

k
)X (12,2,2)-LRC in WAS (Calder et al. 2011)

†n/a: not applicable, Recovery time: (m-way) Replication < (k,l,r)-LRC < (k,m)-RS. Durability: (m-way) Replication <

(k,m)-RS < (k,l,r)-LRC.

the application requirements. Exact- and partial exact-repair are appropriate for archival
applications while functional repair is suitable for non-secure sensitive applications,
because it requires the dynamics of repairing and decoding rules that result in information
leakage.

• Recovery cost is the total number of required chunks to rebuild a failed data chunk. It consists
of disk traffic and network traffic affected by network topology and replication policy (Zhang
et al. 2010). Recently, the trade-off between recovery cost and storage cost takes considerable
attention in the context of clouds as discussed in the following.

A (k,m)-Reed-Solomon (RS) code contains k data chunks and m parity chunks, where
each parity chunk is computed from k chunks. When a data chunk is unavailable, there is
always a need of any subset of k chunks from m + k chunks, as recovery cost, to rebuild
the data chunk. This code is used in Google ColossusFS (Ford et al. 2010) and Facebook
HDFS (Muralidhar et al. 2014) within a DC (a XOR-based code–using pure XOR operation
during coding computation—across DCs). In spite of the RS code optimality in reliability
vs. storage overhead, it is still unprofitable due to high bandwidth requirements within and
across data stores. Hitchhiker (Rashmi et al. 2014) mitigates this issue without compromise
on storage cost and fault tolerance via the adapted RS code in which a single strip RS code
is divided into two correlated sub-stripes.

Similar to MDS-code, regenerating and non-MDS codes (Wu et al. 2007) alleviate the net-
work and disk traffics. Regenerating codes aim at the optimal trade-off between storage
and recovery cost and come with two optimal options (Rashmi et al. 2011). The first is the
minimum storage regenerating (MSR) codes, which minimize the recovery cost keeping the
storage overheads the same as that in MDS codes. NCCloud (Chen et al. 2014) uses func-
tional MSR, as a non-systematic code, and maintains the same fault tolerance and storage
overhead as in RAID-6. It also lowers recovery cost when data migrations happen across
data stores due to either transition or permanent failures. The second is the minimum band-
width regenerating (MBR) codes that further minimize the recovery cost, since they allow
each node to store more data.

A (k, l , r) Local Reconstruction Code (LRC) (Huang et al. 2012) divides k data blocks into

l local groups and creates a local parity for each local group and r = k
l

global parities. The
number of failure it can tolerate is between r + 1 and r + l . HDFS-Xorbas (Sathiamoorthy
et al. 2013) exploits LRC to make a reduction of 2x in the recovery cost at the expense
of 14% more storage cost. HACFS (Xia et al. 2015) code also uses LRC to provide a fast
code with low recovery cost for hot data and exploits Product Code (PC) (Roth 2006))
to offer a compact code with low storage cost for cold data. Table 11 compares RS-code
and LRC, used in current data stores, with data replication in the main performance
metrics.

ACM Computing Surveys, Vol. 50, No. 6, Article 91. Publication date: December 2017.

91:22 Y. Mansouri et al.

• Recovery time refers to the amount of time to read data from disk and transfer it within
and across data stores during recovery. As recovery time increases, response time grows,
resulting in a notorious effect on the data availability. Erasure codes can improve recovery
time through two approaches. First, erasure codes should reduce network and disk traffics
to which RS codes are inefficient as they read all data blocks for recovery. However, rotated
RS (Khan et al. 2012) codes are effective due to reading the requested data only. LRC and
XOR-base (Rashmi et al. 2014) codes are also viable solutions to decrease recovery time.
Second, erasure codes should avoid retrieving data from hot nodes for recovery by repli-
cating hot nodes’ data to cold nodes or caching those data in dynamic RAM or solid-state
drive.

(2) Response time indicates the delay of reading (respectively, writing) data from (respectively,
in) data store and can be improved through the following methods. (i) Redundant requests
simultaneously read (respectively, write) n coded chunks to retrieve (respectively, store) k
parity chunks (Shah et al. 2014). (ii) Adaptive batching of requests makes a trade-off between
delay and throughput, as exploited by S3 (Simple Storage Service) and WAS (McCullough et al.
2010). (iii) Deploying erasure codes across multiple data stores improves availability and reduces
latency. Fast Cloud (Liang and Kozat 2014) and TOFEC (Liang and Kozat 2016) use the first
two methods to make a trade-off between throughput and delay in key-value data stores as
workload changes dynamically. Response time metric is orthogonal to data monetary cost
optimization and is dependent on three factors: scheduling read/write requests, the location of
chunks, and parameters that determine the number of data chunks. Xiang et al. 2014 consid-
ered these factors and investigated a trade-off between latency and storage cost within a data
store.

(3) Reliability indicates the mean time to data loss (MTTDL). It is estimated by standard Markov
model (Fine et al. 1998) and is influenced by the speed of block recovery (Sathiamoorthy et al. 2013)
and the number of failed blocks that can be handled before data loss. LRCs are better in reliability
than RS codes, which in turn, are more reliable than replication (Huang et al. 2012) with the same
failure tolerance. As already discussed, failures in data stores can be independent or correlated. To
relieve the later failure, the parity chunks should be placed in different racks located in different
domains.

4.2.4 Data Access Type. There are two approaches to access chunks of the coded data: unique
key and shared key (Liang and Kozat 2016), in which a key is allocated to a chunk of coded data
and the whole coded data, respectively. These approaches can be compared in three aspects.
(1) Storage cost: both approaches are almost the same in the storage cost for writing into a file.
In contrast, for reading chunks, shared key is more cost-effective than unique key. (2) Diversity in
delay: with unique key, each chunk, treated as an individual object, can be replicated in different
storage units (i.e., server, rack, and DC). With shared key, chunks are combined into an object
and very likely stored in the same storage unit. Thus, in unique (respectively, shared) key, there
is a low (respectively, high) correlation in the access delay for different chunks. (3) Universal sup-
port: unique key is supported by all data stores, while shared key requires advanced APIs with the
capability of partial reads and writes (e.g., S3).

4.3 Hybrid Scheme

Hybrid scheme is a combination of data replication and erasure coding schemes to retain the ad-
vantages of these schemes while avoiding their disadvantages for data redundancy within and
across data stores. Table 12 compares two common schemes in performance metrics to which

ACM Computing Surveys, Vol. 50, No. 6, Article 91. Publication date: December 2017.

Data Storage Management in Cloud Environments 91:23

Table 12. Comparison between Replication and Erasure Coding Schemes

Storage Repair
Schemes Availability Durability Recovery Overhead Traffic Read/Write latency

Replication High Low Easy >1X =1X Low for hot-spot objects with small size
Erasure Coding Low High Hard <1X >1X Low for cold-spot objects with large size

Table 13. Comparison between the State-of-the-Art Projects Using Different Redundancy Schemes

Redundancy Contributing
Projects Scheme Factors Objective(s)

DepSky (Bessani et al. 2011) Replication AR†, Pr High availability, integrity, and confidentiality
Spanner (Wu et al. 2013) Replication OS, AR, Pr Cost optimization and guaranteed availability
CosTLO (Wu et al. 2015) Replication OS, AR, Pe Optimization of variance latency
SafeStore (Kotla et al. 2007) Erasure coding AR, Pr Cost optimization
RACS (Abu-Libdeh et al. 2010) Erasure Coding AR Cost optimization and data-lock in
HAIL (Bowers et al. 2009) RAID technique n/a High availability and integrity
NCCloud (Chen et al. 2014) Network Codes n/a Recovery cost optimization of lost data
CDStore (Li et al. 2015) Reed-Solomon n/a Cost optimization, security and reliability
CAROM (Ma et al. 2013) Hybrid (RAC) AR Cost optimization
CHARM (Zhang et al. 2015) Hybrid (ROC) AR, Pr Cost optimization and guaranteed availability
HyRD (Mao et al. 2016) Hybrid (ROC) OS, Pr, Pe Cost and latency optimization

†n/a: (not applicable), OS: (object size), AR: (access rate), Pr: (price), and Pe (performance).

three factors contribute into when and which scheme should be deployed: Access rate (AR) to
objects, object size (OS), price (Pr), and performance (Pe) of data stores.

These factors have a significant effect on the storage overhead, recovery cost, and read/write
latency. As indicated in Table 12, replication incurs storage overhead more than erasure coding
especially for large objects, while it requires less recovery cost due to retrieving the replica from
a single server/data store instead of fragmented objects from multiple servers/data stores. Erasure
coding is more profitable in read/write latency (i) for cold-spot objects, since update operations
require re-coding the whole object, and (ii) for large objects, because the fragmented objects can
be accessed in parallel from multiple server/data stores. For the same reasons, replication is more
efficient for hot-spot objects with small size like metadata objects. Thus, cold-spot objects with
large size should be distributed across cost-effective data stores in the form of erasure coding,
and hot-spot objects with small size across performance-efficient data stores in the form of
replication.

We classify the hybrid scheme into two categories. (i) Simple hybrid stores an object in the
form of either replication or erasure coding (ROC) or replication and erasure coding (RAC) during
its lifetime. (ii) Replicated erasure coding contains replicas of each chunk of coded objects and
its common form is double coding, which stores two replicas of each coded chunk of the object.
Compared to ROC, double coding and RAC increase storage cost two times, but they are better
in availability and bandwidth cost due to retrieving the lost chunk of the object from the server,
which has a redundant copy. Table 13 summarizes projects using common redundancy or hybrid
schemes. Neither workload characteristics nor data stores diversities (in performance and cost)
are fully deployed in these projects using hybrid scheme. It is an open question to investigate the
effect of these characteristics and diversities on the hybrid scheme.

5 DATA CONSISTENCY

Data consistency, as the third element of data management in storage, means that data values
remain the same for all replicas of a data item after an update operation. It is investigated in three
main aspects, level, metric, and model, as shown in Figure 8. This section first describes different

ACM Computing Surveys, Vol. 50, No. 6, Article 91. Publication date: December 2017.

91:24 Y. Mansouri et al.

Fig. 8. Data consistency taxonomy.

consistency levels and their pros and cons (Section 5.1). Then it defines the consistency metrics to
determine how much a consistency semantic/model is stronger than another (Section 5.2). Finally,
it discusses consistency models from the user-perspective (Section 5.3) and from the data store
perspectives (Sections 5.4–5.6).

5.1 Consistency Level

Distributed data stores rely on different levels of data consistency (Alvaro et al. 2013), as shown in
Figure 8.

I/O-level consistency allows a clear separation between low-level storage and application logic.
It simplifies the development of the application and the complexity of distributed programming.
However, I/O-level consistency requires conservative assumptions like concurrent write-write and
read-write on the same data, resulting in inefficiency. It should also execute writes and reads in a
serial order due to its unawareness of the application semantics. We focus on this level of consistency
in this article.

application-level consistency exploits the semantics of the application to ensure the concreteness
of invariants8 without incurring the cost of coordination among operations. Thus, it imposes a
burden on the developers and sacrifices the generality/reusability of the application code.

Object-level consistency makes a trade-off between efficiency and reusability, respectively, de-
graded by I/O- and application-level consistency. It provides the convergence of replicas to the
same value without any need of synchronization across replicas via Conflicted-free Replicated
Data Types (CRDTs) (Shapiro et al. 2011), in which the value of objects can change in an associa-
tive, commutative, and idempotent fashion. Though object-level consistency removes concerns of
the reusability of application-level consistency, it requires mapping the properties of the applica-
tion to invariants over objects by developers.

8The term invariant refers to a property that is never violated (e.g., primary key, foreign key, a defined constraint for the

application—for example, an account balance x ≥ 0).

ACM Computing Surveys, Vol. 50, No. 6, Article 91. Publication date: December 2017.

Data Storage Management in Cloud Environments 91:25

Flow-level consistency is an extension of object-level consistency and requires a model to obtain
both the semantic properties of dataflow component and the dependency between interacting com-
ponents.9 Some components are insensitive to message order delivery as a semantic property,10 and
they are confluent and produce the same set of outputs under all ordering of their inputs (Alvaro
et al. 2014). Flow-level consistency demands manual definition for confluent components, resulting
in error-prone. But it is more powerful than object-level consistency and it has more applicability
than object- and language-level consistency. Indigo (Balegas et al. 2015) exploits flow-level consis-
tency based on confluent components that contain the application-specific correctness rules that
should be met.

Finally, language-level consistency integrates the semantics and dependencies of the application
and maintains a long history of invariants to avoid distributed coordination across replicas. The
CALM principle (Alvaro et al. 2011) shows a strong connection between the need of distributed
coordination across replicas and logical monotonicity. Bloom language (Alvaro et al. 2011) deploys
this principle and translates logical monotonicity into a practical program that is expressible via
selection, projection, join, and recursion operations. This class of program, called monotonic pro-
gram,11 provides output as it receives input elements, and thus guarantees eventual consistency
under any order of inputs set. Unlike Bloom, QUELEA language (Sivaramakrishnan et al. 2015)
maps operations to a fine-grained consistency levels such as eventual, causal, and ordering and
transaction isolation levels like read committed (RC), repeatable read (RR) (Berenson et al. 1995),
and monotonic atomic view (MAV) (Bailis and Ghodsi 2013).

5.2 Consistency Metric

This determines how much a consistency model is stronger than another and is categorized into
discrete and continuous from data store perspective (i.e., data-centric) and user perspective (i.e.,
client-centric).

Discrete metrics are measured with the maximum number of time unit (termed by t-metric) and
data version (termed by v-metric). As shown in Figure 8, they are classified into three metrics
(Anderson et al. 2010): (i) Safeness mandates that if a read is not concurrent with any writes, then
the most recent written value is retrieved. Otherwise, the read returns any value. (ii) Regularity
enforces that a read concurrent with some writes returns either the value of the most recent write
or concurrent write. It also holds safeness property. (iii) Atomicity ensures the value of the most
recent write for every concurrent or non-concurrent read with write.

Continuous metrics, shown in Figure 8, are defined based on staleness and ordering. The former
metric is expressed in either t-visibility or k-staleness with the unit of probability distribution of
time and version lag, respectively. The latter one is measured as (i) the number of violations per time
unit from data-centric perspective and (ii) the probability distribution of violations in the forms of
MR-, MW-, RYW-, WFR-violation from client-centric perspective as discussed later.

5.3 Consistency Model

This is classified into two categories: user- and data-centric, which, respectively, are vital to appli-
cation and system developers (Tanenbaum and Steen 2006).

9A component is a logical unit of computing and storage and receives streams of inputs and produces streams of outputs.

The output of a component is the input for other components, and these streams of inputs and outputs implement the flow

of data between different services in an application.
10The semantic property is defined by application developers. For example, developers determine confluent and non-

confluent paths between components based on analysis of a component’s input/output behavior.
11Non-monotonic program contains aggregation and negation queries, and this type of program is implementable via block

algorithms that generate output when they receive the entire inputs set.

ACM Computing Surveys, Vol. 50, No. 6, Article 91. Publication date: December 2017.

91:26 Y. Mansouri et al.

User-centric consistency model is classified into four categories as shown in Figure 8. Monotonic
Read (MR) guarantees that a user observing a particular value for the object will never read any
previous value of that object afterward (Yu and Vahdat 2002). Monotonic Write (MW) enforces that
updates issued by a user are performed on the data based on the arrival time of updates to the data
store. Read Your Write (RYW) mandates that the effects of all writes issued by users are visible to
their subsequent readers. Write Follows Read (WFR) guarantees that whenever users have recently
read the updated data with version n, then the following updates are applied only on replicas with
a version≥ n. Pipelined Random Access Memory (PRAM) is the combination of MR-, MW-, and
RYW-consistency and guarantees the serialization in both of reads and writes within a session.
Brantner et al. (2008) designed a framework to provide these client-centric consistency models
and the atomic transaction on Amazon S3. Also, Bermbach et al. (2011) proposed a middle-ware
on eventually consistent data stores to provide MR- and RYW-consistency.

Data-centric consistency aims at coordinating all replicas from the internal state of data store
perspective. It is classified into three models. Weak consistency offers low latency and high avail-
ability in the presence of network partitions and guarantees safeness and regularity. But it causes a
complicated burden on the application developers and caters the user with the updated data with a
delay time called inconsistency window (ICW). In contrast, strong consistency guarantees simple se-
mantics for the developer and atomicity. But it suffers from long latency, which is eight times more
than that of weak consistency, and consequently its performance in reads and writes diverges by
more than two orders of magnitude (Terry et al. 2013). Adaptive consistency is switching between
a range of weak and strong consistency models based on the application requirements/constraints
like availability, partition tolerance, and consistency.

The consistency (C) model has a determining effect on achieving availability (A) and partition
tolerance (P). Based on the CAP theorem (Gilbert and Lynch 2002), data stores provide only two of
these three properties. In fact, data stores offer only CA, CP, or AP properties, where CA in CAP
is a better choice within a data store due to rare network partition, and AP in CAP is a preferred
choice across data stores. Recently, Abadi (2012) redefined CAP as PACELC to include latency (L)
that has a direct influence on monetary profit and response time, especially across data stores,
where the latency between DCs might be high. The term PACELC means that if there is a network
partition (P) then there is a choice between A and C for designers, else (E) the choice is between
L and C. Systems like Dynamo and Riak leave strong consistency to achieve high availability and
low latency. Thus, they are PA/EL systems. Systems with full ACID properties attain stronger
consistency at the cost of lower availability and higher latency. Hence, they are PC/EC systems.
See Table 1 in the Appendix for more examples.

5.4 Eventual Consistency

In this section, we first define the eventual consistency model (Section 5.4.1). Then, we discuss
how this model is implemented and describe how the conflicts that arise from this model are
solved (Section 5.4.2).

5.4.1 Definition. Eventual consistency is defined as all replicas eventually converge to the last
update value. It purely supports liveness, which enforces that all replicas eventually converge based
on the operations order, while lacking safety, which determines the correct effects of operations
and leads to incorrect intermediate results. The safety property is assessed in terms t-visibility and
k-staleness as inconsistency window (ICW), which is affected by the communication latency, system
load, and replicas number. Bailis et al. (2012) analytically predicted the value of ICW via probabilis-
tically bounded staleness (PSB) based on the quorum settings (Section 4.1.5) for quorum-based data
stores. Wada et al. (2011) also experimentally measured ICW with different configurations in terms

ACM Computing Surveys, Vol. 50, No. 6, Article 91. Publication date: December 2017.

Data Storage Management in Cloud Environments 91:27

Fig. 9. Weak consistency taxonomy.

of readers and writers in different threads in the same/different processes on the same/different
VMs for S3, Google App Engine (GAE), and SimpleDB. They concluded that S3 and GAE are “good
enough” in data freshness with eventual consistency option, while SimpleDB is not. Zhao et al.
(2015) also experimentally measured ICW on the virtualization-based DaaS and concluded that the
workload characteristics has more effects on ICW as compared to communication latency across
geographical locations. It is worth to note that neither NoSQL databases nor DaaSs guarantee a
specific SLA in terms of data freshness.

5.4.2 Implementation. Eventual consistency-based data stores employ optimistic/lazy replica-
tion in which (i) the operation is typically submitted to the closest replica and logged/remembered
for the propagation to other replicas later, and (ii) replicas exchange the operation or the effect of
operation among each other via epidemic/gossip protocol (Demers et al. 1987) in the background
(Saito and Shapiro 2005). Operations are partially ordered by deploying vector clocks. This leads
to data conflicts, which happen as operations are simultaneously submitted to the same data in
multi-master systems.

There are four approaches to deal with conflicts. (i) Conflict detection approaches strengthen the
application semantic and avoid the problems arising from ignoring conflicts. These approaches
are classified into syntactic and semantic (Saito and Shapiro 2005). The syntactic approach relies
on the logical or physical clock, whereas the semantic approach works based on the semantic
knowledge of operations such as invariants, commuting updates (i.e., CRDTs), and pre-defined
procedure. (ii) Conflicts prohibition is attainable via blocking or aborting operations and using a
single master replica, which comes at the expense of low availability. (iii) Conflicts ignorance and
reduction are achievable by the following conflict resolution techniques (Figure 9) to guarantee
safety.

