
DATA REPLICATION STRATEGIES IN WIDE AREA DISTRIBUTED SYSTEMS

Authors:

Sushant Goel

Grid Computing and Distributed Systems (GRIDS) Laboratory

Department of Computer Science and Software Engineering

The University of Melbourne, Australia

Ph: +613 8344 1326

Fax: +613 9348 1184

sgoel@cs.mu.oz.au

Rajkumar Buyya

Grid Computing and Distributed Systems (GRIDS) Laboratory

Department of Computer Science and Software Engineering

The University of Melbourne, Australia

Ph: +613 8344 1344

Fax: +613 9348 1184

raj@cs.mu.oz.au

DATA REPLICATION STRATEGIES IN WIDE-AREA DISTRIBUTED SYSTEMS

ABSTRACT:

Effective data management in today’s competitive enterprise environment is an important issue.

Data is information; and information is knowledge. Hence, fast and effective access to data is

very important. Replication is one such widely accepted phenomenon in distributed

environment, where data is stored at more than one site for performance and reliability reasons.

Applications and architecture of distributed computing has changed drastically during last

decade and so has replication protocols. Different replication protocols may be suitable for

different applications. In this manuscript we present a survey of replication algorithms for

different distributed storage and content management systems ranging from distributed Database

Management Systems, Service-oriented Data Grids, Peer-to-Peer (P2P) Systems, and Storage

Area Networks. We discuss the replication algorithms of more recent architectures, Data Grids

and P2P systems, in details. We briefly discuss replication in storage area network and Internet.

Keywords: Distributed Database Management System, Data Distribution, Data Grid, Peer-to-

Peer Systems, Web, and Replication.

INTRODUCTION

Computing infrastructure and network application technologies have come a long way over the

past 20 years and have become more and more detached from the underlying hardware platform

on which they run. At the same time computing technologies have evolved from monolithic to

open and then to distributed systems (Foster, 2004). Both scientific and business applications

today are generating large amount of data, typical applications, such as High Energy Physics;

and bioinformatics, will produce petabytes of data per year. In many cases data may be

produced, or required to be accessed/shared, at geographically distributed sites. Sharing of data

in a distributed environment gives rise to many design issues e.g. access permissions,

consistency issues, security. Thus, effective measures for easy storage and access of such

distributed data are necessary (Venugopal, 2005). One of the effective measures to access data

effectively in a geographically distributed environment is replication.

Replication is one of the most widely studied phenomena in a distributed environment.

Replication is a strategy in which multiple copies of some data are stored at multiple sites

(Bernstein 1987). The reason for such a widespread interest is due to following facts:

(i) Increased availability

(ii) Increased performance and

(iii) Enhanced reliability

By storing the data at more than one site, if a data site fails, a system can operate using

replicated data, thus increasing availability and fault tolerance. At the same time, as the data is

stored at multiple sites, the request can find the data close to the site where the request

originated, thus increasing the performance of the system. But the benefits of replication, of

course, do not come without overheads of creating, maintaining and updating the replicas. If the

application has read-only nature, replication can greatly improve the performance. But, if the

application needs to process update requests, the benefits of replication can be neutralised to

some extent by the overhead of maintaining consistency among multiple replicas, as will be

seen in the following sections of the paper.

A simple example of replicated environment is shown in Figure 1. Site 1, Site 2, Site 3, ... Site

n, are distributed site locations and connected through a Middleware infrastructure (for the time,

it does not matter what the middleware consists of). Data stored in a file, File X, is stored in Site

2 and is replicated at all other sites. Suppose user 1 tries to access File X in Figure 1. For

pedagogical simplicity, let the distance shown in the figure be proportional to the access cost of

the file. The abovementioned benefits of replication are clear in this scenario (as Sites 1 and 3

are close to the user in comparison to Site 2, where the file was originally stored). The files can

be accessed at a cheaper cost (thus increasing the performance) and the file can still be accessed

even if 3 out of 4 sites are down (thus increasing availability).

Figure 1: A simple scenario of ‘File X’ being replicated at all sites.

At the same time, continuously changing nature of computing has always created new and

challenging problems in replicated environment. The purpose of this document is to review the

motivation of various replication schemes in different distributed architectures. In particular, we

will be covering following architectures:

(a) Distributed Database Management Systems (DBMS)

(b) Peer-to-Peer Systems (P2P)

(c) Data Grids

(d) World Wide Web (WWW)

Replication Scenario and Challenges in Replicated Environment

Various combinations of events and access scenarios of data are possible in a distributed

replicated environment. For example, an application may want to download chunks of data

from different replicated servers for speedy access to data; replicated data may be required

to consolidate at a central server on periodic basis; data distribution on network of servers,

File X

File X

File X

File X Site 1

Site n

Site 2

Site 3

Middleware architecture

(includes replica management

strategies)

User n

User 2

User 1

where some of the servers may be mobile or frequently connected

(http://www.dbmsmag.com/9705d15.html); data stored at multiple sites may need to access

and update the data. Based on these requirements, three types of replication scenarios can be

identified:

(i) Read-only queries

(ii) Update transactions, and

(iii) Managing mobile clients.

For read-only queries, the data can be accessed by a query without worrying about the

correctness of the data. As typically, the data may be generated at some site and can be read by

other sites. The data can be conveniently stored at different replicated servers.

Contrary to read-only queries, update transactions need special consideration during design

time. The replica management protocol may be simple if only a single site is to update the data.

But, as the data can be modified by multiple sites, the consistency of the data may be

compromised. To maintain the consistency of data, the order in which the transactions are

executed must be maintained. One of the widely excepted correctness criterions in replicated

environment is 1-copy serializability (1SR) (Bernstein, 1987). Conflicts can also be resolved

with other requirements such as priority-based (a server with higher priority’s update is given

preference over lower priority), timestamp-based (the sequence of conflicting operations must

be maintained throughout scheduling), and data partitioning (the data is partitioned and specific

sites are give update rights to the partition).

Mobile computing has changed the face of computing in recent times, as well as introduced new

and challenging problems in data management. In today’s scenario, many employees work away

from the office, interacting with clients and collecting data. Sometimes mobile devices do not

have enough space to store the data, while at other times they need to access real-time data from

the office. In these cases, data is downloaded on demand from the local server

(http://www.dbmsmag.com/9705d15.html).

Challenges in replicated environment can be summarised as follows:

(i) Data Consistency: Maintaining data integrity and consistency in a replicated

environment is of prime importance. High precision applications may require strict

consistency (e.g. 1SR, as discussed above) of the updates made by transactions.

(ii) Downtime during new replica creation: If strict data consistency is to be maintained,

performance is severely affected if a new replica is to be created. As sites will not be

able to fulfill request due to consistency requirements.

(iii) Maintenance overhead: If the files are replicated at more then one sites, it occupies

storage space and it has to be administered. Thus, there are overheads in storing multiple

files.