(1) Last Write Win (LWW) (Thomas 1979) ignores conflicts, and the update with the highest
timestamp is accepted (e.g., Riak (by default), SimpleDB, S3, and Azure Table). It causes lost updates
(i.e., updates with less timestamp as compared with winner update) and the violation of expected
semantics. (2) Pre-defined procedure merges two versions of a data item to a new one according
to application-specific semantic as used in Dynamo. The merged data must be associative and
commutative for guaranteeing eventual/causal consistency. Albeit the pre-defined procedure solves
conflicts without the need of the total order, it is error-prone and lacks generality. Some data stores
use application-specific precondition (i.e., a condition or predicate that must always be true just prior

ACM Computing Surveys, Vol. 50, No. 6, Article 91. Publication date: December 2017.

91:28 Y. Mansouri et al.

to the execution of other conditions) to determine happened-before dependencies among requests
when the causal consistency comes as a need.

(3) Conflict-free replicated data types (CRDTs) avoid the shortcomings of the previously dis-
cussed approaches and provide eventual consistency in the presence of node failure and network
partition without cross replicas coordination. CRDTs enforce the convergence to the same value
after all updates are executed on replicas, and they are either operation-based or state-based
(Shapiro et al. 2011).

In state-based CRDT, the local replica is first updated and then the modified data is transmitted
across replicas. State-based CRDT pursues a partial order ≤v (e.g., integer order) with least upper
bound (LUB) �v (e.g., maximum or minimum operation between integer numbers) that guarantees
associative (i.e., (a1 �v a2) �v a3 = a1 �v (a2 �v a3)), commutative (i.e., a1 �v a2 = a2 �v a1), and
idempotent (i.e., a1 �v a1 = a1) properties, for each value of object a1,a2,a3 (e.g., integer numbers).
Such CRDT is called Convergent Replicated Data Type (CvRDT) and is used in Dynamo and Riak.
CvRDT can tolerate out-of-order, repeatable, and lost messages as long as replicas reach the same
value. Thus, CvRDT achieves eventual consistency without any coordination across replicas, but
it comes at the expense of monetary cost and communication bottleneck for transferring large
objects particularly across data stores. Almeida et al. (2015) addressed this issue by propagating the
effect of recent update operations on replicas instead of the whole state; meanwhile all properties
of CvRDT are maintained. As an example of CvRDT, consider Grow-only set (G-set) that supports
only union operations. Assume a partial order ≤v on two replicas of G-set S1 and S2 is defined as
S1 ≤v S2 ⇐⇒ S1 ⊆ S2 and union is performed as S1 ∪ S2. Since the union operation preserves the
mentioned three properties, G-set is a CvRDT.

In operation-based CRDT, first the update is applied to the local replica, and then it is asyn-
chronously propagated to the other replicas. Operation-based CRDT demands a reliable commu-
nication network to submit all updates to every replica in a delivery order ≤v (specified by data
type) with commutative property (Shapiro et al. 2011), as utilized in Cassandra. If all concurrent
operations are commutative, then any order of operations execution converges to an identical
value. Such data type is called Commutative Replicated Data Type (CmRDT) and is more useful
than CvRDT in terms of data transferring for applications that span write-intensive replicas across
data stores. This is because CmRDT demands less bandwidth to transfer operation across replicas,
as compared to CvRDT that transfers the effect of the operation. For instance, G-set is also Cm-
RDT, because union is commutative. Similar to CvRDT, CmRDT allows the execution of updates
anywhere, anytime, and in any order, but they have a key shortcoming in guaranteeing integrity
constraints and invariants across replicas.

5.5 Causal and Causal+ Consistency

We first introduce a formal definition of causal and causal+ consistency models (Section 5.5.1),
followed by a description of the source and type of dependencies found in this model (Section 5.5.2).
We then discuss the state-of-the-art projects supporting these models of consistency (Section 5.5.3).

5.5.1 Causal Consistency Definition. Causal consistency maintains the merits of eventual con-
sistency, while respecting to the causality order among requests applied to replicas. It is stronger
and more expensive than eventual consistency due to tracking and checking dependencies. It de-
fines Lamport’s “happens-before” relation (Gray and Lamport 2006) between operations o1 and o2

as o1 � o2. Potential causality o1 � o2 maintains the following rules (Ahamad et al. 1995). Ex-
ecution thread: If o1 and o2 are two operations in the same thread of execution, then o1 � o2 if
o1 happens before o2. Read from: If o1 is a write, and o2 is a read and returns the value written
by o1, then o1 � o2. Transitivity: if o1 � o2 and o2 � o3, then o1 � o3. Causal consistency does

ACM Computing Surveys, Vol. 50, No. 6, Article 91. Publication date: December 2017.

Data Storage Management in Cloud Environments 91:29

not support concurrent operations (i.e., a
� b and b
� a). According to this definition, the write
operation happens if all write operations having causal dependency with the given write have
occurred before. In other words, if o1 � o2, then o1 must be written before o2. Causal+ is the com-
bination of causal and convergent conflict resolution to ensure liveness property. This consistency
model allows users locally receive the response of read operations without accessing remote data
store, meanwhile the application semantics are preserved due to enforcing causality on opera-
tions. However, it degrades scalability across data stores for write operations, because each DC
should check whether the dependencies of these operations have been satisfied or not before their
local commitment. This introduces a trade-off between throughput and visibility. Visibility is the
amount of time that a DC should wait for checking the required dependencies among the write op-
erations in the remote DC, and can be influenced by network latency and DC capacity for checking
dependencies.

5.5.2 Dependency Source and Type. Dependencies between operations are represented by
a graph in which each vertex represents an operation on variables and each edge shows the
causality of a dependency between two operations. The source of dependencies can be internal
or external (Du et al. 2014a). The former refers to causal dependencies between each update and
previous updates in the same session, while the latter relates to causal dependency between each
update and updates created by other sessions whose values are read in the same session. COPS
(Lloyd et al. 2011), Eiger (Lloyd et al. 2013), and Orbe (Du et al. 2013) track both dependency
sources. Dependency types can be either potential or explicit for an operation (as in Eiger and
ChainReaction (Almeida et al. 2013)) or for a value (as in COPS and Orbe). Potential dependencies
capture all possible influences between data dependencies, while explicit dependencies represent
the semantic causality of the application level between operations. The implementation of
potential dependencies in modern applications (e.g., social networks) can produce large metadata
in size and impede scalability due to generating large dependencies graph in the degree and
depth. The deployment of explicit dependencies, as used in Indigo (Balegas et al. 2015), alleviates
these drawbacks to some extent, but it is an ad-hoc approach and cannot achieve the desired
scalability in some cases (e.g., in social applications). This deployment is made more effective with
the help of garbage collection, as used in COPS and Eiger, in which the committed dependencies
are eliminated and only the nearest dependencies for each operation are maintained.

5.5.3 Causally Consistent Data Stores. Causal consistency recently received significant at-
tention in the context of Geo-replicated data stores. COPS (Lloyd et al. 2011) provides causal+
consistency by maintaining metadata of causal dependencies. In COPS, a read is locally submitted,
and the update operations become visible in a DC when their dependencies are satisfied. COPS
supports a causally consistent read-only (RO) transactions, which return the version of objects.
To do so, it maintains a full list of all dependencies and piggybacks them when a client issues read
operations, as opposed to maintaining the nearest dependencies for providing causal+ consistency.
Eiger (Lloyd et al. 2013) supports the same consistency model for the column-family data model
and provides RO and WO transactions. It maintains fewer dependencies and eliminates the need
for garbage collection as compared to COPS. ChainReaction (Almeida et al. 2013) uses a variant
of chain replication (van Renesse and Schneider 2004) to support causal+ consistency. Contrary to
COPS requiring each DC to support serliazability (see Section 6), it uses two logic clocks (LCs) for
each object: the first one is a global LC, and the second one is local LC that determines which local
replica can provide causal consistency. ChainReaction provides RO transactions the same as COPS
whilst averting 2 round trip times (RTTs) (as required in COPS) by deploying a sequencer in each
DC. Although the sequencer reduces the number of RTT (at most 1 RTT) in the case of RO transac-
tions, it reduces scalability and increases the latency for all updates by 1 RTT within DC. Orbe (Du

ACM Computing Surveys, Vol. 50, No. 6, Article 91. Publication date: December 2017.

91:30 Y. Mansouri et al.

et al. 2013) deploys DM-protocol (exploiting a matrix clock) to support basic reads and writes and
DM-clock protocol (deploying physical clock to track dependencies) to provide RO transactions
the same as those in ChainReaction that completes in 1 RTT. Orbe avoids the downsides of
ChainReaction due to not using a centralized sequencer. GentleRain (Du et al. 2014b) eliminates
dependencies checking and reduces the metadata piggybacked to each update propagation.
This innovation achieves throughput analogous with that in eventual consistency and reduces
storage and communication overheads. To achieve such aims, GentleRain uses physical time and
allows a DC to make the update visible if all partitions within the DC have seen all updates up
to the remote update timestamp. Nevertheless, this technique deteriorates updates visibility in
remote DCs. Bolt-on causal consistency (Bailis et al. 2013) inserts a layer between clients and
data stores to provide causal consistency according to the semantics of the application, not the
deployment of LCs or physical clocks. The discussed projects are summarized in Table 3 in the
Appendix.

5.6 Ordering and Adaptive-Level Consistency

We first define ordering consistency model and how it is provided. We then discuss projects that
enable application providers to switch between a range of consistency models based on their
requirements.

5.6.1 Ordering Consistency. As discussed earlier, eventual consistency applies the updates in
different orders at different replicas and causal consistency enforces partial ordering across repli-
cas. In contrast, ordering consistency—also called sequential consistency—provides a global ordering
of the updates submitted to replicas by using a logical clock to guarantee monotonic reads and
writes. In fact, ordering consistency mandates a read operation from a location to return the value
of the last write operation to that location. Ordering consistency is guaranteed through deploying
chain replication (van Renesse and Schneider 2004) or a master replica, which is responsible for
ordering writes to an object and then propagating the updates to slave replicas as provided per
key in PNUTS.

5.6.2 Adaptive-level Consistency. Adaptive-level consistency switches between weak and strong
consistency models based on the requirements of applications to reduce response time and mon-
etary cost. The following data stores leverage adaptive-level consistency.

CRAQ (Terrace and Freedman 2009) switches between strong, causal, and eventual consistency
for reading objects replicated in a chain replication topology. CRAQ’s current implementation re-
lies on placing chains within a DC with the capability of stretching on multiple DCs. It provides
a single row (object) consistency and mini-transactions that update multiple objects in a single or
multiple chains. Pileus (Terry et al. 2013) offers a broad spectrum of consistency levels between
strong and eventual based on SLAs like latency. It supports all kinds of transactions, but does not
scale well, because all writes are assigned to the primary replica without automatic movement to
other DCs in the face of workload changes. Gemini (Li et al. 2012) switches between strong and
eventual consistency based on blue and red operations, which are, respectively, executed on differ-
ent and same order at different DCs. It also introduces the concept of shadow operations to increase
blue operations for improving response time and throughput. The consistency level of such oper-
ations can be manually assigned by developers based on a specified method as in Gemini or based
on the SLA as in Pileus. These methods are non-trivial and cumbersome, and SIEVE (Li et al. 2014)
alleviates this by having an automatic assignment mechanism that exploits application code, in-
variants, and CRDTs. SIEVE incurs low run-time overheads, but it lacks scalability as applications
code becomes large. The discussed projects are summarized in Table 4 in the Appendix.

ACM Computing Surveys, Vol. 50, No. 6, Article 91. Publication date: December 2017.

Data Storage Management in Cloud Environments 91:31

6 TRANSACTIONS

This section discusses the fourth element of data management in cloud storage, transaction. A
transaction is defined as a set of reads and writes followed by a commit if the transaction is com-
pleted or an abort otherwise. A transaction has four properties: (i) atomicity guarantees all-or-
nothing outcomes for the set of operations, (ii) consistency ensures any transaction transits the
database from one valid state to another, (iii) isolation ensures the concurrent execution of trans-
actions leads to a database state that would be obtained if transactions were executed one after
the other, (iv) durability means that once a transaction is committed, all the changes have been
recorded to a durable data store. These four properties are called ACID properties. Of these prop-
erties, isolation concurrency level (isolation level for short) refers to a control mechanism for exe-
cuting two concurrent transactions accessing the same data item. Isolation level expresses the con-
sistency semantic provided by the transaction. Data stores initially provided eventual consistency,
which is suitable for certain applications (e.g., social networks), while some classes of applications
(e.g., e-commerce) demand strong consistency. Data stores, therefore, shifted to guarantee single
row transactions (e.g., SimpleDB (Wada et al. 2011) and PNUTS (Cooper et al. 2008)), single shard
transactions (e.g., SQL Azure (Campbell et al. 2010)), and multi-shard transactions where shards
are geographically replicated (e.g., Spanner (Corbett et al. 2013)).

Serialiazability as the strongest isolation level is not scalable across data stores, because it re-
quires strict coordination between replicas probably located far from each other across data stores.
Such isolation level has overheads like latency increment, throughput reduction, and unavailabil-
ity in the case of a network partition. Thus, data stores leave serialiazability, and they resort to
(i) offer weaker isolation levels, (ii) partition and replicate data accessed by transactions at a lim-
ited number of servers/DCs, and (iii) exploit techniques to optimize coordination as the key re-
quirement to maximize scalability, availability, and performance. Ardekani et al. (2013) stated the
following criteria for achieving these purposes across data stores. (1) Wait-free query (WFQ) means
that a read-only (RO) transaction always commits without synchronizing with other transac-
tions. (2) Genuine Partial Replication (GPR) decreases the synchronization and computational time.
(3) Minimal commitment synchronization is achievable if synchronization is not avoidable (e.g., two
transactions with write-write conflicts must be synchronized). (4) Forward freshness is attainable if
a transaction is allowed to read the committed object version after the transaction starts. Unfortu-
nately, classical concurrency protocols (e.g., 2PL+2PC) are not scalable and purely applicable across
the data stores to achieve the goals discussed previously. To understand how to effectively deploy
classical protocols, we study the main aspects of transactional data stores in the following section.

6.1 Transactional Data Stores

This section details a taxonomy of transactional data stores as shown in Figure 10.

6.1.1 Architecture. To build an ACID transactional data store, a stacked layer consisting of
transaction and replication layers is used. The transaction layer consists of, shown in Figure 11(b),
(i) concurrency control mechanism (Kung and Robinson 1981) that schedules a transaction within
each shard to guarantee isolation, and (ii) an atomic commitment protocol that coordinates
distributed transactions across shards to provide atomicity. The replication layer is responsible for
synchronizing replicas in the case of strong consistency. Figure 11 shows different architectures
that indicate how transaction and replication layers are configured (Agrawal et al. 2013). Notable
systems like Spanner (Corbett et al. 2013)) preserves the top-down architecture (Figure 11(a)),
while Replicated Commit (Mahmoud et al. 2013) follows the reversed top-down architecture
(Figure 11(b)) to achieve lower latency. In the flat architecture (Figure 11(c)), both layers access
the storage layer, and there is no clear border between them as deployed in Megastore (Baker

ACM Computing Surveys, Vol. 50, No. 6, Article 91. Publication date: December 2017.

91:32 Y. Mansouri et al.

Fig. 10. Data transaction taxonomy.

et al. 2011). The separation of the two layers in the architecture brings advantages like modularity,
clarity of semantic, and less message-exchange.

6.1.2 Concurrency Control. This schedules transactions accessing the same data so the isolation
property is guaranteed and is categorized into pessimistic (locking-based) and optimistic. In the
pessimistic protocol, a transaction first locks (e.g., via 2 Phase Lock (2PL)) the shared data accessed
by concurrent transactions, and then operates on data. This protocol serializes transactions upon
the occurrence of conflict incidences and requires a deadlock detection and resolution mechanism.
Therefore, it increases response time especially across data stores, reduces the throughput of data
store (expressed as the number of committed transactions per time unit), hurts availability if the
lock is held by a failed node, and suffers from thrashing (i.e., when the number of transactions
is high, many of them become blocked and only a few are in progress). Nevertheless, it eases
write-write conflicts detection without maintaining the transaction metadata and works best when
conflicts among transactions are short running. On the contrary, in optimistic protocol (optimistic
concurrency control (OCC)), all transactions are executed separately though each of them before
commitment needs to pass a certification procedure in which the write set of transaction T that is
being validated against the read and write sets of other active transactions in the system. Thus, any
read-write or write-write conflicts result in OCC to be aborted. To avoid such procedure, MVOCC
(Vo et al. 2012) combines multi-version concurrency control (MVCC) and OCC to detect conflicts
via the version number of data. Thus, MVOCC always commits RO transactions, while uses the
version number of data to check their conflicts for update transactions. However, OCC provides
low latency at the cost of weak concurrency control, fits when transactions are long running and
avoids drawbacks arising from the pessimistic protocol though it wastes resources due to restarting
transaction and requiring exclusive lock during final 2 Phase Commit (2PC) (Agrawal et al. 1987).
MaaT (Mahmoud et al. 2014), as a re-design of OCC, eliminates locks during 2PC to reduce aborts
rate, avoids MVCC to make efficient use of memory, and improves throughput; meanwhile, MaaT
maintains the no-thrashing property of OCC.

ACM Computing Surveys, Vol. 50, No. 6, Article 91. Publication date: December 2017.

Data Storage Management in Cloud Environments 91:33

Fig. 11. Transaction architectures in cloud storage.

Fig. 12. Execution of

basic Paxos.

6.1.3 Commitment Protocol. This refers the way transactions terminate while guaranteeing
atomicity and consistency. It is generally categorized into two types as follows:

(1) Voting protocols agree on updates based on voting all replicas as in atomic commitment pro-
tocol (e.g., 2PC) or quorum of replicas as in consensus commitment protocol (e.g., Paxos commitment
(Gray and Lamport 2006)). In 2PC protocol, a node is designated as the coordinator/master node
and other nodes in the system as participants, cohorts, or workers. This protocol consists of (i) a vot-
ing phase in which a coordinator node prepares all participant nodes to take either commit (“yes”)
or abort (“no”) vote on the transaction, and (ii) commit phase in which the coordinator decides
whether to commit or abort the transaction based on vote of participant nodes in the previous
phase, and then notifies about its decision to all the participant nodes. This protocol suffers from
blocking and non-resilience to node failures. By contrast, Paxos protocol is fault-tolerant, non-
blocking, and a consensus algorithm for achieving on a single value among a set of replicas and
tolerates a variety of failures like duplicated, lost, and reordered messages as well as the failure
of nodes. In the deployed applications across data stores, storage and computing nodes take the
responsibility of four basic roles in Paxos: client are application servers, proposers are coordina-
tors, acceptors are storage nodes, and all nodes are learners. As shown in Figure 12, this protocol
requires 2 RTTs to reach consensus on a value and consists of two phases: the first establishes the
coordinator/master for an update for specific record issued by a client, and the second tries to reach
a consensus value across a majority of acceptors and writes the specified value for a specific record.

(2) Non-voting protocols work based on a group communication (GC) primitive in which, unlike
2PC, all nodes receive the certificate vote and then locally perform a commit or abort operation.
The GC is mainly categorized into two primitives. Atomic broadcast (Défago et al. 2004) propagates
messages to all DCs and ensures that all DCs agree on the set of received messages and their order.
It offers serializability in the case of full replication but hampers scalability, which can be relieved
via pairing it with genuine partial replication (GPR). By contrast, atomic multicast (Schiper et al.
2009) propagates the message to a subset of DCs, which can be genuine or non-genuine (Guerraoui
and Schiper 2001). Genuine protocols are expensive in terms of delivering message and receiving
acknowledgement, while non-genuine ones can deliver messages in 1 RTT and can work well
except when the load and the number of DCs are high in the system (Schiper et al. 2009). Moreover,
Genuine and non-genuine protocols are identical in minimality property, which implies messages
are only sent to nodes—servers or DCs—hosting the desired replicas. Note that, atomic multicast
implementation using atomic broadcast protocol does not satisfy the minimality property, and
thus it is non-genuine.

6.1.4 Replication Protocol. Data stores rely on a replication protocol to guarantee a serial or-
dering of write commits of different transactions. They use replication protocol like basic Paxos
(Lamport 1998), Viewstamped (Oki and Liskov 1988) (equivalent to Multi-Paxos-based) or atomic
broadcast (Défago et al. 2004). These protocols are expensive at (i) throughput as a function

ACM Computing Surveys, Vol. 50, No. 6, Article 91. Publication date: December 2017.