(iv) Lower write performance: Performance of write operations can be dramatically lower in

applications requiring high updates in replicated environment, because the transaction

may need to update multiple copies.

CLASSIFICATION OF DISTRIBUTED STORAGE AND DATA DISTRIBUTION

SYSTEMS

Considering the vast architectural differences in distributed data storage systems, we classify the

data storage systems as shown in the Figure 2. The classification is based on the

architectural and data management polices used in different systems. Distributed DBMSs

are tightly synchronised and homogeneous in nature, while Data Grids are asynchronous

and heterogenous in nature. Ownership of data is also a major issue in different systems,

e.g., in peer-to-peer systems data is meant to be shared over the network, while on Data

Grids the data can be application specific and can be easily shared among a particular group

of people. Tightly synchronised DBMSs may store organisational specific, proprietary and

extremely sensitive data. Storage Area Networks also store organisational specific data,

which organisations may not want to share with other organisations. Databases in World

Wide Web environment are mostly to serve client request being generated throughout the

globe. Thus technologies such as Akamai (http://www.akamai.com) and disk mirroring may

be a viable option in WWW environment, as the data access request is widely distributed.

Figure 2: Classification of data storage and content management systems.

In the following sections, we will discuss the first three technologies, Distributed DBMS, peer-

to-peer systems and Data Grid, in detail and we will briefly touch in SAN and WWW.

DISTRIBUTED DBMS

A replicated database is a distributed database in which multiple copies of some data items are

stored at multiple sites. By storing multiple copies, the system can operate even though some

sites have failed. Maintaining the correctness and consistency of data is of prime importance in a

distributed DBMS. In distributed DBMS it is assumed that a replicated database should behave

like a database system managing a single copy of the data. As replication is transparent from

users’ point of view, users may want to execute interleaved executions on a replicated database

to be equivalent to a one-copy database, the criterion commonly known as one-copy

serializability (1SR) (Bernstein, 1987).

Replication Protocols

ROWA and ROWA-Available

In most cases, the system is aware of which data items have replicas and where are they located.

A replica control protocol is required to read and write replicated data items. The most simple

replica control protocol is the Read-One-Write-All (ROWA) protocol. In ROWA protocol, a

Distributed storage and data distribution systems

Distributed

DBMS
Peer-to-peer

Systems
Data Grids World Wide

Web

transaction requests to read an item and the system fetches the value from the most convenient

location. If a write operation is requested, the system must update all the replicas. It is clearly

evident that the read operation benefits from data replication, as it can find a replica near the site

of request. But, write operations may adversely affect the performance of the system. A very

obvious alternative of ROWA protocol is ROWA-Available. ROWA-A was proposed to provide

more flexibility to ROWA algorithm in presence of failures. Read operation of ROWA-A can be

performed similar to ROWA, i.e. on any replicated copy. But to provide more flexibility, write

operations are performed only on the available copies and it ignores any failed replicas.

ROWA-A solves the availability problem, but the correctness of the data may have been

compromised. After the failed site has recovered, it stores the stale value of the data. Any

transaction reading that replica, reads an out-of-date copy of the replica and thus the resulting

execution is not 1SR.

Quorum Based

An interesting proposal to update only a subset of replicas and still not compromise with

correctness and consistency is based on quorums (Bernstein, 1987). Every copy of the replica is

assigned a non-negative vote (quorum). Read and write threshold are defined for each data item.

The sum of read and write threshold as well as twice of write threshold must be greater than the

total vote assigned to the data. These two conditions ensure that there is always a non-null

intersection between any two quorum sets. The non-null set between read quorum and write

quorum guarantees to have at least one latest copy of the data item in any set of sites. This

avoids the read/write and write/write conflict. The conflict table is as shown in Table 1:

Table 1: Lock compatibility matrix.

 Lock held

Lock requested

Read Write

Read No conflict Conflict

Write Conflict Conflict

All transactions must collect a read/write quorum to read/write any data item. A read/write

quorum of a data is any set of copies of the data with a weight of at least read/write threshold.

Quorum-based protocols maintain the consistency of data in spite of operating only on a subset

of the replicated database.

Detail of majority consensus quorum protocol is shown below:

Q = Total number of votes (maximum quorum) = number of sites in the replicated

system (assuming each site has equal weight)

QR and QW = Read and write quorum respectively

In order to read an item, a transaction must collect a quorum of at least QR votes and in order to

write, it must collect a quorum of QW votes. The overlapping between read and write quorum

makes sure that a reading transaction will at least get one up-to-date copy of the replica. The

quorums must satisfy following two threshold constraints:

(i) QR + QW > Q and

(ii) QW + QW > Q

Quorum-based replicated system may continue to operate even in the case of site or

communication failure if it is successful in obtaining the quorum for the data item. Thus we see

that main research focus in Distributed DBMS is in maintaining consistency of replicated data.

Types of Replication Protocols

For performance reasons, the system may either implement- (i) synchronous replication or (ii)

asynchronous replication. Synchronous system updates all the replicas before the transaction

commits. Updates to all replicas are treated in the same way as any other data item.

Synchronous systems produce globally serializable schedules.

In asynchronous systems, only a subset of the replicas is updated. Other replicas are brought up-

to-date lazily after the transaction commits. This operation can be triggered by the commit

operation of the executing transaction or another periodically executing transaction.

Synchronous strategy is also known as eager replication, while asynchronous is known as lazy

replication. Another important aspect on which the replication strategies can be classified is

based on the concept of primary copy. It is represented as: (i) group and (ii) master (Gray,

1996).

(i) Group: Any site having a replica of the data item can update it. This is also referred

as update anywhere.

(ii) Master: This approach delegates a primary copy of the replica. All other replicas are

used for read-only queries. If any transaction wants to update a data item, it must do

so in the master or primary copy.

A classification used in (Gray, 1996) is shown in Table 2:

Table 2: Classification of replication schemes.

 Lazy/ Asynchronous Eager/ synchronous

Group N transactions

N owners

One transaction

N owners

Master/ Primary N transactions

1 owner (Primary site)

One transaction

1 owner (Primary site)

Commit Protocol in Distributed DBMS

Two-phase commit (2PC) protocol is the most widely accepted commit protocol in distributed

DBMS environment that helps in achieving replica synchronisation. A 2PC protocol is defined

as below:

A coordinator is typically the site where the transaction is submitted or any other site which

keeps all the global information regarding the distributed transaction. Participants are all other

sites where the subtransaction of the distributed transaction is executing. Following steps are

followed in a 2PC:

The coordinator sends vote_request to all the participating sites.

After receiving the request to vote the site responds by sending its vote, either yes or no. If the

participant voted yes, it enters in prepared or ready state and waits for final decision from the

coordinator. If the vote was no, the participant can abort its part of the transaction.

The coordinator collects all votes from the participants. If all votes including the coordinator’s

vote are yes, then the coordinator decides to commit and sends the message accordingly to all

the sites. Even if, one of the votes is no the coordinator decides to abort the distributed

transaction.