91:34 Y. Mansouri et al.

Table 14. Comparison between Different Consensus Replication Protocols

Basic Fast Generalized Paxos Replication Speculative
Performance metrics Paxos† Paxos Paxos Batching Replication Paxos NOPaxs

Latency (message delay) 4 3 2 >4 2 |4†† 2 2
Message at bottleneck 2n 2n 2n 2n 2 2 2
Quorum size > n/2 > 2n/3 > 2n/3 > n/2 > 2n/3 |n/2 > 3n/4 > n/2

†Multi-Paxos is an optimization for basic Paxos by reserving the master replica for several Paxos instances; thus it can

avoid phase 1 to achieve two message delays for agreement on a consensus value.

††Inconsistent Replication (IR) uses the fast path (slow path), which requires 2 (4) message delays with a quorum size

of > 2n/3 (> n/2) consensus operations. These operations can execute in any order, while inconsistent operations can

execute in different order at each replica and IR can complete them in 2 message delays with a quorum size of > n/2.

of the load on a bottleneck replica (e.g., leader replica), and (ii) latency as a function of the
number of message delays in the protocol—that is, from when client sends a request to replica
until it receives a reply. As shown in Figure 12, the message flow in a leader-based Paxos is:
client→leader→replicas→leader→client; thus the latency (i.e., message delays) is 4 and through-
put (i.e., bottleneck at message– here master replica is a bottleneck) is 2n, where n is the num-
ber of replicas. Fast Paxos (Lamport 2006) reduces this latency by sending requests from the
client to replicas instead of through a distinguished replica as a leader. It reduces latency to 3
(client→replicas→leader→client) at the cost of requiring larger quorum sizes as compared to that
for Paxos. Generalized Paxos (Lamport 2005) is an extension of Fast Paxos and exploits commuta-
tive property between operations to commit a request in two message delays. EPaxos (Moraru et al.
2013) is another replication protocol that is built on Fast Paxos and Generalized Paxos to achieve
low latency and high throughput. Unlike these protocols, Inconsistent Replication (IR) (Zhang et al.
2015) is fault-tolerant without guaranteeing any consistency.

As discussed, the fundamental difference between replication protocols is an extra RTT or a
large quorum to order conflicts. Replication protocols recently provide ordering in network layer
and leave reliability to the replication layer. This results in a fewer message delay and higher
throughput. Speculative Paxos (Ports et al. 2015) assumes a best effort ordering at the cost of
application-level roll-back, while NOPaxos (Li et al. 2016) guarantee ordering in network layer
to avoid roll-back/transaction abort. Table 14 summarizes consensus replication protocols in per-
formance metrics.

6.1.5 Transaction Granularity and Type. One trend in data stores to achieve scalability is to limit
the number and location expansion of partitions accessed by a transaction. We call this limitation
as transaction granularity and classify it as single shard/partition and multi-shard/partition. The
execution and commitment of single shard and multi-shard transactions, respectively, involves
a shard within a server (e.g., SQL Azure (Campbell et al. 2010)) and more than one shard repli-
cated across several servers in a data store or several data stores (e.g., Spanner). Most today’s data
stores support multi-shard, and some of them pose limitations like the pre-declared read/write set
performed by transactions in Sinfonia (Aguilera et al. 2007) and Calvin (Thomson et al. 2012).

Transaction type is divided into three categories. Read-only (RO) transactions conduct read op-
erations on any updated replicas without locking; meanwhile the incoming writes are not blocked.
The original distributed RO transactions (Chan and Gray 1985), as deployed in Spanner, always
take 2 RTTs, and before starting they wait until all the involved servers/DCs guarantee that all
the transactions have been committed. In contrast, in Eiger (Lloyd et al. 2013) the RO transactions
take 1 RTT by maintaining more metadata. Write-only (WO) transactions only contain write opera-
tions and deploy concurrency controls to avoid write-write conflicts. Read-write (RW) transactions

ACM Computing Surveys, Vol. 50, No. 6, Article 91. Publication date: December 2017.

Data Storage Management in Cloud Environments 91:35

consist of reads and writes and avoid write-read and write-write conflicts by using concurrency
controls and commitment protocols.

6.1.6 Isolation Levels. This refers to the concurrency between transactions. As the isolation
level is weaker, the concurrency level is higher but with more anomalies (Adya 1999; Berenson
et al. 1995). In the following, we discuss different isolation levels from strong to weak as shown in
Figure 10.

• Serializability (SER) guarantees that every concurrent execution of the committed trans-
actions is equivalent to the serial execution of transactions (i.e., one after another). It is
typically implemented via 2PL for full replication, which impedes scalability and increases
response time especially across data stores. So, SER is provided in the case of partial repli-
cation or genuine partial replication (GPR) (e.g., P-store (Schiper et al. 2010)), in which all
transaction types might require a certification procedure and go through a synchronization
phase. If so, then the transaction aborts (e.g., Sinfonia and P-store); otherwise, the transac-
tion is wait-free query (WFQ) as in S-DUR (Sciascia et al. 2012). Note that strict SER (SSER,
also called linearizability) deploys the physical clock to order transactions.

• Update serializability (US) (Hansdah and Patnaik 1986) provides guarantees analogous to
those in SER for update transactions, but it leads RO transactions to observe non-monotonic
snapshots12 (i.e., two RO transactions may observe different order of the committed update
transactions). In fact, US makes the support of observing a snapshot equivalent to some
serial execution of the partially ordered history of update transactions. Extended (E) US
(Peluso et al. 2012), as a stronger variant of US, holds the same semantic not only for com-
mitted update transactions but also for those are executing and may abort later due to either
write-write or write-read conflicts. This property guarantees that applications do not act in
an unexpected manner because of non-serializable snapshots observation.

• Snapshot isolation (SI) never aborts RO transactions and guarantees that a transaction reads
the most recent version of data through MVCC (Kung and Robinson 1981). However, it
blocks write transactions to avoid write-write conflicts and enhances responsiveness of
these transactions at the expense of write skew anomaly13 Berenson et al. (1995) due to
ignoring read-write conflicts. It also implements WFQ but not in GPR scheme (Ardekani
et al. 2014). Due to its simple implementation, it is supported by database vendors (e.g.,
Microsoft SQL Server and Oracle) and most Geo-replicated data stores.

• Parallel snapshot isolation (PSI) (Sovran et al. 2011) is similar to SI and suitable to deploy
across data stores. In PSI, the commit order of non-conflicting transactions14 can vary
among replicas, since the transactions are causally ordered. In fact, a transaction is propa-
gated to other replicas after all transactions committed before it starts. Thus, PSI enforces
that transactions observe the local data that may be stale. Unlike SI, PSI neither supports
GPR and nor monotonic snapshots of transactions, which is the main hindrance of SI regard
to scalability (Ardekani et al. 2013).

• Non-monotonic snapshot isolation (NMSI) (Ardekani et al. 2013) works under GPR scheme
and preserves WFQ, minimal commitment synchronization, and forward freshness. NMSI is
more scalable and takes any snapshot as compared to PSI, because PSI neither is imple-
mentable under GPR and nor is preservable for the forward freshness property. The Jessy

12A snapshot is a logical copy of data consisting of all committed updates and is created when a transaction is committed.
13The readers are referred to articles by Adya (1999) and Berenson et al. (1995) on details of anomalies.
14Both write-write and write-read conflicts are avoided in SER, SI, and US, while only write-write conflicts are prevented

in PSI and NMSI.

ACM Computing Surveys, Vol. 50, No. 6, Article 91. Publication date: December 2017.

91:36 Y. Mansouri et al.

Table 15. Anomalies in Different Isolation Levels

Anomalies SSER SER US SI PSI NMSI MAV RA RC RUC

Dirty Read N1 N N N N N N N N Y
Repeatable Reads N N N N N N N N Y Y
Read Skew N N N N N N N Y Y Y
Dirty Writes N N N N N N N N N N
Lost Updates N N N N N N Y Y Y N
Write Skew N N N Y Y Y Y Y Y Y
Causality violation N N N N Y Y Y Y Y Y
Non-Mon. Snap.2 N N Y N Y Y Y Y Y Y
True Time violation N Y1 Y Y Y Y Y Y Y Y

[1] N: disallowed anomaly and Y: allowed anomaly. [2] Non-Monotonic Snapshot (long fork).

protocol (Ardekani et al. 2013) implements NMSI under GPR and uses 2PC and the version-
ing mechanism for concurrency control.

Compared to the isolation levels discussed previously, several weaker isolation levels are also
implemented in data stores. Read Uncommitted (RUC) (as in PNUTS, Dynamo, and BigTable)
totally orders writes to each object, and Read Committed (RC) disallows transactions to access
uncommitted or intermediate version of data items. Monotonic Atomic View (MAV) (Bailis and
Ghodsi 2013) ensures that if a transaction Tj reads a version (v) of an object that transaction Ti

wrote, then a later read by Tj returns a value whose version v ′ ≥ v . Read Atomic (RA) (Bailis
et al. 2014) enforces all or none of each transaction’s updates are visible to others. RA prevents
all anomalies avoided by RC with the help of multi-versioning and a small metadata per write
operations. Unlike RUC, RC, and MAV, it also prevents fractured read anomaly, which happens if
transaction Ti writes variables xm and yn , then Tj reads xm and yk , where k < n. Both MAV and
RA are useful for the applications requiring secondary indexes, foreign key, and materialized view
maintenance.

There are several ways to mutually compare isolation levels. The first is to understand what
anomalies they allow (Table 15). For example, SSER, SER, and US prevent write-skew (short fork)
anomaly due to checking write-write and read-write conflicts. The second is that they can be
compared based on scalability, which is classified into highly available transaction (HAT) and non-
HAT (Bailis and Ghodsi 2013). Anomalies like lost update and write skew, and semantics such as
concurrent update and bounds on data recency—real-time insurance on writes/reads—are impossible
to be prevented by HAT systems. Thus, SER, SI, PSI, and RR are not HAT-complaint. In contrast,
HAT systems preclude dirty read and write, and thus RA, RU, and RC are HAT-complaint. The third

is they can be analyzed via a programmatic tool like G-DUR (Ardekani et al. 2014) that implements
the most discussed isolation levels.

6.2 Coordination Mechanisms in Transactional Data Store

This section discusses different mechanisms that coordinate transactions within and across the
state-of-the-art data stores.

6.2.1 Heavy-Weight Protocols-Based Transactions. Transactional data stores usually partition
data into shards and then replicate each shard across servers for fault-tolerance and availability.
To guarantee transactions with strong consistency, they deploy a distributed transaction proto-
col, which implements concurrency control via a write-ahead log (log for short). Each shard is

ACM Computing Surveys, Vol. 50, No. 6, Article 91. Publication date: December 2017.

Data Storage Management in Cloud Environments 91:37

designated to a log, which is replicated across data stores. This log is divided into log positions,
which are uniquely numbered in ascending order (Agrawal et al. 2013). To guarantee the serial
ordering of write commits of different transactions into logs, transactional data stores commonly
integrate a costly replication protocol with strong consistency like Paxos. In the Paxos deployment,
participants compete to access a log position in the log, and only one of them is allowed to com-
mit and others are required to abort. Thus, these data stores enforce strong consistency in both
transaction protocol, which provides a serial ordering of transactions across shards, and replica-
tion protocol, which ensures a serial ordering of writes/reads across replicas in each shard. This
redundancy increases latency (message delays) and degrades throughput especially when heavy-
weight protocols like 2PL+2PC and OCC+2PC with Paxos are deployed. To alleviate this issue,
the following solutions can be leveraged. The first is to use replication protocols with lower la-
tency and higher throughput as discussed before. The second is to replicate and partition data at
a limited number of servers/DCs when the data accessed by multi-shard transactions. This solu-
tion mandates workload-aware data partitioning approach rather than the commonly used data
partitioning mechanisms like random (hash-based), round robin, and key range. This approach is
classified into scheme-dependent, which is coarse-grained and unsuitable for dynamic workload,
and scheme-independent (Kamal et al. 2016) that is fine-grained and deploys graph partitioning to
cater a range of workloads in particular dynamic workload.

6.2.2 Contemporary Techniques. Sole reliance on heavy-weight protocols deteriorates response
time and causes spurious coordination as a transaction unnecessarily delays or reorders the execu-
tion of transactions based on their natural arrival order. To relieve these drawbacks, the following
contemporary techniques are used. The first is dependency-tracking technique and is used in the
linear transactions protocol (Escriva et al. 2012). This protocol allows transactions to locally com-
mit on the server. ROCOCO (Mu et al. 2014) uses this technique to reorder interfered transac-
tions rather than aborting or blocking them. Warp (Escriva et al. 2013) uses ROCOCO to improve
throughput and latency as compared to 2PL and OCC. The second technique is transaction decom-
position. Lynx (Zhang et al. 2013b) uses this technique and decomposes each transaction to several
chains based on the application semantics and the table scheme by using transaction chopping
(Shasha et al. 1995). Homeostasis protocol (Roy et al. 2015) also dynamically extracts application
semantics to determine acceptable upper-bound inconsistency of the system. This helps it to locally
execute transactions across DCs without communication as long as inconsistency does not violate
the correctness of transactions. The third technique is the following set of logical properties, which
minimizes or exempts coordination across transactions: (i) Commutativity guarantees reordering
operations, which do not influence the outcome of transactions (Lloyd et al. 2013). Monotonic pro-
grams ensure deterministic outcome for any order of operations on objects (Alvaro et al. 2011)
and support operations such as selection, projection, and join through a declarative language like
Bloom. (iii) CRDTs, as already discussed, guarantee convergent outcomes irrespective of the order
of updates applied on each object. (iv) Invariants like primary keys, foreign keys, and integrity
constraints reduce coordination between transactions including confluent operations that can be
executed without coordination with others. However, contemporary techniques are error-prone,
ad-hoc, and some of them, like monotonic programs and CRDTs, are not well developed. Tables
5 and 6 in appendix compare the state-of-the-art projects in several aspects and indicates which
concurrency mechanism they used.

7 DATA MANAGEMENT COST

This section discusses the last element of data management in storage: data management cost. This
element is influenced by price, which is a new and important feature of data stores as compared

ACM Computing Surveys, Vol. 50, No. 6, Article 91. Publication date: December 2017.

91:38 Y. Mansouri et al.

to traditional distributed systems like cluster and grid computing. Data stores offer a variety of
pricing plans for different storage services with a set of performance metrics. Pricing plans offered
by data stores are typically divided in two categories (Naldi and Mastroeni 2013): bundling price
(also called quantity discount) and block rate pricing. The first is observed in most data stores (e.g.,
Google Drive) and is recognized as a non-linear pricing, where unit price changes with quantity to
follow fixed cost and per-unit charge. The second category divides the range of consumption into
sub-ranges and in each sub-range unit price is constant as observed in Amazon. This category is a
special form of the multi-part tariffs scheme in which the fixed price is zero. Note that the standard
form of multi-part tariffs consists of a fixed cost plus multi-ranges of costs with constant cost in
each range. One common form of this scheme is two-part tariffs that are utilized in data stores with
a fixed fee for a long term (currently 1 or 3 years) plus a per-unit charge. This model is known a
reserved pricing model (e.g., as offered by Amazon RDS) as opposed to an on-demand pricing model
in which there is no fixed fee and its per-unit charge is more than that in the reserved pricing
model. All pricing plans offered by the well-known cloud providers follow concavity property that
implies as the more resources the application providers buy the cheaper the unit price is. The unit
price for storage, network, and VM, respectively, are often GB/month, GB, and instance per unit
time.

A cloud provider offers different services with the same functionality while performance is di-
rectly proportional to price. For example, Amazon offers S3 and RRS as online storage services
but RRS compromises redundancy for lower cost. Moreover, the price of same resources across
cloud providers is different. Thus, given these differences, many cost-based decisions can be made.
These decisions will become complicated especially for applications with time-varying workloads
and different QoS requirements such as availability, durability, response time, and consistency
level. To do so, a joint optimization problem of resources cost and the required QoS should be
characterized. Resources cost consists of: (i) storage cost calculated based on the duration and size
of storage the application provider uses, (ii) network cost computed according to the size of data
the application provider transfers out (reads) and in (writes) to data stores (typically data trans-
fer into data stores is free), and (iii) computing cost calculated according to duration of renting a
VM by application providers. In the rest of the section, we discuss the cost optimization of data
management based on a single QoS or multi-QoS metrics and cost trade-offs.

7.1 Cost Optimization Based on a Single QoS Metric

Application providers are interested into the selection of data stores based on a single QoS metric
so the cost is optimized or does not go beyond the budget constraint. This is referred to as a cost
optimization problem based on a single QoS metric and is discussed in the following.

(1) Cost-based availability and durability optimization. Availability and durability are measured
in the number of nines and achieved by means of usually triplicate replication in data stores.
Chang et al. (2012) proposed an algorithm to replicate objects across data stores so users obtain the
specified availability subject to budget constraint. Mansouri et al. (2013) proposed two dynamic
algorithms to select data stores for replicating non-partitioned and partitioned objects, respec-
tively, with the given availability and budget. In respect to durability, PRCR (Li et al. 2012) uses
the duplicate scheme to reduce replication cost while achieving the same durability as in triplicate
replication. CIR (Li et al. 2011) also dynamically increases the number of replicas based on the
demanding reliability with the aim of saving storage cost.

(2) Cost-based consistency optimization. While most of the studies explored consistency-
performance trade-off (Section 5 and Section 6), several other studies focused on lowering cost
with adaptive consistency model instead of a particular consistency model. The consistency ra-
tioning approach (Kraska et al. 2009) divides data into three categories with different consistency

ACM Computing Surveys, Vol. 50, No. 6, Article 91. Publication date: December 2017.

Data Storage Management in Cloud Environments 91:39

levels assigned and dynamically switches between them in run time to reduce the resource and
the penalty cost paid for the inconsistency of data, which is measured based on the percentages
of incorrect operations due to using lower consistency level. Bismar (Chihoub et al. 2013) defines
the consistency level on operations rather than data to reduce the cost of the required resources at
run time. It demonstrates the direct proportion between the consistency level and cost. C3 (Fetai
and Schuldt 2012) dynamically adjusts the level of consistency for each transaction so the cost of
consistency and inconsistency is minimized.

(3) Cost-based latency optimization. User-perceived latency is defined as (i) a constant in the unit
of RTT, distance, and network hops, or (ii) latency cost that is jointly optimized with monetary
cost of other resources. Latency cost allows the latency metric to be changed from a discrete value
to continuous one, thereby achieving an accurate QoS in terms of latency constraint and easily
making a trade-off between latency and other monetary costs. OLTP (respectively, OLAP) appli-
cations satisfy the latency constraint by optimization of data placement (respectively, data and
task placement). This placement has an essential effect on optimizing latency cost or satisfying it
as a constraint as well as in reducing resources cost.

7.2 Cost Optimization Based on Multi-QoS Metric

Application providers employ Geo-replicated data stores to reduce the cost spent on storage, net-
work, and computing under multi-QoS metrics. In addition, they may incur data migration cost as
a function of the data size transferring out from data store and its corresponding network cost.
Data migration happens due to application requirements, the change of data store parameters
(e.g., price), and data access patterns. The last factor is the main trigger for data migration as data
transits from hot-spot to cold-spot status (defined in Section 2) or the location of users changes as
studied in “Nomad” (Tran et al. 2011). In Nomad, the changes in users’ location are recognized
based on simple policies that monitor the location of users when they access an object. Depend-
ing on the requirements of the applications, cost elements and QoS metrics are determined and
integrated in the classical cost optimization problems as linear/dynamic programming (Cormen
et al. 2009), k-center/k-median (Jain and Dubes 1988), ski-rental (Seiden 2000), and so on. In the
following, these features and requirements are discussed.

(1) For a file system deployment, a key decision is to store a data item either in cache or storage at
an appropriate time while guaranteeing access latency. Puttaswamy et al. (2012) leveraged EBS and
S3 to optimize the cost of file system and they abstracted the cost optimization via a ski-rental prob-
lem. (2) For data-intensive applications spanning across DCs, the key decision is which data stores
should be selected so the incurred cost is optimized while QoS metrics are met. The QoS metrics
for each data-intensive application can be different; for example, online social applications suffice
causal consistency, while a collaborative document editing web service demands strong consis-
tency. (3) For online social network (OSN), the key factor is replica placement and reads/writes
redirection, while “social locality” (i.e., co-locating the user’s data and her friends’ data) making a
reduction in access latency is guaranteed. In OSN, different policies to optimize cost are leveraged:
(i) minimizing the number of slave replicas while guaranteeing social locality for each user (Pu-
jol et al. 2010), (ii) maximizing the number of users whose locality can be preserved with a given
number of replicas for each user (Tran et al. 2012), (iii) graph partitioning based on the relations
between users in OSN (e.g., cosplay (Jiao et al. 2016)), and (iv) selective replication of data across
DCs to reduce the cost of reads and writes (Liu et al. 2013). (4) The emergence of content cloud
platforms (e.g., Amazon Cloud-Front15 and Azure CDN16) help to build a cost-effective cloud-based

15“Amazon CloudFront”, https://aws.amazon.com/cloudfront/.
16“Azure CDN”, https://azure.microsoft.com/en-us/services/cdn/.

ACM Computing Surveys, Vol. 50, No. 6, Article 91. Publication date: December 2017.

https://aws.amazon.com/cloudfront/.
https://azure.microsoft.com/en-us/services/cdn/.

91:40 Y. Mansouri et al.

content delivery network (CDN). In CDN, the main factors contributing into the cost optimization
are replicas placement and reads/writes redirection to appropriate replicas (Chen et al. 2012).

7.3 Cost Trade-Offs

Due to several storage classes with different prices and various characteristics of workloads, ap-
plication providers are facing with several cost trade-offs as follows.

Storage-computation trade-off. This is important in scientific workloads in which there is a need
for the decision on either storing data or recomputing data based on the size and access pat-
terns. Similar decision happens to the privacy preservation context that requires a trade-off be-
tween encryption and decryption of data (i.e., computation cost) and storing data (Zhang et al.
2013a). The trade-off can be also seen in video-on-demand service in which video transcoding17 is
a computation-intensive operation, and storing a video with different formats is storage-intensive.
Incoming workload on the video and the required performance for users determine whether the
video is transcoded on-demand or stored with different formats.

Storage-cache trade-off. Cloud providers offer different tiers of storage with different prices and
performance metrics. A tier, like S3, provides low storage cost but charges more for I/O, and an-
other tier, like EBS and Azure drive, provides storage at higher cost but I/O at lower cost (Chiu and
Agrawal 2010). Thus, as an example, if a file system frequently issues reads and writes for an ob-
ject, it is cost-efficient to save the object in EBS as a cache, or in S3 otherwise. This trade-off can be
exploited by data-intensive applications in which the generated intermediate/pre-computed data
can be stored in caches such as EBS or memory attached to VM instances.

Storage-network trade-off. Due to significant differences in storage and network costs across data
stores and time-varying workload on an object during its lifetime, acquiring the cheapest network
and storage resources at the appropriate time of the object lifetime plays a vital role in the cost
optimization. Simply placing objects in a data store with either the cheapest network or storage
for their whole lifetime can be inefficient. Thus, storage-network trade-off requires a strategy to
determine the placement of objects during their lifetime in which the status of objects change from
hot-spot to cold-spot and vice versa. This was studied in a dual cloud-based storage architecture
(Mansouri and Buyya 2016) as well as in distributed data stores for a limited number of replicas
for each object (Mansouri et al. 2017). This trade-off also comes as a matter in the recovery
cost in erasure coding context, where regenerating and non-MDS codes are designed for this
purpose.

Reserved-on demand storage trade-off. Amazon RDS and Dynamo data stores offer on-demand and
reserved database (DB) instances and confront the application providers with the fact that how to
combine these two types of instances so the cost is minimized. Although this trade-off received
attention in the context of computing resources (Wang et al. 2013), it is worthwhile to investigate
the trade-off in regard to data-intensive applications, since (i) the workload of these two is different
in characteristics, and (ii) the combination of on-demand DB instances and different classes of
reserved DB instances with various reservation periods can be more cost-effective. Table 7 in the
Appendix summarizes state-of-the-art studies in respect to this section.

8 SUMMARY AND FUTURE DIRECTIONS

This section presents a summary and discusses future directions (see Table 16) of different aspects
of data management in cloud-based data stores (data stores for short).

Intra- and Inter-data store services. The deployment of OLTP applications within and across data
stores brings benefits and challenges for application providers as summarized in Tables 2–5. To

17Video transacoding is the process of converting a compressed digital video format to another.

ACM Computing Surveys, Vol. 50, No. 6, Article 91. Publication date: December 2017.

Data Storage Management in Cloud Environments 91:41

Table 16. Future Direction for Cloud-Based Data Stores

Data store Aspect Future Directions

Intra- and Inter-data
stores services

• Designing algorithms to guarantee the time of data retrieval from storage nodes within a range of time via
(i) data replication in several storage nodes owned by different vendors, and (ii) redundant requests against
replicas while considering optimizing the monetary cost.

• Replicating data across storage nodes instead of random replication to avoid correlated and independent fail-
ures while considering consistency costs, joining and leaving storage nodes.

• Reducing unpredictability of response time in multi-tenant storage services via replicating data in storage
nodes and submitting redundant read/write requests against them while considering the status of data, cold-
and hot-spot, I/O and CPU load.

• Designing auto-scaling mechanisms in which the range of required database instances should be determined
based on the workload and the type of instance, not by users who determine currently in commercial data
stores.

• Designing scheduling algorithms to complete data delivery within deadline and budget by considering the
size and price of bandwidth.

• Designing a fuzzy and self-learning framework for ensuring data security while considering managerial so-
lutions, acts, legislation, and privacy over data placement within and across data stores.

Data Model • Analysing the relationship between entities in applications to identify their relationship and then placing the
associated data in servers/DCs at the close distance

• Guaranteeing SLA in terms of response time in both classes of data store via dynamic allocation of bandwidth
to requests, selection of adaptive consistency semantic, adaptive replication of data based on their workload.

Data Dispersion • Borrowing the parallelism in deferred-update replication and abort-free features in state machine replication
to improve the scalability and throughput of transactions.

• Designing algorithms to replicate data in full or partial degree based on the number of DCs, globality of
transactions, and the size of data.

• Defining a monetary cost function including latency as a utility to capture it as a continuous value instead of
discrete and the cost of storage services, and then applying this cost function in Quorum-based replication
approach.

• Constructing codes with small repair bandwidth and a minimal number of nodes participating in the repair
process of the failed chunk for cold objects, and constructing codes for hot objects with the help of queuing
and coding theory to read and to construct the failed chunk from several data chunks in parallel.

• Utilizing fully the characteristics of workload and data stores in performance and price to leverage hybrid
scheme of data dispersion.

Data consistency and
transaction
management

• Extension of Conflicted-free Replicated Data Types (CRDTs) in operation types and make the richer relation
between them to exempt the coordination between data replicas.

• Analysing the semantic of the application to provide consistency at the language level.
• Designing replication protocols with the capability of ordering request against replicas at the network level

with the small quorum size to increase throughput– see Table 14.
• Designing adaptive isolation levels for applications based on the required response time and available budgets.

As response time is tighter, weaker isolation level is chosen.
• Designing adaptive algorithms with the help of graph partitioning techniques and clustering algorithms to

reduce distributed transactions, and in turn, improve response time.

Data management
cost

• Designing algorithms to make a trade-off between performance criteria like availability and durability and
monetary cost including storage, read, write, and potential migration costs.

• Designing light-weight algorithms to optimize data management cost consisting of storage, read, write, po-
tential migration cost across different storage classes based on the status of objects, that is, hot- and cold-spot.

• Designing online and off-line algorithms to make decisions on the number and type of required database
instances as well as when on-demand or reserved database instances are deployed.

better achieve the goals of intra-data store (Table 2), there are some interesting tracks to explore
as identified in Table 16. However, storing data within data stores faces application providers with
challenges as shown in Table 3. A way to tackle these challenges, especially data transfer bottleneck
and performance unpredictability, is to deploy workload-aware data placement while considering
the topology of data stores rather than randomly placing data in storage nodes of commercial
data stores. Moreover, such solutions require data delivery within a deadline especially for OLTP
applications. In respect to another challenge, data security, it would be useful to design a fuzzy
framework in which acts, legislation, security, and privacy requirements are considered. A com-
plementary approach to these promising solutions is storing data across data stores owned by
different vendors. However, the cross-deployment of data stores raises key challenges (Table 5).
The first one is how to ease the movement across data stores owned by different vendors. This
requires the design of a common data model and standard APIs for different cloud databases to
help application providers. The second is how to handle network congestion. The ideal solutions
for this challenge are to complete data transfer within a budget and deadline especially for OLTP

ACM Computing Surveys, Vol. 50, No. 6, Article 91. Publication date: December 2017.

91:42 Y. Mansouri et al.

applications that demand high response time. Last, concurrency control is another challenge for
which the solutions imply to focus on the following data elements as outlined in Figure 1.

Data model. Relational data model provides ACID properties for applications, whereas it im-
pedes scalability. In contrast, NoSQL data model makes data stores more scalable for data-intensive
applications. NewSQL takes benefits of both data models. It also mitigates the latency effects of
using remote data, because a hierarchical scheme of the related data is made, and then the data is
placed in servers/DCs, which are at the close distance. Thus, it would be very useful to analyze
the workload of the application and build a hierarchical scheme of related data. This helps to re-
duce cross-coordination and confine transactions to a limited number of servers/DCs, and eases
processing complex queries over entities. Furthermore, both classes of commercial data stores us-
ing these data models support weak SLA for a limited performance criteria like availability and
durability. Hence, there is a venue to provide better SLA in respect to response time, auto-scaling,
monetary cost (Table 16).

Data dispersion. Though data replication has been widely investigated in the field of databases, it
is worthwhile to investigate which model, degree, granularity, and propagation of data replication
is deployed for achieving specific performance metrics in the cloud-based data stores (Table 16). In
respect to erasure coding, cloud-based data stores require codes that are more efficient in network
rather than storage to save monetary cost as deployed across data stores and reduce network
congestion as used within data stores. The pure use of each scheme of data dispersion may not be
efficient in terms of performance metrics. A better alternative is to deploy a hybrid scheme based
on the characteristics of workloads and data stores that were not fully investigated in state-of-the-
art projects (Table 13).

Data consistency and transaction management. To provide consistent data and support ACID
transactions, a concurrency control mechanism should be deployed. This significantly affects the
overall performance of response time, availability, and even monetary cost. Thus, it is worth de-
ploying strategies to reduce or exempt coordination across replicas especially across DCs. For this
purpose, the concurrency control mechanisms are performed in different levels. The concurrency
control in I/O level is a widely studied research topic in OLTP applications. The proposed proto-
cols in this level are either lock-free or lock-based, which make a trade-off between response time
and memory consumption. To reduce the need for concurrency in I/O level, it would be relevant
(i) to replicate associated data in the servers/DCs that are at a close distance and (ii) order requests
against replicas in the network level instead of replication protocol, which has received consider-
able attention recently. The concurrency mechanisms in the level of object and flow are appealing,
since they exempt/reduce the need of coordination. They are in their infancy and currently sup-
port a limited number of data objects (e.g., counters, some specific sets types) and operation types
(e.g., increment and decrements for counters, union and intersect for sets). These objects also lack
rich relations and operations among themselves that affect the amount of information maintained
and propagated by each replica. The concurrency mechanisms in application and language levels
can reduce the need of coordination but they are ad hoc and error-prone.

Data management cost. Monetary cost is a key factor for application providers to move their data
into storage infrastructure. The optimization of the monetary cost is a vital criterion for applica-
tion providers. The contributing factors in this optimization are: the pricing models, the duration
of used resources, the characteristics of workload, and the required QoS depending on the types of
applications. We discussed this optimization based on either single/multi QoS metrics. The existing
studies dealt with the cost optimization problems in which some cost elements and QoS metrics
are considered. Thus, this is a venue to study the cost optimization problems, which are compli-
mentary to those already studied. Further work is also needed to investigate when these problems
lead to cost trade-offs like storage vs. network, storage vs. cache, and storage vs. computation.

ACM Computing Surveys, Vol. 50, No. 6, Article 91. Publication date: December 2017.

Data Storage Management in Cloud Environments 91:43

Furthermore, due to different classes of storage (for example, S3 Standard, S3 Standard-Infrequent
Access, Amazon Glacier, Amazon Reduced Redundancy Storage (RRS)) differentiating in price and
performance, it would be interesting to investigate how to replicate objects during their lifetime
based on the writes, reads, and size of objects so the cost is optimized and the required SLA is
satisfied. In fact, the objects should be migrated across these classes within or across data stores
for this purpose. This mandates to determine the migration time(s) for objects as their statuses
change from hot-spot to cold-spot and vice versa.

ACKNOWLEDGMENTS

The authors would like to thank Chenhao Qu, Mara Alejandra Rodrguez, Shashikant Ilager,
Rodrigo N. Calheiros, Sareh Fotuhi Piraghaj, and the anonymous reviewers for the insightful com-
ments for improvement.

REFERENCES

Daniel Abadi. 2012. Consistency tradeoffs in modern distributed database system design: CAP is only part of the story.

Computer 2 (Feb. 2012).

Daniel J. Abadi. 2009. Data management in the cloud: Limitations and opportunities. IEEE Data Eng. Bull. 32, 1 (2009), 3–12.

Hussam Abu-Libdeh, Lonnie Princehouse, and Hakim Weatherspoon. 2010. RACS: A case for cloud storage diversity. In

Proceedings of the 1st ACM Symposium on Cloud Computing (SoCC’10). ACM, New York, NY, 229–240.

Atul Adya. 1999. Weak Consistency: A Generalized Theory and Optimistic Implementations for Distributed Transactions. Ph.D.

Dissertation. Cambridge, MA.

Divyakant Agrawal, Amr El Abbadi, Hatem A. Mahmoud, Faisal Nawab, and Kenneth Salem. 2013. Managing Geo-replicated

Data in Multi-datacenters. Springer, Berlin, 23–43.

Rakesh Agrawal, Michael J. Carey, and Miron Livny. 1987. Concurrency control performance modeling: Alternatives and

implications. ACM Trans. Data. Syst. 12, 4 (Nov. 1987), 609–654.

Marcos K. Aguilera, Arif Merchant, Mehul Shah, Alistair Veitch, and Christos Karamanolis. 2007. Sinfonia: A new paradigm

for building scalable distributed systems. SIGOPS Oper. Syst. Rev. 6 (Oct. 2007), 5:1–5:48.

Mustaque Ahamad, Gil Neiger, James E. Burns, Prince Kohli, and Phillip W. Hutto. 1995. Causal memory: Definitions,

implementation, and programming. Distrib. Comput. 9, 1 (01 Mar 1995), 37–49.

Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan, Nelson Huang, and Amin Vahdat. 2010. Hedera: Dy-

namic flow scheduling for data center networks. In Proceedings of the 7th USENIX Conference on Networked Systems

Design and Implementation (NSDI’10). USENIX Association, Berkeley, CA, 19–19.

Paulo Sérgio Almeida, Ali Shoker, and Carlos Baquero. 2015. Efficient State-Based CRDTs by Delta-Mutation. Springer In-

ternational Publishing, Cham, 62–76.

Sérgio Almeida, João Leitão, and Luís Rodrigues. 2013. ChainReaction: A causal+ consistent datastore based on chain

replication. In Proceedings of the 8th ACM European Conference on Computer Systems (EuroSys’13). ACM, New York, NY,

85–98.

Peter Alvaro, Peter Bailis, Neil Conway, and Joseph M. Hellerstein. 2013. Consistency without borders. In Proceedings of

the 4th Annual Symposium on Cloud Computing (SOCC’13). ACM, New York, NY, Article 23, 23:1–23:10.

Peter Alvaro, Neil Conway, Joseph M. Hellerstein, and David Maier. 2014. Blazes: Coordination analysis for distributed

programs. In Proceedings of the 30th IEEE International Conference on Data Engineering. 52–63.

Peter Alvaro, Neil Conway, Joseph M. Hellerstein, and William R. Marczak. 2011. Consistency analysis in bloom: A CALM

and collected approach. In Proceedings of the 5th Biennial Conference on Innovative Data Systems Research. 249–260.

Eric Anderson, Xiaozhou Li, Mehul A. Shah, Joseph Tucek, and Jay J. Wylie. 2010. What consistency does your key-value

store actually provide? In Proceedings of the 6th International Conference on Hot Topics in System Dependability (Hot-

Dep’10). USENIX Association, Berkeley, CA, 1–16.

Masoud Saeida Ardekani, Pierre Sutra, and Marc Shapiro. 2013. Non-monotonic snapshot isolation: Scalable and strong

consistency for geo-replicated transactional systems. In Proceedings of the 2013 IEEE 32Nd International Symposium on

Reliable Distributed Systems (SRDS’13). IEEE Computer Society, Washington, DC, 163–172.

Masoud Saeida Ardekani, Pierre Sutra, and Marc Shapiro. 2014. G-DUR: A middleware for assembling, analyzing, and

improving transactional protocols. In Proceedings of the 15th International Middleware Conference (Middleware’14). ACM,

New York, NY, 13–24.

Masoud Saeida Ardekani, Pierre Sutra, Marc Shapiro, and Nuno M. Preguiça. 2013. On the scalability of snapshot isolation.

In Proceedings Euro-Par 2013 Parallel Processing—19th International Conference. 369–381.

ACM Computing Surveys, Vol. 50, No. 6, Article 91. Publication date: December 2017.

91:44 Y. Mansouri et al.

J. E. Armendáriz-Iñigo, A. Mauch-Goya, J. R. González de Mendívil, and F. D. Muñoz Escoí. 2008. SIPRe: A partial database

replication protocol with SI replicas. In Proceedings of the 2008 ACM Symposium on Applied Computing (SAC’08). ACM,

New York, NY, 2181–2185.

Peter Bailis, Aaron Davidson, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. 2013. Highly available trans-

actions: Virtues and limitations. Proc. VLDB Endow. 7, 3 (Nov. 2013), 181–192.

Peter Bailis, Alan Fekete, Michael J. Franklin, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. 2014. Coordination avoid-

ance in database systems. Proc. VLDB Endow. 3 (Nov. 2014), 185–196.

Peter Bailis and Ali Ghodsi. 2013. Eventual consistency today: Limitations, extensions, and beyond. Queue 11, 3, Article 20

(March 2013), 20:20–20:32.

Peter Bailis, Shivaram Venkataraman, Michael J. Franklin, Joseph M. Hellerstein, and Ion Stoica. 2012. Probabilistically

bounded staleness for practical partial quorums. Proc. VLDB Endow. 5, 8 (April 2012), 776–787.

Jason Baker, Chris Bond, James C. Corbett, J. J. Furman, Andrey Khorlin, James Larson, Jean-Michel Leon, Yawei Li,

Alexander Lloyd, and Vadim Yushprakh. 2011. Megastore: Providing scalable, highly available storage for interactive

services. In Proceedings of the 5th Biennial Conference on Innovative Data Systems Research (CIDR’11). 223–234.

Valter Balegas, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues, Nuno Preguiça, Mahsa Najafzadeh, and Marc Shapiro.

2015. Putting consistency back into eventual consistency. In Proceedings of the 10th European Conference on Computer

Systems (EuroSys’15). ACM, New York, NY, Article 6, 6:1–6:16.

Hitesh Ballani, Paolo Costa, Thomas Karagiannis, and Ant Rowstron. 2011. Towards predictable datacenter networks. In

Proceedings of the ACM SIGCOMM Conference (SIGCOMM’11). ACM, New York, NY, 242–253.

Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and Patrick O’Neil. 1995. A critique of ANSI SQL

isolation levels. In Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD’95). ACM,

New York, NY, 1–10.

David Bermbach, Markus Klems, Stefan Tai, and Michael Menzel. 2011. MetaStorage: A federated cloud storage system to

manage consistency-latency tradeoffs. In Proceedings of IEEE International Conference on Cloud Computing (CLOUD’11).

452–459.

Alysson Bessani, Miguel Correia, Bruno Quaresma, Fernando André, and Paulo Sousa. 2011. DepSky: Dependable and

secure storage in a cloud-of-clouds. In Proceedings of the 6th European Conference on Computer Systems (EuroSys’11).

ACM, New York, NY, 31–46.