After receiving commit or abort decision from the coordinator, the participant commits or aborts

accordingly from prepared state.

There are two phases (hence the name 2-phase commit) in the commit procedure: the voting

phase (step (1) and step (2)); and the decision phase (step (3) and step (4)). The state diagram of

2PC is shown below:

Running

Wait

Commit Abort

Running

Prepared

Commit Abort

State Diagram of coordinator State Diagram of participant

Figure 3: State diagram of coordinator and participants in 2-phase commit.

Storage Area Network

A Storage Area Network (SAN) is an interconnection network of storage devices, typically

connected by high speed network (Gigabits/sec.). The storage resources may be connected to

one or more servers, unlike the Direct Attached Storage (DAS) where each server has dedicated

storage devices. One of the main reasons for continued interest in SAN is the flexibility of

managing the distributed data. As amount of data being stored in scientific and business

applications are increasing exponentially, the management and accessing of data is also getting

complex. A SAN makes administering all the storage resources in such environment

manageable and less complex by providing centralised data storage operations. This should not

be confused with centralised storage, as is clear from the Figure 4 (A).

Figure 4: Schematic representation of SAN and normal distributed storage.

Figure 4 (B) shows a distributed data management architecture where administration control or

servers are connected via a LAN. If a request is made at a server S1 to access data from data

cluster D2, then the request must be routed through the LAN to access the data. The transfer

speed of LAN is typically much slower than that of the SAN. SANs are connected by high-

speed fibre optics cable and Gigabits/sec speed can be achieved as opposed to typical LAN

speed of Megabits/sec.

SAN increases the storage performance, reliability and scalability of high-end data centres.

Additional storage capacity can also be added in SAN without the need to shut down the

servers. A SAN consists of various hardware components such as hubs, switches, backup

devices, interconnection network (typically fibre optics cables), RAIDS (Redundant Array of

Independent Disks).

SAN provides high data availability features through data replication. Two main types of

replication are discussed in the literature (http://www.dothill.com/tutorial/tutorial.swf):

Storage replication: This strategy focuses on bulk data transfers. It replicates the bulk data

which is independent of the application. Thus more than one application may be running on a

server while the replication is being carried out to multiple servers.

Application specific replication: Application specific replication is done by the application

itself and it performed by the transaction. If multiple transactions are running on the same server

then the application specific replication must be used for each application.

Replication can be done either on storage-array level or host level. In array level replication,

data is copied from one disk array to another. Thus array level replication is mostly

homogeneous. The arrays are linked by a dedicated channel. Host level replication is

independent of the disk array used. Since arrays used in different hosts can be different, host

level replication has to deal with heterogeneity. Host level replication uses the TCP/IP protocol

for data transfer. The replication in SAN also can be divided in two main categories based on

mode of replication: (i) synchronous and (ii) asynchronous, as discussed earlier.

D2

D1

LAN

S1
S2

 (B)

SAN

Administration console

 (A)

Survey of Distributed Data Storage Systems and Replication Strategies Used

Table 3: Survey of replication methods in different storage systems.

Attributes

Systems

Type of system Replication method

Arjuna (Parrington, 1995) Object-oriented

programming system

Default: Primary copy.

But simultaneous update

also possible

Coda (Kistler, 1992) Distributed file system Variants of ROWA

Deceit (Siegel, 1990) Distributed file system File replication with

concurrent read and writes.

Updates use a write-token.

Thus write update is

synchronous, as the site

having the token can update

the data. Also provides

multi-version control.

Harp (Liskov, 1991) Distributed File System Primary copy replication.

Uses 2-phase protocol for

update. Communicates with

backup servers before

replying to the request.

Mariposa (Sidell, 1996) Distributed Database

Management System

Asynchronous replication.

Updates are propagated

within a fixed time limit.

(Thus having stale data

among replicas)

Oracle

(http://www.nyoug.org/

200212baumgartel.pdf)

(Distributed) Database

Management System

Provides basic and

advanced replication.

Basic: replicated copies are

read only.

Advanced: Replica copies

are updateable. Various

conflict resolution options

can be specified such as

latest timestamp, site

priority etc.

Provides synchronous and

asynchronous replication

Pegasus Distributed Object Oriented Supports global consistency

(http://www.bkent.net/

Doc/usobpeg.htm)

DBMS (supports

heterogeneous data)

(synchronous)

Sybase

(http://www.faqs.org/faqs/

databases/sybase-faq/part3/

Distributed DBMS

(supports heterogeneity)

Asynchronous replications

Brief explanation of systems in Table 3 is as follows. Arjuna (Parrington, 1995) supports both

active and passive replication. Passive replication is like primary copy and all updates are

redirected to the primary copy. The updates can be propagated after the transaction has

committed. In active replication, mutual consistency is maintained and the replicated object can

be accessed at any site.

Coda (Kistler, 1992) is a network/distributed file system. A group of servers can fulfill the

client’s read request. Updates are generally applied to all participating servers. Thus it uses a

ROWA protocol. The motivation behind using this concept was to increase availability, so that

if one server fails, other servers can takeover and the request can be satisfied without the client’s

knowledge.

Deceit (Siegel, 1990) distributed file system is implemented on top of the Isis (Birman, 1987)

distributed system. It provides full Network File System (NFS) capability with concurrent read

and writes. It uses write-tokens and stability notification to control file replicas (Siegel, 1990).

Deceit provides variable file semantics which offers a range of consistency guarantees (from no

consistency to semantics consistency). But, the main focus of Deceit is not on consistency, but

to provide variable file semantics in a replicated NFS server (Triantafillou, 1997).

Harp (Liskov, 1991) uses a primary-copy replica protocol. Harp is a server protocol and there is

no support for client caching (Triantafillou, 1997). In Harp, file systems are divided into groups

and each group has its own primary and secondary. For each group, a primary, a set of

secondary and a set of sites as witness are designated. If the primary site is unavailable, a

primary is chosen from secondary sites. If enough sites are not available from primary and

secondary sites, a witness is promoted to act as secondary site. The data from such witness are

backed-up in tapes, so that if they are the only surviving sites, then the data can be retrieved.

Read/ write operations follow typical ROWA protocol.

Mariposa (Sidell, 1996) was designed at the University of California (Berkley) in 1993-94.

Basic design principle behind the design of Mariposa was scalability of distributed data servers

(up to 10,000) and local autonomy of sites. Mariposa implements asynchronous replica control

protocol, thus distributed data may be stale at certain sites. The updates are propagated to other

replicas within a time limit. Thus it could be implemented in systems where applications can

afford stale data within a specified time-window. Mariposa uses an economic approach in

replica management, where a site buys a copy from another site and negotiates to pay for update

streams)Sidell, 1996).

Oracle (http://www.nyoug.org/200212baumgartel.pdf) is a successful commercial company,

which provides data management solutions. Oracle provides wide range of replication solutions.

It supports basic and advanced replication. Basic replication supports read-only queries, while

advanced replication supports update operations. Advanced replication supports synchronous

and asynchronous replication for update request. It uses 2PC for synchronous replication. 2PC

ensures that all cohorts of the distributed transaction completes successfully (or roll back the

completed part of the transaction.

Pegasus (http://www.bkent.net/Doc/usobpeg.htm) is an Object Oriented DBMS designed to

support multiple heterogeneous data sources. It supports Object SQL. Pegasus maps

heterogeneous object model to common Pegasus Object Model. Pegasus supports global

consistency in replicated environment as well as also respects the integrity constraints. Thus

Pegasus supports synchronous replication.

Sybase (http://www.faqs.org/faqs/databases/sybase-faq/part3/) implements a Sybase Replication

Server to implement replication. Sybase supports replication of stored procedure calls. It

implements replication at transaction-level and not at table-level (Helal, 1996). Only the rows

affected by a transaction at the primary site are replicated to remote sites. Log Transfer Manager

(LTM) passes the changed records to the local Replication Server. The local replication server

then communicates the changes to the appropriate distributed Replication Servers. Changes can

then be applied to the replicated rows. The Replication Server ensures that all transactions are

executed in correct order to maintain the consistency of data. Sybase mainly implements

asynchronous replication. To implement synchronous replication, the user should add their own

code and a 2PC protocol (http://www.dbmsmag.com/9705d15.html).

PEER-TO-PEER SYSTEMS (P2P)

P2P networks are a type of overlay network that uses the computing power and bandwidth of the

participants in the network rather than concentrating it in a relatively few servers (Oram, 2001).

The word peer-to-peer reflects the fact that all participants have equal capability and is treated

equally, unlike client-server model where clients and servers have different capabilities. Some

P2P networks use client-server model for certain functions (e.g. Napster (Oram, 2001) uses

client-server model for searching). Those networks that uses P2P model for all the functions,

e.g. Gnutella (Oram, 2001), are referred as pure P2P systems. A brief classification of P2P

systems is shown below.

Types of Peer-to-Peer Systems

Today P2P systems produce large share of Internet traffic. P2P system relies on computing

power and bandwidths of participants rather than relying on central servers. Each host has a set

of “neighbour”.

P2P systems are classified into 2 categories:

(a) Centralised P2P Systems: have central directory server, where the users submit requests e.g.

Napster (Oram, 2001). Centralised P2P systems store a central directory, which keep

information regarding files location at different peers. After the files are located the peers

communicate among themselves. Clearly centralised systems have the problem of single

point of failure and they scale poorly where number of client ranges in millions.

(b) Decentralised P2P Systems: Decentralised P2P systems do not have any central server.

Hosts form an ad hoc network among themselves on top of the existing Internet

infrastructure, which is known as the Overlay Network. Based on two factors – (i) Network

Topology and (ii) File Location, decentralised P2P systems are classified into following two

catagories:

(i) Structured decentralised: Structures architecture refers that network topology is tightly

controlled and the file locations are such that they are easier to find (i.e. not at random

locations). Structured architecture can also be classified into two categories: (i) loosely

structured and (ii) highly structured. Loosely structured systems place the file based on

some hints, e.g. Freenet (Oram, 2001). In highly structured systems the file locations

are precisely determined with help of techniques such as hash-tables.

(ii) Unstructured: Unstructured systems do not have any control over the network topology

or placement of the files over the network. Example of such systems includes Gnutella

(Oram, 2001), KaZaA (Oram, 2001) etc. Since there is no structure, to locate a file, a

node queries its neighbours. Flooding is the most common query method used in such

unstructured environment. Gnutella uses flooding method to query.

In unstructured systems, since P2P network topology is unrelated to the location of data, the set

of nodes receiving a particular query is unrelated to the content of the query. The most general

P2P architecture is the decentralised-unstructured architecture.

Main research in P2P systems have focused in architectural issues, search techniques, legal

issues etc. Very limited literature is available for unstructured P2P systems. Replication in

unstructured P2P systems can improve the performance of the system as the desired data can be

found near the requested node. Specially, in flooding algorithms, reducing the search even by

one hop can drastically reduce number of messages in the system. Table 4 shows different P2P

systems.

Table 4: Examples of different types of P2P systems.

Type Example

Centralised Napster

Decentralised structured Freenet (loosely structured)

DHT (highly structured)

FatTrack

eDonkey

Decentralised unstructured Gnutella

A challenging problem in unstructured P2P systems is that the network topology is independent

of the data location. Thus, the nodes receiving queries can be completely unrelated to the

content of the query. Consequently, the receiving nodes also do not have any idea of where to

forward the request for fast locating the data. To minimise the number of hops before the data is

found, data can be proactively replicated at more than one sites.

Replication Strategies in P2P Systems

Based on size of files (Granularity)

(i) Full file replication: “full” files are replicated at multiple peers based upon which node

downloads the file. This strategy is used in Gnutella. This strategy is simple to

implement. However, replicating larger files at one single file can be cumbersome in

space and time (Bhagwan, 2002).

(ii) Block level replication: divides each file into an ordered sequence of fixed size blocks.

This is also advantageous if a single peer cannot store whole file. Block level replication

is used by eDonkey. A limitation of block level replication is that during file

downloading it is required that enough peers are available to assemble and reconstruct the

whole file. Even if a single block is unavailable, the file cannot be reconstructed. To

overcome this problem, Erasure Codes (EC), such as Reed-Solomon (Pless, 1998) is

used.

(iii) Erasure Codes replication: Provides the capability that the original files can be

constructed from less number of available blocks. For example, k original blocks can be

reconstructed from l (l is close to k) coded blocks taken from a set of ek (e is a small

constant) coded blocks (Bhagwan, 2002). In Reed-Solomon codes, the source data is

passed through a data encoder, which adds redundant bits (parity) to the pieces of data.

After the pieces are retrieved later, they are sent through a decoder process. The decoder

attempts to recover the original data even if some blocks are missing. Adding EC in

block-level replication can improve the availability of the files because it can tolerate

unavailability of certain blocks.

Based on replica distribution

Following definitions need to be defined:

Consider each file is replicated on ri nodes.

Let, the total number of files (including replicas) in the network be denoted as R (Cohen,

2002).

 R = ∑
=

m

i

ir
1

, where m is the number of individual files/ objects

(i) Uniform: The uniform replication strategy replicates everything equally. Thus from the

above equation, replication distribution for uniform strategy can be defined as follows:

ri = R / m

(ii) Proportional: The number of replicas is proportional to their popularity. Thus, if a data

item is popular it has more chances of finding the data close to the site where query was

submitted.

ri ∝ qi

where, qi = relative popularity of the file/ object (in terms of number of queries issued for

i
th

 file).

 ∑
=

m

i

iq
1

= 1

 If all objects were equally popular, then

qi = 1/m

But, results have shown that object popularity show a Zipf-like distribution in systems

such Napster and Gnutella. Thus the query distribution is as follows:

 qi ∝ 1/ i
α

, where α is close to unity.