C. E. Bezerra, F. Pedone, and R. V. Renesse. 2014. Scalable state-machine replication. In Proceedings of the 44th Annual

IEEE/IFIP International Conference on Dependable Systems and Networks. 331–342.

Dhruba Borthakur, Jonathan Gray, Joydeep Sen Sarma, Kannan Muthukkaruppan, Nicolas Spiegelberg, Hairong Kuang,

Karthik Ranganathan, Dmytro Molkov, Aravind Menon, Samuel Rash, Rodrigo Schmidt, and Amitanand Aiyer. 2011.

Apache Hadoop goes realtime at facebook. In Proceedings of the ACM SIGMOD International Conference on Management

of Data (SIGMOD’11). ACM, New York, NY, 1071–1080.

Kevin D. Bowers, Ari Juels, and Alina Oprea. 2009. HAIL: A high-availability and integrity layer for cloud storage. In

Proceedings of the 16th ACM Conference on Computer and Communications Security (CCS’09). ACM, New York, NY,

187–198.

Matthias Brantner, Daniela Florescu, David Graf, Donald Kossmann, and Tim Kraska. 2008. Building a database on S3. In

Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD’08). ACM, New York, NY,

251–264.

Christian Cachin, Robert Haas, and Marko Vukolic. 2010. Dependable storage in the Intercloud. Technical Report. Research

Report RZ, 3783.

Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan, Arild Skjolsvold, Sam McKelvie, Yikang Xu, Shashwat

Srivastav, Jiesheng Wu, Huseyin Simitci, Jaidev Haridas, Chakravarthy Uddaraju, Hemal Khatri, Andrew Edwards,

Vaman Bedekar, Shane Mainali, Rafay Abbasi, Arpit Agarwal, Mian Fahim ul Haq, Muhammad Ikram ul Haq,

Deepali Bhardwaj, Sowmya Dayanand, Anitha Adusumilli, Marvin McNett, Sriram Sankaran, Kavitha Manivannan,

and Leonidas Rigas. 2011. Windows azure storage: A highly available cloud storage service with strong consistency. In

Proceedings of the 23rd ACM Symposium on Operating Systems Principles (SOSP’11). ACM, New York, NY, 143–157.

David G. Campbell, Gopal Kakivaya, and Nigel Ellis. 2010. Extreme scale with full SQL language support in microsoft SQL

azure. In Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD’10). ACM, New

York, NY, 1021–1024.

Rick Cattell. 2011. Scalable SQL and NoSQL data stores. SIGMOD Record 39, 4 (May 2011), 12–27.

A. Chan and R. Gray. 1985. Implementing distributed read-only transactions. IEEE Trans. Softw. Eng. SE-11, 2 (Feb 1985),

205–212.

Chia-Wei Chang, Pangfeng Liu, and Jan-Jan Wu. 2012. Probability-based cloud storage providers selection algorithms with

maximum availability. In Proceedings of the 41st International Conference on Parallel Processing. 199–208.

ACM Computing Surveys, Vol. 50, No. 6, Article 91. Publication date: December 2017.

Data Storage Management in Cloud Environments 91:45

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike Burrows, Tushar Chandra, Andrew

Fikes, and Robert E. Gruber. 2008. Bigtable: A distributed storage system for structured data. ACM Trans. Comput. Syst.

26, 2, Article 4 (June 2008), 4:1–4:26.

Fangfei Chen, Katherine Guo, John Lin, and Thomas F. La Porta. 2012. Intra-cloud lightning: Building CDNs in the cloud.

In Proceedings of the IEEE INFOCOM. 433–441.

H. Chen, H. Jin, and S. Wu. 2016. Minimizing inter-server communications by exploiting self-similarity in online social

networks. IEEE Trans. Parall. Distrib. Syst. 27, 4 (April 2016), 1116–1130.

Haopeng Chen, Zhenhua Wang, and Yunmeng Ban. 2013. Access-load-aware dynamic data balancing for cloud storage

service. In Proceedings of the 6th International Conference on Internet and Distributed Computing Systems—Volume 8223

(IDCS’13). Springer-Verlag, New York, 307–320.

H. C. H. Chen, Y. Hu, P. P. C. Lee, and Y. Tang. 2014. NCCloud: A network-coding-based storage system in a cloud-of-clouds.

IEEE Trans. Comput. 63, 1 (Jan 2014), 31–44.

Kai Chen, Ankit Singla, Atul Singh, Kishore Ramachandran, Lei Xu, Yueping Zhang, Xitao Wen, and Yan Chen. 2014. OSA:

An optical switching architecture for data center networks with unprecedented flexibility. IEEE/ACM Trans. Netw. 22,

2 (April 2014), 498–511.

H. E. Chihoub, S. Ibrahim, G. Antoniu, and M. S. Prez. 2013. Consistency in the cloud: When money does matter! In

Proceedings of the 13th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing. 352–359.

D. Chiu and G. Agrawal. 2010. Evaluating caching and storage options on the Amazon web services cloud. In Proceedings

of the 11th IEEE/ACM International Conference on Grid Computing. 17–24.

Asaf Cidon, Robert Escriva, Sachin Katti, Mendel Rosenblum, and Emin Gun Sirer. 2015. Tiered replication: A cost-effective

alternative to full cluster geo-replication. In Proceedings of the USENIX Annual Technical Conference (USENIX ATC’15).

USENIX Association, Santa Clara, CA, 31–43.

Asaf Cidon, Stephen Rumble, Ryan Stutsman, Sachin Katti, John Ousterhout, and Mendel Rosenblum. 2013. Copysets:

Reducing the frequency of data loss in cloud storage. In Presented as part of the 2013 USENIX Annual Technical Conference

(USENIX ATC’13). USENIX, San Jose, CA, 37–48.

Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silberstein, Philip Bohannon, Hans-Arno Jacobsen, Nick

Puz, Daniel Weaver, and Ramana Yerneni. 2008. PNUTS: Yahoo!’s hosted data serving platform. Proc. VLDB Endow.2

(Aug. 2008), 1277–1288.

James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, J. J. Furman, Sanjay Ghemawat, Andrey

Gubarev, Christopher Heiser, Peter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexander

Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal

Szymaniak, Christopher Taylor, Ruth Wang, and Dale Woodford. 2013. Spanner: Google’s globally distributed database.

ACM Trans. Comput. Syst. 31, 3, Article 8 (Aug. 2013), 8:1–8:22.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2009. Introduction to Algorithms, 3rd ed. MIT

Press.

Paolo Costa, Austin Donnelly, Antony Rowstron, and Greg O’Shea. 2012. Camdoop: Exploiting in-network aggregation for

big data applications. In Presented as Part of the 9th USENIX Symposium on Networked Systems Design and Implementation

(NSDI’12). USENIX, San Jose, CA, 29–42.

Anupam Das, Cristian Lumezanu, Yueping Zhang, Vishal Singh, Guofei Jiang, and Curtis Yu. 2013b. Transparent and flexible

network management for big data processing in the cloud. In Proceedings of the 5th USENIX Workshop on Hot Topics in

Cloud Computing. USENIX, Berkeley, CA.

Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. 2013a. ElasTraS: An elastic, scalable, and self-managing transactional

database for the cloud. ACM Trans. Database Syst. 38, 1, Article 5 (April 2013), 5:1–5:45.

DeCandia. 2007. Dynamo: Amazon’s highly available key-value store. SIGOPS Oper. Syst. Rev. 41, 6 (Oct. 2007), 205–220.

Xavier Défago, André Schiper, and Péter Urbán. 2004. Total order broadcast and multicast algorithms: Taxonomy and

survey. Comput. Surveys 36, 4 (Dec. 2004), 372–421.

Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott Shenker, Howard Sturgis, Dan Swinehart, and Doug

Terry. 1987. Epidemic algorithms for replicated database maintenance. In Proceedings of the 6th Annual ACM Symposium

on Principles of Distributed Computing (PODC’87). ACM, New York, NY, 1–12.

A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ramchandran. 2010. Network coding for distributed storage

systems. IEEE Trans. Info. Theory 56, 9 (Sept 2010), 4539–4551.

Jiaqing Du, Sameh Elnikety, Amitabha Roy, and Willy Zwaenepoel. 2013. Orbe: Scalable causal consistency using depen-

dency matrices and physical clocks. In Proceedings of the 4th Annual Symposium on Cloud Computing (SOCC’13). ACM,

New York, NY, Article 11, 11:1–11:14.

Jiaqing Du, Calin Iorgulescu, Amitabha Roy, and Willy Zwaenepoel. 2014b. Closing the performance gap between causal

consistency and eventual consistency. In Proceedings of the Workshop on the Principles and Practice of Eventual Consis-

tency (PaPEC’14).

ACM Computing Surveys, Vol. 50, No. 6, Article 91. Publication date: December 2017.

91:46 Y. Mansouri et al.

Jiaqing Du, Calin Iorgulescu, Amitabha Roy, and Willy Zwaenepoel. 2014a. Gentlerain: Cheap and scalable causal consis-

tency with physical clocks. In Proceedings of the ACM Symposium on Cloud Computing. ACM, 1–13.

Robert Escriva, Bernard Wong, and Emin Gün Sirer. 2012. HyperDex: A distributed, searchable key-value store. In Pro-

ceedings of the ACM SIGCOMM 2012 Conference on Applications, Technologies, Architectures, and Protocols for Computer

Communication (SIGCOMM’12). ACM, New York, NY, 25–36.

Robert Escriva, Bernard Wong, and Emin Gün Sirer. 2013. Warp: Multi-key transactions for key value stores. United Net-

works, LLC, Technical Report (2013).

Yuan Feng, Baochun Li, and Bo Li. 2012. Postcard: Minimizing costs on inter-datacenter traffic with store-and-forward.

In Proceedings of the 32nd International Conference on Distributed Computing Systems Workshops (ICDCSW’12). IEEE

Computer Society, Washington, DC, 43–50.

Ilir Fetai and Heiko Schuldt. 2012. Cost-based data consistency in a data-as-a-service cloud environment. In Proceedings

of the IEEE 5th International Conference on Cloud Computing (CLOUD’12). IEEE Computer Society, Washington, DC,

526–533.

Shai Fine, Yoram Singer, and Naftali Tishby. 1998. The hierarchical hidden Markov model: Analysis and applications. Mach.

Learn. 32, 1 (July 1998), 41–62.

Daniel Ford, François Labelle, Florentina I. Popovici, Murray Stokely, Van-Anh Truong, Luiz Barroso, Carrie Grimes, and

Sean Quinlan. 2010. Availability in globally distributed storage systems. In Proceedings of the 9th USENIX Symposium

on Operating Systems Design and Implementation. 61–74.

Seth Gilbert and Nancy Lynch. 2002. Brewer’s conjecture and the feasibility of consistent, available, partition-tolerant web

services. SIGACT News 33, 2 (June 2002), 51–59.

Jim Gray and Leslie Lamport. 2006. Consensus on transaction commit. ACM Trans. Data. Syst. 31, 1 (March 2006), 133–160.

Rachid Guerraoui and André Schiper. 2001. Genuine atomic multicast in asynchronous distributed systems. Theor. Comput.

Sci. 254, 1–2 (March 2001), 297–316.

Jian Guo, Fangming Liu, Xiaomeng Huang, John C. S. Lui, Mi Hu, Qiao Gao, and Hai Jin. 2014. On efficient bandwidth

allocation for traffic variability in datacenters. In Proceedings of the IEEE Conference on Computer Communications (IN-

FOCOM’14). 1572–1580.

R. C. Hansdah and L. M. Patnaik. 1986. Proceedings of the International Conference on Database Theory (ICDT’86). Springer,

Berlin, 171–185.

Zach Hill and Marty Humphrey. 2010. CSAL: A cloud storage abstraction layer to enable portable cloud applications. In

Proceedings of the 2nd IEEE International Conference on Cloud Computing Technology and Scie (CLOUDCOM’10). IEEE

Computer Society, Washington, DC, 504–511.

Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron Ogus, Brad Calder, Parikshit Gopalan, Jin Li, and Sergey Yekhanin.

2012. Erasure coding in windows azure storage. In Proceedings of the USENIX Conference on Annual Technical Conference

(USENIX ATC’12). USENIX Association, Berkeley, CA, 15–26.

Anil K. Jain and Richard C. Dubes. 1988. Algorithms for Clustering Data. Prentice-Hall, Inc., Upper Saddle River, NJ.

Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun Singh, Subbaiah Venkata, Jim Wanderer,

Junlan Zhou, Min Zhu, Jon Zolla, Urs Hölzle, Stephen Stuart, and Amin Vahdat. 2013. B4: Experience with a globally

deployed software defined wan. SIGCOMM Comput. Commun. Rev. 43, 4 (Aug. 2013), 3–14.

Vimalkumar Jeyakumar, Mohammad Alizadeh, David Mazières, Balaji Prabhakar, Changhoon Kim, and Albert Greenberg.

2013. EyeQ: Practical network performance isolation at the edge. In Proceedings of the 10th USENIX Conference on Net-

worked Systems Design and Implementation (NSDI’13). USENIX Association, Berkeley, CA, 297–312.

Lei Jiao, Jun Li, Tianyin Xu, Wei Du, and Xiaoming Fu. 2016. Optimizing cost for online social networks on geo-distributed

clouds. IEEE/ACM Trans. Netw. 24, 1 (Feb. 2016), 99–112.

Joarder Kamal, Manzur Murshed, and Rajkumar Buyya. 2016. Workload-aware incremental repartitioning of shared-

nothing distributed databases for scalable OLTP applications. Future Gen. Comput. Syst. 56, C (March 2016), 421–435.

Osama Khan, Randal C. Burns, James S. Plank, William Pierce, and Cheng Huang. 2012. Rethinking erasure codes for cloud

file systems: Minimizing I/O for recovery and degraded reads. In Proceedings of the 10th USENIX Conference on File and

Storage Technologies (FAST’12).

Tadeusz Kobus, Maciej Kokocinski, and Pawel T. Wojciechowski. 2013. Hybrid replication: State-machine-based and

deferred-update replication schemes combined. In Proceedings of the 33rd IEEE International Conference on Distributed

Computing Systems (ICDCS’13). IEEE Computer Society, Washington, DC, 286–296.

Ramakrishna Kotla, Lorenzo Alvisi, and Mike Dahlin. 2007. SafeStore: A durable and practical storage system. In Proceedings

of the USENIX Annual Technical Conference (ATC’07). USENIX Association, Berkeley, CA, Article 10, 10:1–10:14.

Tim Kraska, Martin Hentschel, Gustavo Alonso, and Donald Kossmann. 2009. Consistency rationing in the cloud: Pay only

when it matters. Proc. VLDB Endow. 1 (Aug. 2009), 253–264.

Diego Kreutz, Fernando M. V. Ramos, Paulo Veríssimo, Christian Esteve Rothenberg, Siamak Azodolmolky, and Steve Uhlig.

2015. Software-defined networking: A comprehensive survey. Pract. Proc. IEEE 103, 1 (2015), 14–76.

ACM Computing Surveys, Vol. 50, No. 6, Article 91. Publication date: December 2017.

Data Storage Management in Cloud Environments 91:47

K. Ashwin Kumar, Abdul Quamar, Amol Deshpande, and Samir Khuller. 2014. SWORD: Workload-aware data placement

and replica selection for cloud data management systems. VLDB J. 23, 6 (2014), 845–870.

H. T. Kung and John T. Robinson. 1981. On optimistic methods for concurrency control. ACM Trans. Data. Syst. 2 (June

1981), 213–226.

Avinash Lakshman and Prashant Malik. 2010. Cassandra: A decentralized structured storage system. SIGOPS Oper. Syst.

Rev. 44, 2 (April 2010), 35–40.

Leslie Lamport. 1998. The part-time parliament. ACM Trans. Comput. Syst. 16, 2 (May 1998), 133–169.

Leslie Lamport. 2005. Generalized Consensus and Paxos. Technical Report MSR-TR-2005-33. Microsoft Research. 60 pages.

Leslie Lamport. 2006. Fast paxos. Distrib. Comput. 19, 2 (2006), 79–103.

Jeongkeun Lee, Yoshio Turner, Myungjin Lee, Lucian Popa, Sujata Banerjee, Joon-Myung Kang, and Puneet Sharma.

2014. Application-driven bandwidth guarantees in datacenters. SIGCOMM Comput. Commun. Rev. 44, 4 (Aug. 2014),

467–478.

Cheng Li, João Leitão, Allen Clement, Nuno Preguiça, Rodrigo Rodrigues, and Viktor Vafeiadis. 2014. Automating the choice

of consistency levels in replicated systems. In Proceedings of the 2014 USENIX Conference on USENIX Annual Technical

Conference (USENIX ATC’14). USENIX Association, Berkeley, CA, 281–292.

Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno Preguiça, and Rodrigo Rodrigues. 2012. Making geo-

replicated systems fast as possible, consistent when necessary. In Proceedings of the 10th USENIX Conference on Operating

Systems Design and Implementation (OSDI’12). USENIX Association, Berkeley, CA, 265–278.

Jialin Li, Ellis Michael, Naveen Kr. Sharma, Adriana Szekeres, and Dan R. K. Ports. 2016. Just say NO to paxos overhead:

Replacing consensus with network ordering. In Proceedings of the 12th USENIX Symposium on Operating Systems Design

and Implementation (OSDI’16). USENIX Association, 467–483.

Mingqiang Li, Chuan Qin, and Patrick P. C. Lee. 2015. CDStore: Toward reliable, secure, and cost-efficient cloud storage via

convergent dispersal. In Proceedings of the USENIX Annual Technical Conference (USENIX ATC’15). USENIX Association,

Santa Clara, CA, 111–124.

Wenhao Li, Yun Yang, Jinjun Chen, and Dong Yuan. 2012. A cost-effective mechanism for cloud data reliability management

based on proactive replica checking. In Proceedings of the 12th IEEE/ACM International Symposium on Cluster, Cloud and

Grid Computing (CCGRID’12). IEEE Computer Society, Washington, DC, 564–571.

Wenhao Li, Yun Yang, and Dong Yuan. 2011. A novel cost-effective dynamic data replication strategy for reliability in cloud

data centres. In Proceedings of the 9th IEEE International Conference on Dependable, Autonomic and Secure Computing

(DASC’11). IEEE Computer Society, Washington, DC, 496–502.

Guanfeng Liang and Ulaş C. Kozat. 2014. Fast cloud: Pushing the envelope on delay performance of cloud storage with

coding. IEEE/ACM Trans. Netw. 22, 6 (Dec. 2014), 2012–2025.

G. Liang and U. C. Kozat. 2016. On throughput-delay optimal access to storage clouds via load adaptive coding and chunking.

IEEE/ACM Trans. Netw. 24, 4 (Aug 2016), 2168–2181.

G. Liu, H. Shen, and H. Chandler. 2013. Selective data replication for online social networks with distributed datacenters.

In Proceedings of the 21st IEEE International Conference on Network Protocols (ICNP’13). 1–10.

J. Liu and H. Shen. 2016. A low-cost multi-failure resilient replication scheme for high data availability in cloud storage. In

IEEE 23rd International Conference on High Performance Computing (HiPC’16). 242–251.

Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen. 2011. Don’t settle for eventual: Scalable

causal consistency for wide-area storage with COPS. In Proceedings of the Twenty-Third ACM Symposium on Operating

Systems Principles (SOSP’11). ACM, New York, NY, 401–416.

Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen. 2013. Stronger semantics for low-latency

geo-replicated storage. In Proceedings of the 10th USENIX Conference on Networked Systems Design and Implementation

(NSDI’13). USENIX Association, Berkeley, CA, 313–328.

D. Lomet. 1996. Replicated indexes for distributed data. In Proceedings of the 4th International Conference on Parallel and

Distributed Information Systems. 108–119.

Yadi Ma, Thyaga Nandagopal, Krishna P. N. Puttaswamy, and Suman Banerjee. 2013. An ensemble of replication and erasure

codes for cloud file systems. In Proceedings of the IEEE INFOCOM. 1276–1284.

Hatem Mahmoud, Faisal Nawab, Alexander Pucher, Divyakant Agrawal, and Amr El Abbadi. 2013. Low-latency multi-

datacenter databases using replicated commit. Proc. VLDB Endow. 9 (July 2013), 661–672.

Hatem A. Mahmoud, Vaibhav Arora, Faisal Nawab, Divyakant Agrawal, and Amr El Abbadi. 2014. MaaT: Effective and

scalable coordination of distributed transactions in the cloud. Proc. VLDB Endow. 5 (Jan. 2014), 329–340.

Yaser Mansouri and Rajkumar Buyya. 2016. To move or not to move: Cost optimization in a dual cloud-based storage

architecture. J. Netw. Comput. Appl. 75 (2016), 223–235.

Yaser Mansouri, Adel Nadjaran Toosi, and Rajkumar Buyya. 2013. Brokering algorithms for optimizing the availability and

cost of cloud storage services. In Proceedings of the 5th IEEE International Conference on Cloud Computing Technology

and Science (CloudCom’13). 581–589.

ACM Computing Surveys, Vol. 50, No. 6, Article 91. Publication date: December 2017.

91:48 Y. Mansouri et al.

Y. Mansouri, A. Nadjaran Toosi, and R. Buyya. 2017. Cost optimization for dynamic replication and migration of data in

cloud data centers. IEEE Trans. Cloud Comput. (2017). DOI:https://doi.org/10.1109/TCC.2017.2659728

Bo Mao, Suzhen Wu, and Hong Jiang. 2016. Exploiting workload characteristics and service diversity to improve the avail-

ability of cloud storage systems. IEEE Trans. Parall. Distrib. Syst. 27, 7 (2016), 2010–2021.

John C. McCullough, John Dunagan, Alec Wolman, and Alex C. Snoeren. 2010. Stout: An adaptive interface to scalable cloud

storage. In Proceedings of the USENIX Conference on USENIX Annual Technical Conference (USENIXATC’10). USENIX

Association, Berkeley, CA, 4–4.

Iulian Moraru, David G. Andersen, and Michael Kaminsky. 2013. There is more consensus in egalitarian parliaments. In

Proceedings of the 24th ACM Symposium on Operating Systems Principles (SOSP’13). ACM, New York, NY, 358–372.

Shuai Mu, Yang Cui, Yang Zhang, Wyatt Lloyd, and Jinyang Li. 2014. Extracting more concurrency from distributed transac-

tions. In Proceedings of the 11th USENIX Conference on Operating Systems Design and Implementation (OSDI’14). USENIX

Association, Berkeley, CA, 479–494.

Subramanian Muralidhar, Wyatt Lloyd, Sabyasachi Roy, Cory Hill, Ernest Lin, Weiwen Liu, Satadru Pan, Shiva Shankar,

Viswanath Sivakumar, Linpeng Tang, and Sanjeev Kumar. 2014. f4: Facebook’s warm BLOB storage system. In Proceed-

ings of the 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI’14). USENIX Association,

383–398.

Maurizio Naldi and Loretta Mastroeni. 2013. Cloud storage pricing: A comparison of current practices. In Proceedings of

International Workshop on Hot Topics in Cloud Services (HotTopiCS’13). ACM, New York, NY, 27–34.

Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Herman Lee, Harry C. Li, Ryan McElroy, Mike Paleczny,

Daniel Peek, Paul Saab, David Stafford, Tony Tung, and Venkateshwaran Venkataramani. 2013. Scaling memcache at

facebook. In Presented as Part of the 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI’13).

USENIX, 385–398.

Brian M. Oki and Barbara H. Liskov. 1988. Viewstamped replication: A new primary copy method to support highly-

available distributed systems. In Proceedings of the Seventh Annual ACM Symposium on Principles of Distributed Com-

puting (PODC’88). ACM, New York, NY, 8–17.

L. Pacheco, D. Sciascia, and F. Pedone. 2014. Parallel deferred update replication. In Proceedings of the IEEE 13th International

Symposium on Network Computing and Applications. 205–212.

Fernando Pedone, Matthias Wiesmann, André Schiper, Bettina Kemme, and Gustavo Alonso. 2000. Understanding replica-

tion in databases and distributed systems. In Proceedings of the 20th International Conference on Distributed Computing

Systems. 464–474.

Sebastiano Peluso, Pedro Ruivo, Paolo Romano, Francesco Quaglia, and Luis Rodrigues. 2012. When scalability meets con-

sistency: Genuine multiversion update-serializable partial data replication. In Proceedings of the 2012 IEEE 32nd Interna-

tional Conference on Distributed Computing Systems (ICDCS’12). IEEE Computer Society, Washington, DC, 455–465.

Lucian Popa, Praveen Yalagandula, Sujata Banerjee, Jeffrey C. Mogul, Yoshio Turner, and Jose Renato Santos. 2013. Elas-

ticSwitch: Practical work-conserving bandwidth guarantees for cloud computing. In Proceedings of the ACM SIGCOMM

Conference on SIGCOMM (SIGCOMM’13). ACM, New York, NY, 351–362.

Dan R. K. Ports, Jialin Li, Vincent Liu, Naveen Kr. Sharma, and Arvind Krishnamurthy. 2015. Designing distributed systems

using approximate synchrony in data center networks. In Proceedings of the 12th USENIX Symposium on Networked

Systems Design and Implementation (NSDI’15). USENIX Association, Oakland, CA, 43–57.

Josep M. Pujol, Vijay Erramilli, Georgos Siganos, Xiaoyuan Yang, Nikos Laoutaris, Parminder Chhabra, and Pablo

Rodriguez. 2010. The little engine(s) that could: Scaling online social networks. In Proceedings of the ACM SIGCOMM

Conference (SIGCOMM’10). ACM, New York, NY, 375–386.

Krishna P. N. Puttaswamy, Thyaga Nandagopal, and Murali Kodialam. 2012. Frugal storage for cloud file systems. In Pro-

ceedings of the 7th ACM European Conference on Computer Systems (EuroSys’12). ACM, New York, NY, 71–84.

K. V. Rashmi, Nihar B. Shah, Dikang Gu, Hairong Kuang, Dhruba Borthakur, and Kannan Ramchandran. 2014. A

“Hitchhiker’s” guide to fast and efficient data reconstruction in erasure-coded data centers. SIGCOMM Comput. Com-

mun. Rev.4 (Aug. 2014), 331–342.

K. V. Rashmi, N. B. Shah, and P. V. Kumar. 2011. Optimal exact-regenerating codes for distributed storage at the MSR and

MBR points via a product-matrix construction. IEEE Trans. Info. Theory 57, 8 (Aug 2011), 5227–5239.

Ron Roth. 2006. Introduction to Coding Theory. Cambridge University Press, New York, NY.

Sudip Roy, Lucja Kot, Gabriel Bender, Bailu Ding, Hossein Hojjat, Christoph Koch, Nate Foster, and Johannes Gehrke. 2015.

The homeostasis protocol: Avoiding transaction coordination through program analysis. In Proceedings of the 2015 ACM

SIGMOD International Conference on Management of Data (SIGMOD’15). ACM, New York, NY, 1311–1326.

Stephen M. Rumble, Ankita Kejriwal, and John Ousterhout. 2014. Log-structured memory for DRAM-based storage. In

Proceedings of the 12th USENIX Conference on File and Storage Technologies (FAST’14). USENIX Association, Berkeley,

CA, 1–16.

Yasushi Saito and Marc Shapiro. 2005. Optimistic replication. Comput. Surveys 37, 1 (March 2005), 42–81.

ACM Computing Surveys, Vol. 50, No. 6, Article 91. Publication date: December 2017.

https://doi.org/10.1109/TCC.2017.2659728

Data Storage Management in Cloud Environments 91:49

Sherif Sakr. 2014. Cloud-hosted databases: Technologies, challenges and opportunities. Cluster Comput. 17, 2 (June 2014),

487–502.

S. Sakr, A. Liu, D. M. Batista, and M. Alomari. 2011. A survey of large scale data management approaches in cloud envi-

ronments. IEEE Commun. Surveys Tutor. 13, 3 (2011), 311–336.

Maheswaran Sathiamoorthy, Megasthenis Asteris, Dimitris Papailiopoulos, Alexandros G. Dimakis, Ramkumar Vadali,

Scott Chen, and Dhruba Borthakur. 2013. XORing elephants: Novel erasure codes for big data. Proc. VLDB Endow. 5

(March 2013), 325–336.

N. Schiper, P. Sutra, and F. Pedone. 2009. Genuine versus non-genuine atomic multicast protocols for wide area networks:

An empirical study. In Proceedings of the 28th IEEE International Symposium on Reliable Distributed Systems. 166–175.

Nicolas Schiper, Pierre Sutra, and Fernando Pedone. 2010. P-store: Genuine partial replication in wide area networks.

In Proceedings of the 2010 29th IEEE Symposium on Reliable Distributed Systems (SRDS’10). IEEE Computer Society,

Washington, DC, 214–224.

Daniele Sciascia, Fernando Pedone, and Flavio Junqueira. 2012. Scalable deferred update replication. In Proceedings of the

42nd Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN) (DSN’12). IEEE Computer

Society, Washington, DC, 1–12.

Steven S. Seiden. 2000. A guessing game and randomized online algorithms. In Proceedings of the 32nd Annual ACM Sym-

posium on Theory of Computing (STOC’00). ACM, New York, NY, 592–601.

Nihar B. Shah, Kangwook Lee, and Kannan Ramchandran. 2014. The MDS queue: Analysing the latency performance of

erasure codes. In Proceedings of the IEEE International Symposium on Information Theory. 861–865.

Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. 2011. Conflict-free replicated data types. In Proceedings

of the 13th International Conference on Stabilization, Safety, and Security of Distributed Systems (SSS’11). Springer-Verlag,

Berlin, Heidelberg, 386–400.

Artyom Sharov, Alexander Shraer, Arif Merchant, and Murray Stokely. 2015. Take me to your leader! Online optimization

of distributed storage configurations. Proc. VLDB Endow. 8, 12 (Aug. 2015), 1490–1501.

Dennis Shasha, Francois Llirbat, Eric Simon, and Patrick Valduriez. 1995. Transaction chopping: Algorithms and perfor-

mance studies. ACM Trans. Database Syst. 3 (Sept. 1995), 325–363.

M. Shen, A. D. Kshemkalyani, and T. Y. Hsu. 2015. Causal consistency for geo-replicated cloud storage under partial repli-

cation. In Proceedings of the IEEE International Parallel and Distributed Processing Symposium Workshop (IPDPSW’15).

509–518.

Alan Shieh, Srikanth Kandula, Albert Greenberg, Changhoon Kim, and Bikas Saha. 2011. Sharing the data center network.

In Proceedings of the 8th USENIX Conference on Networked Systems Design and Implementation (NSDI’11). USENIX As-

sociation, Berkeley, CA, 309–322.

Youngjoo Shin, Dongyoung Koo, and Junbeom Hur. 2017. A survey of secure data deduplication schemes for cloud storage

systems. Comput. Surveys 49, 4, Article 74 (Jan. 2017), 441–446.

David Shue, Michael J. Freedman, and Anees Shaikh. 2012. Performance isolation and fairness for multi-tenant cloud stor-

age. In Proceedings of the 10th USENIX Conference on Operating Systems Design and Implementation (OSDI’12). USENIX

Association, Berkeley, CA, 349–362.

Jeff Shute, Radek Vingralek, Bart Samwel, Ben Handy, Chad Whipkey, Eric Rollins, Mircea Oancea, Kyle Littlefield, David

Menestrina, Stephan Ellner, John Cieslewicz, Ian Rae, Traian Stancescu, and Himani Apte. 2013. F1: A distributed SQL

database that scales. Proc. VLDB Endow. 11 (Aug. 2013), 1068–1079.

K. C. Sivaramakrishnan, Gowtham Kaki, and Suresh Jagannathan. 2015. Declarative programming over eventually consis-

tent data stores. SIGPLAN Not. 50, 6 (June 2015), 413–424.

Yair Sovran, Russell Power, Marcos K. Aguilera, and Jinyang Li. 2011. Transactional storage for geo-replicated systems. In

Proceedings of the 23rd ACM Symposium on Operating Systems Principles (SOSP’11). ACM, New York, NY, 385–400.

J. Spillner, G. Bombach, S. Matthischke, J. Muller, R. Tzschichholz, and A. Schill. 2011. Information dispersion over redun-

dant arrays of optimal cloud storage for desktop users. In Proceedings of the 4th IEEE International Conference on Utility

and Cloud Computing (UCC’11). 1–8.

Christopher Stewart, Aniket Chakrabarti, and Rean Griffith. 2013. Zoolander: Efficiently meeting very strict, low-latency

SLOs. In Proceedings of the 10th International Conference on Autonomic Computing (ICAC’13). USENIX, San Jose, CA,

265–277.

C. Suh and K. Ramchandran. 2011. Exact-repair MDS code construction using interference alignment. IEEE Transactions on

Information Theory 57, 3 (March 2011), 1425–1442.

Lalith Suresh, Marco Canini, Stefan Schmid, and Anja Feldmann. 2015. C3: Cutting tail latency in cloud data stores via

adaptive replica selection. In Proceedings of the 12th USENIX Conference on Networked Systems Design and Implementation

(NSDI’15). USENIX Association, Berkeley, CA, 513–527.

Andrew S. Tanenbaum and Maarten van Steen. 2006. Distributed Systems: Principles and Paradigms (2nd ed.). Prentice-Hall,

Inc.

ACM Computing Surveys, Vol. 50, No. 6, Article 91. Publication date: December 2017.

91:50 Y. Mansouri et al.

J. Tang, X. Tang, and J. Yuan. 2015. Optimizing inter-server communication for online social networks. In Proceedings of

the IEEE 35th International Conference on Distributed Computing Systems. 215–224.

Jeff Terrace and Michael J. Freedman. 2009. Object storage on CRAQ: High-throughput chain replication for read-mostly

workloads. In Proceedings of the 2009 Conference on USENIX Annual Technical Conference (USENIX’09). USENIX Associ-

ation, Berkeley, CA, 11–11.

Douglas B. Terry, Vijayan Prabhakaran, Ramakrishna Kotla, Mahesh Balakrishnan, Marcos K. Aguilera, and Hussam Abu-

Libdeh. 2013. Consistency-based service level agreements for cloud storage. In Proceedings of the 24th ACM Symposium

on Operating Systems Principles (SOSP’13). ACM, New York, NY, 309–324.

Robert H. Thomas. 1979. A majority consensus approach to concurrency control for multiple copy databases. ACM Trans.

Database Syst. 2 (June 1979), 180–209.

Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren, Philip Shao, and Daniel J. Abadi. 2012. Calvin: Fast

distributed transactions for partitioned database systems. In Proceedings of the 2012 ACM SIGMOD International Con-

ference on Management of Data (SIGMOD’12). ACM, New York, NY, 1–12.

A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang, S. Antony, H. Liu, and R. Murthy. 2010. Hive - A petabyte scale

data warehouse using hadoop. In Proceedings of the 26th IEEE International Conference on Data Engineering (ICDE’10).

996–1005.

Duc A. Tran, Khanh Nguyen, and Cuong Pham. 2012. S-CLONE: Socially-aware data replication for social networks. Com-

put. Netw. 56, 7 (2012), 2001–2013.

Nguyen Tran, Marcos K. Aguilera, and Mahesh Balakrishnan. 2011. Online migration for geo-distributed storage systems.

In Proceedings of the USENIX Conference on USENIX Annual Technical Conference (USENIXATC’11). USENIX Association,

Berkeley, CA, 15–15.

Balajee Vamanan, Jahangir Hasan, and T. N. Vijaykumar. 2012. Deadline-aware datacenter TCP (D2TCP). In Proceedings of

the ACM SIGCOMM Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication

(SIGCOMM’12). ACM, New York, NY, 115–126.

Robbert van Renesse and Fred B. Schneider. 2004. Chain replication for supporting high throughput and availability. In

Proceedings of the 6th Conference on Symposium on Opearting Systems Design & Implementation—Volume 6 (OSDI’04).

USENIX Association, Berkeley, CA, 7.

Srikumar Venugopal, Rajkumar Buyya, and Kotagiri Ramamohanarao. 2006. A taxonomy of data grids for distributed data

sharing, management, and processing. ACM Comput. Surv. 38, 1, Article 3 (June 2006), 1–53.

Hoang Tam Vo, Sheng Wang, Divyakant Agrawal, Gang Chen, and Beng Chin Ooi. 2012. LogBase: A scalable log-structured

database system in the cloud. Proc. VLDB Endow. 5, 10 (June 2012), 1004–1015.

Hiroshi Wada, Alan Fekete, Liang Zhao, Kevin Lee, and Anna Liu. 2011. Data consistency properties and the trade-offs

in commercial cloud storages: The consumers’ perspective. In Proceedings of the 5th Biennial Conference on Innovative

Data Systems Research (CIDR’11). 134–143.

Ting Wang, Zhiyang Su, Yu Xia, and M. Hamdi. 2014. Rethinking the data center networking: Architecture, network pro-

tocols, and resource sharing. IEEE Access (2014).

Wei Wang, Baochun Li, and Ben Liang. 2013. To reserve or not to reserve: Optimal online multi-instance acquisition in IaaS

clouds. In Proceedings of the 10th International Conference on Autonomic Computing (ICAC’13). 13–22.

Yunnan Wu, Alexandros G. Dimakis, and Kannan Ramchandran. 2007. Deterministic regenerating codes for distributed

storage. In Proceedings of the Allerton Conference on Control, Computing, and Communication. 1–5.

Yu Wu, Chuan Wu, Bo Li, Linquan Zhang, Zongpeng Li, and Francis C. M. Lau. 2015. Scaling social media applications into

geo-distributed clouds. IEEE/ACM Trans. Netw. 23, 3 (June 2015), 689–702.

Yu Wu, Zhizhong Zhang, Chuan Wu, Chuanxiong Guo, Zongpeng Li, and Francis C. M. Lau. 2017. Orchestrating bulk data

transfers across geo-distributed datacenters. IEEE Trans. Cloud Comput. 5, 1 (2017), 112–125.

Zhe Wu, Michael Butkiewicz, Dorian Perkins, Ethan Katz-Bassett, and Harsha V. Madhyastha. 2013. SPANStore: Cost-

effective geo-replicated storage spanning multiple cloud services. In Proceedings of the 24th ACM Symposium on Oper-

ating Systems Principles (SOSP’13). ACM, New York, NY, 292–308.

Mingyuan Xia, Mohit Saxena, Mario Blaum, and David A. Pease. 2015. A tale of two erasure codes in HDFS. In Pro-

ceedings of the 13th USENIX Conference on File and Storage Technologies (FAST’15). USENIX Association, Berkeley, CA,

213–226.

Yu Xiang, Tian Lan, Vaneet Aggarwal, and Yih Farn R. Chen. 2014. Joint latency and cost optimization for erasurecoded

data center storage. SIGMETRICS Perform. Eval. Rev. 2 (Sept. 2014), 3–14.

Di Xie, Ning Ding, Y. Charlie Hu, and Ramana Kompella. 2012. The only constant is change: Incorporating time-varying

network reservations in data centers. In Proceedings of the ACM SIGCOMM Conference on Applications, Technologies,

Architectures, and Protocols for Computer Communication (SIGCOMM’12). ACM, New York, NY, 199–210.

Boyang Yu and Jianping Pan. 2015. Location-aware associated data placement for geo-distributed data-intensive applica-

tions. In Proceedings of the IEEE Conference on Computer Communications (INFOCOM’15). 603–611.

ACM Computing Surveys, Vol. 50, No. 6, Article 91. Publication date: December 2017.

Data Storage Management in Cloud Environments 91:51

Haifeng Yu and Amin Vahdat. 2002. Design and evaluation of a conit-based continuous consistency model for replicated

services. ACM Trans. Comput. Syst. 20, 3 (Aug. 2002), 239–282.

Wenying Zeng, Yuelong Zhao, Kairi Ou, and Wei Song. 2009. Research on cloud storage architecture and key technologies.

In Proceedings of the 2nd International Conference on Interaction Sciences: Information Technology, Culture and Human

(ICIS’09). ACM, New York, NY, 1044–1048.

Hong Zhang, Kai Chen, Wei Bai, Dongsu Han, Chen Tian, Hao Wang, Haibing Guan, and Ming Zhang. 2015. Guaran-

teeing deadlines for inter-datacenter transfers. In Proceedings of the 10th European Conference on Computer Systems

(EuroSys’15). ACM, New York, NY, Article 20, 14 pages.