(iii) Square-root: The number of replicas of a file i is proportional to the square-root of

query distribution, qi.

 ri ∝
i

q

The necessity of Square-root replication is clear from the following discussion.

Uniform and Proportional strategies have been shown to have same search space as

follows:

m: number of files

n: number of sites

ri: number of replicas for i
th

 file

R = Total number of files

The average search size for file i, Ai =
ir

n

Hence, the overall average search size, A = ii i Aq∑

Assuming average number of files per site, µ =
n

R

Following the above equations, the average search size for uniform replication strategy is

as follows,

Since, ri = R / m

A =
i

i
r

n
q∑ (replacing the value of Ai)

A =
R

mn
qi∑

A =
µ

m
 (as, ∑

=

m

i

iq
1

=1) ……………………………… ………………… (1)

The average search size for proportional replication strategy is as follows,

Since, ri = R qi (as, ri ∝ qi, and qi = 1)

 A =
i

i
r

n
q∑ (replacing the value of Ai)

 A =
i

i
Rq

n
q∑

 A =
µ

m
 (as, ∑

=

m

i

iq
1

=1,
R

n
 =

µ

1
 and

iq

1
 = m for proportional replication) ….(2)

It is clear from equation (1) and (2) that the average search size is same in uniform and

proportional replication strategies.

It has also been shown in the literature (Cohen 2002) that the average search size is minimum

under following condition:

 Aoptimal =
µ

1
(∑ iq)

2

This is known as square-root replication.

Based on replica creation strategy

(i) Owner replication: The object is replicated only at the requester node once the file is

found. E.g. Gnutella (Oram 2001) uses owner replication.

(ii) Path replication: The file is replicated at all the nodes along the path through which the

request is satisfied. E.g. Freenet uses path replication.

(iii) Random replication: Random replication algorithm creates the same number of replicas

as of path replication. But, it distributes the replicas in a random order rather than

following the topological order. It has been shown in (Lv 2002) that factor of

improvement in path replication is close to 3 and in random replication the improvement

factor is approximately 4.

The following tree summarizes the classification of replication schemes in P2P systems, as

discussed above:

Figure 5: Classification of replication schemes in P2P systems.

DATA GRIDS / GRID COMPUTING

The amount of data being gathered and stored by advanced applications in the data sources is

increasing exponentially. “The Grid” is a heterogeneous collaboration of resources and thus will

contain diverse range of data resources. Heterogeneity in a Data Grid can be due to data model,

transaction model, storage systems or data types. Data Grids will provide seamless access to

geographically distributed data sources storing terabytes to petabytes of data.

Major assumption in Data Grids is that the data is read-only. The main motivating application

for most of the research has been the particle physics accelerator. LHC is expected to produce

15 petabytes of data each year. More than 150 organisations around the world will be

participating in the physics experiment. The LHC model assumes a tired architecture to

distribute the data to processing sites. All data is produced at the central CERN computer center

at Tier-0. The data is then distributed to Regional Centers (e.g. Asia Pacific region, USA region,

EU Region etc.) at Tier-1. Regional Centers further distribute the data to Tier-2 centers, which

in turn distributes the data to processing institutes at Tier-3. The data is then finally distributed

to the end users at Tier-4. The rate of data transfer from Tier-0 to Tier-1, Tier-1 to Tier-2 and

Tier-2 to Tier-3 is ≈ 622 Mb/sec. Data transfer rate between Tier-3 and 4 ranges from 10-100

Mb/sec.

As the application domain of Grid computing, and consequently Data Grid, is expanding, the

architectural requirements are also changing. Thus, Data Grid needs to address architectures

different than read-only environment. Hence, this is the major criterion on which we classify the

replication strategies in Data Grids.

Replication scheme in P2P

Based on file granularity Based on replica distribution Based on replica creation strategy

Full file

e.g. Gnutella

Block level

e.g. Freenet

Erasure Codes

Uniform distribution

Block level distribution

Square root distribution

Owner / requester site

e.g. Gnutella

Path replication

e.g. Freenet

Random

Figure 6: A tiered or hierarchical architecture of Data Grid for Particle Physics accelerator at

CERN.

Replication strategy for Read-only requests

Replica Selection based on Replica location/ User preference

The replicas are selected based on users’ preference and replica location. (Vazhkudai, 2001)

proposes a strategy that uses Condor’s ClassAds (Classified Advertisements) (Raman, 1998) to

rank the sites suitability in storage context. The application requiring access to a file presents its

requirement to the broker in form of ClassAds. The broker then does the search, match and

access of the file that matches the requirements published in the ClassAds.

Dynamic replica creation strategies discussed in (Ranganathan, 2001) are as follows:

(a) Best Client: Each node maintains the record of access history for each replica, i.e.

which data item is being accessed by which site. If the access frequency of a replica

exceeds a threshold, a replica is created at the requester site.

(b) Cascading replication: This strategy can be used in the tired architecture discussed

above. Instead of replicating the data at the ‘best client’, the replica is created at the

next level on the path of the best client. This strategy evenly distributes the storage

space as well as other lower level sites have close proximity to the replica.

(c) Fast Spread: Fast spread replicates the file in each node along the path of the best

client. This is similar to path replication in P2P systems.

Since the storage space is limited, there must be an efficient method to delete the files from

the sites. The replacement strategy proposed in (Ranganathan, 2001) deletes the most unpopular

files, once the storage space of the node is exhausted. The age of the file at the node is also

considered to decide the unpopularity of file.

Data production site

 e.g. CERN

Regional center Regional center Regional center

Tier 0

Tier 1

Local center Local center Local center Tier 2

Participating institutes Participating institutes Tier 3

End User End User … Tier 4

Economy-based replication policies

The basic principle behind economy-based polices are to use the socio-economic concepts of

emergent marketplace behaviour, where local optimisation leads to global optimisation. This

could be thought as an auction, where each site tries to buy a data item to create the replica at its

own node and can generate revenue in future by selling them to other interested nodes. Various

economy-based protocols such as (Carman, 2002) (Bell, 2003) have been proposed, which

dynamically replicates and deletes the files based on the future return on the investment. (Bell,

2003) uses a reverse auction protocol to determine where the replica should be created.

e.g. following rule is used in (Carman, 2002). A file request (FR) is considered to be an n-tuple

of the form:

FRi = 〈 ti, oi, gi, ni, ri, si, pi 〉

Where,

 ti: timestamp at which the file was requested

oi, gi and ni: together represents the logical file being requested (oi is the Virtual Organisation to

which the file belongs, gi is the group and ni is the file identification number)

ri and si: represents the element requesting and supplying the file respectively.

pi: represents the price paid for the file (price could be virtual money)

To maximise the profit the future value of the file is defined over the average life time of the file

storage Tav.

V(F, Tk) = ∑
+

+=

∂∂
nk

ki

iii ssFFp
1

),(),(

Where, V represents the value of the file. pi represents the price paid for the file. s is the local

storage element and F represents the triple (o, g, n). ∂ is a function that returns 1 if the

arguments are equal and 0 if they differ. The investment cost is determined by the difference in

cost between the price paid and the expected price if the file is sold immediately.

As the storage space of the site is limited, it must make a choice before replicating a file that

whether it is worth to delete an existing file. Thus, the investment decision between purchasing

a new file and keeping an old file depends on the change in profit between the two strategies.

Cost Estimation based

Cost estimation model (Lamehamedi, 2003) is very similar to the economic model. The cost-

estimation model is driven by the estimation of the data access gains and the maintenance cost

of the replica. While the investment measured in Economic models (Carman, 2002) (Bell, 2003)

are only based on data access, it is more elaborate in the cost estimation model. The cost

calculations are based on network latency, bandwidth, replica size, runtime accumulated

read/write statistics (Lamehamedi, 2003) etc.

Replication Strategy for Update request

Synchronous

In synchronous model a replica is modified locally. The replica propagation protocol then

synchronizes all other replicas. However, it is possible that other nodes may work on their local

replicas. If such a conflict occurs, the job must be redone with the latest replica. This is very

similar to the synchronous approach discussed in the distributed DBMS section.

Asynchronous

Various consistency levels are proposed for asynchronous replication. Asynchronous replication

approaches are discussed as follows (Dullmann, 2001):

(i) Possible inconsistent copy (Consistency level: -1): The content of the file is not

consistent to two different users. E.g. one user is updating the file while the other is

copying it, a typical case of “dirty read problem”.

(ii) Consistent file copy (Consistency level: 0): At this consistency level, the data within a

given file corresponds to a snapshot of the original file at some point in time.

(iii) Consistent transactional copy (Consistency level: 1): A replica can be used by clients

without internal consistency problems. But, if the job needs to access more than one file,

then the job may have inconsistent view.

The following figure shows the classification of replication scheme discussed above. The

major classification criterion is the update characteristics of transaction.

Figure 7: Classification of replication scheme in Data Grids.

Data Grid Replication Schemes

Overview of Replication studies in Data Grids are as follows along with brief explanation of

each strategy:

Data Grid Replication Strategies

Read only requests Update request

Dynamic replica creation and

deletion based on

Replica location/ User

preference

Economic based

models

Cost Estimation

Asynchronous Synchronous

Different levels of

consistency

Vazhkudai et. al. (2001) proposes a Replica selection scheme in Globus Data Grid. The method

optimises the selection of replica in the dynamic Grid environment. A High level replica

selection service is proposed. Information such as replica location and user preferences are

considered to select the suitable replica from multiple replicas.

Lamehamedi et. al. (2003) proposes a method for dynamically creating replicas based on cost-

estimation model. Replication decision is based on gains of creating a replica against creation

and maintenance cost of the replica.

In economy-based replica protocols, Carman et. al. (2002) aims to achieve global optimisation

through local optimisation with the help of emerging market place behaviour. The paper

proposes a technique to maximise the profit and minimise the cost of data resource

management. The value of the file is defined as the sum of the future payments that will be

received by the site.

Another economy-based approach for file replication proposed by Bell et. al. (2003)

dynamically creates and delete replica of files. The model is based on reverse Vickery auction

where the cheapest bid from participating replica sites is accepted to replicate the file. It is

similar to the work in (Carman, 2002) with the difference in predicting the cost and benefits.

Consistency issues have received limited attention in Data Grids. Dullmann et. al. (2001)

proposes a Grid Consistency Service (GCS). GCS uses Data Grid services and supports replica

update synchronisation and consistency maintenance. Different levels of consistency is

proposed, starting from level -1 to level 3 in increasing order of strictness.

Lin et. al. (2005) proposes various policies for selecting a server for data transfer. Least Cost

Policy chooses the server with minimum cost from the server list. Minimize Cost and Delay

Policy considers delay in transferring the file in addition to the cost of transferring. A ‘scoring

function’ is calculated from time and delay in replicating files. The file is replicated at the site

with highest score. Minimize Cost and Delay with Service Migration policy considers the

variation in service quality. If the site is incapable of maintaining the promised service quality,

the request can be migrated to other sites.

WORLD WIDE WEB (WWW)

WWW has become a ubiquitous media for content sharing and distribution. Applications using

the Web spans from small business applications to large scientific calculations. Download delay

is one of the major factors that affect the client base of the application. Hence, reducing latency

is one of the major research focus in WWW. Caching and replication are two major techniques

used in WWW to reduce request latencies. Caching is typically on the client side to reduce the

access latency, whereas replication is implemented on the server side so that the request can

access the data located in a server close to the request. Caching targets reducing download

delays and replication improves end-to-end responsiveness. Every caching technique has an

equivalent in replica systems, nut the vice versa is not true.

Large volumes of request at popular sites may be required to serve thousands of queries per

second. Hence, web servers are replicated at different geographical locations to serve request for

services in a timely manner. From the users’ perspective, these replicated web servers act as a

single powerful server. Initially servers were manually mirrored at different locations. But

continuously increasing demand of hosts has motivated the research of dynamic replication

strategy in WWW. Following major challenges can be easily identified in replicated systems in

the Internet (Loukopoulos, 2002):

(i) How to assign a request to a server based on a performance criterion

(ii) Number of placement of the replica

(iii) Consistency issues in presence of update requests

Here we would briefly like to mention about Akamai Technologies (http://www.akamai.com).

Akamai technologies have more than 16000 servers located across the globe. When a user

requests a page from the web server, it sends some text with additional information for getting

pages from one of the Akamai servers. The users’ browser then requests the page from

Akamai’s server, which delivers the page to the user.

Most of the replication strategy in Internet uses a Primary-copy approach (Baentsch, 1996,

http://www.newcastle.research.ec.org/cabernet/workshops/plenary/3rd-plenary-papers/13-

baentsch.html and Khan, 2004). Replication techniques in (Baentsch, 1996 and

http://www.newcastle.research.ec.org/cabernet/workshops/plenary/3rd-plenary-papers/13-

baentsch.html) uses a Primary Server (PS) and Replicated Servers (RS). In

(http://www.newcastle.research.ec.org/cabernet/workshops/plenary/3rd-plenary-papers/13-

baentsch.html) the main focus is on maintaining up-to-date copies of documents in the WWW.

A PS enables the distribution of most often request documents by forwarding the updates to the

RS as soon as the pages are modified. A RS can act as replica server for more than one PS. RS

can also act a cache for non replicated data. RS also reduce the load on the web servers, as they

can successfully answer requests.

Replica management in Internet is not as widely studied and understood as in other distributed

environment. We believe that due to changed architectural challenges in the Internet, it needs

special attention. Good replication placement and management algorithms can greatly reduce

the access latency.

DISCUSSION AND ANALYSIS

In this section we discuss different data storage technologies such as Distributed DBMS, P2P

systems and Data Grids for different data management attributes.