Irene Zhang, Naveen Kr. Sharma, Adriana Szekeres, Arvind Krishnamurthy, and Dan R. K. Ports. 2015. Building consis-

tent transactions with inconsistent replication. In Proceedings of the 25th Symposium on Operating Systems Principles

(SOSP’15). ACM, New York, NY, 263–278.

Q. Zhang, S. Li, Z. Li, Y. Xing, Z. Yang, and Y. Dai. 2015. CHARM: A cost-efficient multi-cloud data hosting scheme with

high availability. IEEE Trans. Cloud Comput. 3, 3 (July 2015), 372–386.

X. Zhang, C. Liu, S. Nepal, S. Pandey, and J. Chen. 2013a. A privacy leakage upper bound constraint-based approach for

cost-effective privacy preserving of intermediate data sets in cloud. IEEE Trans. Parall. Distrib. Syst. 24, 6 (June 2013),

1192–1202.

Yang Zhang, Russell Power, Siyuan Zhou, Yair Sovran, Marcos K. Aguilera, and Jinyang Li. 2013b. Transaction chains:

Achieving serializability with low latency in geo-distributed storage systems. In Proceedings of ACM SIGOPS 24th Sym-

posium on Operating Systems Principles (SOSP’13). 276–291.

Zhe Zhang, Amey Deshpande, Xiaosong Ma, Eno Thereska, and Dushyanth Narayanan. 2010. Does erasure coding have a

role to play in my data center. Microsoft Res. MSR-TR-2010-52 (2010).

L. Zhao, S. Sakr, and A. Liu. 2015. A framework for consumer-centric SLA management of cloud-hosted databases. IEEE

Trans. Services Comput. 8, 4 (July 2015), 534–549.

Jingya Zhou, Jianxi Fan, Jin Wang, Baolei Cheng, and Juncheng Jia. 2017. Towards traffic minimization for data placement

in online social networks. Concurr. Comput.: Practice Exp. 29, 6 (2017). DOI:10.1002/cpe.3869.

Received October 2016; revised August 2017; accepted August 2017

ACM Computing Surveys, Vol. 50, No. 6, Article 91. Publication date: December 2017.

Online Appendix to:

Data Storage Management in Cloud Environments:

Taxonomy, Survey, and Future Directions

YASER MANSOURI, ADEL NADJARAN TOOSI, and RAJKUMAR BUYYA, The University of

Melbourne, Australia

This Appendix consists of seven tables. For conciseness, we use the following abbreviations in the

Appendix: DC (Data Center), SDC (Single Data Center), MDC (Multi-Data Center), KV (Key Value),

RDB (Relational DataBase), RO (Read-only), WO (Write-Only), RW (Read-Wrire), CL (Commit La-

tency), and n/a (Not Applicable).

The projects listed in Tables 1, 2, and Figure 5 are either open-source or commercial. A complete

list of references for these projects is as follows:

BigTable: https://cloud.google.com/bigtable/

EC2 (Elastic Compute Cloud): https://aws.amazon.com/ec2/

EBS (Elastic Block Store): https://aws.amazon.com/ebs/

S3 (Simple Storage Service): https://aws.amazon.com/s3/

SimpleDB: https://aws.amazon.com/simpledb/

Amazon RDS: https://aws.amazon.com/rds/

SQL Azure: https://azure.microsoft.com/en-us/services/sql-database/

Azure Blob: https://azure.microsoft.com/en-au/services/storage/blobs/

Cassandra: http://cassandra.apache.org/

MongoDB: https://www.mongodb.com/

Volemort: http://www.project-voldemort.com/voldemort/

Riak: http://basho.com/products/#riak

Hbase: https://hbase.apache.org/

Google App Engine (GAE): https://cloud.google.com/appengine/

Google Cloud Datastore: https://cloud.google.com/datastore/

Google Cloud SQL: https://cloud.google.com/sql/

Google Drive: https://www.google.com/drive/

VoltDB: https://www.voltdb.com/

Azure VM: https://azure.microsoft.com/en-us/services/virtual-machines/

Window Azure Storage (LRS, ZRS, GRS, RA-GRS): https://docs.microsoft.com/en-us/azure/

storage/common/storage-redundancy

OneDrive (previously SkyDrive): https://onedrive.live.com/about/en-us/

© 2017 ACM 0360-0300/2017/12-ART91 $15.00

https://doi.org/10.1145/3136623

ACM Computing Surveys, Vol. 50, No. 6, Article 91. Publication date: December 2017.

https://cloud.google.com/bigtable/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ebs/
https://aws.amazon.com/s3/
https://aws.amazon.com/simpledb/
https://aws.amazon.com/rds/
https://azure.microsoft.com/en-us/services/sql-database/
https://azure.microsoft.com/en-au/services/storage/blobs/
http://cassandra.apache.org/
https://www.mongodb.com/
http://www.project-voldemort.com/voldemort/
http://basho.com/products/#riak
https://hbase.apache.org/
https://cloud.google.com/appengine/
https://cloud.google.com/datastore/
https://cloud.google.com/sql/
https://www.google.com/drive/
https://www.voltdb.com/
https://azure.microsoft.com/en-us/services/virtual-machines/
https://docs.microsoft.com/en-us/azure/storage/common/storage-redundancy
https://onedrive.live.com/about/en-us/
https://doi.org/10.1145/3136623

App-2 Y. Mansouri et al.

ACM Computing Surveys, Vol. 50, No. 6, Article 91. Publication date: December 2017.

Data Storage Management in Cloud Environments App-3

ACM Computing Surveys, Vol. 50, No. 6, Article 91. Publication date: December 2017.

App-4 Y. Mansouri et al.

ACM Computing Surveys, Vol. 50, No. 6, Article 91. Publication date: December 2017.

Data Storage Management in Cloud Environments App-5

ACM Computing Surveys, Vol. 50, No. 6, Article 91. Publication date: December 2017.

App-6 Y. Mansouri et al.

ACM Computing Surveys, Vol. 50, No. 6, Article 91. Publication date: December 2017.

Data Storage Management in Cloud Environments App-7

ACM Computing Surveys, Vol. 50, No. 6, Article 91. Publication date: December 2017.

App-8 Y. Mansouri et al.
T
a
b

le
6.

S
u

m
m

a
ry

o
f

P
ro

je
ct

s
w

it
h

S
tr

o
n

g
Is

o
la

ti
o

n
L

ev
el

W
it

h
in

D
C

s
in

S
ev

er
a
l

A
sp

ec
ts

:P
ro

je
ct

S
p

ec
if

ic
a
ti

o
n

s,
T

ra
n

sa
ct

io
n

S
u

p
p

o
rt

(A
rc

h
it

ec
tu

re
,

G
ra

n
u

la
ri

ty
,a

n
d

T
y

p
e)

,I
so

la
ti

o
n

L
ev

el
,T

ra
n

sa
ct

io
n

P
ro

to
co

l,
R

ep
li

ca
ti

o
n

P
ro

to
co

l,
R

ep
li

ca
ti

o
n

D
eg

re
e,

M
a
in

F
ea

tu
re

,a
n

d
D

ra
w

b
a
ck

P
ro

je
ct

sp
e
ci

fi
ca

ti
o

n
s ∗

T
ra

n
sa

ct
io

n

su
p

p
o

rt

Is
o

la
ti

o
n

le
v

e
l

T
ra

n
sa

ct
io

n

p
ro

to
co

l

R
e
p

.

p
ro

to
co

l

R
e
p

.

d
e
g

re
e

F
e
a

tu
re

D
ra

w
b

a
ck

S
in

fo
n

ia

(A
g
u

il
er

a
et

al
.2

00
7)

•
F
la

t
•

S
in

g
le

sh
ar

d
•

R
O

an
d

R
W

S
E

R
O

C
C

+
(m

o
d

ifi
ed

)2
P

C
S
in

g
le

m
as

te
r

L
az

y

F
u

ll
P

ro
v
id

in
g

m
in

i-
tr

an
sa

ct
io

n
s

R
eq

u
ir

em
en

t
fo

r
a

p
ri

o
r

k
n

o
w

le
d

g
e

o
f

re
ad

s
an

d
w

ri
te

s
in

tr
an

sa
ct

io
n

s

G
-S

to
re

(D
as

et
al

.2
01

0)

•
F
la

t
•

S
in

g
le

sh
ar

d
•

R
W

S
E

R

(A
C

ID
)

O
C

C
+

w
ri

te
-a

h
ea

d
lo

g
g
in

g
n

/a
n

/a
P

ro
v
id

in
g

se
ri

al
iz

ab
le

tr
an

sa
ct

io
n

s
o

n

to
p

o
f

H
B

as
e

w
it

h
in

a
se

rv
er

N
o

t
o

p
ti

m
iz

at
io

n
fo

r
g

u
ar

an
te

e

tr
an

sa
ct

io
n

s
ac

ro
ss

D
C

s

G
ra

n
o

la

(C
o
w

li
n

g
an

d
L

is
k

o
v

20
12

)

•
T

o
p

-d
o
w

n
•

M
u

lt
i-

sh
ar

d
•

R
W

S
E

R
T

im
es

ta
m

p
/l

o
ck

in
g
-b

as
ed

o
rd

er
in

g

V
ie

w
st

am
p

ed
(O

k
i

an
d

L
is

k
o
v

19
88

)

F
u

ll
H

ig
h

th
ro

u
g

h
p

u
t

an
d

lo
w

la
te

n
cy

fo
r

in
d
ep

en
d
en

t
tr

a
n

sa
ct

io
n

s

R
eq

u
ir

em
en

t
fo

r
a

p
ri

o
r

k
n

o
w

le
d

g
e

o
f

re
ad

s
an

d
w

ri
te

s
in

tr
an

sa
ct

io
n

s

S
-D

U
R

(S
ci

as
ci

a
et

al
.2

01
2)

•
F
la

t
•

M
u

lt
i-

sh
ar

d
•

R
W

S
E

R
O

C
C

+
at

o
m

ic
b
ro

ad
ca

st
D

U
R

P
ar

ti
al

T
h

e
sc

al
ab

il
it

y
o

f
R

O
an

d
lo

ca
l

R
W

tr
an

sa
ct

io
n

s
w

it
h

re
p

li
ca

s
n

u
m

b
er

H
ig

h
m

es
sa

g
e

ex
ch

an
g
e

ra
te

S
C

O
R

e

(P
el

u
so

et
al

.2
01

2a
)

•
F
la

t
•

M
u

lt
i-

sh
ar

d
•

R
O

an
d

R
W

S
E

R
M

V
C

C
+

g
en

u
in

e
at

o
m

ic
G

P
R

P
ar

ti
al

P
ro

v
id

in
g

ab
o

rt
-f

re
e

R
O

tr
an

sa
ct

io
n

w
it

h
o

u
t

a
n

ee
d

fo
r

d
is

tr
ib

u
te

d

ce
rt

ifi
ca

ti
o

n
p

h
as

e

R
eq

u
ir

em
en

t
fo

r
a

g
ar

b
ag

e

co
ll

ec
ti

o
n

m
ec

h
an

is
m

to
d

ea
l

w
it

h

o
b
st

ac
le

d
at

a

P
-D

U
R

(P
ac

h
ec

o
et

al
.2

01
4)

•
F
la

t
•

M
u

lt
i

sh
ar

d
s

•
R

W

S
E

R
A

to
m

ic
m

u
lt

ic
as

t+
2P

C
-l

ik
e

D
U

R
P

ar
ti

al
T

h
e

sc
al

ab
il

it
y

o
f

R
W

tr
an

sa
ct

io
n

s

w
it

h
th

e
n

u
m

b
er

o
f

co
re

s
av

ai
la

b
le

in
a

re
p

li
ca

N
o

t
sc

al
ab

le
w

it
h

th
e

n
u

m
b

er
o

f

re
p

li
ca

s

M
a

a
T

(M
ah

m
o

u
d

et
al

.

20
14

)

•
F
la

t
•

M
u

lt
i-

sh
ar

d
•

R
W

S
E

R
A

re
-d

es
ig

n
ed

O
C

C
††

M
u

lt
i-

m
as

te
r

E
ag

er

F
u

ll
R

em
o
v
in

g
th

e
d

ra
w

b
ac

k
s

o
f

ex
is

ti
n

g

O
C

C
m

ec
h

an
is

m
,w

h
il

e
p

re
se

rv
in

g
th

e

b
en

efi
ts

o
f

O
C

C
o
v
er

lo
ck

-b
as

ed

co
n

cu
rr

en
cy

co
n

tr
o

l
(s

ee
S
ec

ti
o

n
6.

1.
2)

A
so

u
rc

e
o

f
o
v
er

h
ea

d
o

f
m

em
o

ry

re
q

u
ir

em
en

t
fo

r
re

ad
/w

ri
te

ti
m

es
ta

m
p

,(
so

ft
)l

o
ck

s
ta

b
le

,a
n

d

ti
m

e
ta

b
le

in
ea

ch
se

rv
er

.

W
a

rp

(E
sc

ri
v
a

et
al

.2
01

3)

•
T

o
p

-d
o
w

n
•

M
u

lt
i-

sh
ar

d
•

R
W

S
E

R
D

ep
en

d
en

cy
-t

ra
ck

in
g

C
h

ai
n

re
p

li
ca

ti
o

n

(v
an

R
en

es
se

an
d

S
ch

n
ei

d
er

20
04

)

F
u

ll
E

x
ec

u
ti

o
n

o
f

tr
an

sa
ct

io
n

s
in

n
at

u
ra

l

th
ei

r
ar

ri
v
al

o
rd

er
u

n
le

ss
d

o
in

g
so

w
o

u
ld

v
io

la
te

S
E

R
.

N
o

t
o

p
ti

m
iz

at
io

n
fo

r

G
eo

-r
ep

li
ca

ti
o

n
.

E
la

sT
ra

s

(D
as

et
al

.2
01

3)

K
V

•
T

o
p

-d
o
w

n
•

S
in

g
le

sh
ar

d
•

R
W

S
E

R
O

C
C

+
a

lo
g

in
ea

ch

T
ra

n
sa

ct
io

n
m

an
ag

er

M
u

lt
i-

m
as

te
r

E
ag

er

F
u

ll
Im

p
ro

v
in

g
m

u
lt

i-
te

n
an

cy
an

d
el

as
ti

ci
ty

P
ro

v
id

in
g

a
li

m
it

ed
d

is
tr

ib
u

te
d

tr
an

sa
ct

io
n

s

∗
A

ll
p

ro
je

ct
s

u
se

k
ey

-v
a
lu

e
d

at
a

m
o

d
el

,a
n

d
th

ey
n

ei
th

er
d

ep
lo

y
co

n
te

m
p

o
ra

ry
te

ch
n

iq
u

e
to

g
u

ar
an

te
e

is
o

la
ti

o
n

le
v
el

.

†I
t
u

se
s

d
y

n
a
m

ic
ti

m
es

ta
m

p
to

el
im

in
at

e
d

is
tr

ib
u

te
d

ce
rt

ifi
ca

ti
on

p
ro

ce
d
u

re
,a

n
d

so
ft

lo
ck

s,
to

in
fo

rm
tr

an
sa

ct
io

n
s

ac
ce

ss
in

g
a

d
at

a
it

em
th

at
is

re
ad

o
r

w
ri

tt
en

b
y

o
th

er
u

n
co

m
m

it
te

d

tr
an

sa
ct

io
n

s.

ACM Computing Surveys, Vol. 50, No. 6, Article 91. Publication date: December 2017.

Data Storage Management in Cloud Environments App-9

T
a
b

le
6.

S
u

m
m

a
ry

o
f

P
ro

je
ct

s
w

it
h

S
tr

o
n

g
Is

o
la

ti
o

n
L

ev
el

W
it

h
in

D
C

s

P
ro

je
ct

sp
e
ci

fi
ca

ti
o

n
s

T
ra

n
sa

ct
io

n

su
p

p
o

rt

Is
o

la
ti

o
n

le
v

e
l

T
ra

n
sa

ct
io

n

p
ro

to
co

l

R
e
p

.

p
ro

to
co

l

R
e
p

.

d
e
g

re
e

F
e
a

tu
re

s
D

ra
w

b
a

ck
s

G
M

U

[P
el

u
so

et
al

.2
01

2b
]

•
F
la

t
•

M
u

lt
i-

sh
ar

d
•

R
W

E
U

S
M

V
C

C
+

2P
C

G
P

R
P

ar
ti

al
N

ei
th

er
a

n
ee

d
fo

r

ce
n

tr
al

iz
ed

an
d

g
lo

b
al

cl
o

ck
n

o
r

re
q

u
ir

em
en

t
fo

r

an
y

re
m

o
te

ce
rt

ifi
ca

ti
o

n

p
h

as
e

fo
r

R
O

tr
an

sa
ct

io
n

s

In
cu

rr
in

g
th

e
o

cc
u

rr
en

ce
o

f

d
is

tr
ib

u
te

d
d

ea
d

lo
ck

s,
w

h
ic

h

re
su

lt
s

in
p

o
o

r
sc

al
ab

il
it

y

P
e
rc

o
la

to
r

[P
en

g
an

d
D

ab
ek

20
10

]

•
F
la

t
•

M
u

lt
i-

sh
ar

d
•

R
W

S
I

M
V

C
C

+
2P

C
M

u
lt

i-

P
ax

o
s†

n
/a

A
im

in
g

at
th

e
b
at

ch
ed

ex
ec

u
ti

o
n

m
o

d
el

w
h

er
e

lo
w

tr
an

sa
ct

io
n

la
te

n
cy

is

n
o

t
a

g
o

al

U
se

s
a

ce
n

tr
al

se
rv

er
to

is
su

e

ti
m

es
ta

m
p

s
to

tr
an

sa
ct

io
n

s

O
m

id

[F
er

ro
et

al
.2

01
4]

•
F
la

t
•

M
u

lt
i-

sh
ar

d
•

R
W

S
I

T
im

es
ta

m
p

o
rd

er
in

g
n

/a
F
u

ll
U

n
li

k
e

P
er

co
la

to
r,

av
o

id
in

g
m

u
lt

i-
v
er

si
o

n

o
v
er

h
ea

d
s

an
d

d
ea

d
lo

ck

N
o

t
sc

al
ab

le
d

u
e

to
u

si
n

g
a

ce
n

tr
al

iz
ed

ti
m

es
ta

m
p

-o
rd

er
in

g

†
P

er
co

la
to

r
w

as
b
u

il
t

o
n

to
p

o
f

B
ig

ta
b
le

,w
h

ic
h

u
se

s
a

M
u

lt
i-

p
ax

o
s

re
p

li
ca

ti
o

n
p

ro
to

co
l.

ACM Computing Surveys, Vol. 50, No. 6, Article 91. Publication date: December 2017.

App-10 Y. Mansouri et al.

ACM Computing Surveys, Vol. 50, No. 6, Article 91. Publication date: December 2017.

Data Storage Management in Cloud Environments App-11

ACM Computing Surveys, Vol. 50, No. 6, Article 91. Publication date: December 2017.

App-12 Y. Mansouri et al.

REFERENCES

Marcos K. Aguilera, Arif Merchant, Mehul Shah, Alistair Veitch, and Christos Karamanolis. 2007. Sinfonia: A new paradigm

for building scalable distributed systems. SIGOPS Oper. Syst. Rev.6 (Oct. 2007), 159–174.

Sérgio Almeida, João Leitão, and Luís Rodrigues. 2013. ChainReaction: A causal+ consistent datastore based on chain

replication. In Proceedings of the 8th ACM European Conference on Computer Systems (EuroSys’13). ACM, New York, NY,

85–98.

Masoud Saeida Ardekani, Pierre Sutra, and Marc Shapiro. 2013. Non-monotonic snapshot isolation: Scalable and strong

consistency for geo-replicated transactional systems. In Proceedings of the 2013 IEEE 32nd International Symposium on

Reliable Distributed Systems (SRDS’13). IEEE Computer Society, Washington, DC, 163–172.

Peter Bailis, Aaron Davidson, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. 2013. Highly available trans-

actions: Virtues and limitations. Proc. VLDB Endow.. 3 (Nov. 2013), 181–192.

Jason Baker, Chris Bond, James C. Corbett, J. J. Furman, Andrey Khorlin, James Larson, Jean-Michel Leon, Yawei Li,

Alexander Lloyd, and Vadim Yushprakh. 2011. Megastore: Providing scalable, highly available storage for interactive

services. In Proceedings of the 5th Biennial Conference on Innovative Data Systems Research (CIDR’11). 223–234.