Data Control: In distributed DBMS, the data is owned mostly by a single organisation, and

hence can be maintained with central management policies. In P2P systems, control of the data

is distributed across sites. Site where the data is stored is thought as owning the data and there is

no obligation to follow a central policy for data control. Considering the most widely used Data

Grid environment (LHC experiment), the data is produced at a central location but is

hierarchically distributed to processing sites.

Autonomy: Distributed DBMSs are usually tightly coupled, mainly because they belong to

single organisation. Hence the design choices depend on one another, and the complete system

is tightly integrated and coupled. P2P systems are autonomous, as there is no dependency

among any distributed sites. Each site is designed according to independent design choices and

evolves without any interference of each other. In Data Grids, sites are autonomous of each

other, but the typical characteristic is that they mostly operate in trusted environment.

Table 5: Comparison of different storage and content management systems.

 Systems

Attributes

Distributed DBMS P2P Systems Data Grid WWW

Data control Mostly central Distributed Hierarchical Mostly

central

Autonomy

among sites

Tightly coupled Autonomous Autonomous,

but in trusted

environment

Tightly

coupled

Load

distribution

Central and easy Decentralised Hierarchical Central

Update

performance

Well understood and

can be controlled

Difficult to

monitor

Not well studied

yet (most

studies are in

read-only

environment)

Mostly read

content

Reliability Can be considered

during designing and

has a direct relation

with performance (in

replication scenario)

Difficult to

account for

during system

design. (as a peer

can anytime

disconnect from

the system)

Intermediate Central

management.

Hence can be

considered at

design time

Heterogeneity Mostly homogeneous

environment

Heterogeneous

environment

Intermediate, as

the environment

is mostly trusted

Mostly

homogeneous

Status of

replication

strategies

Read and update

scenarios are almost

equivalent

Mostly read

environment

Mostly read but

does need to

update

depending on

the application

requirement.

Mostly read

environment.

Lazy

replication

Load Distribution: Load distribution directly depends on the data control attribute. If the data is

centrally managed it is easy to manage the load distribution among distributed servers, as

compared to distributed management. It is easy to manage the distributed data in DBMS

environment as compared to P2P systems, because central policies can be implemented in

DBMSs for data management, while it is virtually impossible to implement a central

management policy in P2P systems.

Update Performance: Update performance in databases is easy to monitor and analyse during

the database design (again, due to the fact that it is centrally designed). Databases, in general,

have well defined data access interface and access pattern. Due to decentralised management

and asynchronous behaviour of P2P systems, it may be difficult to monitor update performance

in such systems. In Data Grids, applications are mainly driven by read-only queries, and hence

update performance is not well studied and understood. But, with advancement in technology,

applications will need to update stored data in Data Grids as well. Hence, there is a need to

study update performance in greater detail.

Reliability: As distributed DBMS work under a central policy, the downtime of a particular site

can be scheduled and load of that site can be delegated to other sites. Thus DBMS systems can

be designed for a guaranteed Quality of Service (QoS). P2P systems’ architecture is dynamic.

Sites participating in P2P systems can join and leave the network according to their convenience

and hence cannot be scheduled. In Grids, though the architecture is dynamic, research has

focussed on providing a QoS guarantee and some degree of commitment towards the common

good.

Heterogenity: Distributed DBMSs typically work in homogeneous environment, as it is built

bottom-up by the designer. P2P systems can be highly heterogenous in nature, since sites are

autonomous and are managed independently. As shown in Figure 6, Data Grids have

hierarchical architecture and individual organisations and institutes may choose for

homogeneous environment, but different participants may opt for heterogenous component or

policies.

Replication strategies: Database designers pay attention for update requests as well as

performance of read-only queries. At the same time applications also demand update

transactions and read-only queries almost equally. P2P systems are designed for applications

requiring only file sharing. Thus, P2P systems mostly focus on read-only queries. Data Grids, so

far, have mainly focussed on read-only queries, but the importance of write queries is also being

realised and is attracting research interest.

As we are discussing data management systems, we would briefly want to mention the

preservation work done by Stanford Peers Group (http://www-db.stanford.edu/peers/) for the

sake of completeness. Data preservation mainly focuses on archiving the data for long term, e.g.

in digital libraries. Data replication in such an environment can improve the reliability of the

data. Such systems should be able to sustain long term failures. Replication can help in

preserving online journal archive, white papers, manuals etc. against single system failure,

natural disaster, theft etc. Data trading is one such technique proposed in (Cooper, 2002) to

increase the reliability of preservation systems in P2P environment.

The purpose of this paper is to gather and present the replication strategies present in different

architectural domains. This paper will help researchers working in different distributed data

domains to identify and analyse replication theories present in other distributed environments

and borrow some of the existing theories, which best suits them. Replication theories have been

studied and developed for many years in different domains, but there have been lack of a

comparative study. In this paper we had presented the state-of-the-art and research direction of

replication strategies in different distributed architectural domains, which can be used by

researchers working in different architectural areas.

SUMMARY AND CONCLUSION

We presented different replication strategies in distributed storage and content management

systems. With changing architectural requirements, replication protocols have also changed and

evolved. A replication strategy suitable for a certain application or architecture may not be

suitable for other. The most important difference in replication protocols is due to consistency

requirements. If an application requires strict consistency and has lots of update transactions,

replication may reduce the performance due to synchronisation requirements. But, if the

application requires read-only queries, the replication protocol need not worry for

synchronisation and performance can be increased. We would like to conclude by mentioning

that though there are continuously evolving architectures, replication is now a widely studied

area and new architectures can use the lessons learned by researchers in other architectural

domains.

REFERENCES

Baentsch M., Molter G. and Sturm P. (1996). Introducing Application-level Replication and

Naming into today's Web, International Journal of Computer Networks and ISDN Systems,

28(7), 921-930.

Bell W. H., Cameron D. G., Carvajal-Schiaffino R., Millar A. P., Stockinger K., Zini F. (2003).

Evaluation of an Economy-Based File Replication Strategy for a Data Grid, Proccedings of 3
rd

IEEE International Symposium on Cluster Computing and the Grid (CCGrid), Tokyo Japan,

May 2003, IEEE Computer Society Press.

Bernstein P. A., Hadzilacos V. and Goodman N. (1987). Concurrency Control and Recovery in

Database Systems, Massachusetts, Addision-Wesley Publishers.

Bhagwan R., Moore D., Savage S., and Voelker G. M. (2002). Replication Strategies for Highly

Available Peer-to-Peer Storage, Proceedings of International Workshop on Future Directions in

Distributed Computing, Italy, June 2002.

Birman K. P. and Joseph T. A. (1987). Reliable communication in the presence of failures, ACM

Transactions on Computer Systems, 5(1), 47-76.

Carman M., Zini F., Serafini L. and Stockinger K. (2002). Towards an Economy-Based

Optimisation of File Access and Replication on a Data Grid. Proceedings of the 1
st
 IEEE/ACM

International Conference on Cluster Computing and the Grid (CCGrid), (pp: 340-345), Berlin,

Germany, May 2002, IEEE Computer Society Press.

Cohen E., Shenker S. (2002). Replication Strategies in Unstructured Peer-to-Peer Networks,

Proceeding of Special Interest Group on Data Communications (SIGCOMM), (pp: 177-190),

Pittsburg, USA, August 2002.

Cooper B. and Garcia-Molina H. (2002). Peer-to-peer data trading to preserve information,

ACM Transactions on Information Systems (TOIS), 20(2), April 2002, 133-170.

Domenici A., Donno F., Pucciani G., Stockinger H., Stokinger K. (2004). Replica Consistency

in a Data Grid, Nuclear Instruments and Methods in Physics Research; Section A: Accelerators,

Spectrometers, Detectors and Associated Equipment, 534(1-2), November 2004, 24-28, Elsevier

publisher.

Dullmann D., Hosckek W., Jaen-Martinez J., Segal B., Samar A., Stockinger H. and Stockinger

K.(2001). Models for Replica Synchronisation and Consistency in a Data Grid, Proceeding of

10
th

 IEEE International Symposium on High Performance and Distributed Computing (HPDC),

(pp: 67-75), San Francisco, August 2001.

Foster I.and Kesselman C. (Ed.). (2004). The Grid: Blueprint for a New Computing

Infrastructure, Second Edition, Morgan Kaufmann Publishers, USA.

Gray J., Helland P., O'Neil P., and Shasha D. (1996). The Dangers of Replication and a

Solution. Proceedings of International Conference on Management of Data (ACM SIGMOD),

(pp: 173-182), Montreal, Canada, June 1996.

Helal A. A., Hedaya A. A. and Bhargava B. B. (1996). Replication Techniques in Distributed

Systems, Boston, Kluwer Academic Publishers.

Khan S. U. and Ahmad I. (2004). Internet Content Replication: A Solution from Game Theory

(Technical Report CSE-2004-5), Department of Computer Science and Engineering, University

of Texas at Arlington.

Kistler J. J. and Satyanarayanan M. (1992). Disconnected Operation in the Coda File System,

ACM Transactions on Computer Systems, 10(1), 3-25.

Lamehamedi H., Shentu Z., Szymanski B.and Deelman E. (2003). Simulation of Dynamic Data

Replication Strategies in Data Grids, Proceedings of the 17
th

 International Parallel and

Distributed Processing Symposium (PDPS), Nice, France, IEEE Computer Society.

Lin H. and Buyya R. (2005). Economy-based Data Replication Broker Policies in Data Grids,

Unpublished BSc (Honours) thesis, Department of Computer Systems and Software

Engineering, The University of Melbourne.

Liskov B., Ghemawat S., Gruber R., Johnson P., Shrira L.and Williams M. (1991). Replication

in the Harp File System, Proceedings of 13th ACM Symposium on Operating Systems Principles

(pp: 226-238), ACM Press.

Loukopoulos T., Ahmad I. and Papadias D. (2002), An Overview of Data Replication on the

Internet, Proceedings of the International Symposium on Parallel Architectures, Algorithms and

Networks (ISPAN) (pp: 694-711), IEEE Computer Society.

Lv Q., Cao P., Cohen E., Li K., Shenker S. (2002). Search and Replication in Unstructured Peer-

to-Peer Networks, Proceeding of the 16
th

 Annual ACM International conference on

Supercomputing (pp: 84-95) NY, USA, June 2002.

Oram A. (Ed.). (2001). Peer-to-Peer: Harnessing the Power of Disruptive Technologies, ISBN:

0-596-00110-X, Sebastopol, USA, O'Reilly publishers.

Paris J.-F. (1986). Voting with Witnesses: A Consistency Scheme for Replicated Files,

Proceedings of Sixth International Conference on Distributed Computing Systems (pp: 606-

612), Washington DC, USA, IEEE Computer Society.

Parrington G. D., Shrivastava S. K., Wheater S. M. and Little M. C. (1995). The Design and

Implementation of Arjuna, USENIX Computing Systems Journal, 8(2), 255-308.

Pless, V.(1998). Introduction to the theory of error-correcting codes. 3rd edition, New York,

USA, John Wiley and Sons.

Raman P., Livny M.and Solomon M. (1998). Matchmaking: Distributed Resource Management

for High Throughput Computing, In Proceedings of 7
th

 IEEE Symposium on High Performance

Distributed Computing (HPDC) (pp: 140-146), July 1998, IEEE Computer Society Press.

Ranganathan K. and Foster I. (2001). Identifying dynamic Replication Strategies for a High-

Performance Data Grid, Proceedings of International Workshop on Grid Computing (pp: 75-86),

Denver, USA, November 2001.

Sidell J., Aoki P. M., Barr S., Sah A., Staelin C., Stonebraker M.and Yu A. (1996). Data

Replication in Mariposa (pp: 485-494), Proceedings of 17
th

 International Conference on Data

Engineering, New Orleans, USA, February 1996.

Siegel A., Birman K., and Marzullo K. (1990). Deceit: A Flexible Distributed File System

(Technical Report No. 89-1042), Department of Computer Science, Cornell Univ., November

1989 (also in Proceedings of USENIX Conference, Anaheim USA, pp. 51-62).

Sybase FAQ, http://www.faqs.org/faqs/databases/sybase-faq/part3/

Triantafillou P. and Neilson C. (1997). Achieving Strong Consistency in a Distributed File

System, Proceedings of IEEE Transactions on Software Engineering, 23(1), 35-55.

Vazhkudai S., Tuecke S., Foster I. (2001). Replica Selection in the Globus Data Grid,

Proceedings of the International Workshop on Data Models and Databases on Clusters and the

Grid (DataGrid 2001), (pp: 106-113), May 2001, IEEE Computer Society Press.

Venugopal S., Buyya R., and Ramamohanarao K. (2005). A Taxonomy of Data Grids for

Distributed Data Sharing, Management and Processing (Technical Report, GRIDS-TR-2005-3),

Grid Computing and Distributed Systems Laboratory, University of Melbourne, Australia.

URLS:

Ahmed R., DeSmedt P., Du W., Kent W., Ketabchi M., Litwin W., Rafii A. and Shan M.,

“Using an Object Model in Pegasus to Integrate Heterogeneous Data”

http://www.bkent.net/Doc/usobpeg.htm

Baentsch M., Baum L., Molter G., Rothkugel S. and Sturm P., “Caching and Replication in the

World-Wide Web”, available from

http://www.newcastle.research.ec.org/cabernet/workshops/plenary/3rd-plenary-papers/13-

baentsch.html

Baumgartel P., Oracle Replication: An Introduction,

http://www.nyoug.org/200212baumgartel.pdf

http://www.akamai.com

http://www.dbmsmag.com/9705d15.html

http://www.dothill.com/tutorial/tutorial.swf

http://www-db.stanford.edu/peers/