Nalini Belaramani, Mike Dahlin, Lei Gao, Amol Nayate, Arun Venkataramani, Praveen Yalagandula, and Jiandan Zheng.

2006. PRACTI replication. In Proceedings of the 3rd Conference on Networked Systems Design & Implementation—Volume

3 (NSDI’06). USENIX Association, Berkeley, CA, 59–72.

David Bermbach, Markus Klems, Stefan Tai, and Michael Menzel. 2011. MetaStorage: A federated cloud storage system to

manage consistency-latency tradeoffs. In Proceedings of IEEE International Conference on Cloud Computing (CLOUD’11).

452–459.

Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. 1986. Concurrency Control and Recovery in Database Systems.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA.

Matthias Brantner, Daniela Florescu, David Graf, Donald Kossmann, and Tim Kraska. 2008. Building a database on S3. In

Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD’08). ACM, New York, NY,

251–264.

B. Byholm, F. Jokhio, A. Ashraf, S. Lafond, J. Lilius, and I. Porres. 2015. Cost-efficient, utility-based caching of expensive

computations in the cloud. In Proceedings of the 23rd Euromicro International Conference on Parallel, Distributed, and

Network-Based Processing. 505–513.

Chia-Wei Chang, Pangfeng Liu, and Jan-Jan Wu. 2012. Probability-based cloud storage providers selection algorithms with

maximum availability. In Proceedings of the 41st International Conference on Parallel Processing. 199–208.

Fangfei Chen, Katherine Guo, John Lin, and Thomas F. La Porta. 2012. Intra-cloud lightning: Building CDNs in the cloud.

In Proceedings of the IEEE INFOCOM 2012. 433–441.

H. E. Chihoub, S. Ibrahim, G. Antoniu, and M. S. Prez. 2013. Consistency in the cloud: When money does matter! In

Proceedings of the 13th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing. 352–359.

D. Chiu and G. Agrawal. 2010. Evaluating caching and storage options on the amazon web services cloud. In Proceedings

of the 11th IEEE/ACM International Conference on Grid Computing. 17–24.

Asaf Cidon, Stephen Rumble, Ryan Stutsman, Sachin Katti, John Ousterhout, and Mendel Rosenblum. 2013. Copysets:

Reducing the frequency of data loss in cloud storage. In Proceedings of the 2013 USENIX Annual Technical Conference

(USENIX ATC’13). USENIX, San Jose, CA, 37–48.

James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, J. J. Furman, Sanjay Ghemawat, Andrey

Gubarev, Christopher Heiser, Peter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexander

Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal

Szymaniak, Christopher Taylor, Ruth Wang, and Dale Woodford. 2013. Spanner: Google’s globally distributed database.

ACM Trans. Comput. Syst. 31, 3, Article 8 (Aug. 2013), 8:1–8:22.

James Cowling and Barbara Liskov. 2012. Granola: Low-overhead distributed transaction coordination. In Proceedings of the

2012 USENIX Conference on Annual Technical Conference (USENIX ATC’12). USENIX Association, Berkeley, CA, 223–235.

Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. 2010. G-store: A scalable data store for transactional multi key access

in the cloud. In Proceedings of the 1st ACM Symposium on Cloud Computing (SoCC’10). ACM, New York, NY, 163–174.

Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. 2013. ElasTraS: An elastic, scalable, and self-managing transactional

database for the cloud. ACM Trans. Database Syst. 38, 1, Article 5 (April 2013), 5:1–5:45.

E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good. 2008. The cost of doing science on the cloud: The Montage exam-

ple. In Proceedings of the International Conference for High Performance Computing, Networking, Storage, and Analysis.

1–12.

Jiaqing Du, Sameh Elnikety, Amitabha Roy, and Willy Zwaenepoel. 2013b. Orbe: Scalable causal consistency using depen-

dency matrices and physical clocks. In Proceedings of the 4th Annual Symposium on Cloud Computing (SOCC’13). ACM,

New York, NY, Article 11, 11:1–11:14.

ACM Computing Surveys, Vol. 50, No. 6, Article 91. Publication date: December 2017.

Data Storage Management in Cloud Environments App-13

J. Du, S. Elnikety, and W. Zwaenepoel. 2013a. Clock-SI: Snapshot isolation for partitioned data stores using loosely syn-

chronized clocks. In Proceedings of the IEEE 32nd International Symposium on Reliable Distributed Systems. 173–184.

Jiaqing Du, Calin Iorgulescu, Amitabha Roy, and Willy Zwaenepoel. 2014a. Closing the performance gap between causal

consistency and eventual consistency. In Proceedings of the 1st Workshop on Principles and Practice of Eventual Consis-

tency (PaPEC’14).

Jiaqing Du, Daniele Sciascia, Sameh Elnikety, Willy Zwaenepoel, and Fernando Pedone. 2014b. Clock-RSM: Low-latency

inter-datacenter state machine replication using loosely synchronized physical clocks. In Proceedings of the 2014 44th

Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN’14). IEEE Computer Society, Wash-

ington, DC, USA, 343–354.

Robert Escriva, Bernard Wong, and Emin Gün Sirer. 2013. Warp: Multi-key transactions for keyvalue stores. United Net-

works, LLC, Tech. Rep (2013).

Daniel Gómez Ferro, Flavio Junqueira, Ivan Kelly, Benjamin Reed, and Maysam Yabandeh. 2014. Omid: Lock-free transac-

tional support for distributed data stores. In Proceedings of the IEEE 30th International Conference on Data Engineering

(ICDE’14). 676–687.

Ilir Fetai and Heiko Schuldt. 2012. Cost-based data consistency in a data-as-a-service cloud environment. In Proceedings

of the IEEE 5th International Conference on Cloud Computing (CLOUD’12). IEEE Computer Society, Washington, DC,

526–533.

H. Hu, Y. Wen, T. S. Chua, J. Huang, W. Zhu, and X. Li. 2016. Joint content replication and request routing for social video

distribution over cloud CDN: A community clustering method. IEEE Transactions on Circuits and Systems for Video

Technology 99 (2016), 1320–1333.

Lei Jiao, Jun Li, Wei Du, and Xiaoming Fu. 2014. Multi-objective data placement for multi-cloud socially aware services. In

IEEE Conference on Computer Communications, INFOCOM 2014, Toronto, Canada, April 27 - May 2, 28–36.

Lei Jiao, Jun Li, Tianyin Xu, Wei Du, and Xiaoming Fu. 2016. Optimizing cost for online social networks on geo-distributed

clouds. IEEE/ACM Transactions on Networking 24, 1 (Feb. 2016), 99–112.

F. Jokhio, A. Ashraf, S. Lafond, and J. Lilius. 2013. A computation and storage trade-off strategy for cost-efficient video

transcoding in the cloud. In Proceedings of the 39th Euromicro Conference on Software Engineering and Advanced Appli-

cations. 365–372.

Ali Khanafer, Murali S. Kodialam, and Krishna P. N. Puttaswamy. 2013. The constrained ski-rental problem and its appli-

cation to online cloud cost optimization. In Proceedings of the IEEE INFOCOM 2013, Turin, Italy, April 14-19, 1492–1500.

Tim Kraska, Martin Hentschel, Gustavo Alonso, and Donald Kossmann. 2009. Consistency rationing in the cloud: Pay only

when it matters. Proc. VLDB Endow.1 (Aug. 2009), 253–264.

Tim Kraska, Gene Pang, Michael J. Franklin, Samuel Madden, and Alan Fekete. 2013. MDCC: Multi-data center consistency.

In Proceedings of the 8th ACM European Conference on Computer Systems (EuroSys’13). ACM, New York, NY, 113–126.

Justin J. Levandoski, David B. Lomet, Mohamed F. Mokbel, and Kevin Zhao. 2011. Deuteronomy: Transaction support for

cloud data. In proceedings of the Fifth Biennial Conference on Innovative Data Systems Research CIDR, Asilomar, CA,

January 9-12, 123–133.

Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno Preguiça, and Rodrigo Rodrigues. 2012. Making geo-

replicated systems fast as possible, consistent when necessary. In Proceedings of the 10th USENIX Conference on Operating

Systems Design and Implementation (OSDI’12). USENIX Association, Berkeley, CA, 265–278.

Wenhao Li, Yun Yang, Jinjun Chen, and Dong Yuan. 2012. A cost-effective mechanism for cloud data reliability management

based on proactive replica checking. In Proceedings of the 2012 12th IEEE/ACM International Symposium on Cluster, Cloud

and Grid Computing (CCGRID’12). IEEE Computer Society, Washington, DC, 564–571.

Wenhao Li, Yun Yang, and Dong Yuan. 2011. A novel cost-effective dynamic data replication strategy for reliability in cloud

data centres. In Proceedings of the 9th IEEE International Conference on Dependable, Autonomic and Secure Computing

(DASC’11). IEEE Computer Society, Washington, DC, 496–502.

Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen. 2011. Don’t settle for eventual: Scalable

causal consistency for wide-area storage with COPS. In Proceedings of the 23rd ACM Symposium on Operating Systems

Principles (SOSP’11). ACM, New York, NY, 401–416.

Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen. 2013. Stronger semantics for low-latency

geo-replicated storage. In Proceedings of the 10th USENIX Conference on Networked Systems Design and Implementa-

tion(NSDI’13). USENIX Association, Berkeley, CA, 313–328.

Hatem Mahmoud, Faisal Nawab, Alexander Pucher, Divyakant Agrawal, and Amr El Abbadi. 2013. Low-latency multi-

datacenter databases using replicated commit. Proc. VLDB Endow.9 (July 2013), 661–672.

Hatem A. Mahmoud, Vaibhav Arora, Faisal Nawab, Divyakant Agrawal, and Amr El Abbadi. 2014. MaaT: Effective and

scalable coordination of distributed transactions in the cloud. Proc. VLDB Endow. 5 (Jan. 2014), 329–340.

Yaser Mansouri and Rajkumar Buyya. 2016. To move or not to move: Cost optimization in a dual cloud-based storage

architecture. J. Netw. Comput. Appl. 75 (2016), 223–235.

ACM Computing Surveys, Vol. 50, No. 6, Article 91. Publication date: December 2017.

App-14 Y. Mansouri et al.

Yaser Mansouri, Adel Nadjaran Toosi, and Rajkumar Buyya. 2013. Brokering algorithms for optimizing the availability and

cost of cloud storage services. In Proceedings of the 5th IEEE International Conference on Cloud Computing Technology

and Science (CloudCom’13). 581–589.

Shuai Mu, Lamont Nelson, Wyatt Lloyd, and Jinyang Li. 2016. Consolidating concurrency control and consensus for com-

mits under conflicts. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation

(OSDI’16). 517–532.

Faisal Nawab, Divyakant Agrawal, and Amr El Abbadi. 2013. Message futures: Fast commitment of transactions in multi-

datacenter environments. In Proceedings of the 6th Biennial Conference on Innovative Data Systems Research (CIDR’13).

Faisal Nawab, Vaibhav Arora, Divyakant Agrawal, and Amr El Abbadi. 2015. Minimizing commit latency of transactions

in geo-replicated data stores. In Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data.

1279–1294.

Brian M. Oki and Barbara H. Liskov. 1988. Viewstamped replication: A new primary copy method to support highly-

available distributed systems. In Proceedings of the 7th Annual ACM Symposium on Principles of Distributed Computing

(PODC’88). ACM, New York, NY, 8–17.

L. Pacheco, D. Sciascia, and F. Pedone. 2014. Parallel deferred update replication. In Proceedings of the IEEE 13th International

Symposium on Network Computing and Applications. 205–212.

C. Papagianni, A. Leivadeas, and S. Papavassiliou. 2013. A cloud-oriented content delivery network paradigm: Modeling

and assessment. IEEE Trans. Depend. Secure Comput. 10, 5 (Sept 2013), 287–300.

Stacy Patterson, Aaron J. Elmore, Faisal Nawab, Divyakant Agrawal, and Amr El Abbadi. 2012. Serializability, not serial:

Concurrency control and availability in multi-datacenter datastores. Proc. VLDB Endow. 11 (July 2012), 1459–1470.

Sebastiano Peluso, Paolo Romano, and Francesco Quaglia. 2012a. SCORe: A scalable one-copy serializable partial replication

protocol. In Proceedings of the 13th International Middleware Conference (Middleware’12). Springer-Verlag New York, Inc.,

New York, NY, 456–475.

Sebastiano Peluso, Pedro Ruivo, Paolo Romano, Francesco Quaglia, and Luis Rodrigues. 2012b. When scalability meets

consistency: Genuine multiversion update-serializable partial data replication. In Proceedings of the 2012 IEEE 32nd

International Conference on Distributed Computing Systems (ICDCS’12). IEEE Computer Society, Washington, DC, 455–

465.

Daniel Peng and Frank Dabek. 2010. Large-scale incremental processing using distributed transactions and notifications.

In Proceedings of the 9th USENIX Conference on Operating Systems Design and Implementation (OSDI’10). USENIX Asso-

ciation, Berkeley, CA, 251–264.

Krishna P. N. Puttaswamy, Thyaga Nandagopal, and Murali Kodialam. 2012. Frugal storage for cloud file systems. In Pro-

ceedings of the 7th ACM European Conference on Computer Systems (EuroSys’12). ACM, New York, NY, 71–84.

X. Qiu, H. Li, C. Wu, Z. Li, and F. C. M. Lau. 2015. Cost-minimizing dynamic migration of content distribution services into

hybrid clouds. IEEE Trans. Parall. Distrib. Syst. 26, 12 (Dec. 2015), 3330–3345.

A. Ruiz-Alvarez and M. Humphrey. 2012. A model and decision procedure for data storage in cloud computing. In Proceed-

ings of the 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid’12). 572–579.

Nicolas Schiper, Pierre Sutra, and Fernando Pedone. 2010. P-store: Genuine partial replication in wide area networks.

In Proceedings of the 2010 29th IEEE Symposium on Reliable Distributed Systems (SRDS’10). IEEE Computer Society,

Washington, DC, 214–224.

Daniele Sciascia, Fernando Pedone, and Flavio Junqueira. 2012. Scalable deferred update replication. In Proceedings of the

42nd Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN’12). IEEE Computer Society,

Washington, DC, 1–12.

P. N. Shankaranarayanan, Ashiwan Sivakumar, Sanjay Rao, and Mohit Tawarmalani. 2014. Performance sensitive replica-

tion in geo-distributed cloud datastores. In Proceedings of the 44th Annual IEEE/IFIP International Conference on Depend-

able Systems and Networks (DSN’14). IEEE Computer Society, Washington, DC, 240–251.

Min Shen, Ajay D. Kshemkalyani, and Ta-yuan Hsu. 2015. OPCAM: Optimal algorithms implementing causal memories in

shared memory systems. In Proceedings of the 2015 International Conference on Distributed Computing and Networking

(ICDCN’15). ACM, New York, NY, Article 16, 16:1–16:4.

Jeff Shute, Radek Vingralek, Bart Samwel, Ben Handy, Chad Whipkey, Eric Rollins, Mircea Oancea, Kyle Littlefield, David

Menestrina, Stephan Ellner, John Cieslewicz, Ian Rae, Traian Stancescu, and Himani Apte. 2013. F1: A distributed SQL

database that scales. Proc. VLDB Endow. 11 (Aug. 2013), 1068–1079.

K. C. Sivaramakrishnan, Gowtham Kaki, and Suresh Jagannathan. 2015. Declarative programming over eventually consis-

tent data stores. SIGPLAN Not. 50, 6 (June 2015), 413–424.

Yair Sovran, Russell Power, Marcos K. Aguilera, and Jinyang Li. 2011. Transactional storage for geo-replicated systems. In

Proceedings of the 23rd ACM Symposium on Operating Systems Principles (SOSP’11). ACM, New York, NY, 385–400.

Maomeng Su, Lei Zhang, Yongwei Wu, Kang Chen, and Keqin Li. 2016. Systematic data placement optimization in multi-

cloud storage for complex requirements. IEEE Trans. Comput. 65, 6 (2016), 1964–1977.

ACM Computing Surveys, Vol. 50, No. 6, Article 91. Publication date: December 2017.

Data Storage Management in Cloud Environments App-15

Jeff Terrace and Michael J. Freedman. 2009. Object storage on CRAQ: High-throughput chain replication for read-mostly

workloads. In Proceedings of the 2009 Conference on USENIX Annual Technical Conference (USENIX’09). USENIX Associ-

ation, Berkeley, CA, 11–11.

Douglas B. Terry, Vijayan Prabhakaran, Ramakrishna Kotla, Mahesh Balakrishnan, Marcos K. Aguilera, and Hussam Abu-

Libdeh. 2013. Consistency-based service level agreements for cloud storage. In Proceedings of the 24th ACM Symposium

on Operating Systems Principles (SOSP’13). ACM, New York, NY, 309–324.

Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren, Philip Shao, and Daniel J. Abadi. 2012. Calvin: Fast

distributed transactions for partitioned database systems. In Proceedings of the 2012 ACM SIGMOD International Con-

ference on Management of Data (SIGMOD’12). ACM, New York, NY, 1–12.

Robbert van Renesse and Fred B. Schneider. 2004. Chain replication for supporting high throughput and availability. In

Proceedings of the 6th Conference on Symposium on Opearting Systems Design & Implementation—Volume 6 (OSDI’04).

USENIX Association, Berkeley, CA, 91–104.

Zhou Wei, G. Pierre, and Chi-Hung Chi. 2012. CloudTPS: Scalable transactions for web applications in the cloud. IEEE

Trans. Services Comput. 5, 4, 525–539.

Yu Wu, Chuan Wu, Bo Li, Linquan Zhang, Zongpeng Li, and Francis C. M. Lau. 2015a. Scaling social media applications

into geo-distributed clouds. IEEE/ACM Trans. Network. 23, 3 (June 2015), 689–702.

Zhe Wu, Michael Butkiewicz, Dorian Perkins, Ethan Katz-Bassett, and Harsha V. Madhyastha. 2013. SPANStore: Cost-

effective geo-replicated storage spanning multiple cloud services. In Proceedings of the 24th ACM Symposium on Oper-

ating Systems Principles (SOSP’13). ACM, New York, NY, 292–308.

Zhe Wu, Curtis Yu, and Harsha V. Madhyastha. 2015b. CosTLO: Cost-effective redundancy for lower latency variance on

cloud storage services. In Proceedings of the 12th USENIX Conference on Networked Systems Design and Implementation

(NSDI’15). USENIX Association, Berkeley, CA, 543–557.

J. Yao, H. Zhou, J. Luo, X. Liu, and H. Guan. 2015. COMIC: Cost optimization for internet content multihoming. IEEE Trans.

Parall. Distrib. Syst. 26, 7 (July 2015), 1851–1860.

Dong Yuan, Yun Yang, Xiao Liu, and Jinjun Chen. 2011. On-demand minimum cost benchmarking for intermediate dataset

storage in scientific cloud workflow systems. J. Parall. Distrib. Comput. 71, 2 (2011), 316–332.

Dong Yuan, Yun Yang, Xiao Liu, Wenhao Li, Lizhen Cui, Meng Xu, and Jinjun Chen. 2013. A highly practical approach

toward achieving minimum data sets storage cost in the cloud. IEEE Trans. Parall. Distrib. Syst. 24, 6 (2013), 1234–1244.

Irene Zhang, Naveen Kr. Sharma, Adriana Szekeres, Arvind Krishnamurthy, and Dan R. K. Ports. 2015. Building consis-

tent transactions with inconsistent replication. In Proceedings of the 25th Symposium on Operating Systems Principles

(SOSP’15). ACM, New York, NY, 263–278.

Yang Zhang, Russell Power, Siyuan Zhou, Yair Sovran, Marcos K. Aguilera, and Jinyang Li. 2013. Transaction chains:

Achieving serializability with low latency in geo-distributed storage systems. In ACM SIGOPS 24th Symposium on Op-

erating Systems Principles (SOSP’13). 276–291.

L. Zhao, S. Sakr, and A. Liu. 2015. A framework for consumer-centric SLA management of cloud-hosted databases. IEEE

Trans. Services Comput. 8, 4 (July 2015), 534–549.

ACM Computing Surveys, Vol. 50, No. 6, Article 91. Publication date: December 2017.

